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Abstract. We study an optimal control problem for a one dimensional phase-filed
system associated with the total variation energy, from the view-point of numerical anal-
ysis. Our state system consists of two parabolic PDEs: a heat equation and a singular
diffusion equation of an order parameter. In this paper, we give a class of approximate
optimal control problems for our original phase-filed system with singularity. Then, we
show the necessary condition of the optimal pair by using the control problem of the
approximate state system. In addition, by means of necessary conditions for the approx-
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1 Introduction
In this paper, we consider a class of approximate problems for the following one dimen-
sional phase-filed system with singularity:
Problem (P;f, h, ℓ)0.

[u+ w]t − uxx = a0f(t, x) in Q := (0, T )× (0, L), (1.1)

wt − κ

(
wx

|wx|

)
x

+ ∂I[−1,1](w) + g(w) ∋ u in Q, (1.2)

− ux(t, 0) + n0(u(t, 0)− b1) = a1h(t), t ∈ (0, T ), (1.3)
ux(t, L) + n0(u(t, L)− b2) = a2ℓ(t), t ∈ (0, T ), (1.4)

wx(t, 0) = wx(t, L) = 0, t ∈ (0, T ), (1.5)
u(0, x) = u0(x), w(0, x) = w0(x), x ∈ (0, L), (1.6)

where 0 < T < ∞ and 0 < L < ∞ are fixed positive constants, a0, a1, a2 are given
nonnegative constants, κ > 0, n0 > 0, b1, b2 are given constants, g is a given continuous
function on R, [f, h, ℓ] is a triplet of given functions, and u0, w0 are given initial data. In
addition, ∂I[−1,1](·) is the subdifferential of an indicator function I[−1,1](·) on the closed
interval [−1, 1], that is defined as:

I[−1,1](z) :=

{
0, if z ∈ [−1, 1],

+∞, otherwise.
(1.7)

The system (P;f, h, ℓ)0 is based on the modeling method of Visintin [48] as a possible
mathematical model of solid-liquid phase transitions in a mesoscopic length scale. In
the physical context, the unknown function u = u(t, x) is the relative temperature, and
w = w(t, x) is the nonconserved order parameter that indicates the physical phase of
material: w = 1 (resp. w = −1) corresponds to pure liquid (resp. solid), for instance.
Note that the equation (1.2) is derived as the L2-gradient flow of the free energy functional
as follows:

Fu(w) := κ

∫ L

0

|Dw|+
∫ L

0

{
I[−1,1](w) + ĝ(w)− wu

}
dx, w ∈ L2(0, L),

where
∫ L

0
|Dw| is the total variation of a function w ∈ L2(0, L) and ĝ is a non-negative

primitive of g. Therefore, we can regard (1.2) as one kind of mathematical formulation
of Gibbs-Thomson law.

Many mathematicians studied the singular diffusion equation (1.2) with or without
constraint ∂I[−1,1](w) from the various point of view (cf. [3, 4, 5, 14, 16, 17, 18, 19,
20, 25, 26, 28, 29, 33, 35, 36, 37, 38, 41, 44, 48]). For instance, Kenmochi–Shirakawa
studied in [25] the precise structure of steady-state solution, and characterized in [26]
the asymptotic stability of steady-states, by means of an original concept named “local
stability”. Furthermore, the line of results [25, 26] was enhanced by Shirakawa–Kimura
[44], under the higher dimensional setting of spatial domain.
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In addition, Ohtsuka–Shirakawa–Yamazaki [36, 37, 38] considered the optimal control
problem of (1.2) with respect to the temperature control u in the case when g(w) = −w.

