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1 Introduction

In this paper, we investigate the Helmholtz decompositions of vector fields of bounded
mean oscillation over the half space and vector fields in real Hardy spaces over the half
space. The subject of studying Helmholtz decompositions asks the standard question
whether a vector field, in some specific function spaces over some specific domains, can be
decomposed into the direct sum of a solenoidal subspace and a subspace which is exactly
a gradient field. The reason why we are interested in this subject is due to the well known
fact that Helmholtz decomposition plays an important role in constructing mild solutions
of the Navier-Stokes equations.

Helmholtz decompositions are widely studied for vector fields of LP spaces over many
kinds of different domains when 1 < p < oo. For example, we have the result that for
every open domain 2 C R™ the Helmholtz decomposition holds for vector fields of L*(2).
When p does not equal to 2, we also know that the Helmholtz decompositions of vector
fields of LP spaces hold for some domains while there exists other domains where the
Helmholtz decompositions of vector fields of LP spaces fail to hold, e.g. see [4]. Although
problems when p does not equal to 2 are much more difficult than the case when p equals
to 2, we still had various results. However, this subject is poorly studied for vector fields of
other function spaces. In the case for vector fields of bounded mean oscillation and vector
fields in real Hardy spaces, we only have a single piece of result, obtained by Miyakawa
8], states that the Helmholtz decompositions of vector fields of bounded mean oscillation
over R™ and vector fields in real Hardy spaces over R™ hold. This lack of study is due to
the fact that the theories of real Hardy spaces and BM O spaces over domains other than
R™ are harder to deal with and moreover, the proper definitions of the space of vector
fields of bounded mean oscillation and the space of vector fields in real Hardy spaces over
other domains are not known perfectly. The purpose of this paper seeks to extend the
result of Miyakawa [8] from R" to R? = {(x,z,) € R"™! x R|z,, > 0}. In the meantime,
we show that our definitions of the space of vector fields of bounded mean oscillation over
R? and the space of vector fields in real Hardy spaces over R} are valid, in the sense that
they admit a duality relation.

In order to define the space of vector fields of bounded mean oscillation over R}, we
need to define two types of BMO spaces over R} firstly, one corresponds to the function
space for the tangent direction while the other one corresponds to the function space for
the normal direction. The BMO space over R} for the tangent direction we define is
the space BM O, (R%). In Section 5, we prove that BMO,*(R%) is equivalent to
BMO(RY) := rgy BMO, the restriction of functions of BMO to R}. The BMO space
over R for the normal direction we define is the space BMO,”™(R"). In [1], it is proved
that BMO,;”™(R") is equivalent to BM Oy, (R"y) where BM Oy (R} is the BMO space
defined by Miyachi in [7]. Therefore the space of vector fields of bounded mean oscillation
over R, denoted by X, can be defined as X := (BMO(R?))"! x BMOy(R™). The
first main theorem of this paper reads as follows. Let n be the exterior unit normal of the
boundary of R", i.e. n = (0,0, —1) so that the inner product v - n denotes the normal

+
trace to OR"} of a vector field v on R} .

Theorem 1.1. Let X be the space of vector fields of bounded mean oscillation over the
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half space R}, then X admits the Helmholtz decomposition
X=X,d X,
with the Helmholtz projection Pry where
Xo={veX|divv=0 inR} & v-n=0 ondR] },
X, ={VpeX|pe L, (R})}.

The key idea of the proof of Theorem 1.1 is to consider extension and restriction.
When Miyakawa [8] established the Helmholtz decomposition of vector fields of bounded
mean oscillation over R™ and vector fields in real Hardy spaces over R", he considered the
Helmholtz projection P where IP; ; := 9, ; + R;R; and R; is the i-th Riesz transform for
1 <i,5 < n. Here we make use of this idea. We define our projection by IP’M = TRn PE
where E'is the extension operator which extends vectors in X to vectors in BMO and rry
is the restriction operator which restricts vectors in BMO back to vectors in X. Then
we prove that our projection P is actually a bounded linear map from X to X. Hence
through this projection we have a natural decomposition of our space X of the form

X =Ppy X @ (I — Pay)X.

Then we prove that the subspace Pgy X is actually the solenoidal part and the subspace
({ — Pgy )X is actually the gradient part. As for the trace problem, we can make use of

the theory of Temam [10] since X C L2 _(R%). Notice that the space X is not a proper
Banach space due to the fact that the BMO-type norm is just a seminorm. Therefore,
in order to avoid any ambiguity, we mean the Helmholtz decomposition not for X in the
usual sense but for the quotient space X/(R"™! x {0}). Here we direct the readers to
Section 2 for the precise definitions of the extension F, the restriction TR™ the space
BMO,;*(R%) and the space BMO,”>(R?).

By similar ideas as above, we need to define two types of real Hardy spaces over R’}
in order to define the space of vector fields in real Hardy spaces over R’}. For the real
Hardy space over R in the tangent direction, denoted by .., (R’}), is defined to be the
restriction of all even functions in the real Hardy space over R™ to the half space R’}. For
the real Hardy space over R” in the normal direction, denoted by 2,(R™), is defined to
be the restriction of all odd functions in the real Hardy space over R" to the half space
R”. In Section 5, we also prove that 24, (R") is equivalent to £ (R’) where 5} (R"})
is the real Hardy space defined by Miyachi in [7]. Hence the space of vector fields in real
Hardy spaces over R", denoted by Y, can be defined as Y := (A, (R%))" ! x 735 (R7).

Let Y, ={veY|divv=0 inR} & v-n=0 on JdR" }, the second main theorem
in this paper reads as follows.

Theorem 1.2. Let'Y be the vector field in real Hardy spaces over the half space R, then
Y admits a decomposition of the form

Y=PrY®Y,
with a bounded linear projection Pry : Y — Y where
Y, CPriY C{veY]|divv=0 in R} },
Y. ={VpeY|pe L, (R}
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Similar to the proof of Theorem 1.1, we consider the same projection PRi = TRn PE
and we prove that Pm is also a bounded linear map from Y to Y. Using the same idea,
we can see that Y also admits a natural decomposition of the form

Although the later theory is basically the same as the previous case for vector fields of
bounded mean oscillation, in this case we do not know how to solve the trace problem.
Hence for the subspace Prn Y we can only say that it is divergence free, we cannot say
that it is the right solenoidal part in the Helmholtz decomposition. We have no problems
in characterising the subspace (I —Pgy)Y. (I — Pgy)Y is the right gradient part, just
like the previous case. For the precise definitions of the spaces .., (R) and 2, (R" ),
we direct the readers to Section 2. Notice that if we can solve the trace problem, then
this decomposition turns into the full Helmholtz decomposition immediately. Hence for
this decomposition, we call it a partial Helmholtz decomposition.

By the standard theory of real Hardy spaces, we can see that the space of vector fields
of bounded mean oscillation over R" is exactly the dual space of the space of vector fields
in real Hardy spaces ! (R™). In order to make the theory over R" to be compatible with
the theory over R", it is necessary to consider the relation between the spaces X and Y.
Fortunately, we have a positive answer to this question.

Theorem 1.3. Suppose v € X. Then the linear functional | defined on'Y by

z(u):/R u-vdx

n
+

foru €Y is a bounded linear functional which satisfies ||l|| < c-||v||x with some constant
c. Conversely, every bounded linear functional on Y can be written in the form of

[(u) :/ u-vdx foralueyY
RY

with v € X and ||v]|x < c- ||l|| with some constant c. Here ||l|| means the norm of l as

a bounded linear functional on Y .

In short, the above theorem states the simple fact that X is the dual space of Y. To
prove the above theorem, we prove that BM Oy, (R") is the dual space of .., (R"})
and BMO;”*(R") is the dual space of #,.,(R"). The key idea in showing these two
duality relations is again to consider extensions and restrictions. By the theories in the
previous part, we see that the even extension of elements in ., ., (R" ) produce elements in
1 (R™) and the odd extension of elements in .7, (R ) also produce elements in 72! (R™).
Since elements in 1 (R") admit atomic decompositions, by taking the restrictions we
can get the half space version of atomic decompositions of elements in 2}, (R") and
A4, (R™). Then by similar arguments of Fefferman and Stein [3] in proving that BMO is
the dual space of ' (R"), we can prove the two duality relations concerning J;,,(R")
and J2},(R"). The proof of Theorem 1.3 establishes two sets of complete theories for our

two types of real Hardy spaces over R’}. These two sets of theories are indeed compatible
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with the theory of Miyachi [7] where he established the theory of real Hardy spaces
over arbitrary open subsets of R”. As a result, Theorem 1.3 verifies the validity of the
definitions of X and Y.

In the work of Miyakawa [8], he also found the fact that the dual operator of the whole
space Helmholtz projection P is indeed P itself. In this paper we also investigate the dual
operator of our half space Helmholtz projection Pr» and we obtain the following result.

Theorem 1.4. The dual operator of Prn 'Y =Y is Prr dtself as a map from X to X,
i.e. IP’RK* = Pgrr as a map from X to X.

The key idea lies in the proof of Theorem 1.3. This theorem can be easily deduced by
simply considering the dual operators of £, P and rgy. By making use of this theorem,
we can further deduce the following important corollary.

Corollary 1.5. X, = Y, and Per Y = X

Notice that here because we do not know how to take the trace of elements in Y
properly, we can only say that Pr»Y is the annihilator of X;. If the trace problem is
settled, this relation turns into Y, = X, immediately.

This paper is organised as follow. In section 2, we give out the basic definitions. In
section 3, we investigate the Helmholtz decomposition of X. In section 4, we investigate
the Helmholtz decomposition of Y. In section 5, we study the duality relationship between

X and Y. In section 6, we study the dual operator of our Helmholtz projection Pgn :
Y —-Y.

