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1 Introduction

In this paper, we investigate the Helmholtz decompositions of vector fields of bounded
mean oscillation over the half space and vector fields in real Hardy spaces over the half
space. The subject of studying Helmholtz decompositions asks the standard question
whether a vector field, in some specific function spaces over some specific domains, can be
decomposed into the direct sum of a solenoidal subspace and a subspace which is exactly
a gradient field. The reason why we are interested in this subject is due to the well known
fact that Helmholtz decomposition plays an important role in constructing mild solutions
of the Navier-Stokes equations.

Helmholtz decompositions are widely studied for vector fields of Lp spaces over many
kinds of different domains when 1 < p < ∞. For example, we have the result that for
every open domain Ω ⊂ Rn the Helmholtz decomposition holds for vector fields of L2(Ω).
When p does not equal to 2, we also know that the Helmholtz decompositions of vector
fields of Lp spaces hold for some domains while there exists other domains where the
Helmholtz decompositions of vector fields of Lp spaces fail to hold, e.g. see [4]. Although
problems when p does not equal to 2 are much more difficult than the case when p equals
to 2, we still had various results. However, this subject is poorly studied for vector fields of
other function spaces. In the case for vector fields of bounded mean oscillation and vector
fields in real Hardy spaces, we only have a single piece of result, obtained by Miyakawa
[8], states that the Helmholtz decompositions of vector fields of bounded mean oscillation
over Rn and vector fields in real Hardy spaces over Rn hold. This lack of study is due to
the fact that the theories of real Hardy spaces and BMO spaces over domains other than
Rn are harder to deal with and moreover, the proper definitions of the space of vector
fields of bounded mean oscillation and the space of vector fields in real Hardy spaces over
other domains are not known perfectly. The purpose of this paper seeks to extend the
result of Miyakawa [8] from Rn to Rn

+ = {(x′
, xn) ∈ Rn−1 × R|xn > 0}. In the meantime,

we show that our definitions of the space of vector fields of bounded mean oscillation over
Rn

+ and the space of vector fields in real Hardy spaces over Rn
+ are valid, in the sense that

they admit a duality relation.

In order to define the space of vector fields of bounded mean oscillation over Rn
+, we

need to define two types of BMO spaces over Rn
+ firstly, one corresponds to the function

space for the tangent direction while the other one corresponds to the function space for
the normal direction. The BMO space over Rn

+ for the tangent direction we define is
the space BMO∞,∞

ba (Rn
+). In Section 5, we prove that BMO∞,∞

ba (Rn
+) is equivalent to

BMO(Rn
+) := rRn

+
BMO, the restriction of functions of BMO to Rn

+. The BMO space
over Rn

+ for the normal direction we define is the space BMO∞,∞
b (Rn

+). In [1], it is proved
that BMO∞,∞

b (Rn
+) is equivalent to BMOM(Rn

+) where BMOM(Rn
+) is the BMO space

defined by Miyachi in [7]. Therefore the space of vector fields of bounded mean oscillation
over Rn

+, denoted by X, can be defined as X := (BMO(Rn
+))

n−1 × BMOM(Rn
+). The

first main theorem of this paper reads as follows. Let n be the exterior unit normal of the
boundary of Rn

+, i.e. n = (0, 0,−1) so that the inner product v · n denotes the normal
trace to ∂Rn

+ of a vector field v on Rn
+.

Theorem 1.1. Let X be the space of vector fields of bounded mean oscillation over the
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half space Rn
+, then X admits the Helmholtz decomposition

X = Xσ ⊕Xπ

with the Helmholtz projection PRn
+
where

Xσ = {v ∈ X | div v = 0 in Rn
+ & v · n = 0 on ∂Rn

+ },
Xπ = {∇p ∈ X | p ∈ L1

loc(Rn
+) }.

The key idea of the proof of Theorem 1.1 is to consider extension and restriction.
When Miyakawa [8] established the Helmholtz decomposition of vector fields of bounded
mean oscillation over Rn and vector fields in real Hardy spaces over Rn, he considered the
Helmholtz projection P where Pi,j := δi,j + RiRj and Ri is the i-th Riesz transform for
1 ≤ i, j ≤ n. Here we make use of this idea. We define our projection by PRn

+
:= rRn

+
PE

where E is the extension operator which extends vectors in X to vectors in BMO and rRn
+

is the restriction operator which restricts vectors in BMO back to vectors in X. Then
we prove that our projection PRn

+
is actually a bounded linear map from X to X. Hence

through this projection we have a natural decomposition of our space X of the form

X = PRn
+
X⊕ (I − PRn

+
)X.

Then we prove that the subspace PRn
+
X is actually the solenoidal part and the subspace

(I − PRn
+
)X is actually the gradient part. As for the trace problem, we can make use of

the theory of Temam [10] since X ⊂ L2
loc(Rn

+). Notice that the space X is not a proper
Banach space due to the fact that the BMO-type norm is just a seminorm. Therefore,
in order to avoid any ambiguity, we mean the Helmholtz decomposition not for X in the
usual sense but for the quotient space X/(Rn−1 × {0}). Here we direct the readers to
Section 2 for the precise definitions of the extension E, the restriction rRn

+
, the space

BMO∞,∞
ba (Rn

+) and the space BMO∞,∞
b (Rn

+).
By similar ideas as above, we need to define two types of real Hardy spaces over Rn

+

in order to define the space of vector fields in real Hardy spaces over Rn
+. For the real

Hardy space over Rn
+ in the tangent direction, denoted by H 1

even(Rn
+), is defined to be the

restriction of all even functions in the real Hardy space over Rn to the half space Rn
+. For

the real Hardy space over Rn
+ in the normal direction, denoted by H 1

odd(Rn
+), is defined to

be the restriction of all odd functions in the real Hardy space over Rn to the half space
Rn

+. In Section 5, we also prove that H 1
odd(Rn

+) is equivalent to H 1
M(Rn

+) where H 1
M(Rn

+)
is the real Hardy space defined by Miyachi in [7]. Hence the space of vector fields in real
Hardy spaces over Rn

+, denoted by Y, can be defined as Y := (H 1
even(Rn

+))
n−1×H 1

M(Rn
+).

Let Yσ = {v ∈ Y | div v = 0 in Rn
+ & v · n = 0 on ∂Rn

+ }, the second main theorem
in this paper reads as follows.

Theorem 1.2. Let Y be the vector field in real Hardy spaces over the half space Rn
+, then

Y admits a decomposition of the form

Y = PRn
+
Y ⊕Yπ

with a bounded linear projection PRn
+
: Y → Y where

Yσ ⊂ PRn
+
Y ⊂ {v ∈ Y | div v = 0 in Rn

+ },
Yπ = {∇p ∈ Y | p ∈ L1

loc(Rn
+) }.
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Similar to the proof of Theorem 1.1, we consider the same projection PRn
+
:= rRn

+
PE

and we prove that PRn
+
is also a bounded linear map from Y to Y. Using the same idea,

we can see that Y also admits a natural decomposition of the form

Y = PRn
+
Y ⊕ (I − PRn

+
)Y.

Although the later theory is basically the same as the previous case for vector fields of
bounded mean oscillation, in this case we do not know how to solve the trace problem.
Hence for the subspace PRn

+
Y we can only say that it is divergence free, we cannot say

that it is the right solenoidal part in the Helmholtz decomposition. We have no problems
in characterising the subspace (I − PRn

+
)Y. (I − PRn

+
)Y is the right gradient part, just

like the previous case. For the precise definitions of the spaces H 1
even(Rn

+) and H 1
odd(Rn

+),
we direct the readers to Section 2. Notice that if we can solve the trace problem, then
this decomposition turns into the full Helmholtz decomposition immediately. Hence for
this decomposition, we call it a partial Helmholtz decomposition.

By the standard theory of real Hardy spaces, we can see that the space of vector fields
of bounded mean oscillation over Rn is exactly the dual space of the space of vector fields
in real Hardy spaces H 1(Rn). In order to make the theory over Rn

+ to be compatible with
the theory over Rn, it is necessary to consider the relation between the spaces X and Y.
Fortunately, we have a positive answer to this question.

Theorem 1.3. Suppose v ∈ X. Then the linear functional l defined on Y by

l(u) =

∫
Rn
+

u · v dx

for u ∈ Y is a bounded linear functional which satisfies ||l|| ≤ c · ||v||X with some constant
c. Conversely, every bounded linear functional on Y can be written in the form of

l(u) =

∫
Rn
+

u · v dx for all u ∈ Y

with v ∈ X and ||v||X ≤ c · ||l|| with some constant c. Here ||l|| means the norm of l as
a bounded linear functional on Y.

In short, the above theorem states the simple fact that X is the dual space of Y. To
prove the above theorem, we prove that BMO∞,∞

ba (Rn
+) is the dual space of H 1

even(Rn
+)

and BMO∞,∞
b (Rn

+) is the dual space of H 1
odd(Rn

+). The key idea in showing these two
duality relations is again to consider extensions and restrictions. By the theories in the
previous part, we see that the even extension of elements in H 1

even(Rn
+) produce elements in

H 1(Rn) and the odd extension of elements in H 1
odd(Rn

+) also produce elements in H 1(Rn).
Since elements in H 1(Rn) admit atomic decompositions, by taking the restrictions we
can get the half space version of atomic decompositions of elements in H 1

even(Rn
+) and

H 1
odd(Rn

+). Then by similar arguments of Fefferman and Stein [3] in proving that BMO is
the dual space of H 1(Rn), we can prove the two duality relations concerning H 1

even(Rn
+)

and H 1
odd(Rn

+). The proof of Theorem 1.3 establishes two sets of complete theories for our
two types of real Hardy spaces over Rn

+. These two sets of theories are indeed compatible
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with the theory of Miyachi [7] where he established the theory of real Hardy spaces
over arbitrary open subsets of Rn. As a result, Theorem 1.3 verifies the validity of the
definitions of X and Y.

In the work of Miyakawa [8], he also found the fact that the dual operator of the whole
space Helmholtz projection P is indeed P itself. In this paper we also investigate the dual
operator of our half space Helmholtz projection PRn

+
and we obtain the following result.

Theorem 1.4. The dual operator of PRn
+
: Y → Y is PRn

+
itself as a map from X to X,

i.e. PRn
+

∗ = PRn
+
as a map from X to X.

The key idea lies in the proof of Theorem 1.3. This theorem can be easily deduced by
simply considering the dual operators of E, P and rRn

+
. By making use of this theorem,

we can further deduce the following important corollary.

Corollary 1.5. Xσ = Yπ
⊥ and PRn

+
Y = Xπ

⊥.

Notice that here because we do not know how to take the trace of elements in Y
properly, we can only say that PRn

+
Y is the annihilator of Xπ. If the trace problem is

settled, this relation turns into Yσ = Xπ
⊥ immediately.

This paper is organised as follow. In section 2, we give out the basic definitions. In
section 3, we investigate the Helmholtz decomposition of X. In section 4, we investigate
the Helmholtz decomposition ofY. In section 5, we study the duality relationship between
X and Y. In section 6, we study the dual operator of our Helmholtz projection PRn

+
:

Y → Y.

2 Definitions and Notations

Let Rn
+ := {x ∈ Rn|xn > 0} be the half space where xn here is the n-th component of

x and let ∂Rn
+ := {x ∈ Rn|xn = 0} be the boundary of the half space Rn

+. The space
L1
loc(Rn

+) is defined in the usual way as the set {f : Rn
+ → R measurable |∥f∥L1(Ω) < ∞

for any open subsets Ω ⊂⊂ Rn
+} and L1

loc(Rn
+) := (L1

loc(Rn
+))

n.

Definition 2.1. Let f ∈ L1
loc(Rn

+) and Br(x) be the open ball of radius r centered at x,
we define three types of BMO-type seminorms as the following:

• [f ]BMO∞(Rn
+) := sup

B⊂Rn
+

1
|B|

∫
B
|f(y)− fB| dy

where fB := 1
|B|

∫
B
f(y) dy and B is an open ball.

• [f ]b∞(Rn
+) := sup

r>0
x∈∂Rn

+

1
|Br(x)∩Rn

+|

∫
Br(x)∩Rn

+
|f(y)| dy.

• [f ]ba∞(Rn
+) := sup

r>0
x∈∂Rn

+

1
|Br(x)∩Rn

+|

∫
Br(x)∩Rn

+
|f(y)− fBr(x)∩Rn

+
| dy

where fBr(x)∩Rn
+
:= 1

|Br(x)∩Rn
+|

∫
Br(x)∩Rn

+
f(y) dy.
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The seminorm [ · ]b∞(Rn
+) is already introduced in [1] with a more general form. In [1],

the definition of this seminorm is of the form [ · ]bνp(Ω) where ν could be any real number
including ∞ and p ∈ [1,∞). In our case, when ν is equal to ∞ and p = 1, an easy
check quickly shows that this seminorm is indeed a norm. Therefore it is unambiguous to
replace [ · ]b∞(Rn

+) by || · ||b∞(Rn
+).