The system (P;f, h, ℓ)0 was considered by Kenmochi–Shirakawa [27] and Shirakawa
[42, 43]. In particular, Kenmochi–Shirakawa [27] discussed the large-time behavior of
solutions to (P;0, 0, 0)0 on the basis of the previous work [25, 26] of stability analysis.
In addition, Shirakawa–Yamazaki [45] considered the optimal control problem and its
optimality condition for (P;f, h, ℓ)0 with g(w) = νw3 − w for some small constant ν ≥ 0
via the limiting observation of approximate problems : in such approximate problems, the
singular diffusion term

(
wx

|wx|

)
x

and the constraint ∂I[−1,1](w) as in (1.2) were approximated
by (

wε
x√

|wε
x|2 + ε2

+ εwε
x

)
x

and Kε(wε), (1.8)

respectively, for given small parameter ε ∈ (0, 1]. Here, Kε is a nondecreasing function
on R defined by

Kε(r) := sign(r)
∫ |r|

0

min
{1
ε
,
[s− 1]+

ε2

}
ds for r ∈ R, (1.9)

where [ · ]+ denotes the positive part of a function and sign(·) is a signum function so that
sign(0) = 0.

In this present paper, we consider a class of approximate functions for singular diffusion
term

(
wx

|wx|

)
x

in (P;f, h, ℓ)0. Then we investigate the following approximate problems,
denoted by (P;f, h, ℓ)ε, with small parameter ε ∈ (0, 1]:
Problem (P;f, h, ℓ)ε.

[uε + wε]t − uεxx = a0f(t, x) in Q, (1.10)

wε
t − κ (aε(wε

x) + εwε
x)x +Kε(wε) + g(wε) = uε in Q, (1.11)

− uεx(t, 0) + n0(u
ε(t, 0)− b1) = a1h(t), t ∈ (0, T ), (1.12)

uεx(t, L) + n0(u
ε(t, L)− b2) = a2ℓ(t), t ∈ (0, T ), (1.13)

wε
x(t, 0) = wε

x(t, L) = 0, t ∈ (0, T ), (1.14)
uε(0, x) = u0(x), wε(0, x) = w0(x), x ∈ (0, L), (1.15)

where aε is a given function on R with aε(r) → a0(r) := r
|r| in an appropriate sense as

ε → 0. The typical example is aε(r) = r√
r2+ε2

(cf. (1.8)). Then, we clarify the class of
approximate functions aε so that (P;f, h, ℓ)ε is the approximate problem for (P;f, h, ℓ)0
as ε→ 0.

In addition, we consider a class of approximate optimal control problems, denoted by
(OP)ε, as follows:
Problem (OP)ε: Find a triplet of control functions [f ε

∗ , h
ε
∗, ℓ

ε
∗] ∈ U , call optimal control,

such that
Jε(f ε

∗ , h
ε
∗, ℓ

ε
∗) = inf

[f,h,ℓ]∈U
Jε(f, h, ℓ).
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Here, we set U := L2(0, T ;L2(0, L))×L2(0, T )×L2(0, T ) as a control space, and Jε(f, h, ℓ)
is the cost functional defined by

Jε(f, h, ℓ) :=
c0
2

∫ T

0

|(uε − ud)(t)|2L2(0,L) dt+
c1
2

∫ T

0

|(wε − wd)(t)|2L2(0,L) dt

+
m0

2

∫ T

0

a20|f(t)|2L2(0,L) dt+
m1

2

∫ T

0

a21|h(t)|2 dt+
m2

2

∫ T

0

a22|ℓ(t)|2 dt,
(1.16)

where | · |L2(0,L) is a standard norm of L2(0, L), c0, c1, m0, m1, m2 are given nonnegative
constants, and ud, wd are the given desired target profiles in L2(0, T ;L2(0, L)). In addi-
tion, a couple of functions [uε, wε] is a unique solution to the initial-boundary value state
problem (P;f, h, ℓ)ε with the control parameter [f, h, ℓ] ∈ U .

Note that (OP)ε can be regarded as an optimal control problem in solid-liquid phase
transition phenomena. Indeed, if the constant a0 is equal to 0, then (OP)ε is a boundary
control problem. Similarly, if a1 = a2 = 0, then (OP)ε reduces to a distributed control
problem with the heat source as control. Note that b1 (resp. b2) denotes the outside
temperature at x = 0 (resp. x = L). There is a vast amount of literature on optimal
control of phase transitions problems. In particular, we refer to the contributions [1, 10,
13, 21, 34, 35, 36, 37, 38, 39, 40, 45, 46, 47].