2 Definitions and Notations

Let R} := {x € R"|z,, > 0} be the half space where x,, here is the n-th component of
x and let ORY := {x € R"|z,, = 0} be the boundary of the half space R". The space
L, .(RY) is deﬁned in the usual way as the set {f : R — R measurable ||| fller) < oo

loc

for any open subsets @ CC R} and L;, (R?}) := (L}OC(RH )"

Definition 2.1. Let f € L}, .(R") and B,(x) be the open ball of radius r centered at x,
we define three types of BMO-type seminorms as the following:

o mBMow(m) = supnﬁ Jslf(y) — f5ldy

where fp = |B| fB y)dy and B is an open ball.

R 1
hd [f}b“’(]R’_}_) = ili%) B (x)NR" | fBr(x)ﬁRi |f(Y)| dy'
x€ORY
o [flhaemy) = sup B Jp, eorzs 1Y) = JBcormy | dy

xeaR"

where fp,(x JNR™ -= Wl)mﬂm fBr(x)ﬂRi fly)dy.
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The seminorm [ Jpee(ry) is already introduced in [1] with a more general form. In [1],
the definition of this seminorm is of the form |- ]y, @) where v could be any real number
including oo and p € [1,00). In our case, when v is equal to oo and p = 1, an easy
check quickly shows that this seminorm is indeed a norm. Therefore it is unambiguous to

replace [']boo(Ri) by || - Hb‘x’(Ri)'

Definition 2.2. We define two types of BMO spaces over the half space R in the
following way:

o BMOZ™ (RY) :={f € LL,,(RY) | ||f|lparop=@y) < o0}

loc

where || f||parogze=@n) = [flpmo=y) + || f]]p=@n)-

o BMO;™(R%) :={f € Lj,(R}) | [f]BMO;fZ’OO(Ri) < oo}

where [f]BMOle’C’O(R’j_) = [f]BMOoo(Rf;) + [f]baoo(m).
Since ||| [pe< ey ) is indeed a norm, [|-|[ pasoz= @) is also a norm. However, [-]ppope=gn)
is simply a seminorm.
Definition 2.3. The space of vector fields of bounded mean oscillation over the half space
R?% is defined in the following way:
X(RYRY) = (v, 0") | v € (BMOZ™(Ry))"™ v € BMOF™(R}))
1 n-1)

where v' = (v, ... v and v := (v',... ;0" o"). We define the seminorm [-|x on
the space of vector fields X(R",R") as follow:

[y

n—
[V]X = [Ul]BMOEZ’oo(Rﬁ) + anHBMog"vm(My
i=1

From now on, without any ambiguity, we shall denote (X, [-]x) simply by X for abbrevi-
ation.

Next we would like to define two extension operators which extend functions over the
half space R to functions over the whole space R".

Definition 2.4. Let f : R} — R, we say that E,qq f : R" — R is the odd extension of f
of

, . f(X/, In) fon > 07
Eoad (X, 2n) = {—f(x', —Z,) ifx, <O0.

a.e. (almost everywhere).
Definition 2.5. Let f: R} — R, we say that Eepe, f : R™ — R is the even extension of
fif

B F(X 1) f(x',z)  ifz, >0,
even [ tn) = f(x', =z, ifz, <O.
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a.e. (almost everywhere).

Based on these two definitions of extension, we are able to define an extension operator
for vector fields of functions over the half space R” .

Definition 2.6. Let f*:R? — R for 1 <i<mn andlet f = (f',..., "' "), we define
the extension of f by

Ef = (Ef)l = Eevenfi fOTlSiSn—L
(Ef)" := Eoqa [T

After we defined the extension operator, we shall now define the restriction operator,
for functions and vector field of functions.

Definition 2.7. The restriction operator is defined as follow in two cases:
o Let f:R" = R, we define the restriction rre f by rre [ := f |Ri: R? — R”.

o Let £ = (fY.... " f") and f' : R" — Rwith1 < i < n, we define the i-th
component of the restriction rgnf by (rRif)i = rRifi.

Now we have done enough preparations for defining our vector field of real Hardy
space ! over R”.

Definition 2.8. We define two types of real Hardy space A over the half space R in
the following way:

o Hu(RY) = {feLl(R”)|||f||%1

odd

) < 0o}
where Hijfoldd(Ri) = H Stl>1¥)) |7"Ri €tA Eodd f‘ (X) HLl(Ri)'

o Hen(RY) :={f € L'RY) | || fllzn,, @) < oo}

where || fl|ex,, @) = || stu%) TR e® Bopen f] (X) L2 (n)-
>
Here e is the heat semigroup. In other words, (e f)(x) = [p. Gi(x —y)f(y)dy where
x2
Gi(x) = @6_% denotes the heat kernel. We also write as (Gy % f)(x) by using the

notation of convolution.

Definition 2.9. The space of vector fields in real Hardy spaces over the half space R} s
defined in the following way:

Y(RY,R") = {(u,u") | u’ € (S, (RL)" ™ u" € Hy,(RL)}

even ]

where u' = (ul,... u" 1) and u:= (u',...,u"" ' u"). We define the norm || - ||y on'Y
by :

[ally = Z ||| s, ®n) + U Ley, @n)-



94

From now on, without any ambiguity, we shall denote (Y, || ||y) simply by Y for abbre-
vtation.

Definition 2.10. We define P by (P);; := 0;; + R;R; with 1 < i,j5 < n where R; is the
1-th Riesz transform.

Here P is an n x n matrix whose entries are transforms. This PP is exactly the Helmholtz
projection established by Miyakawa in [8].

Definition 2.11. We define the half space projection operator Prn by Prn := rge P E,
that means for v.e X (or Y ) we have that Prr v i=rgy PEv.

Before we end this section, let us recall the real Hardy space and the BMO space
defined by Miyachi in [7] when the domain 2 =R’} and p = 1. Let ¢ € Cg°(B(0, 1)) such
that [, ¢(x)dx = 1. For x € R%, let dgn (x) := dist(x, (R7)°).

Definition 2.12. We denote by 5#,;(R".) the set of those f € L'(R™) such that|| sup
0<t<dzn (x)
+

o fl(x)|[ L2 (mr) < o0

Definition 2.13. Let f € L, (R}), we say f € BMOu(RY) if [|fllzmoy @) =

loc

[f]BMO(Ri) -+ [f]b(m) < oo where

1
[flBmo®n) == SUP{— |f = fB,x0| dy | B2 (x) CR”}7
o BN i, > '

: ‘f‘ dy ’ BQT(X) C Ri and B5T<X> N <RZ—)C 7& @} .

Loy := sup { B+ ()] /B, x

3 Helmholtz decomposition of vector field of bounded
mean oscillation over the half space

3.1 Boundedness of projection Pg: from X to X
Let v € X and PRZV = TRy PEwv.

Lemma 3.1. Let f € BMO,”*(R"), then we have that Esqqf € BMO(R™, R) and there
exists a constant C' which only depends on n such that

[Eoadf]mo < C - |[f||Barogz=@n)-
Proof. This lemma has already been established in [1, Lemma 7]. ]

Lemma 3.2. Let f € BMO,™(R%), then we have that Eeyenf € BMO(R™ R) and
there exists a constant C' which only depends on n such that

[Eevenf]BMO <C- [f]BMO;:Z’OO(Rz)'
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Proof. For simplicity let us denote E.,.,f by f ,let x € R" and » > 0. If B,(x) C R} or
B.(x) C (R7%)¢, we can easily verify that

’/ — [l dy < [f1Bro @)

(1).If B,(x) NOR"}, # @ and x € IR}, then due to the fact that f is even with respect
to x,, we have

1 ~ ~ 2 -
1F(y) = fB.00ldy < n 1f(¥) = B0l dy
|B,()] /5,0 * B, (%) VRE] 5, orms >
2

s 2 1d
=1, <x>mm|</BT g ) Tmtorse] 4y

[ U = Fapoldy) e (51)

r(x)NRY
Here fp, (onrn = m I toner f(¥) dy. By simple check we can further notice that
T + T +

1

[B.(x) = ZCREAN - fly)dy.

Therefore fp,x)rrr = fBr if x € OR’ and hence

/ |fBr(x)mR1 - fB,»(x)| dy = 0.
() NR™
By continuing the calculation we can deduce that

(1) = |f(y) = fB,00nry [ dy < 2 [floase(rr).-

|Br(x) NRL[ S5, oy

Thus if x € OR, then for any r > 0 we have that

ol dy <2 [flra=gn)-
\B e — [0l dy [/ lba= @)

(2).If B,(x) NOR" # @ and x ¢ OR, then I x* € B,(x)NOIRY and B,(x) C B, (x*).
Notice that

| Bar (7)) 1 ; ;
dy < : : — o] d
|/ fBQ'r' ’ y = ‘Br<X)’ ‘B2r(x*)’ /BQT(x*) ’f(y) fBzr( 1 ay
| Bar (x7))|
S TBpg) e
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The second inequality here holds because of (1). Notice that

1 _ N
1B.x)| ) 1f(y) = B0l dy < / — FBa (-

T / Foner) = Foooldy) - (2).
Bqﬂ(X)’ Br(x) 2( ) () )

and

1 ~ ~ 1 - 5
B /s o | [Bor(x*) — [Box)| Ay < B '/B o |[(¥) = [Bor(x*)

Therefore

dy.

2 ~ ~
(*2> |B ( )’ /Br(x) ‘f(y> - fB2r(x*)

As a result, for any x € R’} and r > 0, we have that

dy < 2" - [ floace )

1

1F(¥) = .00l dy < ([flBmo@n) + 272 - [flrae@n))
[B.(¥)| /5,0

= 2" [flpmoge o (R )

by (1) and (2). Therefore it is true that
[flsao <272 [flarox =@y

1)

]

Lemma 3.3. Let f € BMO(R™ R) and f be odd with respect to z,, i.e. f(X,z,) =
—f(x',—m,), then we have that ren [ € BMO™(RY) and there exists a universal con-
stant C' such that

\lren fll o= @n) < C - [flBMmo-

Proof. (1). Notice that

f(y) — fBT(x)| dy = [flsmo.