Definition 2.2. We define two types of BMO spaces over the half space Rn
+ in the

following way:

• BMO∞,∞
b (Rn

+) := {f ∈ L1
loc(Rn

+) | ||f ||BMO∞,∞
b (Rn

+) <∞}

where ||f ||BMO∞,∞
b (Rn

+) := [f ]BMO∞(Rn
+) + ||f ||b∞(Rn

+).

• BMO∞,∞
ba (Rn

+) := {f ∈ L1
loc(Rn

+) | [f ]BMO∞,∞
ba (Rn

+) <∞}

where [f ]BMO∞,∞
ba (Rn

+) := [f ]BMO∞(Rn
+) + [f ]ba∞(Rn

+).

Since ||·||b∞(Rn
+) is indeed a norm, ||·||BMO∞,∞

b (Rn
+) is also a norm. However, [ · ]BMO∞,∞

ba (Rn
+)

is simply a seminorm.

Definition 2.3. The space of vector fields of bounded mean oscillation over the half space
Rn

+ is defined in the following way:

X(Rn
+,Rn) := {(v′

, vn) | v′ ∈ (BMO∞,∞
ba (Rn

+))
n−1, vn ∈ BMO∞,∞

b (Rn
+)}

where v
′
:= (v1, . . . , vn−1) and v := (v1, . . . , vn−1, vn). We define the seminorm [ · ]X on

the space of vector fields X(Rn
+,Rn) as follow:

[v]X :=
n−1∑
i=1

[vi]BMO∞,∞
ba (Rn

+) + ||vn||BMO∞,∞
b (Rn

+).

From now on, without any ambiguity, we shall denote (X, [ · ]X) simply by X for abbrevi-
ation.

Next we would like to define two extension operators which extend functions over the
half space Rn

+ to functions over the whole space Rn.

Definition 2.4. Let f : Rn
+ → R, we say that Eodd f : Rn → R is the odd extension of f

if

Eodd f(x
′
, xn) =

{
f(x

′
, xn) if xn > 0,

−f(x′
,−xn) if xn < 0.

a.e. (almost everywhere).

Definition 2.5. Let f : Rn
+ → R, we say that Eeven f : Rn → R is the even extension of

f if

Eeven f(x
′
, xn) =

{
f(x

′
, xn) if xn > 0,

f(x
′
,−xn) if xn < 0.
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a.e. (almost everywhere).

Based on these two definitions of extension, we are able to define an extension operator
for vector fields of functions over the half space Rn

+.

Definition 2.6. Let f i : Rn
+ → R for 1 ≤ i ≤ n and let f = (f 1, . . . , fn−1, fn), we define

the extension of f by

Ef =

{
(Ef)i := Eeven f

i for 1 ≤ i ≤ n− 1,

(Ef)n := Eodd f
n.

After we defined the extension operator, we shall now define the restriction operator,
for functions and vector field of functions.

Definition 2.7. The restriction operator is defined as follow in two cases:

• Let f : Rn → R, we define the restriction rRn
+
f by rRn

+
f := f |Rn

+
: Rn

+ → Rn.

• Let f = (f 1, . . . , fn−1, fn) and f i : Rn → R with 1 ≤ i ≤ n, we define the i-th
component of the restriction rRn

+
f by (rRn

+
f)i := rRn

+
f i.

Now we have done enough preparations for defining our vector field of real Hardy
space H 1 over Rn

+.

Definition 2.8. We define two types of real Hardy space H 1 over the half space Rn
+ in

the following way:

• H 1
odd(Rn

+) := {f ∈ L1(Rn
+) | ||f ||H 1

odd(R
n
+) <∞}

where ||f ||H 1
odd(R

n
+) := || sup

t>0
|rRn

+
et∆Eodd f | (x) ||L1(Rn

+).

• H 1
even(Rn

+) := {f ∈ L1(Rn
+) | ||f ||H 1

even(Rn
+) <∞}

where ||f ||H 1
even(Rn

+) := || sup
t>0
|rRn

+
et∆ Eeven f | (x) ||L1(Rn

+).

Here et∆ is the heat semigroup. In other words, (et∆f)(x) =
∫
Rn Gt(x− y)f(y)dy where

Gt(x) = 1
(4πt)n

e−
|x|2
4t denotes the heat kernel. We also write as (Gt ∗ f)(x) by using the

notation of convolution.

Definition 2.9. The space of vector fields in real Hardy spaces over the half space Rn
+ is

defined in the following way:

Y(Rn
+,Rn) := {(u′

, un) | u′ ∈ (H 1
even(Rn

+))
n−1, un ∈H 1

odd(Rn
+)}

where u
′
:= (u1, . . . , un−1) and u := (u1, . . . , un−1, un). We define the norm || · ||Y on Y

by :

||u||Y :=
n−1∑
i=1

||ui||H 1
even(Rn

+) + ||un||H 1
odd(R

n
+).
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From now on, without any ambiguity, we shall denote (Y, || · ||Y) simply by Y for abbre-
viation.

Definition 2.10. We define P by (P)ij := δij + RiRj with 1 ≤ i, j ≤ n where Ri is the
i-th Riesz transform.

Here P is an n×nmatrix whose entries are transforms. This P is exactly the Helmholtz
projection established by Miyakawa in [8].

Definition 2.11. We define the half space projection operator PRn
+
by PRn

+
:= rRn

+
PE,

that means for v ∈ X (or Y) we have that PRn
+
v := rRn

+
PE v.

Before we end this section, let us recall the real Hardy space and the BMO space
defined by Miyachi in [7] when the domain Ω = Rn

+ and p = 1. Let φ ∈ C∞
0 (B(0, 1)) such

that
∫
Rn φ(x) dx = 1. For x ∈ Rn

+, let dRn
+
(x) := dist(x, (Rn

+)
c).

Definition 2.12. We denote by H 1
M(Rn

+) the set of those f ∈ L1(Rn
+) such that || sup

0<t<dRn+
(x)

|φt ∗ f |(x)||L1(Rn
+) <∞.

Definition 2.13. Let f ∈ L1
loc(Rn

+), we say f ∈ BMOM(Rn
+) if ||f ||BMOM (Rn

+) :=
[f ]BMO(Rn

+) + [f ]b(Rn
+) <∞ where

[f ]BMO(Rn
+) := sup

{
1

|Br(x)|

∫
Br(x)

|f − fBr(x)| dy | B2r(x) ⊂ Rn
+

}
,

[f ]b(Rn
+) := sup

{
1

|Br(x)|

∫
Br(x)

|f | dy | B2r(x) ⊂ Rn
+ and B5r(x) ∩ (Rn

+)
c ̸= ∅

}
.

3 Helmholtz decomposition of vector field of bounded

mean oscillation over the half space

3.1 Boundedness of projection PRn
+
from X to X

Let v ∈ X and PRn
+
v := rRn

+
PE v.

Lemma 3.1. Let f ∈ BMO∞,∞
b (Rn

+), then we have that Eoddf ∈ BMO(Rn,R) and there
exists a constant C which only depends on n such that

[Eoddf ]BMO ≤ C · ||f ||BMO∞,∞
b (Rn

+).

Proof. This lemma has already been established in [1, Lemma 7].

Lemma 3.2. Let f ∈ BMO∞,∞
ba (Rn

+), then we have that Eevenf ∈ BMO(Rn,R) and
there exists a constant C which only depends on n such that

[Eevenf ]BMO ≤ C · [f ]BMO∞,∞
ba (Rn

+).
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Proof. For simplicity let us denote Eevenf by f̃ , let x ∈ Rn and r > 0. If Br(x) ⊂ Rn
+ or

Br(x) ⊂ (Rn
+)

c, we can easily verify that

1

|Br(x)|

∫
Br(x)

|f̃(y)− f̃Br(x)| dy ≤ [f ]BMO∞(Rn
+).

(1).If Br(x)∩ ∂Rn
+ ̸= ∅ and x ∈ ∂Rn

+, then due to the fact that f̃ is even with respect
to xn, we have

1

|Br(x)|

∫
Br(x)

|f̃(y)− f̃Br(x)| dy ≤
2

|Br(x) ∩ Rn
+|

∫
Br(x)∩Rn

+

|f(y)− f̃Br(x)| dy

≤ 2

|Br(x) ∩ Rn
+|
( ∫

Br(x)∩Rn
+

|f(y)− fBr(x)∩Rn
+
| dy

+

∫
Br(x)∩Rn

+

|fBr(x)∩Rn
+
− f̃Br(x)| dy

)
· · · · · · (∗1).

Here fBr(x)∩Rn
+
:= 1

|Br(x)∩Rn
+|

∫
Br(x)∩Rn

+
f(y) dy. By simple check we can further notice that

f̃Br(x) =
1

|Br(x) ∩ Rn
+|

∫
Br(x)∩Rn

+

f(y) dy.

Therefore fBr(x)∩Rn
+
= f̃Br(x) if x ∈ ∂Rn

+ and hence∫
Br(x)∩Rn

+

|fBr(x)∩Rn
+
− f̃Br(x)| dy = 0.

By continuing the calculation we can deduce that

(∗1) = 2

|Br(x) ∩ Rn
+|

∫
Br(x)∩Rn

+

|f(y)− fBr(x)∩Rn
+
| dy ≤ 2 · [f ]ba∞(Rn

+).

Thus if x ∈ ∂Rn
+, then for any r > 0 we have that

1

|Br(x)|

∫
Br(x)

|f̃(y)− f̃Br(x)| dy ≤ 2 · [f ]ba∞(Rn
+).

(2).If Br(x)∩ ∂Rn
+ ̸= ∅ and x /∈ ∂Rn

+, then ∃ x∗ ∈ Br(x)∩ ∂Rn
+ and Br(x) ⊂ B2r(x

∗).
Notice that

1

|Br(x)|

∫
Br(x)

|f̃(y)− f̃B2r(x∗)| dy ≤
|B2r(x

∗)|
|Br(x)|

· 1

|B2r(x∗)|
·
∫
B2r(x∗)

|f̃(y)− f̃B2r(x∗)| dy

≤ |B2r(x
∗)|

|Br(x)|
· 2 · [f ]ba∞(Rn

+)

= 2n+1 · [f ]ba∞(Rn
+).
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The second inequality here holds because of (1). Notice that

1

|Br(x)|

∫
Br(x)

|f̃(y)− f̃Br(x)| dy ≤
( 1

|Br(x)|

∫
Br(x)

|f̃(y)− f̃B2r(x∗)| dy

+
1

|Br(x)|

∫
Br(x)

|f̃B2r(x∗) − f̃Br(x)| dy
)
· · · · · · (∗2).

and

1

|Br(x)|

∫
Br(x)

|f̃B2r(x∗) − f̃Br(x)| dy ≤
1

|Br(x)|
·
∫
Br(x)

|f̃(y)− f̃B2r(x∗)| dy.

Therefore

(∗2) ≤ 2

|Br(x)|
·
∫
Br(x)

|f̃(y)− f̃B2r(x∗)| dy ≤ 2n+2 · [f ]ba∞(Rn
+).

As a result, for any x ∈ Rn
+ and r > 0, we have that

1

|Br(x)|

∫
Br(x)

|f̃(y)− f̃Br(x)| dy ≤ ([f ]BMO∞(Rn
+) + 2n+2 · [f ]ba∞(Rn

+))

= 2n+2 · [f ]BMO∞,∞
ba (Rn

+)

by (1) and (2). Therefore it is true that

[f̃ ]BMO ≤ 2n+2 · [f ]BMO∞,∞
ba (Rn

+).

Lemma 3.3. Let f ∈ BMO(Rn,R) and f be odd with respect to xn, i.e. f(x
′
, xn) =

−f(x′
,−xn), then we have that rRn

+
f ∈ BMO∞,∞

b (Rn
+) and there exists a universal con-

stant C such that

||rRn
+
f ||BMO∞,∞

b (Rn
+) ≤ C · [f ]BMO.

Proof. (1). Notice that

[rRn
+
f ]BMO∞(Rn

+) ≤ sup
x∈Rn

r>0

1

|Br(x)|

∫
Br(x)

|f(y)− fBr(x)| dy = [f ]BMO.

(2). Let x ∈ ∂Rn
+ and r > 0. Let B+

r (x) := Br(x) ∩ Rn
+ and B−

r (x) := Br(x) ∩ (Rn
+)

c.
We have that

fBr(x) =
1

|Br(x)|
( ∫

B+
r (x)

f(y) dy +

∫
B−

r (x)

f(y) dy
)
.

Notice that by change of variables we can easily deduce that∫
B−

r (x)

f(y) dy = −
∫
B+

r (x)

f(y) dy.
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Hence

fBr(x) =
1

|Br(x)|
·
( ∫

B+
r (x)

f(y) dy −
∫
B+

r (x)

f(y) dy
)
= 0.