In addition, note that (OP)0 is an optimal control problem for our original phase-
filed system (P;f, h, ℓ)0 with singularity. Therefore, in this present paper, we show the
relationship between (OP)ε and its limiting problem (OP)0 as ε → 0. Furthermore,
by using necessary conditions for (OP)ε, we propose the numerical scheme to find the
stationary point of the cost functional Jε(·, ·, ·) to (OP)ε, and show the convergence of
our numerical algorithm. Moreover, we give some numerical experiments for (OP)ε under
the simple situations.

The main novelties found in this paper are the following:

(i) to prove the existence-uniqueness of solutions to (P;f, h, ℓ)ε for any ε ≥ 0;

(ii) to prove continuous dependence of solutions to the systems (P;f, h, ℓ)ε with respect
to ε→ 0;

(iii) to prove the existence of an optimal control (optimal pair) to (OP)ε for any ε ≥ 0;

(iv) to show the relationship between the limits (ω-limit points) of sequences of approx-
imate optimal pairs and the optimal pairs of the limiting problem (OP)0;

(v) to show the necessary conditions to the approximate optimal control problems (OP)ε
for any ε > 0;

(vi) to derive a weak formula of the necessary conditions to the original problem (OP)0
through the limiting observation of approximate situations, as ε ↓ 0;

(vii) to propose the numerical scheme to find the stationary point of the cost functional
to the approximate control problem (OP)ε;

(viii) to show the convergence of our numerical algorithm;
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(ix) to perform numerical experiments of (OP)ε for the sufficient small ε > 0 under the
simple situations.

Consequently, an effective class of approximate optimal pairs of our control problem (OP)0
will be presented as a further conclusion derived from the main results. In addition, it is
worthy of considering approximate optimal control problems (OP)ε from the view-point
of numerical analysis.

The plan of this paper is as follows. In Section 2, we recall the fundamentals of
the theory of functions of bounded variation, including the exact definition of the total
variation functional. In Section 3, we prove Theorem 3.1 concerned with the item (i)
listed in the above. In Section 4, we discuss the continuous dependence of solutions to
the systems (P;f, h, ℓ)ε with respect to ε→ 0, corresponding to the item (ii) listed in the
above. In Sections 5, 6, and 7, we consider optimal control problems (OP)ε for any ε ≥ 0,
which correspond to the items (iii), (iv), (v), and (vi) listed in the above. In Section 8, we
mention and prove the main theorem, concerned with the items (vii) and (viii) listed in
the above. In the final Section 9, we show the item (ix). Indeed, we give three numerical
experiments to (OP)ε for the sufficient small ε > 0.

1.1 Notations and basic assumptions
First, we mention the notations that are used throughout this paper.

For each dimension n ∈ N, we denote by L n the n-dimensional Lebesgue measure,
and we use this measure unless otherwise specified.

For any reflexive Banach space B, we denote by | · |B the norm of B, and denote by
B′ the dual space of B. Additionally, we denote by ⟨·, ·⟩B′,B the duality pairing between
B′ and B.

In particular, we put H := L2(0, L) with the usual real Hilbert structure, and denote
by (·, ·)H the inner product in H, for simplicity.

Also, let X be the Sobolev space H1(0, L) with the norm

|z|X :=
{
|zx|2H + n0

(
|z(0)|2 + |z(L)|2

)}1/2 for any z ∈ X,

which is equivalent to the standard norm of H1(0, L). We denote by X ′ the dual space
of X. Also, ⟨·, ·⟩ denotes the duality pairing between X ′ and X. By identifying Hilbert
spaces with their duals, we suppose that

X ⊂ H = H ′ ⊂ X ′ (1.17)

with dense and compact embeddings, and then we have ⟨v, z⟩ = (v, z)H for v ∈ H and
z ∈ X. Furthermore, let F : X → X ′ be the duality mapping defined by

⟨Fv, z⟩ := (vx, zx)H + n0 (v(0)z(0) + v(L)z(L)) for all v, z ∈ X. (1.18)