1
[7Re flBMO=@®r) < SUP 75—
+ ( +) XERn|B ( )| Br )

r>0

(2). Let x € OR} and r > 0. Let B/ (x) := B,(x) NR%} and B, (x) := B,(x) N (R})°.
We have that

1
) = ———— + dy).
IB.(x) ‘BT(X”(/BNX)f(y)dy /B,T(x)f(y) y)

Notice that by change of variables we can easily deduce that

[ smay=-[ sy
By (x) B (%)
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Hence

1
oo = T /B Ly - /B ) =

Therefore in this case, we have that

1 1
|B (| /5, 79) = ool dy 1B (x)] /B, (x) 7 dy

By taking the supremum, we can deduce that

up " [ o TNy S s 1£(9) = fi.00ldy
r(x)NR™

r>0 w0 |Br(%)] /00
xEBIR’}r xe@R"
< C-[flBmo-

Thus

HTR"beoo(R ny < C-[flemo.

Therefore by (1) and (2), we have that

\lr&e fll Baroge@ny < C- [flsmo-
]

Lemma 3.4. Let f € BMO(RY,R), then we have that rg» f € BMOy, > (RY}) and there
exists a universal constant C' such that

[res flemog=@n) < C - [flemo-

Proof. Firstly let us recall the fact that in defining the BM O-seminorm it is equivalent to
consider the supremum over all balls and all squares. Here we make use of this idea. Let
f € BMO(R"},R), x € OR" and r > 0, let B;F(x) be the intersection of the ball B, (x)
and the half space R’}. Let Q. be the set of squares whose centers are on the boundary
OR" with sides parallel to the coordinate system. Notice that a simple triangle inequality
would give us the fact that if for each half ball B;(x) there exists a constant cg+ (. such
that

1
sup ()~ et dy < 0, (3.1)
xE@R”‘B )| /Bt x) Br ()
r>0

then [f]pae < 00. Now we let Q, € Q. be the smallest square that contains B,(x), then
we can easily deduce that

! @1
_ < d +|d
BEGN S 1Y IV S T |@+|/ ~Jarldy
L|d
- S‘SSC@ 7y 109~ Sl
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where c is a constant independent of the radius r and @7 is the intersection of @) and R7;.
Hence by (3.1) there exists a constant ¢ such that

ooy < € 500 i / ~ forldy.
cQe

For the opposite direction let Q* € Q. be the largest square that is contained in the ball
B,.(x), then we have

|BJ(X)| 1
Q*ﬂ Q] B (x)| Jprx

By similar arguments as proving (3.1), if we take the supremum over all squares, we have
that

1
QY| Jo+

sup ——
QEQ.

[F(y) = forldy < ¢ [flpace@n)-

Therefore the seminorm [f]po(rz) is equivalent to the seminorm sup @ fQ fly) —

fo+|dy. To prove Lemma 3.4, we only need to check that the seminorm sup ﬁ /. o |f(y)—
QEQe

fo+|dy is less than infinity. This is indeed since we always have that

ol
|Q+|/ ~ foldy < 15 /|f ~ foldy

=c- [f]BMo
< 0.

By applying the argument of the square version of (2.1) again, we can deduce that

ﬁ/@ [F(y) = forldy < ¢ [flamo < oo

Therefore by taking the supremum, we are done. O]
Now we are ready to prove the main lemma in this subsection.
Lemma 3.5. IP’M : X — X is a bounded linear operator.

Proof. (1). Let v € X, by Lemma 3.1 and Lemma 3.2, we can deduce that there exists a
constant C' such that
n—1
[EV]gr0o = 3 [ Eeven V'] 510 + [Boaa V"] Brr0
i=1
n—1
<C- (Z[UZ]BMOEZ"X’(R:{) + |[v"[| Broge= @)
i=1

SC [V]X
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Therefore E : X — BMO(R",R") is a bounded linear operator.

(2).Since the Riesz transform R; is a bounded linear operator from BMO(R",R™) to
BMO(R"™,R") for each i, we can easily deduce that the projection P := I + R® R is also
a bounded linear operator from BMO(R™,R") to BMO(R",R™). As for the boundedness
of Riesz transforms from BMO to BMO, please refer to Fefferman and Stein [3].

(3). Notice the fact that (PEv)® is even with respect to x,, for i such that 1 <i <n-—1
whereas (PEv)™ is odd with respect to x,. This fact will be proved in subsection 3.3.
Then by Lemma 3.3 and Lemma 3.4, we can deduce that there exists a constant C' such
that

[IF’Riv]X S C- [V]X.

3.2 Trace problem

Let u € X, then by Lemma 3.1 and Lemma 3.2 we know that Fu € BMO(R",R"). Let
L7 (Q) := (L2 .(Q))" where Q C R".

loc

Lemma 3.6. Let u € X, then we have that u € L} (R%).

loc

Proof. Let u € Lj,.(R%) and Eu € L},.(R™) be an extension of w.

loc loc

(1). Eu € BMO implies that Fu € L} (R™). This is indeed true since if we let B be

loc

any open ball in R™, by the John-Nirenberg inequality we have that

|Eul|725) = 2 ~/0 ap({x € B | |Eu(x) — Fug| > a}) da
CQO(

<C-B-/ a-exp(————
= 1 | | 0 p( [EU]BMO

< 0Q.

) dov

The first equality above is due to ||f|[7, = p [~ o’ ds(«) da where dg(a) is the distri-
bution function of f, for this fact please refer to L.Grafakos [5].

(2). Let K CC RY%, it is certainly that K C B,(x) "R for some x € R and r > 0,
then we have that

ul| L2y < Nullr2B,onrn) < | EullL2(8, (x) < 00

Therefore u € L*(K) for any K CC R, that means u € L2 (R%).

loc

For u € X, we have that Ee_venuz € BMO for1 <i<n-—1and Egu"® € BMO,
hence by (1) and (2) u* € L2 (R") for 1 < i < n. O

loc

2

i(R™), we are able to make use

Since we have proved that u € X implies that u € L
of the theory of R.Temam [10] to define the trace.

Definition 3.7. We define the space Ei,.(R’}) in the following way :
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o Eo(RD) = {u e L2, (RT) | divu € L3, (RD))}.

n

Here divu means the divergence of u, i.e. divu := E Oy, u'.
i=1

o Let u € E,(RY), we define a family of seminorms || - ||p@, for all i € N on
Eloc(RgJ-) by

[ullB, = Jo, [divul® + [uf? dx

where Q; is an open domain in R" with C* boundary 8 for each i € N, moreover
we require that B;(0) C 0% foralleN where B;(0)' := {x € B;(0) | z, =0} and
Q; TR} as i — oo.

Definition 3.8. (Trace space)
e We denote the interior of the region ; N OR™ in R™™! by Q.

o TR == {T € Z®) | | <T6 > | < Ci- |6l for any ¢ €
P(R* 1) with supp ¢ C Q; }

o We define a family of seminorms {|| - ||y | 4 € N} on T(R™™1) by

Tl = s | <T6> |
’ peZ (R,
supp ¢CQ/
o]l =1

%m;)

It is not hard to verify the fact that these two spaces Ej,.(R7) and T'(R"!) are indeed
Frechet spaces, thus we omit the details here and proceed directly to define the trace.

Lemma 3.9. Let v : E,(RY) — T(R"Y) by u = 7, where for ¢ € Z(R"Y) with
supp ¢ C €, we have the map

Yu(P) :—/ divu-w+u-Vwdx.
Q;

Here we choose w € H'(SY) with the trace operator o : H () — Hz(0SY) such that the
trace of w is ¢. Then we have that the map 7 is a bounded linear operator.

Proof. Here we make use of the theory of R.Temam [10]. Notice that for each ¢ € Z2(R"!)
with supp ¢ C €2, we can actually find an w € H'(€;) such that its trace yow = ¢. Let
¢ € 2(R™ 1) with supp ¢ C €, notice that by definition we have that Q; C ;. We

define a function g on 0€); by

o) i {¢(x) it z, =0,

0 else.
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Since ¢ € Z(R™), an ecasy check quickly tells us that this function g € Hz(8€;) and
||g|]H%(aQ_) = ||¢|]H%(Q,_). Then by R.Temam [10], there exists an w € H'(£;) such that

its trace 7o w = g. Therefore by the definition of our 7,, we have that

|’7u<¢) | < || divu ||L2(Qi) : || w ||L2(Qi) + || u ||L2(Qi) : || Vw ||L2(Qi)
<O (|| divul|pz,y + [l ullwzqy ) - @ la@)
< C-[ullp@)  lwllm @)

by the triangle inequality and the Holder inequality. Since by R.Temam [10], there exists
lo, € L(HY?(0Q;), H(Q;)) where lg, is the lifting operator such that lg,g = w, hence
by above we have that

(@) | < C-lullsq) - [[log|lm @)
< G -lulleq) - 119200,
=Ci - |[ullp@) - |l ¢||H1/2(Q;)'

The last equality holds since g(x) = 0 for x ¢ ;. Therefore, we can deduce that
ullg < Ci - [lulle@)

where C; is simply a constant which depends on i. As a result, we see that
v Epe(R7) — D(R™Y)

is indeed a bounded linear operator in the sense of Frechet spaces. Il

By Lemma 3.6 we know that X C L2 (R7) and by Lemma 3.9 there exists a bounded

loc

linear operator v which maps Ej,.(R7%) to I'(R""!). For the subspace {u € X | divu €

L2 (R7)} C X, it is trivial to see that the map 7 is also a bounded linear operator from

{ueX | divue L} (R?)} to [(R*!). This is how we take the trace for elements in
X.

3.3 Validity of Pg» as the Helmholtz projection

Lemma 3.10. Let v € X, then div Prev =0 in RY in the sense of distributions.