Therefore in this case, we have that

1

|Br(x)|

∫
Br(x)

|f(y)− fBr(x)| dy =
1

|Br(x)|

∫
Br(x)

|f(y)| dy.

By taking the supremum, we can deduce that

sup
r>0

x∈∂Rn
+

r−n

∫
Br(x)∩Rn

+

|f(y)| dy ≤ sup
r>0

x∈∂Rn
+

C

|Br(x)|

∫
Br(x)

|f(y)− fBr(x)| dy

≤ C · [f ]BMO.

Thus

||rRn
+
f ||b∞(Rn

+) ≤ C · [f ]BMO.

Therefore by (1) and (2), we have that

||rRn
+
f ||BMO∞,∞

b (Rn
+) ≤ C · [f ]BMO.

Lemma 3.4. Let f ∈ BMO(Rn
+,R), then we have that rRn

+
f ∈ BMO∞,∞

ba (Rn
+) and there

exists a universal constant C such that

[rRn
+
f ]BMO∞,∞

ba (Rn
+) ≤ C · [f ]BMO.

Proof. Firstly let us recall the fact that in defining the BMO-seminorm it is equivalent to
consider the supremum over all balls and all squares. Here we make use of this idea. Let
f ∈ BMO(Rn

+,R), x ∈ ∂Rn
+ and r > 0, let B+

r (x) be the intersection of the ball Br(x)

and the half space Rn
+. Let Q̃c be the set of squares whose centers are on the boundary

∂Rn
+ with sides parallel to the coordinate system. Notice that a simple triangle inequality

would give us the fact that if for each half ball B+
r (x) there exists a constant cB+

r (x) such
that

sup
x∈∂Rn

+

r>0

1

|B+
r (x)|

∫
B+

r (x)

|f(y)− cB+
r (x)| dy <∞, (3.1)

then [f ]ba∞ < ∞. Now we let Q∗ ∈ Q̃c be the smallest square that contains Br(x), then
we can easily deduce that

1

|B+
r (x)|

∫
B+

r (x)

|f(y)− fQ+
∗
| dy ≤ |Q+

∗ |
|B+

r (x)|
· 1

|Q+
∗ |

∫
Q+

∗

|f(y)− fQ+
∗
| dy

≤ c · sup
Q∈Q̃c

1

|Q+|

∫
Q+

|f(y)− fQ+ | dy
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where c is a constant independent of the radius r and Q+ is the intersection of Q and Rn
+.

Hence by (3.1) there exists a constant c such that

[f ]ba∞(Rn
+) ≤ c · sup

Q∈Q̃c

1

|Q+|

∫
Q+

|f(y)− fQ+ | dy.

For the opposite direction let Q∗ ∈ Q̃c be the largest square that is contained in the ball
Br(x), then we have

1

|Q∗+|

∫
Q∗+
|f(y)− fB+

r (x)| dy ≤
|B+

r (x)|
|Q∗+|

· 1

|B+
r (x)|

∫
B+

r (x)

|f(y)− fB+
r (x)| dy.

By similar arguments as proving (3.1), if we take the supremum over all squares, we have
that

sup
Q∈Q̃c

1

|Q+|

∫
Q+

|f(y)− fQ+| dy ≤ c · [f ]ba∞(Rn
+).

Therefore the seminorm [f ]ba∞(Rn
+) is equivalent to the seminorm sup

Q∈Q̃c

1
|Q+|

∫
Q+ |f(y) −

fQ+| dy. To prove Lemma 3.4, we only need to check that the seminorm sup
Q∈Q̃c

1
|Q+|

∫
Q+ |f(y)−

fQ+| dy is less than infinity. This is indeed since we always have that

1

|Q+|

∫
Q+

|f(y)− fQ| dy ≤
|Q|
|Q+|

· 1

|Q|
·
∫
Q

|f(y)− fQ| dy

= c · [f ]BMO

<∞.

By applying the argument of the square version of (2.1) again, we can deduce that

1

|Q+|

∫
Q+

|f(y)− fQ+| dy ≤ c · [f ]BMO <∞.

Therefore by taking the supremum, we are done.

Now we are ready to prove the main lemma in this subsection.

Lemma 3.5. PRn
+
: X→ X is a bounded linear operator.

Proof. (1). Let v ∈ X, by Lemma 3.1 and Lemma 3.2, we can deduce that there exists a
constant C such that

[Ev]BMO =
n−1∑
i=1

[Eeven v
i]BMO + [Eodd v

n]BMO

≤ C · (
n−1∑
i=1

[vi]BMO∞,∞
ba (Rn

+) + ||vn||BMO∞,∞
b (Rn

+))

≤ C · [v]X.
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Therefore E : X→ BMO(Rn,Rn) is a bounded linear operator.
(2).Since the Riesz transform Ri is a bounded linear operator from BMO(Rn,Rn) to

BMO(Rn,Rn) for each i, we can easily deduce that the projection P := I +R⊗R is also
a bounded linear operator from BMO(Rn,Rn) to BMO(Rn,Rn). As for the boundedness
of Riesz transforms from BMO to BMO, please refer to Fefferman and Stein [3].

(3). Notice the fact that (PEv)i is even with respect to xn for i such that 1 ≤ i ≤ n−1
whereas (PEv)n is odd with respect to xn. This fact will be proved in subsection 3.3.
Then by Lemma 3.3 and Lemma 3.4, we can deduce that there exists a constant C such
that

[PRn
+
v]X ≤ C · [v]X.

3.2 Trace problem

Let u ∈ X, then by Lemma 3.1 and Lemma 3.2 we know that Eu ∈ BMO(Rn,Rn). Let
L2

loc(Ω) := (L2
loc(Ω))

n where Ω ⊆ Rn.

Lemma 3.6. Let u ∈ X, then we have that u ∈ L2
loc(Rn

+).

Proof. Let u ∈ L1
loc(Rn

+) and Eu ∈ L1
loc(Rn) be an extension of u.

(1). Eu ∈ BMO implies that Eu ∈ L2
loc(Rn). This is indeed true since if we let B be

any open ball in Rn, by the John-Nirenberg inequality we have that

||Eu||2L2(B) = 2 ·
∫ ∞

0

αµ({x ∈ B | |Eu(x)− EuB| > α}) dα

≤ C1 · |B| ·
∫ ∞

0

α · exp(− C2α

[Eu]BMO

) dα

<∞.

The first equality above is due to ||f ||pLp = p
∫∞
0

αp−1df (α) dα where df (α) is the distri-
bution function of f , for this fact please refer to L.Grafakos [5].

(2). Let K ⊂⊂ Rn
+, it is certainly that K ⊂ Br(x)∩Rn

+ for some x ∈ ∂Rn
+ and r > 0,

then we have that

||u||L2(K) ≤ ||u||L2(Br(x)∩Rn
+) ≤ ||Eu||L2(Br(x)) <∞.

Therefore u ∈ L2(K) for any K ⊂⊂ Rn
+, that means u ∈ L2

loc(Rn
+).

For u ∈ X, we have that Eeven u
i ∈ BMO for 1 ≤ i ≤ n − 1 and Eodd u

n ∈ BMO,
hence by (1) and (2) ui ∈ L2

loc(Rn
+) for 1 ≤ i ≤ n.

Since we have proved that u ∈ X implies that u ∈ L2
loc(Rn

+), we are able to make use
of the theory of R.Temam [10] to define the trace.

Definition 3.7. We define the space Eloc(Rn
+) in the following way :
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• Eloc(Rn
+) := {u ∈ L2

loc(Rn
+) | divu ∈ L2

loc(Rn
+)}.

Here divu means the divergence of u, i.e. divu :=
n∑

i=1

∂xi
ui.

• Let u ∈ Eloc(Rn
+), we define a family of seminorms || · ||E(Ωi) for all i ∈ N on

Eloc(Rn
+) by

||u||2E(Ωi)
:=

∫
Ωi
|divu|2 + |u|2 dx

where Ωi is an open domain in Rn
+ with C2 boundary ∂Ωi for each i ∈ N, moreover

we require that Bi(0)
′ ⊂ ∂Ωi for all i ∈ N where Bi(0)

′ := {x ∈ Bi(0) | xn = 0} and
Ωi ↑ Rn

+ as i→∞.

Definition 3.8. (Trace space)

• We denote the interior of the region Ωi ∩ ∂Rn
+ in Rn−1 by Ω

′
i.

• Γ(Rn−1) := {T ∈ D
′
(Rn−1) | | < T, ϕ > | ≤ Ci · ||ϕ ||H 1

2 (Ω
′
i)

for any ϕ ∈
D(Rn−1) with supp ϕ ⊂ Ω

′
i }

• We define a family of seminorms { || · ||Ω′
i
| i ∈ N } on Γ(Rn−1) by :

||T ||Ω′
i
:= sup

ϕ∈D(Rn−1),

supp ϕ⊂Ω
′
i,

||ϕ ||
H

1
2 (Ω

′
i
)
=1.

| < T, ϕ > |.

It is not hard to verify the fact that these two spaces Eloc(Rn
+) and Γ(Rn−1) are indeed

Frechet spaces, thus we omit the details here and proceed directly to define the trace.

Lemma 3.9. Let γ : Eloc(Rn
+) → Γ(Rn−1) by u 7→ γu, where for ϕ ∈ D(Rn−1) with

supp ϕ ⊂ Ω
′
i we have the map

γu(ϕ) :=

∫
Ωi

div u · ω + u · ∇ω dx.

Here we choose ω ∈ H1(Ωi) with the trace operator γ0 : H
1(Ωi)→ H

1
2 (∂Ωi) such that the

trace of ω is ϕ. Then we have that the map γ is a bounded linear operator.

Proof. Here we make use of the theory of R.Temam [10]. Notice that for each ϕ ∈ D(Rn−1)
with supp ϕ ⊂ Ω

′
i, we can actually find an ω ∈ H1(Ωi) such that its trace γ0 ω = ϕ. Let

ϕ ∈ D(Rn−1) with supp ϕ ⊂ Ω
′
i, notice that by definition we have that Ω

′
i ⊂ Ωi. We

define a function g on ∂Ωi by

g(x) :=

{
ϕ(x

′
) if xn = 0,

0 else.
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Since ϕ ∈ D(Rn−1), an easy check quickly tells us that this function g ∈ H
1
2 (∂Ωi) and

||g||
H

1
2 (∂Ωi)

= ||ϕ||
H

1
2 (Ω

′
i)
. Then by R.Temam [10], there exists an ω ∈ H1(Ωi) such that

its trace γ0 ω = g. Therefore by the definition of our γu, we have that

| γu(ϕ) | ≤ || divu ||L2(Ωi) · ||ω ||L2(Ωi) + ||u ||L2(Ωi) · ||∇ω ||L2(Ωi)

≤ C · ( || divu ||L2(Ωi) + ||u ||L2(Ωi) ) · ||ω ||H1(Ωi)

≤ C · ||u ||E(Ωi) · ||ω ||H1(Ωi)

by the triangle inequality and the Hölder inequality. Since by R.Temam [10], there exists
lΩi
∈ L (H1/2(∂Ωi), H

1(Ωi) ) where lΩi
is the lifting operator such that lΩi

g = ω, hence
by above we have that

| γu(ϕ) | ≤ C · ||u ||E(Ωi) · || lΩi
g ||H1(Ωi)

≤ Ci · ||u ||E(Ωi) · || g ||H1/2(∂Ωi)

= Ci · ||u ||E(Ωi) · ||ϕ ||H1/2(Ω
′
i)
.

The last equality holds since g(x) = 0 for x /∈ Ω
′
i. Therefore, we can deduce that

|| γu ||Ω′
i
≤ Ci · ||u ||E(Ωi)

where Ci is simply a constant which depends on i. As a result, we see that

γ : Eloc(Rn
+)→ Γ(Rn−1)

is indeed a bounded linear operator in the sense of Frechet spaces.

By Lemma 3.6 we know that X ⊂ L2
loc(Rn

+) and by Lemma 3.9 there exists a bounded
linear operator γ which maps Eloc(Rn

+) to Γ(Rn−1). For the subspace {u ∈ X | div u ∈
L2
loc(Rn

+) } ⊂ X, it is trivial to see that the map γ is also a bounded linear operator from
{u ∈ X | div u ∈ L2

loc(Rn
+) } to Γ(Rn−1). This is how we take the trace for elements in

X.

3.3 Validity of PRn
+
as the Helmholtz projection

Lemma 3.10. Let v ∈ X, then div PRn
+
v = 0 in Rn

+ in the sense of distributions.

Proof. Let ϕ ∈ C∞
0 (Rn

+). By the definition of distributions, we have that∫
Rn
+

div PRn
+
v · ϕ dx = −

∫
Rn
+

PRn
+
v · ∇ϕ dx.

