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Abstract. A mathematical model of water adsorption phenomena is formulated by
Aiki, Murase, Sato and Shirakawa in [4], and mathematical results are shown in [5],
[6], and [7]. On the other hand, numerical simulations have been only given in [4] by
experimental approximating technique without any sufficient mathematical proof. The
numerical simulations gave the graph of the solution for water adsorption model drawing
hysteresis-like loops under certain conditions. It is a suitable behavior with phenomenon
point of view. In this paper, we configure a numerical scheme given by the finite element
method with the adaptive moving mesh method, and we confirm the validity of the
numerical results in [4].
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1 Introduction

Water adsorption is one of the phenomena observed in the concrete carbonation pro-
cess. As already well known, concrete is a porous medium, and it adsorbs moisture liquid
and moisture vapor in the air into holes in concrete. The adsorbed vapor makes concrete
neutral, and neutralized concrete becomes not be able to protect reinforcing steels and
buildings from corrosion. Thus, it is known that concrete carbonation is a big issue in
civil engineering field.

The adsorption phenomena is studied by many civil engineers. For example, Maekawa,
Ishida, Kishi [1], and Maekawa, Chaube, Kishi [2] showed properties appearing the ad-
sorption phenomena. The following Figure 1 is a graph of relationship between saturation
and humidity which is given by real experiment.

Figure 1: behavior of adsorption phenomena

When the humidity of vapor in the air is high, the concrete takes in vapor, and satu-
ration of water in the concrete becomes higher. In this wetting process, the relationship
of saturation and humidity follows the lower curve in Figure 1. In this drying process,
the relationship of the saturation and the humidity return back to the left side, and fol-
lows the upper curve in Figure 1. As seen in the graph, the relationship follows different
paths in the wetting process and the drying process. Hence, the relationship draws the
counterclockwise hysteresis-like loop as in Figure 1.

Aiki, Murase, Sato and Shirakawa proposed the following mathematical model of ad-
sorption phenomena (S) in [4] to analyze the phenomena, mathematically. (S) is an
evolution system of partial differential equations as a free boundary problem in the one
dimensional space.
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ρvut − κuxx = 0 on Qs(T ), (1)

s′(t) = α(s(t), u(t, s(t))) for 0 < t < T, (2)

u(t, L) = g(t) for 0 < t < T, (3)

κux(t, s(t)) = (ρw − ρvu(t, s(t)))s
′(t) for 0 < t < T, (4)

u(0, x) = u0(x) for s(0) < x < L, (5)

s(0) = s(0), (6)

where 0 < T < ∞, κ, ρv, ρw are positive constants, Qs(T ) = {(t, x) | s(t) < x < L, 0 <
t < T}, g is a given function on (0, T ), α is a given function on R2, u0 is a initial function
on (s(0), L), and s(0) is a initial value of the free boundary.

We call a pair of unknown functions {s, u} a solution of (S) satisfying (1) to (6) and
some regularity conditions. For this system, there exist some mathematical results. Sato,
Aiki, Murase and Shirakawa [5] proved existence and uniqueness of local solutions in
time, Aiki and Murase [6] proved existence and uniqueness of global solutions in time
and studied about large time behavior, and Aiki and Sato [7] proved existence of periodic
solutions.

On the other hand, numerical simulations have been only given in [4], in which Aiki,
Murase, Sato and Shirakawa showed the following Figure 2 obtained by the numerical
simulation.

Figure 2: numerical simulation in [4]

Roughly speaking, the graphs in Figure 2 is almost same as that of Figure 1. Accord-
ingly, we suppose that adsorption phenomena are represented by the model (S) to some
extent. However, we find an issue on the simulation and a difference between Figures
1 and 2. The issue is that there exist few mathematical arguments on the numerical
simulation to this system, since (S) is approximated by an experimental way in [4]. The
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difference between Figures 1 and 2 is observed as follows. In the real phenomena, the
shape of graph is sharp when changing the process from wetting to drying, and from dry-
ing to wetting (see dotted circle area in Figure 1). On the other hand, the shape of the
graph is a little bit swollen when changing the process (see dotted circle area in Figure
2). We guess that the mathematical system or our numerical way causes the difference of
the graphs. In order to give an answer to this conjecture we try to simulate model (S) by
a different way from that of [4]. Precisely, by applying the finite element method with the
adaptive moving mesh method we obtain numerical solutions in the present paper. The
adaptive moving method is a numerical technique redeciding mesh positions depending
upon numerical solutions of the system at each time step, automatically. (For the detail,
see [3], for example.)

In this paper, we propose a discretization scheme of (S) based on the finite element
method with the adaptive moving mesh method in Section 2. In Section 3, we show our
results of numerical simulations. Finally, we organize conclusions and future plans in
Section 4.

2 Numerical approximation of model (S)

Let Q = (0, T ) × (0, 1), and ũ(t, x) = u(t, (1 − x)s(t) + Lx) for any (t, x) ∈ Q. By
change of variables, the system (S) is transformed to the following system (AS):

ρvũt(t, x)−
κ

(L− s(t))2
ũxx(t, x) =

ρv(1− x)s′(t)

L− s(t)
ũx(t, x) on Q, (7)

s′(t) = α(s(t), ũ(t, 0)) for 0 < t < T, (8)

ũ(t, 1) = g(t) for 0 < t < T, (9)
κ

L− s(t)
ũx(t, 0) = (ρw − ρvũ(t, 0))s

′(t) for 0 < t < T, (10)

ũ(0, x) = ũ0(x) for 0 < x < 1, (11)

s(0) = s(0). (12)

Moreover, we assume the following conditions (P1) to (P4) for our simulation.