Proof. Let ¢ € Cg°(R"). By the definition of distributions, we have that

J

Since supp ¢ CC R, we can easily deduce that supp J,, ¢ CC R for any 1 < i < n,

therefore
/

diVPRiV‘gﬁdX:—/ PRiV'V(édX.

n n
+ R%

PRiV-V¢dx:/ IP’EV-V¢dX:—/ div (PEV) - ¢ dx.

n n

n
+
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Because div (PEv) = 0 in the sense of distributions, we have that

/ div (PEV) - ¢dx = 0.

Thus

J

Notice that the above equality holds for any ¢ € C5°(R"), hence

div PR1V~¢dX: —/

Prrv-Vodx = / div (PEV) - ¢dx = 0.
R

n n n
+ +

div PRiV =0 in Ri

in the sense of distributions. As for the reason why div PEv = 0 in the sense of dis-
tributions, by considering Fourier transforms we can quickly prove it through simple
calculations. O

Let us recall some facts about Riesz transforms. Notice that the j-th Riesz transform
R; is defined as

Ry(f)(x) == p.v. / T f(y)dy.

n | x —y|tt

By [9, p.232], we have that R;(f) is well-defined for any f € J#*(R") and 1 < j < n.
By [3], we have that for f € BMO and 1 < j < n, R;(f) € #'(R")*. Hence by the
fact that BMO = J*(R")*, there exists h € BMO such that R;(f) = h in the sense
of bounded linear functionals on ##1(R"). Therefore for any f € BMO and 1 < j < n,
R;(f) is defined by its corresponding h. Based on these facts, we have the next lemma
which proves an interesting property about Riesz transforms.

Lemma 3.11. Let f belongs to BMO or s (R"),
(1). If [ is even with respect to x,,, then

R;(f) is even with respect to x,, for j satisfying1 < j <n—1,
R, (f) is odd with respect to x,.

(2). If f is odd with respect to x,, then

R;(f) is odd with respect to x,, for j satisfying 1 < j <mn —1,
R,(f) is even with respect to x,.

Proof. For f € ' (R"), since R;(f) is well-defined for each 1 < j < n, we can prove

this lemma directly through change of variables. Let g € BMO be odd with respect to

2, and 1 < j <n—1,let w€ BMO such that R;(g) = w. Let w(x,,) := w(x, —x,)
and f € #'(R"), then by change of variables we have that

<, f>=<w,f>=—<g R;(f)>.
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Notice that the second equality above holds since f € ' (R") if f € 2 (R"). Again by
change of variables, we can further deduce that

< ’

Ri(f)(x @) = Ri(f)(x', ~n).

Then,

_ / g ) - By () (x

:<97Rj<f)>
=—<w, f>.

Hence < w + w, f >= 0 for any f € 2 (R") and thus w is odd with respect to z,. The
other three cases can be proved by similar arguments. O]

Lemma 3.12. Let v € X, then we have that

(PEV)" is even with respect to x, for i satisfying 1 <i<mn—1,
(PEvV)"™ is odd with respect to x,,.

Proof. This is a direct application of Lemma 3.11. m
Lemma 3.13. Letv € X, then the trace Prn v-n =0 on OR} in the sense of distributions.

Proof. Let Bp, be the ball Bg(0). Let Bj := BrNR'} and By := BrN(R%)°. Let v e X
and let u := PEv. By the above lemma we can see that u" is odd with respect to z,. Let

/ / n f n )
w(x2,) = {u(x,x) if x, >0

0 if z,, < 0.
and
, 0 if , > 0,
u2(X 71:71) = ’ .
u(x,x,) ifz, <0.
Let ¢ € C5°(Bg), then we have that
<divuy,¢p>:=—<u,Vo >

= / divu; - ¢pdx —|—/ (u; - ny)¢ ds™ !
B

{zn=0}NBg



104
where n; is the normal vector on OR! which points outward Bf. In the mean time, we
also have that
<divug, ¢ > :=— < uy, Vo >
= / div us - ¢pdx +/ (ug - ny)p ™!
B {InZO}ﬁBR
where ny is the normal vector on OR!. which points outward Bj. By similar arguments

as in the proof of Lemma 3.10, we can see that div u = 0 in Bg, div u; = 0 in B}, and
div uy = 0 in By. Therefore

R

0=<divuy,¢ >+ < divug, ¢ >

:/ divu1-¢dx+/
Bj, By

:/ (ul-nl—ug-nl)qbd,%”"_l.
{xn:O}ﬂBR

divu2-¢dx+/ (ul-n1+u2-n2)¢d%"_1

{l'n :O}QBR

Thus we see that on {x,, = 0} N B, (ul ‘N — Uy - nl) = 0 in the sense of distributions.
Notice that if x,, < 0, then

/

(x,—xp).

n /

up (< 2) = —uf
At {x, = 0} N Bg, we have that
w -ny =’ (x,0) and uy-ny = —ul (x,0).
and thus u} (x',0) = 0 in the sense of distributions. Notice that
ul (x,0) = Prev-n |z, —0jnBy -
Since {z, = 0} N Bg 1 OR"} as R — oo, we can easily deduce that the trace
Prrv-n |grn=0
in the sense of distributions. O
Lemma 3.14. Let v € X such that

divv=0 in RY,
v-n=0 on OR.

Then we have that v € PrnX. Notice that both equalities above hold in the sense of
distributions.

Proof. Let v € X such that
{de:o in R",

v-n=0_0 on ORY.
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in the sense of distributions and let E be our extension operator. Throughout the proof
of this lemma we mean equal to 0 in the sense of distributions.

(1). Here we prove that div Ev = 0 in R". Let Bg be the ball Bg(0). Let Bf, := BN
R? and By := BgN(R2)e. If 2, > 0, then Ev (x, xn) =v(x, :L‘n) and div Ev =divv =
0 in R? by our assumptions. If z,, < 0, then Ev (x,x,) = (V' (X, —2,), —v"(X, —2,) )
and

n—1

div Ev = Z Dp V' (X, =) + O_p 0" (X, —2,) = 0

i=1
since div v =0 in R%. Let ¢ € C°(Bg), then
<div Ev,¢ > = —- < Ev,V¢ >
:/ div Ev-gbdx+/ div Ev - ¢ dx
Bjy R

A= ) nea

The first two terms in the last equality equal to 0 since div Ev = 0 in both B} and Bp.
The third term equals to 0 since (Ev); -n, = v™(x,0), (Ev)_ -n, = —v"(x,0) and
v"™(x',0) = 0 by our assumptions. Hence div Ev = 0 in R”,

(2). Notice that by simply considering Fourier transforms it is easy to verify that
R; Z Rjuj =0 for any 1 <7 < n if div u = 0 in R™. Therefore if div u = 0 in R", then

J
(Pu)’ = v’ for any 1 <i < n.

Now let u := Ev, by (1) and (2) we have that Pu = u. Then by applying the
restriction on both sides of this equality, we get that Pryv = v. O]

Definition 3.15. We define the solenoidal subspace X, of X by
Xo={veX|divv=0 i R} & v.n=0 on R} }.
Here the two equalities hold in the sense of distributions.

By Lemma 3.10 and Lemma 3.13 we can see that Pgr X C X,;. And by Lemma 3.14
we can see that X, C IP’MX. Therefore PMX = X,. This fact justifies the validity of
Prr as the Helmholtz projection.

3.4 Characterisation of the subspace (I — Pg» )X
Lemma 3.16. Let v € X, then there exists p € Li, (R%) such that (I — Pgn )v = Vp.

Proof. We seek to make use of De Rham’s theorem [4] here. In order to make use of De
Rham’s theorem, it is sufficient to show that

<(I-P)Ev,¢>=0 V¢eC3(RM.
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Let ¢ € Cg5,(R") and u := Ev, notice that

{(I - P)u}’ = —R, ZRuJ

Therefore by substitution < (I —P)u, ¢ >= Z < —R; ZR ! ¢ >. Let f = Z R; a’

notice that
< —Ri(f),¢' > =< [, Ri(¢") >

Therefore

< (I—P)u,¢>zz ZRU R >
=< ZRuJ ZRZW

By div ¢ = 0 we can easily deduce that Z R;®" = 0 by considering Fourier transforms.
Thus l
< —=Plu,¢>=0 Vo¢eCy,(R").

Therefore by De Rham [4], there exists p € L}, (R") such that (I — P)u = Vp. By
applying the restriction operator we have that

rRi (I—IED)EV = (I—]P)R:L_)V:TRQL_ Vp
Notice that we can further deduce that rgrx Vp = V (rgrp). Indeed since for any ¢ €
Cg°(R%) we have that

<rpr Vp,§ > = / rry Vp - ¢dx = Vp-pdx
+

Rn

= —/ p-diqudX:—/ p-div ¢ dx
" ¥

= —/ (TRip)'diV qbdX:/ V(T’Rip)¢dx
" u
= <V(TR1p),¢> .
Therefore we have that (I —Pg» )v = V(rgnp). Since p € Lj,(R"), it is easy to deduce
that renp € L. (R%). O

Lemma 3.17. Let p € L}, (R") such that Vp € X, then Vp € (I — Pgn ) X.

loc

Proof. Let p € L} (R7%) such that Vp € X, it is sufficient to prove that Prr Vp = 0. Then
by this fact we can see that

([ — IEDRi)Vp = Vp — IP’Rin = Vp
and thus Vp € (I — PRi)X. Let g be defined as follow:



107

, p(x', ) if x, >0,
Q(X ’xn> = / .
p(x,—z,) if x, <0.

Since ¢ is the even extension of p, p € L} (R?) would imply ¢ € L} .(R"). Moreover,

loc loc
simple calculations would tell us Vg = E'Vp. This is indeed since for z,, < 0 we have

that

/ 0 /

0 0 , 0 /

where z, > 0. Again by considering Fourier transforms, it is easy to verify that (PV¢q)* = 0
for any 1 <7 < n. As a result,

PRi Vp = TRRIP’EVp = rRiPVq =0.
Hence Vp = (I — Pgr)Vp and we are done. O
Definition 3.18. We define the subspace X, of X by

X, ={VpeX|pe L, (Ry)}.