Since supp ϕ ⊂⊂ Rn
+, we can easily deduce that supp ∂xi

ϕ ⊂⊂ Rn
+ for any 1 ≤ i ≤ n,

therefore ∫
Rn
+

PRn
+
v · ∇ϕ dx =

∫
Rn

PEv · ∇ϕ dx = −
∫
Rn

div (PEv) · ϕ dx.
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Because div (PEv) = 0 in the sense of distributions, we have that∫
Rn

div (PEv) · ϕ dx = 0.

Thus ∫
Rn
+

div PRn
+
v · ϕ dx = −

∫
Rn
+

PRn
+
v · ∇ϕ dx =

∫
Rn

div (PEv) · ϕ dx = 0.

Notice that the above equality holds for any ϕ ∈ C∞
0 (Rn

+), hence

div PRn
+
v = 0 in Rn

+

in the sense of distributions. As for the reason why div PEv = 0 in the sense of dis-
tributions, by considering Fourier transforms we can quickly prove it through simple
calculations.

Let us recall some facts about Riesz transforms. Notice that the j-th Riesz transform
Rj is defined as

Rj(f)(x) := p.v.

∫
Rn

xj − yj
|x− y |n+1

· f(y) dy.

By [9, p.232], we have that Rj(f) is well-defined for any f ∈ H 1(Rn) and 1 ≤ j ≤ n.
By [3], we have that for f ∈ BMO and 1 ≤ j ≤ n, Rj(f) ∈ H 1(Rn)∗. Hence by the
fact that BMO = H 1(Rn)∗, there exists h ∈ BMO such that Rj(f) = h in the sense
of bounded linear functionals on H 1(Rn). Therefore for any f ∈ BMO and 1 ≤ j ≤ n,
Rj(f) is defined by its corresponding h. Based on these facts, we have the next lemma
which proves an interesting property about Riesz transforms.

Lemma 3.11. Let f belongs to BMO or H 1(Rn),
(1). If f is even with respect to xn, then{

Rj(f) is even with respect to xn for j satisfying 1 ≤ j ≤ n− 1,

Rn(f) is odd with respect to xn.

(2). If f is odd with respect to xn, then{
Rj(f) is odd with respect to xn for j satisfying 1 ≤ j ≤ n− 1,

Rn(f) is even with respect to xn.

Proof. For f ∈ H 1(Rn), since Rj(f) is well-defined for each 1 ≤ j ≤ n, we can prove
this lemma directly through change of variables. Let g ∈ BMO be odd with respect to
xn and 1 ≤ j ≤ n − 1, let w ∈ BMO such that Rj(g) = w. Let w̃(x

′
, xn) := w(x

′
,−xn)

and f ∈H 1(Rn), then by change of variables we have that

< w̃, f >=< w, f̃ >= − < g,Rj(f̃) > .
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Notice that the second equality above holds since f̃ ∈H 1(Rn) if f ∈H 1(Rn). Again by
change of variables, we can further deduce that

Rj(f̃)(x
′
, xn) = Rj(f)(x

′
,−xn).

Then,

− < g,Rj(f̃) > = −
∫
Rn

g ·Rj(f̃) dx

= −
∫
Rn

g(x
′
, xn) ·Rj(f)(x

′
,−xn) dx

= −
∫
Rn

g(x
′
,−xn) ·Rj(f)(x

′
, xn) dx

=

∫
Rn

g(x
′
, xn) ·Rj(f)(x

′
, xn) dx

=< g,Rj(f) >

= − < w, f > .

Hence < w̃ + w, f >= 0 for any f ∈H 1(Rn) and thus w is odd with respect to xn. The
other three cases can be proved by similar arguments.

Lemma 3.12. Let v ∈ X, then we have that{
(PEv)i is even with respect to xn for i satisfying 1 ≤ i ≤ n− 1,

(PEv)n is odd with respect to xn.

Proof. This is a direct application of Lemma 3.11.

Lemma 3.13. Let v ∈ X, then the trace PRn
+
v·n = 0 on ∂Rn

+ in the sense of distributions.

Proof. Let BR be the ball BR(0). Let B
+
R := BR ∩Rn

+ and B−
R := BR ∩ (Rn

+)
c. Let v ∈ X

and let u := PEv. By the above lemma we can see that un is odd with respect to xn. Let

u1(x
′
, xn) :=

{
u(x

′
, xn) if xn > 0,

0 if xn < 0.

and

u2(x
′
, xn) :=

{
0 if xn > 0,

u(x
′
, xn) if xn < 0.

Let ϕ ∈ C∞
0 (BR), then we have that

< div u1, ϕ > := − < u1,∇ϕ >

=

∫
B+

R

div u1 · ϕ dx+

∫
{xn=0}∩BR

(u1 · n1)ϕ dH n−1



104

where n1 is the normal vector on ∂Rn
+ which points outward B+

R . In the mean time, we
also have that

< div u2, ϕ > := − < u2,∇ϕ >

=

∫
B−

R

div u2 · ϕ dx+

∫
{xn=0}∩BR

(u2 · n2)ϕ dH n−1

where n2 is the normal vector on ∂Rn
+ which points outward B−

R . By similar arguments
as in the proof of Lemma 3.10, we can see that div u = 0 in BR, div u1 = 0 in B+

R and
div u2 = 0 in B−

R . Therefore

0 =< div u1, ϕ > + < div u2, ϕ >

=

∫
B+

R

div u1 · ϕ dx+

∫
B−

R

div u2 · ϕ dx+

∫
{xn=0}∩BR

(
u1 · n1 + u2 · n2

)
ϕ dH n−1

=

∫
{xn=0}∩BR

(
u1 · n1 − u2 · n1

)
ϕ dH n−1.

Thus we see that on {xn = 0} ∩ BR,
(
u1 · n1 − u2 · n1

)
= 0 in the sense of distributions.

Notice that if xn < 0, then

un
2 (x

′
, xn) = −un

1 (x
′
,−xn).

At {xn = 0} ∩BR, we have that

u1 · n1 = un
1 (x

′
, 0) and u2 · n2 = −un

1 (x
′
, 0).

and thus un
1 (x

′
, 0) = 0 in the sense of distributions. Notice that

un
1 (x

′
, 0) = PRn

+
v · n |{xn=0}∩BR

.

Since {xn = 0} ∩BR ↑ ∂Rn
+ as R→∞, we can easily deduce that the trace

PRn
+
v · n |∂Rn

+
= 0

in the sense of distributions.

Lemma 3.14. Let v ∈ X such that{
div v = 0 in Rn

+,

v · n = 0 on ∂Rn
+.

Then we have that v ∈ PRn
+
X. Notice that both equalities above hold in the sense of

distributions.

Proof. Let v ∈ X such that {
div v = 0 in Rn

+,

v · n = 0 on ∂Rn
+.
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in the sense of distributions and let E be our extension operator. Throughout the proof
of this lemma we mean equal to 0 in the sense of distributions.

(1). Here we prove that div Ev = 0 in Rn. Let BR be the ball BR(0). Let B
+
R := BR∩

Rn
+ and B−

R := BR∩ (Rn
+)

c. If xn > 0, then Ev (x
′
, xn) = v (x

′
, xn) and div Ev = div v =

0 in Rn
+ by our assumptions. If xn < 0, then Ev (x

′
, xn) = (v

′
(x

′
,−xn),−vn(x

′
,−xn) )

and

div Ev =
n−1∑
i=1

∂xi
vi(x

′
,−xn) + ∂−xnv

n(x
′
,−xn) = 0

since div v = 0 in Rn
+. Let ϕ ∈ C∞

0 (BR), then

< div Ev, ϕ > := − < Ev,∇ϕ >

=

∫
B+

R

div Ev · ϕ dx+

∫
B−

R

div Ev · ϕ dx

−
∫
BR∩{xn=0}

{((Ev)+ − (Ev)−) · n+}ϕ dH n−1.

The first two terms in the last equality equal to 0 since div Ev = 0 in both B+
R and B−

R .
The third term equals to 0 since (Ev)+ · n+ = vn(x

′
, 0), (Ev)− · n+ = −vn(x′

, 0) and
vn(x

′
, 0) = 0 by our assumptions. Hence div Ev = 0 in Rn.

(2). Notice that by simply considering Fourier transforms it is easy to verify that

Ri

∑
j

Rju
j = 0 for any 1 ≤ i ≤ n if div u = 0 in Rn. Therefore if div u = 0 in Rn, then

(Pu)i = ui for any 1 ≤ i ≤ n.
Now let u := Ev, by (1) and (2) we have that Pu = u. Then by applying the

restriction on both sides of this equality, we get that PRn
+
v = v.

Definition 3.15. We define the solenoidal subspace Xσ of X by

Xσ := {v ∈ X | div v = 0 in Rn
+ & v · n = 0 on ∂Rn

+ }.

Here the two equalities hold in the sense of distributions.

By Lemma 3.10 and Lemma 3.13 we can see that PRn
+
X ⊆ Xσ. And by Lemma 3.14

we can see that Xσ ⊆ PRn
+
X. Therefore PRn

+
X = Xσ. This fact justifies the validity of

PRn
+
as the Helmholtz projection.

3.4 Characterisation of the subspace (I − PRn
+
)X

Lemma 3.16. Let v ∈ X, then there exists p ∈ L1
loc(Rn

+) such that (I − PRn
+
)v = ∇p.

Proof. We seek to make use of De Rham’s theorem [4] here. In order to make use of De
Rham’s theorem, it is sufficient to show that

< (I − P)Ev, ϕ >= 0 ∀ϕ ∈ C∞
0,σ(Rn).
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Let ϕ ∈ C∞
0,σ(Rn) and u := Ev, notice that

{(I − P)u}i = −Ri

∑
j

Rju
j.

Therefore by substitution < (I−P)u, ϕ >=
∑
i

< −Ri

∑
j

Rju
j, ϕi >. Let f :=

∑
j

Rju
j,

notice that

< −Ri(f), ϕ
i > =< f,Ri(ϕ

i) > .

Therefore

< (I − P)u, ϕ > =
∑
i

<
∑
j

Rju
j, Riϕ

i >

=<
∑
j

Rju
j,
∑
i

Riϕ
i > .

By div ϕ = 0 we can easily deduce that
∑
i

Riϕ
i = 0 by considering Fourier transforms.

Thus

< (I − P)u, ϕ >= 0 ∀ϕ ∈ C∞
0,σ(Rn).

Therefore by De Rham [4], there exists p ∈ L1
loc(Rn) such that (I − P)u = ∇p. By

applying the restriction operator we have that

rRn
+
(I − P)Ev = (I − PRn

+
)v = rRn

+
∇p.

Notice that we can further deduce that rRn
+
∇p = ∇ (rRn

+
p). Indeed since for any ϕ ∈

C∞
0 (Rn

+) we have that

< rRn
+
∇p, ϕ > :=

∫
Rn
+

rRn
+
∇p · ϕ dx =

∫
Rn

∇p · ϕ dx

= −
∫
Rn

p · div ϕ dx = −
∫
Rn
+

p · div ϕ dx

= −
∫
Rn

(rRn
+
p) · div ϕ dx =

∫
Rn
+

∇(rRn
+
p) · ϕ dx

= < ∇(rRn
+
p), ϕ > .

Therefore we have that (I − PRn
+
)v = ∇(rRn

+
p). Since p ∈ L1

loc(Rn), it is easy to deduce

that rRn
+
p ∈ L1

loc(Rn
+).

Lemma 3.17. Let p ∈ L1
loc(Rn

+) such that ∇p ∈ X, then ∇p ∈ (I − PRn
+
)X.

Proof. Let p ∈ L1
loc(Rn

+) such that ∇p ∈ X, it is sufficient to prove that PRn
+
∇p = 0. Then

by this fact we can see that

(I − PRn
+
)∇p = ∇p− PRn

+
∇p = ∇p.

and thus ∇p ∈ (I − PRn
+
)X. Let q be defined as follow:
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q(x
′
, xn) :=

{
p(x

′
, xn) if xn > 0,

p(x
′
,−xn) if xn < 0.

Since q is the even extension of p, p ∈ L1
loc(Rn

+) would imply q ∈ L1
loc(Rn). Moreover,

simple calculations would tell us ∇q = E∇p. This is indeed since for xn < 0 we have
that

∂

∂xn

q(x
′
, xn) =

∂

∂xn

p(x
′
,−xn) = −

∂

∂(−xn)
p(x

′
,−xn) = −

∂

∂zn
p(x

′
, zn)

where zn > 0. Again by considering Fourier transforms, it is easy to verify that (P∇q)i = 0
for any 1 ≤ i ≤ n. As a result,

PRn
+
∇p = rRn

+
PE∇p = rRn

+
P∇q = 0.

Hence ∇p = (I − PRn
+
)∇p and we are done.

Definition 3.18. We define the subspace Xπ of X by

Xπ := {∇p ∈ X | p ∈ L1
loc(Rn

+) }.

By Lemma 3.16 we can see that (I − PRn
+
)X ⊆ Xπ and by Lemma 3.17 we can see

that Xπ ⊆ (I −PRn
+
)X. Therefore (I −PRn

+
)X = Xπ. This fact gives the characterisation

of the subspace (I − PRn
+
)X.