Also, for given f ∈ H, h ∈ R, ℓ ∈ R, a0 ∈ R, a1 ∈ R, a2 ∈ R, b1 ∈ R, b2 ∈ R, and n0 ∈ R,
an element f̃ ∈ X ′ is uniquely determined by

⟨f̃ , z⟩ := (a0f, z)H + (a1h+ n0b1)z(0) + (a2ℓ+ n0b2)z(L) for all z ∈ X.
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For this f̃ , it is easy to check that Fv = f̃ is formally equivalent to{ −vxx = a0f in (0, L),

−vx(0) + n0(v(0)− b1) = a1h, vx(L) + n0(v(L)− b2) = a2ℓ.
(1.19)

Note that X ′ becomes a Hilbert space with inner product (·, ·)X′ given by

(v, z)X′ := ⟨v, F−1z⟩ for all v, z ∈ X ′.

We next list some notation and definitions of subdifferentials of convex functions. For
a proper (i.e., not identically equal to infinity), l.s.c. (lower semi-continuous), and convex
function ψ : H → R ∪ {∞}, the effective domain D(ψ) of ψ is defined by D(ψ) := {z ∈
H; ψ(z) < ∞}. We denote by ∂ψ the subdifferential of ψ in the topology of H. In
general, the subdifferential is a possibly multi-valued operator from H into itself, and for
any z ∈ H, the value ∂ψ(z) is defined as:

∂ψ(z) := {z∗ ∈ H ; (z∗, y − z)H ≤ ψ(y)− ψ(z) for all y ∈ H} .

Then, a set D(∂ψ) := {z ∈ H ; ∂ψ(z) ̸= ∅} is called the domain of ∂ψ. For various
properties and related notions of a proper, l.s.c., convex function ψ and its subdifferential
∂ψ, we refer to the monograph by Brézis [11]. In particular, for those in Banach spaces,
we quote the books by Barbu [8, 9].

We also recall a notion of convergence for convex functions, developed by Mosco [32].

Definition 1.1 (cf. [32]). Let ψ, ψn (n ∈ N) be proper, l.s.c., and convex functions on
H. Then, we say that ψn converges to ψ on H in the sense of Mosco [32] as n→ ∞ if the
following two conditions are satisfied:

(i) for any subsequence {ψnk
}k∈N ⊂ {ψn}n∈N, if zk → z weakly in H as k → ∞, then

lim inf
k→∞

ψnk
(zk) ≥ ψ(z);

(ii) for any z ∈ D(ψ), there is a sequence {zn}n∈N in H such that

zn → z in H as n→ ∞ and lim
n→∞

ψn(zn) = ψ(z).

As well as, if the sequence of convex functions {ψε}ε∈Ξ is labeled by a continuous argument
ε ∈ Ξ with a infinite set Ξ ⊂ R, then for any ε0 ∈ Ξ, the Mosco-convergence of {ψε}ε∈Ξ,
as ε → ε0, is defined by those of subsequences {ψεn}n∈N, for all sequences {εn}n∈N ⊂ Ξ,
satisfying εn → ε0 as n→ ∞.

Finally, throughout this paper, Ni, i = 1, 2, 3, · · · , denotes positive (or nonnegative)
constants depending only on their argument(s).
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2 Preliminaries
In this section, we recall the fundamentals concerned with the total variation and functions
of bounded variation. These notions are rigorously defined as follows.

Definition 2.1. (I) Let z ∈ L1(0, L). Then, z is called a function of bounded variation,
or simply a BV-function, on (0, L), if and only if:

V0(z) : =sup

{∫ L

0

zϖxdx;
ϖ ∈ C1[0, L] with a compact support on (0, L),

|ϖ| ≤ 1 on [0, L]

}
<∞.

Here, we call V0(z) the total variation of z.
(II) We denote by BV (0, L) the space of all BV-functions on (0, L).

Here are listed usual properties of BV-functions and the space BV (0, L), in forms of
some propositions and remarks.