By Lemma 3.16 we can see that (I — ]P]M)X C X, and by Lemma 3.17 we can see
that X C (I —Pry)X. Therefore (I —Pgr )X = X;. This fact gives the characterisation
of the subspace (I — Pgy)X.

3.5 Proof of Theorem 1.1

Proof. By Lemma 3.5 we see that Pgy is a bounded linear operator which maps X to X.
By this bounded linear map we can easily see that the vector field X admits a natural
decomposition

X=PpnX& (I —Ppr)X
where both Pgr X and (I —Pgr )X are linear subspaces of X. Since this natural decompo-

sition is induced by the projection IP’]M, this decomposition is certainly unique. Moreover,
we have already proved that

Pre X =X,
and
(I = Pgn )X = X,
As a result, Theorem 1.1 holds and we are done. O

Remark 3.19. Although the Helmholtz decomposition we established for X is true, due to
the fact that [ - ]BMO;’Z""’(Ri) 18 a seminorm, it 1s inevitable to think about the question where
constant vectors are mapped to under this Helmholtz projection IP’]M. Unfortunately, this
question 1s not answered in this paper, in order to avoid this ambiguity, we shall consider
our Helmholtz decomposition not for the space X but for the quotient space X /(R""*x{0}).

From now on, without causing any ambiguity, we shall denote X /(R x {0}) simply by
X.
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4 Partial Helmholtz decomposition of vector field in
real Hardy spaces over the half space

4.1 Boundedness of projection Pg. from Y to Y

Let v €Y and IP’]MV = rRKIP’EV.

Lemma 4.1. Let f € 7, (R?), then we have that E,qqf € 57 (R") and
odd +
| Eodaf||er =2 '||f‘L%ibd(Ri)'

Proof. For simplicity we denote E,qqf by f. Let G; be the heat kernel on R" so that
(e"29)(x) = (G * g)(x) for a function g on R™. By Definition 2.8, we have that

||f||jg4:/R :3up|Gt>x<jT|(X)dx—i—/]R sup| Gy * f | (x) dx

n >0 n t>0

= (1) + (2).

(1). For x € R" and ¢t > 0, we have that (G, = f) (x,t) = (e (Gt * f)) (x,t). Since
this is true for all £ > 0, by taking the supremum over all ¢ > 0, we have that

sup| Gy * f | (x) = sup| TRrer(Gt * )| (x).
>0 £>0

Since the above equality holds for all x € R}, we can see that

(1) = /R sup| rRi(Gt * f) | (x)dx

1 t>0

=/ Sup|7“R1€tAf|(X)dX
R

i t>0

= 11l e

(2). Notice that (G * f) (x,t) is actually odd with respect to x,, since f is odd with
respect to z,,, hence

|Gt *f| (Xlax'mt) - | - (Gt *f_> (X/,—Jjn,t)‘ - |Gt >kf_| <X/’_$”’t)'
Let f4 (x) :=sup| Gy * f | (x), f¢, is even with respect to @,. Hence,
>0
@)= [ Ja(a —z)de dz = [ fE (2 z)de dzy = (1),

n n
R? R}

Lemma 4.2. Let f € A}, (R"), then we have that Eeye, [ € 71 (R™) and

||Eevenf’|%”1(R") =2- Hf‘ A e, (R ) -

‘even
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Proof. For simplicity we denote Eepenf by f. Let Gy be the heat kernel. By Definition
2.8, we have that

HfH%m:/R sup|Gt>kf]( )dx+/]R sup]Gt*f|(x)dX

n >0 n >0

=(1)+ (2).

(1). For x € R? and t > 0, we have that (G; * f) (x,t) = (rrn (G * f)) (x,t). Since
this is true for all ¢ > 0, by taking the supremum over all ¢ > 0, we have that

sup| Gy x f | (x) = sup| ry (G f) | (x).
>0 t>0

Since the above equality holds for all x € R}, we can see that

(1) =[]

%’je%)en (Ri) :

(2). Notice that (G * f) (x,t) is even with respect to x, since f is even with respect
to 2,,. We have that f¢ (x) := sup| Gy * f | (x) is even with respect to x,. Therefore,

(2) = féft (zl, —2,)dz dz, = fa(z/, Zn) dz dz, = (1).
R™ R?
[
Lemma 4.3. Let f € ' (R") and f be odd with respect to x,, ie. f(X,z,) =
—f(x', —x,), then we have that rre f € Ao, (R™) and
e flle,, @y < 1f[|er-
Proof. Let f € ##1(R") such that f is odd with respect to z,,, then
HTR"fHﬁ‘;bd(Ri) = / sup| TRY e Foua TRif | (x)dx
R7 >0
= [ suplre ¢ () dx
R7 >0
< [ supler® £ dx
Rn t>0
= |[f1ler @
]
Lemma 4.4. Let f € ' (R") and f be even with respect to x,, ie. f(X,x,) =
f(x',—x,), then we have that e f € Ay, (RY) and
e fllozs,, ny < [Lf]]er
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Proof. Let f € #*(R™) such that f is even with respect to z,,, then

e fllon,, rn) o= /

R™

sug| TRi etA Eeven rRif | (X> dx
t>

— [ suplry e £ () dx
R

n t>0

< /R sup| A f | (x)dx

n t>0

= || f1]e1 ®n)-

Lemma 4.5. IP’M .Y — Y is a bounded linear operator.

Proof. The proof is basically identical to the proof of Lemma 3.5. [

4.2 Properties of projection Pg:

Except some places due to the fact that we cannot take the trace properly, the theory
in this subsection is completely identical to the theory in subsection 3.3. This is due to
the fact that all properties hold not because of the space where v belongs to, but the
properties of projection P itself has.

Lemma 4.6. Let v € Y, then div Prnv =0 in R} in the sense of distributions.
Proof. The proof is completely identical to the proof of Lemma 3.10. O
Lemma 4.7. Let v € Y such that

{diVV:O in RY,

v-n=2_0 on ORY.

Then we have that v € Prn Y. Notice that both equalities above hold in the sense of
distributions.

Proof. The proof is completely identical to the proof of Lemma 3.14. O
Definition 4.8. We define the subspace Y, of Y by
Y, ={veY|divv=0 in R} & v.n=0 on OR] }.
Lemma 4.9. In the case for the space Y, we have that
Y, CPryY C{veY]|divv=0 in R} }.

Proof. By Lemma 4.6 and Lemma 4.7, we are done. ]
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4.3 Characterisation of the subspace (I — Pr:)Y

Due to the fact that the theory in this section depends only on the properties of projection
Prr and the trace problem which we do not know how to deal with is not involved in any
sense, it is completely identical to the theory in subsection 3.4.

Lemma 4.10. Let v €Y, then there exists p € L} (R") such that (I — Pgr)v = Vp.

loc

Proof. The proof is completely identical to the proof of Lemma 3.16. O
Lemma 4.11. Let p € L} (R") such that Vp € Y, then Vp € (I — Pgr)Y.

Proof. The proof is completely identical to the proof of Lemma 3.17. O]
Definition 4.12. We define the subspace Y, of Y by

Y, ={VpeY|pel.(Ry)}.

loc
Lemma 4.13. ([ —Pg)Y =Y.

Proof. By Lemma 4.10 and Lemma 4.11, we are done. O]

4.4 Proof of Theorem 1.2

Proof. By Lemma 4.5 we see that Pgy is a bounded linear operator which maps Y to Y.
By this bounded linear map we can easily see that the vector field Y admits a natural
decomposition

Y =Pay Y & (I —Pgy)Y

where both Prr Y and (I — P )Y are linear subspaces of Y. Since this natural decompo-
sition is induced by the projection IP’M, this decomposition is certainly unique. Moreover,
we have already proved that

Y, CPryYC{veY|divv=0 in R} }
and
(I -Pan)Y =Y.

As a result, Theorem 1.2 holds and we are done. Il

5 Duality theorem

Before we start this section we would like to recall the definition that a function h €
AN (R") is called a 2-atom if supph C B, ||h||r2@e < |B]7Y? and [, hdx = 0. Here
B C R" is an open ball.
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5.1 Duality theorem for the case of odd extension
Throughout this subsection, we denote the odd extension operator E, 4 by E.

Definition 5.1. We define the set of symmetric 2-atoms by the set

{Ergna| « is a 2-atom s.t. suppa C B and BNORY # o}
U {Eren B | B is a 2-atom s.t. supp C B C R }.

Let B, (RY) == {Ev | v € A, (R)}. Then EA,(RY) C A1 (R") is a linear
subspace.

Lemma 5.2. The norm

inf{z |Ai| + Z || | all symmetric 2-atomic decompositions}
( J

is equivalent to the norm || - || 1 (rny on the subspace EAu,(R™).

Proof. Let f € %,(R?), then Ef € 1 (R™).
(1). By the atomic decompositions of functions of the real Hardy space 52! (R"), we
see that E'f admits 2-atomic decompositions. Let

Ef = Z Aoy + Zﬂjﬁj

be a 2-atomic decomposition of Ef. Apply rgy firstly and then E secondly on both sides
of this 2-atomic decomposition, we can deduce that

Ef= ErRiEf = Z)\iEﬁR:‘_ai =+ ZﬂjErRzﬁj'

J

This is a symmetric 2-atomic decomposition of E f with exactly the same coefficients just
as the original 2-atomic decomposition. Hence we see that every 2-atomic decomposition
of Ef gives rise to a symmetric 2-atomic decomposition of Ef with exactly the same
coefficients. Therefore,

Ef|| 1 @ny = inf{z |Ai| + Z || | all 2-atomic decompositions}

j
> inf {Z |Ai| + Z 1] | all symmetric 2-atomic decompositions}.
i J

(2). Let Ef = Z NiErgn o + Z p; Ergn B be a symmetric 2-atomic decomposition.

( J
Pick an 4, suppose that supp o; C B; where B; is a ball in R" such that B; N OR! # @.
Then there exists x* € B; N IR such that supp Ergno; C Bs;(x*). Moreover, we have
that

HETRiO{iHLQ(R") S 2. Hai||L2(RTL) = 2%+1 . |B2i(X*)|_1/2.