3.5 Proof of Theorem 1.1

Proof. By Lemma 3.5 we see that PRn
+
is a bounded linear operator which maps X to X.

By this bounded linear map we can easily see that the vector field X admits a natural
decomposition

X = PRn
+
X⊕ (I − PRn

+
)X

where both PRn
+
X and (I−PRn

+
)X are linear subspaces of X. Since this natural decompo-

sition is induced by the projection PRn
+
, this decomposition is certainly unique. Moreover,

we have already proved that

PRn
+
X = Xσ

and

(I − PRn
+
)X = Xπ.

As a result, Theorem 1.1 holds and we are done.

Remark 3.19. Although the Helmholtz decomposition we established for X is true, due to
the fact that [ · ]BMO∞,∞

ba (Rn
+) is a seminorm, it is inevitable to think about the question where

constant vectors are mapped to under this Helmholtz projection PRn
+
. Unfortunately, this

question is not answered in this paper, in order to avoid this ambiguity, we shall consider
our Helmholtz decomposition not for the space X but for the quotient space X/(Rn−1×{0}).
From now on, without causing any ambiguity, we shall denote X/(Rn−1 × {0}) simply by
X.



108

4 Partial Helmholtz decomposition of vector field in

real Hardy spaces over the half space

4.1 Boundedness of projection PRn
+
from Y to Y

Let v ∈ Y and PRn
+
v := rRn

+
PEv.

Lemma 4.1. Let f ∈H 1
odd(Rn

+), then we have that Eoddf ∈H 1(Rn) and

||Eoddf ||H 1 = 2 · ||f ||H 1
odd(R

n
+).

Proof. For simplicity we denote Eoddf by f̄ . Let Gt be the heat kernel on Rn so that
(et∆g)(x) = (Gt ∗ g)(x) for a function g on Rn. By Definition 2.8, we have that

||f̄ ||H 1 =

∫
Rn
+

sup
t>0
|Gt ∗ f̄ | (x) dx+

∫
Rn
−

sup
t>0
|Gt ∗ f̄ | (x) dx

= (1) + (2).

(1). For x ∈ Rn
+ and t > 0, we have that (Gt ∗ f̄) (x, t) = (rRn

+
(Gt ∗ f̄)) (x, t). Since

this is true for all t > 0, by taking the supremum over all t > 0, we have that

sup
t>0
|Gt ∗ f̄ | (x) = sup

t>0
| rRn

+
(Gt ∗ f̄) | (x).

Since the above equality holds for all x ∈ Rn
+, we can see that

(1) =

∫
Rn
+

sup
t>0
| rRn

+
(Gt ∗ f̄) | (x) dx

=

∫
Rn
+

sup
t>0
| rRn

+
et∆ f̄ | (x) dx

= ||f ||H 1
odd(R

n
+).

(2). Notice that (Gt ∗ f̄) (x, t) is actually odd with respect to xn since f̄ is odd with
respect to xn, hence

|Gt ∗ f̄ | (x
′
, xn, t) = | − (Gt ∗ f̄) (x

′
,−xn, t) | = |Gt ∗ f̄ | (x

′
,−xn, t).

Let f̄+
Gt
(x) := sup

t>0
|Gt ∗ f̄ | (x), f̄+

Gt
is even with respect to xn. Hence,

(2) =

∫
Rn
+

f̄+
Gt
(z

′
,−zn) dz

′
dzn =

∫
Rn
+

f̄+
Gt
(z

′
, zn) dz

′
dzn = (1).

Lemma 4.2. Let f ∈H 1
even(Rn

+), then we have that Eevenf ∈H 1(Rn) and

||Eevenf ||H 1(Rn) = 2 · ||f ||H 1
even(Rn

+).
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Proof. For simplicity we denote Eevenf by f̃ . Let Gt be the heat kernel. By Definition
2.8, we have that

||f̃ ||H 1 =

∫
Rn
+

sup
t>0
|Gt ∗ f̃ | (x) dx+

∫
Rn
−

sup
t>0
|Gt ∗ f̃ | (x) dx

= (1) + (2).

(1). For x ∈ Rn
+ and t > 0, we have that (Gt ∗ f̃) (x, t) = (rRn

+
(Gt ∗ f̃)) (x, t). Since

this is true for all t > 0, by taking the supremum over all t > 0, we have that

sup
t>0
|Gt ∗ f̃ | (x) = sup

t>0
| rRn

+
(Gt ∗ f̃) | (x).

Since the above equality holds for all x ∈ Rn
+, we can see that

(1) = ||f ||H 1
even(Rn

+).

(2). Notice that (Gt ∗ f̃) (x, t) is even with respect to xn since f̃ is even with respect
to xn. We have that f̃+

Gt
(x) := sup

t>0
|Gt ∗ f̃ | (x) is even with respect to xn. Therefore,

(2) =

∫
Rn
+

f̃+
Gt
(z

′
,−zn) dz

′
dzn =

∫
Rn
+

f̃+
Gt
(z

′
, zn) dz

′
dzn = (1).

Lemma 4.3. Let f ∈ H 1(Rn) and f be odd with respect to xn, i.e. f(x
′
, xn) =

−f(x′
,−xn), then we have that rRn

+
f ∈H 1

odd(Rn
+) and

||rRn
+
f ||H 1

odd(R
n
+) ≤ ||f ||H 1 .

Proof. Let f ∈H 1(Rn) such that f is odd with respect to xn, then

||rRn
+
f ||H 1

odd(R
n
+) :=

∫
Rn
+

sup
t>0
| rRn

+
et∆ Eodd rRn

+
f | (x) dx

=

∫
Rn
+

sup
t>0
| rRn

+
et∆ f | (x) dx

≤
∫
Rn

sup
t>0
| et∆ f | (x) dx

= ||f ||H 1(Rn).

Lemma 4.4. Let f ∈ H 1(Rn) and f be even with respect to xn, i.e. f(x
′
, xn) =

f(x
′
,−xn), then we have that rRn

+
f ∈H 1

even(Rn
+) and

||rRn
+
f ||H 1

even(Rn
+) ≤ ||f ||H 1 .
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Proof. Let f ∈H 1(Rn) such that f is even with respect to xn, then

||rRn
+
f ||H 1

even(Rn
+) :=

∫
Rn
+

sup
t>0
| rRn

+
et∆ Eeven rRn

+
f | (x) dx

=

∫
Rn
+

sup
t>0
| rRn

+
et∆ f | (x) dx

≤
∫
Rn

sup
t>0
| et∆ f | (x) dx

= ||f ||H 1(Rn).

Lemma 4.5. PRn
+
: Y → Y is a bounded linear operator.

Proof. The proof is basically identical to the proof of Lemma 3.5.

4.2 Properties of projection PRn
+

Except some places due to the fact that we cannot take the trace properly, the theory
in this subsection is completely identical to the theory in subsection 3.3. This is due to
the fact that all properties hold not because of the space where v belongs to, but the
properties of projection P itself has.

Lemma 4.6. Let v ∈ Y, then div PRn
+
v = 0 in Rn

+ in the sense of distributions.

Proof. The proof is completely identical to the proof of Lemma 3.10.

Lemma 4.7. Let v ∈ Y such that{
div v = 0 in Rn

+,

v · n = 0 on ∂Rn
+.

Then we have that v ∈ PRn
+
Y. Notice that both equalities above hold in the sense of

distributions.

Proof. The proof is completely identical to the proof of Lemma 3.14.

Definition 4.8. We define the subspace Yσ of Y by

Yσ := {v ∈ Y | div v = 0 in Rn
+ & v · n = 0 on ∂Rn

+ }.

Lemma 4.9. In the case for the space Y, we have that

Yσ ⊂ PRn
+
Y ⊂ {v ∈ Y | div v = 0 in Rn

+ }.

Proof. By Lemma 4.6 and Lemma 4.7, we are done.
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4.3 Characterisation of the subspace (I − PRn
+
)Y

Due to the fact that the theory in this section depends only on the properties of projection
PRn

+
and the trace problem which we do not know how to deal with is not involved in any

sense, it is completely identical to the theory in subsection 3.4.

Lemma 4.10. Let v ∈ Y, then there exists p ∈ L1
loc(Rn

+) such that (I − PRn
+
)v = ∇p.

Proof. The proof is completely identical to the proof of Lemma 3.16.

Lemma 4.11. Let p ∈ L1
loc(Rn

+) such that ∇p ∈ Y, then ∇p ∈ (I − PRn
+
)Y.

Proof. The proof is completely identical to the proof of Lemma 3.17.

Definition 4.12. We define the subspace Yπ of Y by

Yπ := {∇p ∈ Y | p ∈ L1
loc(Rn

+) }.

Lemma 4.13. (I − PRn
+
)Y = Yπ.

Proof. By Lemma 4.10 and Lemma 4.11, we are done.

4.4 Proof of Theorem 1.2

Proof. By Lemma 4.5 we see that PRn
+
is a bounded linear operator which maps Y to Y.

By this bounded linear map we can easily see that the vector field Y admits a natural
decomposition

Y = PRn
+
Y ⊕ (I − PRn

+
)Y

where both PRn
+
Y and (I−PRn

+
)Y are linear subspaces of Y. Since this natural decompo-

sition is induced by the projection PRn
+
, this decomposition is certainly unique. Moreover,

we have already proved that

Yσ ⊂ PRn
+
Y ⊂ {v ∈ Y | div v = 0 in Rn

+ }

and

(I − PRn
+
)Y = Yπ.

As a result, Theorem 1.2 holds and we are done.

5 Duality theorem

Before we start this section we would like to recall the definition that a function h ∈
H 1(Rn) is called a 2-atom if supph ⊂ B, ||h||L2(Rn) ≤ |B|−1/2 and

∫
B
h dx = 0. Here

B ⊂ Rn is an open ball.
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5.1 Duality theorem for the case of odd extension

Throughout this subsection, we denote the odd extension operator Eodd by E.

Definition 5.1. We define the set of symmetric 2-atoms by the set

{ErRn
+
α | α is a 2-atom s.t. suppα ⊂ B and B ∩ ∂Rn

+ ̸= ∅}∪
{ErRn

+
β | β is a 2-atom s.t. supp β ⊂ B ⊂ Rn

+}.

Let EH 1
odd(Rn

+) := {Ev | v ∈ H 1
odd(Rn

+)}. Then EH 1
odd(Rn

+) ⊂ H 1(Rn) is a linear
subspace.

Lemma 5.2. The norm

inf{
∑
i

|λi|+
∑
j

|µj| | all symmetric 2-atomic decompositions}

is equivalent to the norm || · ||H 1(Rn) on the subspace EH 1
odd(Rn

+).

Proof. Let f ∈H 1
odd(Rn

+), then Ef ∈H 1(Rn).
(1). By the atomic decompositions of functions of the real Hardy space H 1(Rn), we

see that Ef admits 2-atomic decompositions. Let

Ef =
∑
i

λiαi +
∑
j

µjβj

be a 2-atomic decomposition of Ef . Apply rRn
+
firstly and then E secondly on both sides

of this 2-atomic decomposition, we can deduce that

Ef = ErRn
+
Ef =

∑
i

λiErRn
+
αi +

∑
j

µjErRn
+
βj.

This is a symmetric 2-atomic decomposition of Ef with exactly the same coefficients just
as the original 2-atomic decomposition. Hence we see that every 2-atomic decomposition
of Ef gives rise to a symmetric 2-atomic decomposition of Ef with exactly the same
coefficients. Therefore,

||Ef ||H 1(Rn) = inf{
∑
i

|λi|+
∑
j

|µj| | all 2-atomic decompositions}

≥ inf{
∑
i

|λi|+
∑
j

|µj| | all symmetric 2-atomic decompositions}.

(2). Let Ef =
∑
i

λiErRn
+
αi +

∑
j

µjErRn
+
βj be a symmetric 2-atomic decomposition.

Pick an i, suppose that suppαi ⊂ Bi where Bi is a ball in Rn such that Bi ∩ ∂Rn
+ ̸= ∅.

Then there exists x∗ ∈ Bi ∩ ∂Rn
+ such that suppErRn

+
αi ⊂ B2i(x

∗). Moreover, we have
that

||ErRn
+
αi||L2(Rn) ≤ 2 · ||αi||L2(Rn) = 2

n
2
+1 · |B2i(x

∗)|−1/2.

Since E is the odd extension, we certainly have that
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∫
B2i(x∗)

ErRn
+
αi dx = 0.

Therefore, 1

2
n
2 +1 · ErRn

+
αi is a 2-atom in H 1(Rn) for any i. In addition, since supp βj ⊂

Bj ⊂ Rn
+ for some ball Bj, for any j we can decompose ErRn

+
βj into the form βj + β−

j

where β−
j is a 2-atom which is contained in (Rn

+)
c. Hence we can rewrite the symmetric

2-atomic decomposition in the following way:

Ef =
∑
i

(λi2
n
2
+1) · ( 1

2
n
2
+1

ErRn
+
αi) +

∑
j

µj · βj +
∑
j

µj · β−
j .