Proposition 2.1 (cf. [15, Chapter 5]). Let z ∈ BV (0, L). Then, there exists a Radon
measure |Dz| on (0, L), and |Dz|-measurable function σz : (0, L) → R such that

(i) V0(z) =
∫ L

0
|Dz|, and |σz| = 1, |Dz|-a.e. on (0, L);

(ii)
∫ L

0
zϖxdx = −

∫ L

0
ϖ σz|Dz| for any ϖ ∈ C1[0, L] with a compact support on (0, L).

Remark 2.1. If z belongs to the Sobolev space W 1,1(0, L), then |Dz| is absolutely con-
tinuous with respect to the Lebesgue measure, and it follows that:∫

U

|Dz| =
∫
U

|zx(x)|dx for all Borel subsets U ⊂ (0, L)

and

σz(x) =


zx(x)

|zx(x)|
, if zx(x) ̸= 0,

0, otherwise,
a.a. x ∈ (0, L).

Proposition 2.2 (cf. [7, Chapter 10], [15, Chapter 5]). (I) The functional z ∈ L1(0, L) 7→
V0(z) forms a proper, l.s.c., and convex function on L1(0, L).
(II) The space BV (0, L) is a Banach space with the norm:

|z|BV (0,L) := |z|L1(0,L) + V0(z) for all z ∈ BV (0, L).

Proposition 2.3 (cf. [2, Corollary 3.49], [7, Chapter 10]). BV (0, L) is continuously em-
bedded in L∞(0, L), and compactly embedded in Lp(0, L) for any 1 ≤ p <∞.
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Next, let us set a proper, l.s.c., and convex functional I[−1,1] on H, by putting:

I[−1,1](z) :=

∫ L

0

I[−1,1](z(x))dx for all z ∈ H;

to define the following total variation functional V 0 with a constraint by the indicator
function I[−1,1]:

V 0(z) = V0(z) +
1

κ
I[−1,1](z) for all z ∈ H. (2.1)

Clearly, V 0 is proper, l.s.c., and convex on H, and its effective domain is formulated by:

D(V 0) = {z ∈ BV (0, L) ; |z| ≤ 1, a.e. on (0, L)} .

Finally, we recall the decomposition result of the subdifferential ∂V 0 of V 0. For the
detailed proof, we refer to [44, Theorem 3.1].

Proposition 2.4 (cf. [44, Theorem 3.1]). The subdifferential ∂V 0 of V 0 is decomposed
into the following form:

∂V 0(z) = ∂ (V0|H) (z) +
1

κ
∂I[−1,1](z) in H for all z ∈ H,

where V0|H denotes the restriction of V0 onto H.

3 Solvability of (P;f, h, ℓ)ε

In this section, we discuss the existence-uniqueness of solutions to (P;f, h, ℓ)ε for any
ε ≥ 0.

We begin with giving some assumptions on data. Throughout this paper, we assume
the following conditions (A1)–(A4).

(A1) â0 is an absolute value function on R, i.e., â0(r) := |r| for all r ∈ R. In addition,
let {âε}ε∈(0,1] ⊂ C1(R) be a sequence of convex functions and C1-regularizations for
â0(·) := | · |, such that:

âε(r) ≥ 0 for any r ∈ R and any ε ∈ (0, 1],{
âε(r) → â0(r) for any r ∈ R,
âε(·) → â0(·) on R, in the sense of Mosco,

as ε ↓ 0,

and there exists a constant δ0 > 0, independent of ε ∈ (0, 1], satisfying:

|aε(r)| ≤ δ0(|r|+ 1) for any r ∈ R and any ε ∈ (0, 1],

where aε := (âε)′ is the derivative of âε. Furthermore, there exist bounded functions
δ1 : (0, 1] → (0, 1] and δ2 : (0, 1] → [0,∞) such that

δ1(ε) → 1, δ2(ε) → 0 as ε ↓ 0,

and
âε(r) ≥ δ1(ε)â

0(r)− δ2(ε) for any r ∈ R and any ε ∈ (0, 1].
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(A2) g is a continuous and semi-monotone function on R, i.e., there is a constant Cg > 0
such that g(r) + Cgr is monotone in r ∈ R. In addition, the function g(r) has a
non-negative potential function ĝ(r), that is,

ĝ(r) ≥ 0 and (ĝ)′(r) = g(r) for any r ∈ R.