Since FE is the odd extension, we certainly have that
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/ Ermai dx = 0.
Bgi(x*)

Therefore, # - Ergn oy is a 2-atom in ' (R™) for any i. In addition, since supp f3; C
B; C RY for some ball Bj, for any j we can decompose ErRiﬁj into the form g; + f5;
where ;" is a 2-atom which is contained in (R})°. Hence we can rewrite the symmetric

2-atomic decomposition in the following way:
n 1
Ef:Z(/\i22+1)-(2%+1 1Oéi)+ZMj'5j+Z,uj'ﬁj
? J J

Here (2n T ErRn «;), B; and B; are all 2-atoms for any 7,j. Therefore we can get a 2-
atomic decomposmon of £ f from each symmetric 2-atomic decomposition of Ef with
coefficients { \; }32, and { u; }52; where A; = \; - 227! for all i and 4, = 2 - y; for all j.
Notice that

E | Ai| + E 15| > —231“ : ( E (IA] - 221 + E 2- ’MJD
P j i J
O+ )
i J

Therefore we have that

inf {Z |Ai| + Z |iej| | all symmetric 2-atomic decompositions}
@ J

S 1

- 2%4—1

- inf {Z I\ + Z ] u;\ | all 2-atomic decompositions}.

J
Since the norm inf{ Z x| + Z | ,uj | all 2-atomic decompositions} is equivalent to the

norm || - || 1 @ny by the standard theory of real Hardy spaces, we can deduce that
inf{z |\i| + Z |15] | all symmetric 2-atomic decompositions} > C|| - || 1 &n)
i J
for some constant C'. O

By making use of Lemma 5.2 we can deduce the half space atomic decomposition for
elements of ), (R").

Theorem 5.3. Let f € 5, (R ), then there exists sequences of non-negative numbers
A2y & {3y, a sequence of 2-atoms {o;}2, where for each i suppa; C B; for
some ball B; and B; N OR # @ and a sequence of 2-atoms {f3;}52, where for each
J supp f8; C B; C RY for some ball B; such that

F=> Xi-a - +> n By
i j
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We refer such a decomposition of f as a half space atomic decomposition of f and more-
over, the norm

inf{z |Ai| + Z || | all half space atomic decompositions}

J

is equivalent to the norm || - || 41, @n) on T (RL).

Proof. By Lemma 5.2, we have that
fenL,RY). = Ef €' (R").

—> Ff admits 2-atomic decompositions.
—> FEf admits symmetric 2-atomic decompositions.
= f admits half space atomic decompositions by taking

restrictions of symmetric 2-atomic decompositions.

By Lemma 4.1 and Lemma 4.3, there exists constants C; and C5 such that
Cr I f ey, @ny S NEfller@ny < Co-|[f|len,, @n)-
Moreover, the norm || - || 1 (&n is equivalent to the norm
inf{z |Ail + Z || | all symmetric 2-atomic decompositions}
i J

on EA,(R") by Lemma 5.2. Since each of the half space atomic decomposition of f
gives rise naturally to a symmetric 2-atomic decomposition of F f with exactly the same
coefficients by odd extension, we have that
inf{z |Ai| + Z k151 | all half space atomic decompositions} ~ || - || 41 @)
i J
on gy (R'L). O

Definition 5.4. We denote the set of all finite linear combinations of symmetric 2-atoms
by A5 (R").

Notice that J#'(R") C JG'(R") N EAL,(RY) where s (R") is the set of all finite

linear combinations of 2-atoms.

Lemma 5.5. EA5,(R") is a closed subspace of A1 (R™).

Proof. Let F € E%}id(Ri)H'H””R") \ EAL,(R™), then there exists a sequence {u, }5°, C
Aoy, (R'Y) such that Eu, — F in || - || 1) as n — oo. Since s (R") € L'(R"), we

O

have that
|[Euy — F||p1@ny < || By — F|| 1 @ny = 0.
This means that Fu,(x) — F(x) a.e.. Notice that for x € R",
F(X ,2,) + FBun (X, 1) = —Eun(x, —2,) = —F (X, —2p).

Therefore, F is odd with respect to z,, a.e. and F € ES},(R™). O
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Lemma 5.6. ! (R") is dense in E,(R?).

Proof. Through the proof of Lemma 5.2 we know that every element of E2),(R" ) admits
symmetric 2-atomic decompositions and by Lemma 5.5 we see that E 2, (R") is closed

in 1 (R"). We are done. O

Theorem 5.7. Suppose g € BMO,”>(R"). Then the linear functional | defined on
%bd(Ri) by

I(f)= [ f-gdx

+

for f e A5 (RY) is a bounded linear functional which satisfies ||l|| < ¢ - 9l a0z @)
with some constant c. Conversely, every bounded linear functional I on A5, (R™) can be
written in the form of

()= [ f-gdx forall f € 2}, (R
RL
with g € BMO"™(RY) and ||g|[parog==@n) < ¢ - ||l|| with some constant c. Here ||l]]
means the norm of | as a bounded linear functional on ), (R™).

Proof. (1). Let f € A4, (R") and g € BMO,”™(R"). Then we have the estimates

1
| f-ng|=§-| Ef - Egdx|

R Rn
1
< 3 | Efller@ny - || Egl|BMo

<c-|f]le

/odd(Ri) ) Hg’ ’BMO;:O!OO(Rn

1)

Therefore, [ : f +— frgdx € H5,(R")" and the above inequalities imply that
R}
[]] < ¢ [|gl|Barog=>@n) With some constant c.

(2). Let | € J5,(RY)". We define [((Ef) := 2-I(f) for all f € H#4,(R). Fix
a ball B C R%, let L§(B) be the subspace {f € L*(B) | [, fdx = 0}, notice that
L¥(B) C A5, (RY). Let u € L3(B) be a 2-atom, i.e. we require that suppu C B C R"
for some ball B, [,udx =0 and ||u||z2(5) < |B|7'/%. We then have that

[(Eu)| =2 |l(u)] < ¢ [[ull @)
. HEuHﬁ’fl(R") = C- HUJr + u7||(yf1(Rn)

1/2

<c
< c- ([l @y + (v [[er@ny) < - [BIY2 - ullzem)
<c

) |B|1/2 : ||EUHEL3(B)-
1 1 . _ ’
Here ||-||zs) = ([ |- ?dx)? and || ||psas) = (fyop |- dx)? with B~ := {(x, ~z,) |

(x',z,) € B}. For general w € L2(B), we have that w = \ - u where u € L2(B) is a
2-atom, then

[(Bw)| =2 [l(w)] =2 [\ i{w)] < ¢ [BI'"2 - || Bwl|prz ).
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Thus [ | 12(p) 1s a bounded linear functional on ELF(B).

Claim 1 : EL§(B)" = EL§(B). )
Proof of Claim 1 : Let T € EL§(B)", by definition we have that |T(Eu)| < ¢ -
||Eul|prz(s)- Let’s define T'(u) for each u € L3(B) by T(u) = 1 - T(Fu), thus
1 -
T()l =5 - 1T(Bu)| < e |Bullprym) < ¢ [lullczm)-

Hence T € L%(B)". By the Riesz representation theorem for the Hilbert space L2(B), we
deduce that there exists g% € L3(B) such that

T(u) = / u-g?dx forallu € L3(B).
B

Notice that

T(Eu)zZ'T(u):Z/u'gde:/ FEu - Eg® dx
B BUB-
and Eg® € EL%(B), hence EL(B)" = EL3(B) and the proof of Claim 1 is finished.

By Claim 1, l~|EL3(B)€ EL3(B)" = EL%(B) implies that there exists g% € LZ(B) such
that l~|EL3(B): Fg¢® as a bounded linear functional on EL%(B), i.e.

l(Eu) = / Eu - EgP dx for all Eu € EL(B).
BUB-

Since B is any ball in R”, we can find Eg¢” for any B C R}. If B; C B, C R, then we
can easily see that EgP? — EgP! is a constant on B, U By .

Consider the ball B,(x) where x € OR" and r > 0. Let Bf(x) := B,(x) N R7.
For simplicity, we denote B,(x) by B,. Let u € B;, notice that Fu € L*(B,) and

T

Jp Fudx = 0 as E is the odd extension. Since Fu € EL§(B,) and Fu is odd with
respect to x,, we have that L*(B,") C £),(R"). By similar arguments as above, we see
that [ | r2(p+) is @ bounded linear functional on EL?*(B,"). By the same proof of Claim
1, we have that EL*(B;)" = EL*(B;"). Hence [ |pr2sh€ EL*(BF)" = EL*(B) implies
that [ |Br2(BH)= Eg® € EL*(B}) as a bounded linear functional on EL2(B;) for some
g%" € L*(B;}"). For any ball B,(x) where x € R, we can find Eg?" . If B,, C B,,, then

EgP> — EgP" is a constant on B,,.
Now we seek to find a uniform Eg(x) defined on R". We define that

LI / EgP O dx = BgB O,
By (0)

Eg(x) = EgB© —
g9(x) g B (0)]

The last equality holds as Avg EgBr(O) = 0. For B C RY}, we have EgP(x) defined on B,
B1(0)

then there exists Bg(0) for some R large enough such that B C B}(0). Hence

+ +
EgP(x) = Eg®(x) — Eg"rV(x) + Eg"r)(x)
=cp + Eg(x)
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where ¢ := EgB(x) — EgBr0)(x) is a constant which depends on B.

Next we prove that the function g(x) defined by g(x) := rgr Eg(x) belongs to the
space BM O, (R?).

1*. If B C R%, we have that

Bg(x) — (—cp)| dx = / |Eg”(x)| dx
|B|/ 5]

< — ([ |EgPPax)" - |B|?
50, )
=|B["= - HEQBHELg(B)

where the second inequality above is by the Holder inequality. Since

[ Bg”- Budx| = |i(Bw)| < c-|BJ - || Eullprzp.
BUB—

we can deduce that
~ 1
NEg ||pram = |l < c- | B>

where ||I|| is the operator norm of I. Therefore we have that

‘B’/\Eg (—cp)|dx < |B|"% -c- |B|z =c.