Here ( 1

2
n
2 +1ErRn

+
αi), βj and β−

j are all 2-atoms for any i, j. Therefore we can get a 2-

atomic decomposition of Ef from each symmetric 2-atomic decomposition of Ef with
coefficients {λ′

i }∞i=1 and {µ′
j }∞j=1 where λ

′
i = λi · 2

n
2
+1 for all i and µ

′
j = 2 · µj for all j.

Notice that ∑
i

|λi|+
∑
j

|µj| ≥
1

2
n
2
+1
·
(∑

i

(|λi| · 2
n
2
+1) +

∑
j

2 · |µj|
)

=
1

2
n
2
+1
·
(∑

i

|λ′

i|+
∑
j

|µ′

j|
)
.

Therefore we have that

inf{
∑
i

|λi|+
∑
j

|µj| | all symmetric 2-atomic decompositions}

≥ 1

2
n
2
+1
· inf{

∑
i

|λ′

i|+
∑
j

|µ′

j| | all 2-atomic decompositions}.

Since the norm inf{
∑
i

|λ′

i| +
∑
j

|µ′

j| | all 2-atomic decompositions} is equivalent to the

norm || · ||H 1(Rn) by the standard theory of real Hardy spaces, we can deduce that

inf{
∑
i

|λi|+
∑
j

|µj| | all symmetric 2-atomic decompositions} ≥ C|| · ||H 1(Rn)

for some constant C.

By making use of Lemma 5.2 we can deduce the half space atomic decomposition for
elements of H 1

odd(Rn
+).

Theorem 5.3. Let f ∈ H 1
odd(Rn

+), then there exists sequences of non-negative numbers
{λi}∞i=1 & {µj}∞j=1, a sequence of 2-atoms {αi}∞i=1 where for each i suppαi ⊂ Bi for
some ball Bi and Bi ∩ ∂Rn

+ ̸= ∅ and a sequence of 2-atoms {βj}∞j=1 where for each
j supp βj ⊂ Bj ⊂ Rn

+ for some ball Bj such that

f =
∑
i

λi · αi |rRn+ +
∑
j

µj · βj.
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We refer such a decomposition of f as a half space atomic decomposition of f and more-
over, the norm

inf{
∑
i

|λi|+
∑
j

|µj| | all half space atomic decompositions}

is equivalent to the norm || · ||H 1
odd(R

n
+) on H 1

odd(Rn
+).

Proof. By Lemma 5.2, we have that

f ∈H 1
odd(Rn

+). =⇒ Ef ∈H 1(Rn).

=⇒ Ef admits 2-atomic decompositions.

=⇒ Ef admits symmetric 2-atomic decompositions.

=⇒ f admits half space atomic decompositions by taking

restrictions of symmetric 2-atomic decompositions.

By Lemma 4.1 and Lemma 4.3, there exists constants C1 and C2 such that

C1 · ||f ||H 1
odd(R

n
+) ≤ ||Ef ||H 1(Rn) ≤ C2 · ||f ||H 1

odd(R
n
+).

Moreover, the norm || · ||H 1(Rn) is equivalent to the norm

inf{
∑
i

|λi|+
∑
j

|µj| | all symmetric 2-atomic decompositions}

on EH 1
odd(Rn

+) by Lemma 5.2. Since each of the half space atomic decomposition of f
gives rise naturally to a symmetric 2-atomic decomposition of Ef with exactly the same
coefficients by odd extension, we have that

inf{
∑
i

|λi|+
∑
j

|µj| | all half space atomic decompositions} ≈ || · ||H 1
odd(R

n
+)

on H 1
odd(Rn

+).

Definition 5.4. We denote the set of all finite linear combinations of symmetric 2-atoms
by H 1

0,s(Rn).

Notice that H 1
0,s(Rn) ⊂ H 1

0 (Rn) ∩ EH 1
odd(Rn

+) where H 1
0 (Rn) is the set of all finite

linear combinations of 2-atoms.

Lemma 5.5. EH 1
odd(Rn

+) is a closed subspace of H 1(Rn).

Proof. Let F ∈ EH 1
odd(Rn

+)
||·||H 1(Rn) \EH 1

odd(Rn
+), then there exists a sequence {un}∞n=1 ⊂

H 1
odd(Rn

+) such that Eun → F in || · ||H 1(Rn) as n → ∞. Since H 1(Rn) ⊂ L1(Rn), we
have that

||Eun − F ||L1(Rn) ≤ ||Eun − F ||H 1(Rn) → 0.

This means that Eun(x)→ F (x) a.e.. Notice that for x ∈ Rn,

F (x
′
, xn)← Eun(x

′
, xn) = −Eun(x

′
,−xn)→ −F (x

′
,−xn).

Therefore, F is odd with respect to xn a.e. and F ∈ EH 1
odd(Rn

+).
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Lemma 5.6. H 1
0,s(Rn) is dense in EH 1

odd(Rn
+).

Proof. Through the proof of Lemma 5.2 we know that every element of EH 1
odd(Rn

+) admits
symmetric 2-atomic decompositions and by Lemma 5.5 we see that EH 1

odd(Rn
+) is closed

in H 1(Rn). We are done.

Theorem 5.7. Suppose g ∈ BMO∞,∞
b (Rn

+). Then the linear functional l defined on
H 1

odd(Rn
+) by

l(f) =

∫
Rn
+

f · g dx

for f ∈ H 1
odd(Rn

+) is a bounded linear functional which satisfies ||l|| ≤ c · ||g||BMO∞,∞
b (Rn

+)

with some constant c. Conversely, every bounded linear functional l on H 1
odd(Rn

+) can be
written in the form of

l(f) =

∫
Rn
+

f · g dx for all f ∈H 1
odd(Rn

+)

with g ∈ BMO∞,∞
b (Rn

+) and ||g||BMO∞,∞
b (Rn

+) ≤ c · ||l|| with some constant c. Here ||l||
means the norm of l as a bounded linear functional on H 1

odd(Rn
+).

Proof. (1). Let f ∈H 1
odd(Rn

+) and g ∈ BMO∞,∞
b (Rn

+). Then we have the estimates

|
∫
Rn
+

f · g dx| = 1

2
· |
∫
Rn

Ef · Eg dx|

≤ 1

2
· ||Ef ||H 1(Rn) · ||Eg||BMO

≤ c · ||f ||H 1
odd(R

n
+) · ||g||BMO∞,∞

b (Rn
+).

Therefore, l : f 7→
∫
Rn
+

f · g dx ∈ H 1
odd(Rn

+)
∗
and the above inequalities imply that

||l|| ≤ c · ||g||BMO∞,∞
b (Rn

+) with some constant c.

(2). Let l ∈ H 1
odd(Rn

+)
∗
. We define l̃(Ef) := 2 · l(f) for all f ∈ H 1

odd(Rn
+). Fix

a ball B ⊂ Rn
+, let L2

0(B) be the subspace {f ∈ L2(B) |
∫
B
f dx = 0}, notice that

L2
0(B) ⊂ H 1

odd(Rn
+). Let u ∈ L2

0(B) be a 2-atom, i.e. we require that suppu ⊂ B ⊂ Rn
+

for some ball B,
∫
B
u dx = 0 and ||u||L2(B) ≤ |B|−1/2. We then have that

|l̃(Eu)| := 2 · |l(u)| ≤ c · ||u||H 1
odd(R

n
+)

≤ c · ||Eu||H 1(Rn) = c · ||u+ + u−||H 1(Rn)

≤ c · (||u+||H 1(Rn) + ||u−||H 1(Rn)) ≤ c · |B|1/2 · ||u||L2
0(B)

≤ c · |B|1/2 · ||Eu||EL2
0(B).

Here || · ||L2
0(B) := (

∫
B
| · |2 dx) 1

2 and || · ||EL2
0(B) := (

∫
B∪B− | · |2 dx)

1
2 with B− := {(x′

,−xn) |
(x

′
, xn) ∈ B}. For general w ∈ L2

0(B), we have that w = λ · u where u ∈ L2
0(B) is a

2-atom, then

|l̃(Ew)| := 2 · |l(w)| = 2 · |λ| · |l(u)| ≤ c · |B|1/2 · ||Ew||EL2
0(B).



116

Thus l̃ |EL2
0(B) is a bounded linear functional on EL2

0(B).

Claim 1 : EL2
0(B)

∗
= EL2

0(B).
Proof of Claim 1 : Let T̃ ∈ EL2

0(B)
∗
, by definition we have that |T̃ (Eu)| ≤ c ·

||Eu||EL2
0(B). Let’s define T (u) for each u ∈ L2

0(B) by T (u) = 1
2
· T̃ (Eu), thus

|T (u)| = 1

2
· |T̃ (Eu)| ≤ c · ||Eu||EL2

0(B) ≤ c · ||u||L2
0(B).

Hence T ∈ L2
0(B)

∗
. By the Riesz representation theorem for the Hilbert space L2

0(B), we
deduce that there exists gB ∈ L2

0(B) such that

T (u) =

∫
B

u · gB dx for all u ∈ L2
0(B).

Notice that

T̃ (Eu) = 2 · T (u) = 2 ·
∫
B

u · gB dx =

∫
B∪B−

Eu · EgB dx

and EgB ∈ EL2
0(B), hence EL2

0(B)
∗
= EL2

0(B) and the proof of Claim 1 is finished.

By Claim 1, l̃ |EL2
0(B)∈ EL2

0(B)
∗
= EL2

0(B) implies that there exists gB ∈ L2
0(B) such

that l̃ |EL2
0(B)= EgB as a bounded linear functional on EL2

0(B), i.e.

l̃(Eu) =

∫
B∪B−

Eu · EgB dx for all Eu ∈ EL2
0(B).

Since B is any ball in Rn
+, we can find EgB for any B ⊂ Rn

+. If B1 ⊂ B2 ⊂ Rn
+, then we

can easily see that EgB2 − EgB1 is a constant on B1 ∪B−
1 .

Consider the ball Br(x) where x ∈ ∂Rn
+ and r > 0. Let B+

r (x) := Br(x) ∩ Rn
+.

For simplicity, we denote Br(x) by Br. Let u ∈ B+
r , notice that Eu ∈ L2(Br) and∫

Br
Eu dx = 0 as E is the odd extension. Since Eu ∈ EL2

0(Br) and Eu is odd with

respect to xn, we have that L2(B+
r ) ⊂H 1

odd(Rn
+). By similar arguments as above, we see

that l̃ |EL2(B+
r ) is a bounded linear functional on EL2(B+

r ). By the same proof of Claim

1, we have that EL2(B+
r )

∗
= EL2(B+

r ). Hence l̃ |EL2(B+
r )∈ EL2(B+

r )
∗
= EL2(B+

r ) implies

that l̃ |EL2(B+
r )= EgB

+
r ∈ EL2(B+

r ) as a bounded linear functional on EL2(B+
r ) for some

gB
+
r ∈ L2(B+

r ). For any ball Br(x) where x ∈ ∂Rn
+, we can find EgB

+
r . If Br1 ⊂ Br2 , then

EgB
+
r2 − EgB

+
r1 is a constant on Br1 .

Now we seek to find a uniform Eg(x) defined on Rn. We define that

Eg(x) := EgB
+
r (0) − 1

|B1(0)|
·
∫
B1(0)

EgB
+
r (0) dx = EgB

+
r (0).

The last equality holds as Avg
B1(0)

EgB
+
r (0) = 0. For B ⊂ Rn

+, we have EgB(x) defined on B,

then there exists BR(0) for some R large enough such that B ⊂ B+
R(0). Hence

EgB(x) = EgB(x)− EgB
+
R(0)(x) + EgB

+
R(0)(x)

= cB + Eg(x)
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where cB := EgB(x)− EgB
+
R(0)(x) is a constant which depends on B.

Next we prove that the function g(x) defined by g(x) := rRn
+
Eg(x) belongs to the

space BMO∞,∞
b (Rn

+).
1∗. If B ⊂ Rn

+, we have that

1

|B|

∫
B

|Eg(x)− (−cB)| dx =
1

|B|

∫
B

|EgB(x)| dx

≤ 1

|B|
( ∫

B

|EgB|2 dx
) 1

2 · |B|
1
2

= |B|−
1
2 · ||EgB||EL2

0(B)

where the second inequality above is by the Hölder inequality. Since

|
∫
B∪B−

EgB · Eu dx| = |l̃(Eu)| ≤ c · |B|
1
2 · ||Eu||EL2

0(B),

we can deduce that

||EgB||EL2
0(B) = ||l̃|| ≤ c · |B|

1
2

where ||l̃|| is the operator norm of l̃. Therefore we have that

1

|B|

∫
B

|Eg(x)− (−cB)| dx ≤ |B|−
1
2 · c · |B|

1
2 = c.