(P1) Assume that it is able to present x = x(t, ξ) satisfying

x(t, ξ1) ̸= x(t, ξ2) for ξ1 ̸= ξ2 and every t ∈ [0, T ).

(P2) N ∈ N, ξn = n
N

(n = 0, 1, · · · , N), and xn(t) = x(t, ξn) for every t ∈ [0, T ).

(P3) τ = ∆t > 0, and tm = mτ for m = 0, 1, · · · , where ∆t is the size of the time mesh.

(P4) ũm,n = ũ(tm, xn(tm)), sm = s(tm) for all n = 0, 1, · · · , N, m = 0, 1, · · · .

Our discretization of the system (AS) consists of 5 steps. We present these steps under
conditions (P1) to (P4).
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Step 1. (Setting initial conditions)
From (12), (11), we put ũ0,n = ũ0(xn(0)) for n = 0, 1, · · · , N , the initial

index m = 1, and xn(0) =
n
N

for n = 0, 1, · · · , N . In this time, we adopt an
equable mesh for the initial mesh position.

Step 2. (Deciding the position of the free boundary)
Descretizing (8) by the forward finite difference, and we decide next posi-

tion of the free boundary by

sm = sm−1 + τα(sm−1, ũm−1,0).

Step 3. (Deciding the position of the mesh)
Deciding next mesh position x = x(t, ξ) by the following differential equa-

tion:

∂x

∂t
=

1

ρβ
· ∂

∂ξ

(
ρ
∂x

∂ξ

)
in Q, (13)

x(t, 0) = 0, x(t, 1) = 1 for any t ∈ (0, T ), (14)

where β > 0, and

ρ := ρ(t, x) =

{
1 +

1

γ(t)
|ũxx|2

} 1
3

, γ := γ(t) = max

{
1,

(∫ 1

0

|ũxx|
2
3dx

)3}
.

We get next mesh positions xn(tm) (n = 0, 1, · · · , N) by solving this equation
with the finite difference method.

Step 4. (Deciding numerical solutions ũm,n (n = 0, 1, · · · , N))
Applying the finite element method to (7) and solve the approximated

equation, we decide numerical solutions ũm,n (n = 0, 1, · · · , N).

Step 5. (Renewing time step)
Increment the value of m, and back to Step 2. We finish calculating when

the step count reaches to the appointed value.

3 Numerical simulations

In our numerical simulation, conditions and parameters are same as in [4]. Details of
values of the parameters are as follows.

L = 1, κ = 1, ρw = 1, ρv = 1.73× 10−5, s(0) = 0.01, β = 0.01.

The initial function u0 is

u0(x) = 0 for x ∈ (s(0), L),
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the function α(·, ·) is

α(s, u) = (1 + u2)

(
u− arctan(10s− 6)− arctan(−6)

arctan(4)− arctan(−6)

)
,

and the boudary function g is

and g(t) =



t
5

if 0 ≤ t ≤ 5,

2− t
5

if 5 ≤ t ≤ 10,
t
5
− 2 if 10 ≤ t ≤ 15,

4− t
5

if 15 ≤ t ≤ 19,
t
5
− 3.6 if 19 ≤ t ≤ 22,

5.2− t
5

if 22 ≤ t ≤ 24,
t
5
− 4.4 if 24 ≤ t ≤ 25,

5.6− t
5

if 25 ≤ t ≤ 26.

Furthermore, we put N = 20, ∆t = 0.001, and we decide to evenly arrangement the
initial mesh position.

Under the conditions, we get the following results. Figure 3 is a graph of the relation-
ship between s(t) (saturation) and g(t) (humidity) obtained in [4], and Figure 4 is that
of our present result. From these pictures, we can see that two numerical solutions are
almost same. It shows that not only the numerical result in [4] is a valid result, but also we
can deduce swellings of the graph are not given by numerically discretization techniques,
but given by the equations or parameters of the numerical simulations.

Figure 3: Result in [4] Figure 4: Our result

Figure 5 in the next page indicates the transitions of mesh positions obtained by the
adaptive moving mesh method. As far as we observe the numerical result, by applying
adaptive moving mesh method the mesh positions move little. Namely, the positions seem
to be almost fixed.
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Figure 5: Mesh position change

4 conclusions and future problems

From our numerical simulations we ensure that the numerical results in [4] is valid,
and we conjecture that the swelling of the graph of relationship between s and g does not
come from our numerical techniques. Since some settings of our numerical simulation are
not enough to fit to the real phenomena, we need to continue this investigation, more.

In addition, we have to prove solvability of our numerical procedure, numerical sta-
bility, error estimate, and convergence to solutions of system (S) in order to guarantee
accuracy of our numerical simulation. In particular, we will discuss the solvability of the
numerical scheme in our forthcoming paper [8].
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