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Abstract. In the present paper, identities involving the generalized Laplace trans-
form, the Stieltjes transform, the generalized Stieltjes transform, the exponential trans-
form and the upper incomplete gamma transform are given. Using these identities, some
new Parseval-Goldstein type identities are obtained for these integral transforms and the
other well-known. As applications of the identities and theorems, some generalized integ-
rals and illustrative examples are also given.
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1 Introduction

The well-known Laplace transfrom is defined as

Cf(a)y) = / " oxp(—ay) f(x)d. (11)

In this paper, we introduce the generalized Laplace transform as follow

Ly{f(z);y} = ﬁ /000 2 Fexp(—xy) f(z)dx. (1.2)

The classical Stieltjes transform is defined as

S{f(z);y} = /x+y . (1.3)

The generalized Stieltjes transform of a real-valued function f(x) is defined as

st} = [ L0 (1.4

Some Parseval-Goldstein type identities were given in (for example) [7, 8, 9, 10] for the
Stieltjes transform and the other transforms. There are many similar results in the
literature on various integral transforms (see, for instance [8, 9, 11, 12]). Some of the
results from Yiirekli [9, 10] are applied to generalized functions by Adawi and Alawneh

[5]-

Brown et al. [6] introduced the exponential integral transform

E{F(@)y) = / " explay) Bu(zy) f () do (15)

where E;(z) is the exponential integral function defined as

Ey(2) = —Bi(—z) = / T (1.6)

t

They showed that the three times iteration of the classical Laplace transform is (1.5) the
exponential integral transform .
In this paper we introduce the upper incomplete gamma transform:

Lf@i0} = [ esplen)Tlp.20) 1) (1.7)
0
where the upper incomplete gamma function is defined as [4, p. 463, 45:3:2]:
I(p,z) = / 1ttt (1.8)

Since

[0, z) = Ey(z), (1.9)
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the upper incomplete gamma transform (1.8) is a generalization of the exponential integral
transform.

In this paper, identities involving the generalized Laplace transform, the exponen-
tial integral transform, the Stieljes transform, the generalized Stieltjes transofrm and the
upper incomplete gamma transforms are given. Using these identities, a number of new
Parseval-Goldstein type identities are obtained for these and many other well-known integ-
ral transforms. As applications of the identities and theorems, some illustrative examples
are also given.

2 The Main Theorem

In the following lemmas and theorems, we give useful identities involving the generalized
Laplace transform, the generalized Stieltjes transform and the Stieltjes transform.

Lemma 1. The following iteration identity hold true:

1 _
LA E{I@iubit) = pr e (e @) (2.1)
provided that the integrals involved converge absolutely.

Proof. We begin with the definition of (1.2) the generalized Laplace transform, we have

cfeti@intst) = o [Tt (g [T e @) an 22)

Changing the order of integration and using the known result [1, p.137, Eq.4:3:1] for the
inner integral we find that

ﬁu{ﬁx{f(x);y};t} = m /OOO 2 f () (/OOO y“‘le‘y(t”)dy) da
1 * g AL f ()
T /0 Etap ™

From the definition of (1.4) the generalized Stieltjes transform, we obtain (2.1). O

Corollary 1. If we take A\ = p in Lemma 1 then

1
ybite = —— F ()it} 2.
Remark 1. If A = =1 then we have the known equality that,

cleff@yylit) = S{r@yt).
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Theorem 1. Under the conditions stated in Lemma 1, the following Parseval-Goldstein
type relations

* a—1 . . F(O{) > n— 1 .

| e syt e = mts [T s, {0 e v, (2)
> a—1 . . F(Oé) - p—1 -1 .

/0 e LLf(); 2} {g(y); ) do = (M)F(A)/ Sy ()t (2.5)

hold true.

Proof. We only give the proof of (2.4), as the proof of (2.5) is similar. So by the definition
of (1.2) the generalized Laplace transform of g(y), we have

/OOO L F ;2 e {g(y);a) do = ﬁ /OOO L f (1) (/OOO y“ewg(y)dy> o

Changing the order of integration and using the definition of (1.2) the generalized Laplace
transform, we obtain

[ st as =gy [t ([ e enaas)a

)

5 | P LA LA (s Yy,

From (2.1), we find that

/OOO 2L f);a La{g(y);a} do = % /OOO v g(y)Sa{t" T f(1);y ) dy.