By taking the supremum over all balls in Rn
+, we can deduce that

sup
B⊂Rn

+

1

|B|

∫
B

|Eg(x)− (−cB)| dx ≤ c.

Then by the triangle inequality, we can easily get that

[g]BMO∞(Rn
+) ≤ 2 · sup

B⊂Rn
+

1

|B|

∫
B

|g(x)− (−cB)| dx ≤ 2 · c.

2∗. For balls of the form Br(x) where x ∈ ∂Rn
+, we have that

Eg(x) = EgB
+
r (x) − cBr .

Now we integrate this equality over the ball Br(x), we have that∫
Br(x)

Eg(y) dy =

∫
Br(x)

EgB
+
r (x) dy −

∫
Br(x)

cBr dy.

Notice that Eg and EgB
+
r (x) are both odd with respect to xn, we certainly have∫
Br(x)

Eg(y) dy =

∫
Br(x)

EgB
+
r (x) dy = 0.
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Hence cBr must equal 0. By making use of this fact and similar arguments as the previous
part, we also have that

1

|Br(x)|

∫
Br(x)

|Eg(y)− (−cBr)| dy ≤ c.

Therefore,

1

|Br(x)|

∫
Br(x)

|Eg| dy =
1

|B+
r (x)|

∫
B+

r (x)

|Eg| dy ≤ c.

As Eg(y) = g(y) in B+
r (x), we have that

1

|B+
r (x)|

∫
B+

r (x)

|g(y)| dy ≤ c.

By taking the supremum over all balls centered at ∂Rn
+, we can easily deduce that

||g||b∞(Rn
+) = sup

r>0
x∈∂Rn

+

1

|B+
r (x)|

∫
B+

r (x)

|g(y)| dy ≤ c <∞.

Hence by 1∗ and 2∗, g ∈ BMO∞,∞
b (Rn

+).
Let Eu be a (2, s)-atom, we have that∫

Rn
+

g · u dx =
1

2
·
∫
Rn

Eg · Eu dx =
1

2
· l̃(Eu) = l(u).

Since this representation has been established for the subspace H 1
0,s(Rn) and H 1

0,s(Rn) is

dense in EH 1
odd(Rn

+), therefore Eg = l̃ ∈ EH 1
odd(Rn

+)
∗
and thus g = l ∈H 1

odd(Rn
+)

∗
.

Notice that in the proof of Theorem 5.7, there is a step where we proved that for
B ⊂ Rn

+ and u ∈ L2
0(B) we have that

|l̃(Eu)| ≤ c · |B|
1
2 · ||Eu||EL2

0(B).

For the ball Br(x) with x ∈ ∂Rn
+ we also have the same estimates. By L.Grafakos [6], the

constant c depends only on the dimension n and it is independent of the ball B or Br(x),
hence the later arguments in the proof are valid.

5.2 Duality theorem for the case of even extension

Throughout this subsection, we denote the even extension operator Eeven by E.

Definition 5.8. We define the set of symmetric 2-atoms by

{ErRn
+
α | α is a 2-atom such that suppα ⊂ B & B ∩ ∂Rn

+ ̸= ∅

&

∫
Rn
+

α dx =

∫
Rn
−

α dx = 0}

∪ {ErRn
+
β | β is a 2-atom such that supp β ⊂ B ⊂ Rn

+}.
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Let EH 1
even(Rn

+) := {Ev | v ∈H 1
even(Rn

+)}. Then EH 1
even(Rn

+) ⊂H 1(Rn) is a linear
subspace.

Lemma 5.9. The norm

inf{
∑
i

|λi|+
∑
j

|µj| | all symmetric 2-atomic decompositions}

is equivalent to the norm || · ||H 1(Rn) on the subspace EH 1
even(Rn

+).

Proof. Let f ∈H 1
even(Rn

+), then Ef ∈H 1(Rn).
(1). By the atomic decompositions of functions of the real Hardy space H 1(Rn), we

see that Ef admits 2-atomic decompositions. Let

Ef =
∑
i

λiαi +
∑
j

µjβj

be a 2-atomic decomposition of Ef . Notice that

f = rRn
+
Ef =

∑
i

λirRn
+
αi +

∑
j

µjrRn
+
βj.

Without loss of generality, assume that suppαi ⊂ Bi for some ball Bi and Bi ∩ ∂Rn
+ ̸= ∅,

assume further that supp βj ⊂ Bj ⊂ Rn
+ or Rn

−. Therefore we have that

f =
∑
i

λirRn
+
αi +

∑
j

µjβj.

Let B+
i := Bi ∩ Rn

+ and B−
i := Bi ∩ Rn

−. Since αi can be any 2-atom, we know that∫
Bi

αi dx = 0 but

∫
B+

i

αi dx and

∫
B−

i

αi dx are not necessarily zero. Here we need to do

some tricks to

∫
B+

i

αi dx and

∫
B−

i

αi dx. Since E is the even extension, except

Ef = ErRn
+
Ef =

∑
i

λiErRn
+
αi +

∑
j

µjErRn
+
βj

we also have that

Ef = ErRn
−
Ef =

∑
i

λiErRn
−
αi +

∑
j

µjErRn
−
βj.

Therefore,

2Ef = ErRn
+
Ef + ErRn

−
Ef

=
∑
i

λi · (ErRn
+
αi + ErRn

−
αi) +

∑
j

µj · (ErRn
+
βj + ErRn

−
βj).

Suppose that suppαi ⊂ Bi(x) and Bi(x) ∩ ∂Rn
+ ̸= ∅, there exists x∗ ∈ Bi(x) ∩ ∂Rn

+

such that suppErRn
+
αi ⊂ B2ri(x

∗) and suppErRn
−
αi ⊂ B2ri(x

∗). Therefore we have that
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supp (ErRn
+
αi + ErRn

−
αi) ⊂ B2ri(x

∗). Notice that ErRn
+
αi + ErRn

−
αi is also even with

respect to xn. Let’s consider rRn
+
(ErRn

+
αi + ErRn

−
αi) = rRn

+
αi + rRn

+
ErRn

−
αi. There is no

doubt that supp (rRn
+
αi + rRn

+
ErRn

−
αi) ⊂ B2ri(x

∗) ∩ Rn
+ and∫

Rn
+

rRn
+
αi + rRn

+
ErRn

−
αi dx =

∫
Rn
+

rRn
+
αi dx+

∫
Rn
−

ErRn
−
αi dx

=

∫
Rn

αi dx

= 0.

Let α∗
i := rRn

+
αi + rRn

+
ErRn

−
αi, notice that

||α∗
i ||L2(Rn) = ||rRn

+
αi + rRn

+
ErRn

−
αi||L2(Rn)

≤ ||αi||L2(Rn) + ||ErRn
−
αi||L2(Rn)

≤ ||αi||L2(Rn) + 2 · ||αi||L2(Rn)

≤ 3 · 2
n
2 · |B2ri(x

∗)|−1/2.

Let c3,2 := 3 · 2n
2 . Therefore c−1

3,2 · α∗
i is a 2-atom and more importantly, we have that∫

Rn
−

c−1
3,2 · α∗

i dx =

∫
Rn
+

c−1
3,2 · α∗

i dx = 0.

Hence E(c−1
3,2 · α∗

i ) = c−1
3,2 · Eα∗

i is a symmetric 2-atom. We have that

2 · Ef =
∑
i

λ
′

i · (c−1
3,2 · Eα∗

i ) +
∑
j

µj · ErRn
+
βj +

∑
j

µj · ErRn
−
βj

where λ
′
i := λi · c3,2. Therefore from a 2-atomic decomposition of Ef we can get a

symmetric 2-atomic decomposition of Ef . In addition, for a 2-atomic decomposition

Ef =
∑
i

λiαi +
∑
j

µjβj such that
∑
i

|λi|+
∑
j

|µj| <∞, the corresponding symmetric

2-atomic decomposition of this 2-atomic decomposition is Ef =
∑
i

λ
′
i

2
· (c−1

3,2 · Eα∗
i ) +∑

j

µj

2
· ErRn

+
βj +

∑
j

µj

2
· ErRn

−
βj. In this case we have that

∑
i

|λ′
i|
2

+
∑
j

|µj|
2

+
∑
j

|µj|
2
≤ 3 · 2

n
2
−1 · (

∑
i

|λi|+
∑
j

|µj|) <∞.

Therefore, ∑
i

|λi|+
∑
j

|µj| ≥
1

3 · 2n
2
−1
·
(∑

i

|λ′′

i |+
∑
j

|µ′′

j |
)
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where λ
′′
i :=

λ
′
i

2
for all i and µ

′′
j :=

µj

2
for all j. λ

′′
i and µ

′′
j are the coefficients of the

corresponding symmetric 2-atomic decomposition induced by the original 2-atomic de-
composition. As a result, we have that

inf{
∑
i

|λi|+
∑
j

|µj| | all 2-atomic decompositions}

≥ C1 · inf{
∑
i

|λ′′

i |+
∑
j

|µ′′

j | | all symmetric 2-atomic decompositions}

where C1 :=
1

3·2
n
2 −1 .

(2). Let Ef =
∑
i

λi ·ErRn
+
αi+

∑
j

µj ·ErRn
+
βj be a symmetric 2-atomic decomposition.

Since αi is a 2-atom, we have that

||ErRn
+
αi||L2(Rn) ≤ 2

n
2
+1 · |B2ri(x

∗)|−1/2.

Therefore

Ef =
∑
i

(λi · 2
n
2
+1) · ( 1

2
n
2
+1
· ErRn

+
αi) +

∑
j

µjβ
+
j +

∑
j

µjβ
−
j

is a 2-atomic decomposition of Ef . Thus every symmetric 2-atomic decomposition of Ef
gives rise to a 2-atomic decomposition. For this symmetric 2-atomic decomposition of Ef

where
∑
i

|λi|+
∑
j

|µj| <∞, the coefficients of the corresponding 2-atomic decomposition

of Ef satisfies ∑
i

(|λi| · 2
n
2
+1) +

∑
j

2 · |µj| ≤ 2
n
2
+1 · (

∑
i

|λi|+
∑
j

|µj|).

Therefore,

inf{
∑
i

|λi|+
∑
j

|µj| | all symmetric 2-atomic decompositions}

≥ C2 · inf{
∑
i

|λ′

i|+
∑
j

|µ′

j| | all 2-atomic decompositions}

where C2 :=
1

2
n
2 +1 .

Theorem 5.10. Let f ∈H 1
even(Rn

+), then there exists sequences of non-negative numbers
{λi}∞i=1 and {µj}∞j=1, a sequence of 2-atoms {αi}∞i=1 where for each i suppαi ⊂ Bi & Bi ∩

∂Rn
+ ̸= ∅ &

∫
Rn
+

αi dx = 0 for some ball Bi and a sequence of 2-atoms {βj}∞j=1 where for

each j supp βj ⊂ Bj ⊂ Rn
+ for some ball Bj such that

f =
∑
i

λi · αi |Rn
+
+
∑
j

µj · βj.
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We refer such a decomposition of f as a half space atomic decomposition of f and more-
over, the norm

inf{
∑
i

|λi|+
∑
j

|µj| | all half space atomic decompositions}

is equivalent to the norm || · ||H 1
even(Rn

+) on H 1
even(Rn

+).

Proof. By Lemma 5.9 we are done.

Definition 5.11. We denote the set of all finite linear combinations of symmetric 2-atoms
by H 1

0,s(Rn).

By similar arguments as in the previous subsection, we can easily deduce that H 1
0,s(Rn) ⊂

H 1
0 (Rn)∩EH 1

even(Rn
+), EH 1

even(Rn
+) is a closed subspace of H 1(Rn) and H 1

0,s(Rn) is dense
in EH 1

even(Rn
+). Then by making use of these facts, we can prove our duality theorem for

the case of even extension.

Theorem 5.12. Suppose g ∈ BMO∞,∞
ba (Rn

+). Then the linear functional l defined on
H 1

even(Rn
+) by

l(f) =

∫
Rn
+

f · g dx

for f ∈ H 1
even(Rn

+) is a bounded linear functional which satisfies ||l|| ≤ c · [g]BMO∞,∞
ba (Rn

+)

with some constant c. Conversely, every bounded linear functional l on H 1
even(Rn

+) can be
written in the form of

l(f) =

∫
Rn
+

f · g dx for all f ∈H 1
even(Rn

+)

with g ∈ BMO∞,∞
ba (Rn

+) and [g]BMO∞,∞
ba (Rn

+) ≤ c · ||l|| with some constant c. Here ||l||
means the norm of l as a bounded linear functional on H 1

even(Rn
+).

Proof. The only difference from the proof of Theorem 5.7 is the last part where here we
prove that the unified function g(x) ∈ BMO∞,∞

ba (Rn
+) instead of BMO∞,∞

b (Rn
+). For the

rest of the details, please refer to the proof of Theorem 5.7.
We define the unified function Eg(x) on Rn by

Eg(x) := EgB
+
r (0) − 1

|B1(0)|

∫
B1(0)

EgB
+
r (0) dx

= EgB
+
r (0) − Avg

B1(0)

EgB
+
r (0).