By taking the supremum over all balls in R’} , we can deduce that

sup |B|/|Eg (—cp)|dx < ec.

BCR?}

Then by the triangle inequality, we can easily get that

[9]BMO=®n) <2+ sup — / lg(x) — (—cp)|dx < 2-c.
Berr | B

2*. For balls of the form B, (x) where x € JR, we have that
Eg(x) = Bg" ™ — cp,.

Now we integrate this equality over the ball B,(x), we have that

/ Eg(y)dy = / Eg™ ™) dy — / cp, dy.
() B (x) ()

Notice that Fg and FE gB;F ) are both odd with respect to z,, we certainly have

/ Eg(y)dy =/ EgP ™) dy = 0.
() ()
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Hence cp, must equal 0. By making use of this fact and similar arguments as the previous
part, we also have that

1

— Eg(y) — (=cg,)|dy < c.
B Jno) )

Therefore,

1 / 1
[Egldy = —/ |Egldy <c.
1B (x)| /B, x) 1B (x)| JBtx)
As Fg(y) = ¢g(y) in B (x), we have that

<
\B+ 1/ y)ldy < e

By taking the supremum over all balls centered at JR’;, we can easily deduce that
g l[be mrn) = su |/ y)|dy < ¢ < .
xEBR"
Hence by 1* and 2*, g € BMO,”(R").
Let Eu be a (2, s)-atom, we have that
1 1 -
g-udx:é- Eg-Eudx:é-l(Eu):l(u).
7;: n
Since this representation has been established for the subspace ' (R") and ' (R") is
dense in EAL,(R?), therefore Eg = [ € EAL,(R™)" and thus g = | € s25,(R?)". [

Notice that in the proof of Theorem 5.7, there is a step where we proved that for
B C R% and u € L3(B) we have that

{(Bu)| < ¢ |B|? - ||Bullprs).

For the ball B, (x) with x € OR" we also have the same estimates. By L.Grafakos [6], the
constant ¢ depends only on the dimension n and it is independent of the ball B or B,(x),
hence the later arguments in the proof are valid.

5.2 Duality theorem for the case of even extension
Throughout this subsection, we denote the even extension operator E.,., by E.

Definition 5.8. We define the set of symmetric 2-atoms by

{Ergna | ais a 2-atom such that suppa C B & BNORY # &
¢ adx = / adx =0}
Rn n

U{Erg:B | B is a 2-atom such that supp 8 C B C R} }.
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Let EA,,, (RY) :={Ev |v e ., (R})}. Then ESL,, (RY) C S (R") is a linear

even even even
subspace.

Lemma 5.9. The norm

111 1"‘ J2%i a symmetmc -alomic aecompostiions
inf{> |\ i| | all c 2-atomic d ti
( J

is equivalent to the norm || - || 1 gny on the subspace EA,,, (R™).

Proof. Let f € A, (R), then Ef € A (R").
(1). By the atomic decompositions of functions of the real Hardy space 52! (R"), we
see that E'f admits 2-atomic decompositions. Let

Ef =Y Now+ Y
i J
be a 2-atomic decomposition of Ff. Notice that

f= rRiEf = Z Aﬂ’m% + Zﬂeriﬁj'
i J

Without loss of generality, assume that supp a; C B; for some ball B; and B; NOR?, # @,
assume further that supp 8; C B; C R} or R”. Therefore we have that

f= Z AiTrn 0 + Z 1535
? J

Let B;L = B;NRY} and B; := B;NRY. Since a; can be any 2-atom, we know that
/ o; dx = 0 but / o; dx and / a; dx are not necessarily zero. Here we need to do
B; Bt B

v i

some tricks to /

a; dx and / «; dx. Since E is the even extension, except
Bt B

%

Ef =Ergn Ef = Z)\iETmO&i + ZMjETRiﬁj
i J

we also have that
Ef=FErgm Ef = Z NiErgn o + ZﬂjETR’iﬁj-
i J

Therefore,
2Ef = ETRZ’rEf + E’I“er Ef
= Z A (ET’RQL_O@ + E?"]}y_lOdi) + Z M- (ETRﬁﬁj + ETRL”BJ’)-

J

Suppose that suppa; C B;j(x) and B;(x) N ORY} # &, there exists x* € B;(x) N IR
such that supp Ergra; C By, (x*) and supp Ergr ; C By, (x*). Therefore we have that



120

supp (Erm a; + Ergna;) C Bo,,(x*). Notice that Ergna; + Ergna; is also even with
respect to z,. Let’s consider rgy (E?“Rioci + Ergn o) = rry @i + rre ETge ;. There is no
doubt that supp (rgr o + rrr Errn o) C Bay, (x*) NRY and

/ Rz QG+ TRy Ergna;dx = / Ry O dx + / Ergn a; dx
n n n
¥ + -

/ (073 dx

0.

Let of := rgn oy + rrn ETRre 4, notice that
v + + - v

||OZ;(||L2(]R”) = ||’T‘R10zi _’_rRiETR’laiHLQ(]R")
< il 2@ny + |[Ergre o | L2 (mey
< |levil[p2@gny + 2 - ||l 2 (rn)
<325 - |By (x)] V2

Let ¢35 := 3-22. Therefore Cs, 5 - a is a 2-atom and more importantly, we have that

—1 * o -1 * o
R™ i

Hence E(cyy - of) = ¢354 - Ba} is a symmetric 2-atom. We have that

2-Ef =Y X\ (cz5- Eaj) +Zuj Earﬁj—i—ZuJ Ergn 3;

where )\; := \i - c32. Therefore from a 2-atomic decomposition of E'f we can get a

symmetric 2-atomic decomposition of Ef. In addition, for a 2-atomic decomposition

Ef = Z ity + Z i B; such that Z |Ai] + Z |pj| < oo, the corresponding symmetric
i J i J

/

A
2-atomic decomposition of this 2-atomic decomposition is Ef = Z 5 (03_% - Eal) +

7

Z % . ETRiﬁj + Z % - Ergn 8;. In this case we have that
j

|>‘Iz‘ |:uj| |:U’J’ -1
Ei __|_§j __|_§j << 3.22 (Eﬁ ‘)\i‘_'_% ]Mj|)<oo
Therefore,

Z|)\|+Z|N3|_3 5z ZIA"HZIM
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where \; = % for all ¢ and u; = “2—” for all j. X/ and ,u;f are the coefficients of the
corresponding symmetric 2-atomic decomposition induced by the original 2-atomic de-
composition. As a result, we have that

inf{z |Ai| + Z || | all 2-atomic decompositions}
@ J
> (- inf{z I\ |+ Z | u;,| | all symmetric 2-atomic decompositions}
i J

1
3231
(2). Let Ef = Z Air Ergn ozi—i-z 1t -Ermﬁj be a symmetric 2-atomic decomposition.

where C] :=

J
Since «; is a 2-atom, we have that

HETR:}_O{Z‘HLQ(RH) S Z%Jrl . ‘Bgri<x*)‘71/2.

Therefore

n 1 _
B = Y0028 ey B+ S S
( J J

is a 2-atomic decomposition of E f. Thus every symmetric 2-atomic decomposition of F f
gives rise to a 2-atomic decomposition. For this symmetric 2-atomic decomposition of E f

where i + << oo, € coelricients o € correspondin -atomic decompos1tion
h A 1 the coefficients of th ding 2-atomic d it]
i J

Do 25 Y2y <28 0 I+ ) L)
J i J

of Ef satisfies

7

Therefore,

inf {Z |\l + Z || | all symmetric 2-atomic decompositions}
@ J
> (- inf{z I\;| + Z |u;| | all 2-atomic decompositions}

J

where Cy := 2%% ]
Theorem 5.10. Let f € .., (R), then there exists sequences of non-negative numbers
{2y and {152, a sequence of 2-atoms {; }32, where for each i supp oy C By & B;N
OR} # 0 & / a;dx = 0 for some ball B; and a sequence of 2-atoms {3;}52, where for

R%
each j supp 8; C B; C R} for some ball B; such that

F=> Xivailp +Y B
i j
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We refer such a decomposition of f as a half space atomic decomposition of f and more-
over, the norm

inf{z |Ai| + Z || | all half space atomic decompositions}

J

is equivalent to the norm || - ||z, @) on H e, (RY).

Proof. By Lemma 5.9 we are done. [

Definition 5.11. We denote the set of all finite linear combinations of symmetric 2-atoms

By similar arguments as in the previous subsection, we can easily deduce that %’6’18 (R™) C
A (RMNE A, (RY), EA,,,(RY) is a closed subspace of 77 (R”) and /', (R") is dense
in £4},,(R%). Then by making use of these facts, we can prove our duality theorem for

the case of even extension.

Theorem 5.12. Suppose g € BMO,,*(R"). Then the linear functional I defined on
Hven(RY) by

W)= [ f-gdx

RY

for f € .., (RY) is a bounded linear functional which satisfies ||l|| < ¢ - [Q]BMOEZ"’O(RQ{)
with some constant c. Conversely, every bounded linear functional | on £} (R%) can be

written in the form of

(f)=] f-gdx forall fe A, (R
RY
with g € BMOu™(RY}) and [g]pyog=@n) < c - ||l|| with some constant c. Here ||l|]
means the norm of | as a bounded linear functional on S}, (R™).