Corollary 2. We have for Re(a) > 0

/0 P ) S L F(1): ) dy = / TS g hd. (26)

Proof. From the equality of the left hand side of (2.4) and (2.5) we get (2.6). O
Corollary 3. We have for Re(a)) > 0, Re(u) > 0 and Re(\) > 0

I{e) .

Su{a* La{g(y)iatiy} = () St {v" 9(y)ithiy}. (2.7)

Proof. If we take f(t) = e ¥ in (2.5), we obtain (2.7). O
Lemma 2. The following identity hold true:

LAy Ca{f (@)} t}— A) Sppr {2 f(2);t} (2.8)

provided that the integrals involved converge absolutely.
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Proof. To prove (2.8) we start with the definition of (1.2) the generalized Laplace trans-
form then

£ AP L@} = s /0 i (ﬁ /0 T A e () )

Interchange of the order of integration and using the known result [1, p.137, Eq.4:3:1] for
Re(p+ A) > 0, we obtain

£ eyt s | T A ) (ﬁ | e “”dy) dx

_ 1 Oox)\fl T T (B+A) xr
~Fore | @ e N ) )
TN 2
‘rm)ru)/o TS

From the definition (1.3) of Stieltjes transform, we get

£ {0 BT @)} i} = 5o S {2 )it}

]

Theorem 2. If the conditions in Lemma 2 are satisfied, then the Parseval-Goldstein type
relation

/0 T PL {F (@) L {9(0); ) dy =

/ Tl Sy {a' T fla)st} dt
’ (2.9)

1
Bp, A)
hold true.

Proof. We start with the proof of (2.9). By the definition of (1.2) the generalized Laplace
transform of ¢(¢) function and then changing the order of integration, we obtain

/OOO y>\+,u—1£,\ {f(:L’), y} [’# {g(t); y} dy

/ T, {f(2):y} <ﬁ /0 . t”leytg(t)dt> dy
/

/ooo gL, (P La @)y} st} dt. (2.10)

Using (2.8) for (2.10), we find that

/0 T PL {F (@) £ {g(0); ) dy =
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Lemma 3. The following identities hold true:

Ly S{ @it} = mrpd ) (211)
La{S{f(@):y}st} —F1 A{:& fla)it) (2.12)
S{L{f(z);y};t} = éal{x’\ Lf(z);t} (2.13)
S{Y LA f(@);y}st) = tA {2 ()it} (2.14)

provided that the integrals involved converge absolutely.

Proof. We first prove (2.11). By the definitions of (1.2) the generalized Laplace transform
and (1.3) the Stieltjes transform, we have

La{y A S{f(x);y}it} = ﬁ /Ooo y e (/OOO yH%dw> dy.

Changing the order of integration, which is permissible by absolute convergence of the
integrals involved, we obtain

Lo {y" S {f(x);y}it} = /Ooo f(x) (/Ooo %dy) dx. (2.15)

Using the formula [2, p.217, Eq.14.2.11] for the inner integral given in (2.15) and using
the definition of (1.5) the exponential integral transform, we find

Lo {y" S {f(x);y}it} = / f(z) (—exp (tz)) Ei (—tx) dx
‘W | exptta) i) (@)

1
:méﬁ {f(z);t}.

For the proof of (2.12), we use the definitions of (1.2) the generalized Laplace transform
and (1.3) the Stieltjes transform, we have

Li{S{f(@);y}:t} = ﬁ /OOO y e ( Ooo Md:p) dy.