For B ⊂ Rn
+ we have EgB(x) defined on the ball B, then there exists Br(0) for some r

large enough such that B ⊂ Br(0). We can rewrite EgB(x) as

EgB(x) = EgB(x)− EgB
+
r (0)(x) + EgB

+
r (0)(x)− Avg

B1(0)

EgB
+
r (0) + Avg

B1(0)

EgB
+
r (0).
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Notice that EgB(x)−EgB
+
r (0)(x) and Avg

B1(0)

EgB
+
r (0) are both constants which depend on B,

hence let cB := EgB(x)−EgB
+
r (0)(x) +Avg

B1(0)

EgB
+
r (0), we have that EgB(x) = cB +Eg(x).

Next we prove that the function g(x) defined by g(x) := rRn
+
Eg(x) ∈ BMO∞,∞

ba (Rn
+).

∗1. If B ⊂ Rn
+, we have that

1

|B|

∫
B

|Eg(x)− (−cB)| dx ≤ c · |B|−1/2 · ||EgB||EL2
0(B)

by the Hölder inequality. Since

|
∫
B∪B−

EgB · Eu dx = |l̃(Eu)| ≤ c · |B|−1/2 · ||Eu||EL2
0(B),

we have that

||EgB||EL2
0(B) = ||l̃|| ≤ c · |B|1/2.

Therefore we can deduce that
1

|B|

∫
B

|Eg(x)− (−cB)| dx ≤ c.

Notice that the c here is just a number which is independent of B. Therefore by taking
the supremum over all balls contained in Rn

+, we can see that

sup
B⊂Rn

+

1

|B|

∫
B

|Eg(x)− (−cB)| dx ≤ c.

and thus,

[rRn
+
Eg]BMO∞(Rn

+) = [g]BMO∞(Rn
+) ≤ 2 · c.

∗2. If Br(x) is a ball where x ∈ ∂Rn
+ and r > 0, we have that Eg(x) = EgB

+
r (x)− cBr .

Therefore we have the following calculations:

2 ·
∫
B+

r

g(x) dx =

∫
Br

Eg(x) dx

=

∫
Br

EgB
+
r (x) dx−

∫
Br

cBr dx

= 0− cBr · |Br|.
Hence cBr = −gB+

r
and we have that

1

|Br|

∫
Br

|Eg(x)− (−cBr)| dx =
1

|Br|

∫
Br

|Eg(x)− gB+
r
| dx

=
1

|B+
r |

∫
B+

r

|g(x)− gB+
r
| dx ≤ c.

Take the supremum over all balls centered on Rn
+, we have that

[g]ba∞(Rn
+) = sup

r>0
x∈∂Rn

+

1

|B+
r |

∫
B+

r

|g(x)− gB+
r
| dx ≤ c

and hence g ∈ BMO∞,∞
ba (Rn

+).



124

5.3 Proof of Theorem 1.3

Proof. By Theorem 5.7 and Theorem 5.12, we are done.

5.4 Comments

Remark 5.13. If we look at the proof of Lemma 4.1 and Lemma 4.2, we can see that it
is completely all right for us to replace the heat kernel et∆ in the definition of H 1

even(Rn
+)

and H 1
odd(Rn

+) by any radial symmetric function φ ∈ S (Rn) such that
∫
Rn φ dx = 1.

Therefore, the definitions of the norms || · ||H 1
even(Rn

+) and || · ||H 1
odd(R

n
+) are independent

of the choice of φ if φ is radial symmetric with integral over Rn equals 1.

Remark 5.14. When we established the half space atomic decompositions for H 1
even(Rn

+)
and H 1

odd(Rn
+), we made use of the 2-atomic decomposition of H 1(Rn) in order to carry

out the arguments of Fefferman and Stein [3] to prove the duality theorem. However, if
we carry out the arguments using the p-atomic decomposition of H 1(Rn) instead where
p ≥ 1, then we get the half space atomic decompositions for H 1

even(Rn
+) and H 1

odd(Rn
+) in

the form of symmetric p-atomic decompositions.

In [1], it is proved that BMOM(Rn
+) and BMO∞,∞

b (Rn
+) are actually the same space.

Since BMOM(Rn
+) is the dual space of H 1

M(Rn
+) and BMO∞,∞

b (Rn
+) is the dual space

of H 1
odd(Rn

+), it is natural to ask the question about the relation between H 1
odd(Rn

+) and
H 1

M(Rn
+). Here we give an answer to this question.

Lemma 5.15. H 1
odd(Rn

+) = H 1
M(Rn

+).

Proof. (1). By the theory of Miyachi [7], f ∈ H 1
M(Rn

+) implies that f admits the half
space atomic decomposition of the form

f =
∑
i

λiαi +
∑
j

µjβj

where {βj}∞j=1 is a sequence of 1-atom such that βj is supported on some ball Bj with
2Bj ⊂ Rn

+ for each j and {αi}∞i=1 is a sequence of (1,Rn
+)-atom such that αi is supported

on some ball Bi with 2Bi ⊂ Rn
+ but 5Bi ∩ (Rn

+)
c ̸= ∅ for each i. Let Bi = Br(xi)

and x∗ := (x
′
i, 0). Since 2Bi ⊂ Rn

+ but 5Bi ∩ (Rn
+)

c ̸= ∅, we can easily deduce that
Bi ⊂ B6r(x

∗). Notice that αi = rRn
+
Eoddαi and

∫
B6r(x∗)

Eoddαi dx = 0, therefore we have

that

Eoddf =
∑
i

(λi · 6n) · (
1

6n
· Eoddαi) +

∑
j

µjEoddβj. (5.1)

Here 1
6n
· Eoddαi is a 1-atom for any i, hence by (5.1) we see that Eoddf ∈ H 1(Rn) and

thus by Remark 5.14 f ∈H 1
odd(Rn

+).

(2). Let f ∈ H 1
odd(Rn

+), let η be the standard mollifier. For x ∈ Rn
+ and 0 < t <

dist(x, ∂Rn
+), we have that (ηt ∗ f)(x) = (ηt ∗ Eoddf)(x) since supp ηt ⊂ Bt(0). Hence for
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x ∈ Rn
+,

sup
0<t<dist(x,∂Rn

+)

|ηt ∗ f |(x) = sup
0<t<dist(x,∂Rn

+)

|ηt ∗ Eoddf |(x)

≤ sup
t>0
|ηt ∗ Eoddf |(x).

Thus

||f ||H 1
M (Rn

+) :=

∫
Rn
+

sup
0<t<dist(x,∂Rn

+)

|ηt ∗ f |(x) dx

≤
∫
Rn
+

sup
t>0
|ηt ∗ Eoddf |(x) dx

= ||f ||H 1
odd(R

n
+)

and therefore f ∈H 1
M(Rn

+).

Remark 5.16. Let us consider a function f ∈ L2(B+
r (0)) with integral over B+

r (0) not
equals to 0. Notice that although

∫
B+

r (0)
f dx ̸= 0, the odd extension Eoddf has integral

zero over the ball Br(0). Hence we have that Eoddf ∈ L2(Br(0)),
∫
Br(0)

Eoddf dx = 0

and thus Eoddf ∈ H 1(Rn). Then f ∈ H 1
odd(Rn

+). However,
∫
B+

r (0)
f dx ̸= 0 implies

that
∫
Br(0)

Eevenf dx ̸= 0 and thus Eevenf /∈ H 1(Rn). Hence f /∈ H 1
even(Rn

+). Therefore

H 1
odd(Rn

+) and H 1
even(Rn

+) are two different spaces.

Remark 5.17. Let us consider the function log|x|, by the standard theory of BMO spaces
we see that log|x| ∈ BMO. Then log|x| |Rn

+
∈ BMO∞,∞

ba (Rn
+). However, log|x| |Rn

+
/∈

BMO∞,∞
b (Rn

+) since the integral

1

B+
r (0)

∫
B+

r (0)

| log|x| | dx→∞ as r →∞.

Therefore BMO∞,∞
b (Rn

+) and BMO∞,∞
ba (Rn

+) are also two different spaces.

Remark 5.18. Notice that by Theorem 5.3 we can easily see that H 1
odd(Rn

+) = H 1(Rn
+)

where H 1(Rn
+) := {rRn

+
f | f ∈ H 1(Rn)}. Moreover, by Lemma 3.2 and Lemma 3.4,

we can also see that BMO∞,∞
ba (Rn

+) = BMO(Rn
+) where BMO(Rn

+) := {rRn
+
f | f ∈

BMO(Rn)}. As a result, we can clarify the relationship between various function spaces
in this paper as follow:

BMO(Rn
+) = BMO∞,∞

ba (Rn
+) =

∗ H 1
even(Rn

+)

∪ ∩
BMO∞,∞

b (Rn
+) =

∗ H 1
odd(Rn

+) = H 1(Rn
+)

∥ ∥
BMOM(Rn

+) =∗ H 1
M(Rn

+).

Here A =∗ B means that A is the dual space of B.
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6 Dual operator of the Helmholtz projection

6.1 Dual operators of Eodd and rRn
+

In this subsection, for simplicity, we shall denote the odd extension operator Eodd by E.
Since E : H 1

odd(Rn
+) → EH 1

odd(Rn
+), we have that E∗ : EH 1

odd(Rn
+)

∗ → H 1
odd(Rn

+)
∗
. By

the theories in section 5 we have that E∗ : EBMO∞,∞
b (Rn

+)→ BMO∞,∞
b (Rn

+).

Lemma 6.1. The dual operator of E is indeed 2 · rRn
+
, i.e. E∗ = 2 · rRn

+
.

Proof. Let f ∈ H 1
odd(Rn

+) and g ∈ BMO∞,∞
b (Rn

+), by the definition of dual operator, we
can deduce that

< E∗Eg, f > :=< Eg,Ef >= 2 < g, f > .

Therefore, we have that

< E∗Eg − 2g, f >= 0 for all f ∈H 1
odd(Rn

+).

Let Br(0) be the ball centered at 0 with radius r and B+
r (0) := Br(0)∩Rn

+. For simplicity,
we denote B+

r (0) by B+
r . Notice that from the previous chapter, we see that L2(B+

r ) ⊂
H 1

odd(Rn
+). Hence fix r > 0, we have that

< E∗Eg − 2g, f >= 0 for all f ∈ L2(B+
r ).

Since C∞
0 (B+

r ) ⊂ L2(B+
r ), by the fundamental lemma of variational calculus, we see that

E∗Eg − 2g = 0 a.e. in B+
r .

This means E∗ = 2 · rRn
+
and we are done.

By similar arguments as above, we can also deduce that rRn
+

∗ : BMO∞,∞
b (Rn

+)→ EBMO∞,∞
b (Rn

+)

and the dual operator of rRn
+
, where rRn

+
corresponds to the restriction of EH 1

odd(Rn
+), is

indeed 1
2
· E.

6.2 Dual operators of Eeven and rRn
+

We denote the even extension operator Eeven by E. By similar arguments as in the
previous subsection, we have that the dual operator of E is indeed 2 · rRn

+
and the dual

operator of rRn
+
, which corresponds to the restriction of EH 1

even(Rn
+), is indeed

1
2
· E.

6.3 Proof of Theorem 1.4

Proof. Since PRn
+
is a bounded linear operator from Y to Y and X is the dual space of

Y, we have that

PRn
+

∗ : X→ X.
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Then let v ∈ X and u ∈ Y, we have that

< PRn
+

∗v,u > =
n−1∑
i=1

< vi, rRn
+
(PEu)i > + < vn, rRn

+
(PEu)n > .

Notice that (PEu)i is even with respect to xn for 1 ≤ i ≤ n − 1 and (PEu)n is odd
with respect to xn. Hence for 1 ≤ i ≤ n − 1, the rRn

+
in rRn

+
(PEu)i corresponds to the

restriction of EH 1
even(Rn

+) whereas for i = n, the rRn
+
in rRn

+
(PEu)n corresponds to the

restriction of EH 1
odd(Rn

+). Therefore,

< PRn
+

∗v,u > =
1

2
< Ev,PEu > · · · · · · (∗).

By [8], we see that the dual operator of P : H 1(Rn) → H 1(Rn) is itself as a map from
BMO to BMO. Therefore

(∗) = 1

2
< PEv, Eu >

=
1

2

( n−1∑
i=1

< (PEv)i, Eevenu
i > + < (PEv)n, Eoddu

n >
)

=
1

2

( n−1∑
i=1

< 2rRn
+
(PEv)i, ui > + < 2rRn

+
(PEv)n, un >

)
=< PRn

+
v,u > .

Remark 6.2. When we are considering the dual operator of PRn
+
, notice that the space

X must be viewed as X/(Rn−1 × {0})!

6.4 Proof of Corollary 1.5

Proof. By [2, Th 2.19] and Theorem 1.4 in this paper, we are done.
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