Proof. The only difference from the proof of Theorem 5.7 is the last part where here we
prove that the unified function g(x) € BMO,, > (R") instead of BMO,;*™ (R’ ). For the
rest of the details, please refer to the proof of Theorem 5.7.
We define the unified function Fg(x) on R™ by
1

Eg(x) = EgBj(O) - EgBj(O) dx
1B1(0)] /B, (0)

= BgB O _ AvgEgB O,
B1(0)

For B C R we have Eg”(x) defined on the ball B, then there exists B,(0) for some r
large enough such that B C B,(0). We can rewrite Eg®(x) as

EgP(x) = Eg®(x) — Eg” O(x) + Eg” ©)(x) — AvgEg™ ©) 4 Avg g .
B1(0) B1(0)



123

Notice that Eg?(x)— E¢g? O (x) and AvgE gB:r ©) are both constants which depend on B,
B1(0)

hence let cp := EgB(x) — EgB O(x) 4+ AvgEgB" © | we have that EgB(x) = cp + Eg(x).
B1(0)

Next we prove that the function g(x) defined by g(x) := rg: Eg(x) € BMO,; ™ (RY).
x1. If B C RY}, we have that

57 | 1E0(0 = (=e5)|x < - [B 21 sy

by the Holder inequality. Since

| BUB- Eg® - Budx = |[(Eu)| < c-|B|"'/?- [Eullpr2(m),

we have that
1Eg® g2 = Il < c- |B|'.

Therefore we can deduce that
|Eg(x) — (—cp)|dx < c.
i,

Notice that the ¢ here is just a number which is independent of B. Therefore by taking
the supremum over all balls contained in R}, we can see that

sup / |Eg(x) — (—cp)|dx < c.
BCR™ |B]
and thus,
[rrn EglBmo=®n) = [glpmo=®n) < 2-c.

x2. If B,(x) is a ball where x € OR"} and r > 0, we have that Eg(x) = EgP" (x)—cp,.
Therefore we have the following calculations:

2~/Br+g(x)dX:/rEg(x)dx
:/TEgBj(x)dx—/chrdx

=0—cp, - |B,|.

Hence cp, = —gp+ and we have that

1
Eg(x) — (—cp,)|dx = Eg(x) — gp+|dx
i s ldx= 5 [ 1Egt) gy

B+|/ —gp+ldx <c.

Take the supremum over all balls centered on R}, we have that

[9]bace®n) = sup —gp+ldx <c

r>0 |B+|
xG@lR"

and hence g € BMO,,*(R"). O
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5.3 Proof of Theorem 1.3
Proof. By Theorem 5.7 and Theorem 5.12, we are done. O]

5.4 Comments

Remark 5.13. If we look at the proof of Lemma 4.1 and Lemma 4.2, we can see that it
is completely all right for us to replace the heat kernel e'® in the definition of T e (R)
and A, (RY) by any radial symmetric function ¢ € S (R™) such that [p, pdx = 1.
Therefore, the definitions of the norms || - ||z, @) and || - || 41 @n) are independent

of the choice of ¢ if v is radial symmetric with integral over R™ equals 1.

Remark 5.14. When we established the half space atomic decompositions for ., (R'})
and H%,(R), we made use of the 2-atomic decomposition of A+ (R™) in order to carry
out the arguments of Fefferman and Stein [3] to prove the duality theorem. However, if
we carry out the arguments using the p-atomic decomposition of 1 (R™) instead where
p > 1, then we get the half space atomic decompositions for ., (R) and A5, (RL) in

the form of symmetric p-atomic decompositions.

In [1], it is proved that BM Oy (R") and BM O, (R") are actually the same space.
Since BM Oy (R%) is the dual space of 4 (R") and BMO,”>(R") is the dual space
of A, (R"), it is natural to ask the question about the relation between #,,(R’) and
Ay (R™). Here we give an answer to this question.

Lemma 5.15. 22}, (R?) = 735 (R%).

Proof. (1). By the theory of Miyachi [7], f € J;(R") implies that f admits the half
space atomic decomposition of the form

f= ZAiai‘FZ/Ljﬁj
i J

where {3;}32, is a sequence of 1-atom such that j; is supported on some ball B; with
2B; C R for each j and {a;}:2, is a sequence of (1,R%)-atom such that a; is supported
on some ball B; with 2B; C R but 5B; N (R})¢ # @ for each i. Let B; = B,(x;)
and x* := (x;,0). Since 2B; C R? but 5B; N (R7)¢ # &, we can easily deduce that
B; C Ber(x*). Notice that a; = rgs Foaqc; and / Bop () Fodacti dx = 0, therefore we have
that

Eogaf =) (Xi-6") (6% + Boaa®i) + Y _ i EodaB;. (5.1)

Here 6% - Eoqqev; is a l-atom for any 4, hence by (5.1) we see that Fogf € 1 (R") and
thus by Remark 5.14 f € s2,,(R%).
(2). Let f e H5,(R%), let n be the standard mollifier. For x € R and 0 < ¢t <

dist(x, R’ ), we have that (9, * f)(x) = (¢ * Eoqaf)(x) since suppn, C B;(0). Hence for
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x € RY,
sup e % fl(x) = sup 104 % Eoga f|(x)
0<t<dist(x,0R"}) 0<t<dist(x,0R")
< sup |y * Eoaq f|(x).
>0
Thus
Fllrgeenyi= [ swp e i) dx
R7 0<t<dist(x,0R})
< / sup |ne * Eoqaf](x) dx
RQL_ t>0
= Hf“%;ldd(m)
and therefore f € 27 (R%). O

Remark 5.16. Let us consider a function f € L?*(B(0)) with integral over B, (0) not
equals to 0. Notice that although fBJr(o) fdx # 0, the odd extension F.qqf has integral

zero over the ball B,(0). Hence we have that E,qf € L*(B,(0)), fB,«(O) Eogufdx =0
and thus E,gf € J'R™). Then f € HL,(RY). However, fBj(o)de # 0 implies
that [5 ) Bevenf dx # 0 and thus Eepenf ¢ ' (R"). Hence f ¢ ., (R'L). Therefore
AR and A

Zven(R™) are two different spaces.

Remark 5.17. Let us consider the function log|x|, by the standard theory of BMO spaces
we see that loglx| € BMO. Then loglx| |rn€ BMOu > (R%). However, log|x| |g:¢
BMO;*™(R%) since the integral

1
B(0)

/ | log|x||dx — 00 as 7 — oc.
B (0)

Therefore BM O, (R ) and BMOy,*(R™) are also two different spaces.

Remark 5.18. Notice that by Theorem 5.8 we can easily see that H,(R") = A (R'})
where A (RY) = {rea fIf € JYR™)}.  Moreover, by Lemma 3.2 and Lemma 5.4,
we can also see that BMOy™(R}) = BMO(RY) where BMO(RY) = {rg. f| f €
BMO(R™)}. As a result, we can clarify the relationship between various function spaces
wn this paper as follow:

BMO(RY) = BMO™(RY) =" A, (R%)
U N
BMO;™™(RY) =" Hy(RY) = 27 (RY)

I I
BMOy(RY) =" 4 (RY).

Here A =* B means that A is the dual space of B.
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6 Dual operator of the Helmholtz projection

6.1 Dual operators of F,;; and rgn

In this subsection, for simplicity, we shall denote the odd extension operator E,;q by F.
Since E : L, (RY) — EAL,(RY), we have that E* : E%ﬁld(Ri)* — L%”}id(Rﬁ)*. By

O o]

the theories in section 5 we have that E* : EBMO,”(R") — BMO,”>™(R").
Lemma 6.1. The dual operator of E is indeed 2 - TRy, U.€. Er=2- TR -

Proof. Let f € #,(R") and g € BMO,;”>(R"), by the definition of dual operator, we
can deduce that

< FE'Eg,f > =<FEqg,Ef >=2<gqg,f>.
Therefore, we have that
< E*Eg—2g,f >=0 forall f € s},(R").

Let B,(0) be the ball centered at 0 with radius r and B, (0) := B,(0)NR’;. For simplicity,
we denote B (0) by B. Notice that from the previous chapter, we see that L*(B) C
0L (RY). Hence fix r > 0, we have that

< E*Eg—2g,f >=0 forall f € L*B}).
Since C°(B;") C L*(B;), by the fundamental lemma of variational calculus, we see that
E*Eg—29=0 ae. in B
This means £* = 2 - TR7 and we are done. O

By similar arguments as above, we can also deduce that rg»* : BMO,”™(R%} ) — EBMO,~>(R})
and the dual operator of rg», where rg» corresponds to the restriction of EA),(RY), is

indeed % - B

6.2 Dual operators of E.,., and rr;

We denote the even extension operator FE.,., by E. By similar arguments as in the
previous subsection, we have that the dual operator of E is indeed 2 - rgr and the dual

operator of rgr, which corresponds to the restriction of B, (R, is indeed 1 - E.

6.3 Proof of Theorem 1.4

Proof. Since PRT; is a bounded linear operator from Y to Y and X is the dual space of
Y, we have that

PRQ*:X%X.
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Then let v € X and u € Y, we have that

n—1
<Ppr'v,u>= Z < vi,rRi(PEu)i >+ <", rge (PEQ)" > .
i=1

Notice that (PEu)’ is even with respect to x, for 1 < i < n — 1 and (PEu)" is odd
with respect to z,. Hence for 1 < i < n — 1, the TRn in TRR (IP’Eu)i corresponds to the
restriction of B, (R) whereas for i = n, the rgs in rg. (PEu)" corresponds to the

restriction of E.,,(R"). Therefore,
1
<PR1*V,U>:§ < Ev,PEu>-----. ().

By [8], we see that the dual operator of P : #1(R") — J#1(R") is itself as a map from
BMO to BMO. Therefore

1
(%) = 5 < PEv, Eu >

1 n—1

= < (PEV)", Ecyentt’ > + < (PEV)", Epgqu” >
2

=1
1 n—1
= 5(2 < 2rgn (PEV)",u' > + < 2rgn (PEV)", u" > )
=1
=< }P’Riv, u>.
]

Remark 6.2. When we are considering the dual operator of IP’M, notice that the space
X must be viewed as X/(R"™ x {0})!

6.4 Proof of Corollary 1.5
Proof. By [2, Th 2.19] and Theorem 1.4 in this paper, we are done. [
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