Tr+vy

By the permission we change the order of integration, then we find
o, A—1_—t

EA{S{f(m);y};t}:ﬁ/ooof(x) (/0 y e ydy)dx (2.16)

r+y

and using the formula [2, p.217, Eq.14:2:17] for the inner integral given in (2.16), we
obtain

LS (@it =gry [ @) @O0 =\ k) do

:/0 (1 — A, t2)2* ! f(2)d

=I"_ {xkflf(q:); t} )
The proofs of (2.13) and (2.14) are similar. O
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Remark 2. If we take f(x) = 221 f(x) in (2.11) of Lemma 3 then
La{y' S {a f(w);y) sty = S{LA{f (=)0} 51}

Remark 3. From the right sides of (2.12) and (2.1/), we have
LS {f(x)u} ity = S{y T O {f(@); )5t}

Theorem 3. Under the conditions stated in Lemma 3, the following Parseval-Goldstein
type relation

/0 TP (2)Lr {gly); o) de = / TP W)L S (@): ) dy (2.17)

holds true.
Proof. We begin with the definition of (1.2) the generalized Laplace transform, we have
oo _ [o¢] B 1 o0 B L
| et = [T (w5 [0 ety i
0 0 I'(A) Jo

Interchange of the order of integration and again the definition of (1.2) the generalized
Laplace transform, we obtain

[ @ st as = [ (ﬁ I xk—le—ywx)dw) dy

_ / P {F (@)} dy.

O
Theorem 4. If the hypothesis in Lemma 3 are satisfied, then
oo 1 o0 _
| et swabde = o5 [P troa i e, @)
0 0

/0 L ()2} S {gly); o) do = ﬁ / " o) (P F )y dy. (2.19)

Proof. To prove (2.18), we start with the definition of (1.2) the generalized Laplace trans-
form, we have

[ ety stwiatas= [ st (g [0 0ar) do

0 0

A—1

Changing the order of integration, expanding with %~ and using the (2.11) of Lemma

3, we obtain

/ "Ly ()2} S {gly); o} do = / TP (ﬁ / e (A8 [g(y); a]) d:v) dy

_ /OOO () LA {2 S {g(y); a} st} di

1 OO)\fl .
- / PIUFOE {g(y): ) d.

0
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To prove (2.19), from the definition of (1.3) the Stieltjes transform, we have
- . . _ [T . ~ W)
Li{f();a} S{g(y)iatde= [ Li{f(t);x} ———dy | dz.
0 0 0o Yt
Changing the order of integration and using the (2.13) of Lemma 3, we find that

[ et staiarae= [t ([T 0r) 4

y+x

= /000 g)S{LA{f(t);x};y}dy

1

5 / " gw)E {0y dy.

Remark 4. From (2.18) and (2.19) of Theorem 4, we obtain

o

/Ooo P )& {g(y);t) dt = /0 g & {1 f(t);y) dy.

Theorem 5. The following Parseval-Goldstein type relations hold true:

/ TP L (10} S {glv)i) do = /OOO POy g)ity dt, (220)

0

/0 TP (B (1) ) S gly)s o} do = / CHOT P et (221)

Proof. To prove (2.20), we start with the definition of (1.2) the generalized Laplace trans-
form,

[Pt s ey i [T gt (g [0 ) ae

Changing the order of integration and using the (2.12) of Lemma 3, we get

1

[P reatsera s oy e = [T 00 (5 [t oty )

_ / TUL LS {ow)s ) st}

0

= /Ooo AT {y g(y); t) e

The proof of (2.21) is similar. O
Remark 5. We have

o0

/OOO VgD { T (1) y ) dy = /0 AT {y g(y)it ) dt.
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3 Examples

Example 1. We show

/°° PP —Ina] )= ) 1
0o (@t up D) w

where Re(A) > 0.
We put
f(@) =p(A) —Inz
in (2.1). Using Eq.4:369:1 in [3, p.578], we obtain

L AL —In(2)];y} 5 u}
1

S /0 e (ﬁ /0 T A e () — Inal dx) dy

1 /°° Al -
= y e “lnydy.
L'(w) Jo

Using the result [3, p.573, Eq.4:352:1] for the integral giving above, we get

Pl =N [p(p—A) —Inu]

L ALA[WA) —Inz];ytiu} = M) o7 (3.2)

From the equality (2.1) of Lemma 1 and (3.2), we find

M p(A) —Ina] o T(p—A) [(p = A) — Iny
I = S >
Example 2. We show
| explantn = avap) (! WO ~ ) dy
— F(/\)7TCL”\(::3(: a—A—1)m)|lna —mcot((a — A — 1)m
o esel(a = A= 1)) Ina = moot((a = A = 1))

(3.4)

where Re(a) > 0 and 0 < Re(u — A) < 1.

We put
9(y) = ¥(A) — Iny
in (2.4) and then using the known result [1, p.149, Eq.4:6:12] we get,

/Ooo $a—1£u {f(t)7x}£A {g[)()\) — 1ny;a:} de —
['(«)
LT (1)

/OOO PO = Iny)Se {7 f(1);y} dy



o972

|t et ey d =
['(a) * p—1
m/o P W) = Iny)S, {7 F(t);y ) dy. (3.5)

If we take
(1) = e
in (3.5) and using the known results [1, p.143, Eq.4:5:1] and [2, p.233, Eq.14:4:10] for

Re(a) > 0 and from the definition of (1.7) the upper incomplete gamma integral transform,
we obtain

/000 xa;\:inxdx = arl(l;\ga) /o v HW(A) — Iny)e®T (1 — o, ay)dy
S{z** 'Ina;a} —%Fl oAV T W) —Iny);al .
Using the known result [2, p.218; Eq.14:2:28] for 0 < Re(ar — \) < 1, we find
Lo { ' (¥ (\) —Iny);a} = —%mf’\ esc((a—A—1)m) [lna — meot((a— A — 1)m)].
Example 3. We show
& {z" logx;y} = %i(lwr)l“(y + 1) (v +1)—logy — wcot(vm)],

where —1 < Re(v) < 0.
We put
f(x) =2"logx
n (2.11). Using Eq.14:2:28 in [2, p.218], we obtain
S{az"logx;t} = —mt” csc(vm)[logt — 7 cot(vm)). (3.6)
Substituting the results (3.6) into identity (2.11), we find

ﬁé"l {z"log x;y} =L, {tl_’\ (—mt” cse(vm)[logt — mcot(v)]) sy}
1 [e.9]
& {z" log z; y} T / A eV (—mt' MY ese(vr) [log t — 7 cot(v)]) di
0
= / e ¥ [—7t” esc(vm) logt + w2t” csc(v) cot(v)] dt
0

= — mesce(vm) {/ e YV log(t)dt — 7TCOt(l/7T>/ e_ytt”dt} .
0 0

For the integrals giving above we use the results [1, p.148, Eq.4:6:11] and [1, p.137,
Eq.4:3:1], then we get

—mese(vm)

i LD +1) ~logy —mcot(vm)].

& {z"logx;y} =
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Example 4. We show

SN lemw u) = %gﬂ A LA+ 11 —u/a), (3.7)
where |arga| <7 and Re(\) > —1.
We put
flz) = e

in (2.13) of Lemma 3 and we get,

! éal{x)"le"”; u} =S{L{e " y};u}

I'(A)
> 1 /°° A1 —z(y+a) )
= — | = e VTV | dy
/0 y+u(F(x\) 0

Using the known result [1, p.144, Eq.4:5:3] for the inner integral giving above, we find
that

1 > dy
S ey :/
Iy 2 } o (Y+u)ly+a)
&{a e u} =D(N)S{(y + a)*;ul}.
From the known result [2, p.217, Eq.14:2:9] for (1.3) the Stieltjes transform, we obtain

A—=1_—ax F()‘)2
gl{l' e ,u}:mgFl()\,l,)\+1,1—U/a)

Example 5. We show

F1_>\ {x/\—le—a:c;t} — = F<)\)

where |arga| < 7 and < Re(\) > —1.

We put

in (2.14) of Lemma 3 and we get,
0 {2 et =S {y e ydit)

ooy)\—l 1 00 1 (yta)
= — e WYy | dy
/0 y+t(F(A)/o )

Using the known result [1, p.144, Eq.4:5:3] we obtain

0 A—1
tA—IF 3 A—1 —aw;t :/ y d
e e = )
=S{y* 'y +a) Nt}

From the known result [2, p.217, Eq.14:2:9] for (1.3) the Stieltjes transform, we find

[y {317A le ;t} = mzﬂ (AMXNA+ 11 —t/a).
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4

Conclusion

In this work, we obtained some new properties of the generalized Laplace transform. Sev-
eral relationships between the generalized Laplace transform and the generalized Stieltjes
transform are studied. Moreover, we have shown that many early known identities ob-
tained as a special cases of parameters in these relationships. In the last section, we also
show that how these identities work while calculating improper integrals.
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