(A3) T > 0, L > 0, κ > 0, n0 > 0, c0 ≥ 0, c1 ≥ 0, m0 ≥ 0, m1 ≥ 0, m2 ≥ 0 are fixed
constants. Also, a0, a1, a2, b1, b2 are fixed real numbers.

(A4) ud and wd are the given desired target profiles in L2(0, T ;H).

Remark 3.1 (cf. [14, 31]). The assumption (A1) was introduced in [14, (A4)]. The
similar assumption was found in [31, Definition 3.1]. In addition, the typical examples of
âε are the followings:

• (Hyperbola type) âε(r) =
√
r2 + ε2 for any r ∈ R and any ε ∈ (0, 1].

• (Hyperbolic-tangent type) âε(r) = ε log
(
cosh

(r
ε

))
for any r ∈ R and any ε ∈

(0, 1].

• (Arctangent type) âε(r) =
2ε

π

[
r

ε
tan−1

(r
ε

)
− 1

2
log

(
1 +

(r
ε

)2)]
for any r ∈ R

and any ε ∈ (0, 1].

• (p-growth type) âε(r) =
1

1 + ε2
|r2 + ε2|

1+ε2

2 for any r ∈ R and any ε ∈ (0, 1].

Clearly, such functions satisfy (A1).

We now give the notion of solutions to (P;f, h, ℓ)ε. To this end, for given f ∈
L2(0, T ;H), h ∈ L2(0, T ), and ℓ ∈ L2(0, T ), we define f̃ ∈ L2(0, T ;X ′) by putting

⟨f̃(t), z⟩ := (a0f(t), z)H + (a1h(t) + n0b1)z(0) + (a2ℓ(t) + n0b2)z(L)

for all z ∈ X and a.a. t ∈ (0, T ).
(3.1)

In addition, let Kε be a function on R defined by (1.9). Clearly, Kε is a C1-function
with derivative (Kε)′ ∈ W 1,∞(R). We fix a primitive K̂ε ∈ C2(R) ∩W 3,∞

loc (R) of Kε such
that

K̂ε(0) = 0 and K̂ε(r) ≥ 0 for all r ∈ R. (3.2)
Then, for any ε ∈ (0, 1], let us set:

V ε(z) :=


∫ L

0

âε(zx(x))dx+
ε

2

∫ L

0

|zx(x)|2dx+
1

κ

∫ L

0

K̂ε(z(x)) dx, if z ∈ X,

∞, otherwise.
(3.3)

Clearly, each functional V ε (ε ∈ (0, 1]) forms a proper, l.s.c., and convex functional on H.
Based on functionals V ε (ε ∈ (0, 1]) and V 0 (cf. (2.1)), the solutions to (P;f, h, ℓ)ε,

for ε ≥ 0, are defined as follows.
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Definition 3.1. Let ε ∈ [0, 1], u0 ∈ X ′, and w0 ∈ H. Then, a couple of functions [uε, wε]
is called a solution to (P;f, h, ℓ)ε, or (P;u0, w0, f, h, ℓ)ε when the initial data are specified,
on [0, T ], if the following conditions are satisfied:

(S1) uε ∈ W 1,2(0, T ;X ′) ∩ L2(0, T ;X) ⊂ C([0, T ];H).

(S2) wε ∈ W 1,2(0, T ;H) with V ε(wε) ∈ L∞(0, T ).

(S3) For all z ∈ X and a.a. t ∈ (0, T ),

⟨(uε)′(t), z⟩+ ((wε)′(t), z)H + ⟨Fuε(t), z⟩ = ⟨f̃(t), z⟩.

(S4) There is a function (wε)∗ ∈ L2(0, T ;H) such that (wε)∗(t) ∈ ∂V ε(wε(t)) in H and

(wε)′(t) + κ(wε)∗(t) + g(wε(t)) = uε(t) in H, a.a. t ∈ (0, T ).

(S5) uε(0) = u0 in X ′ and wε(0) = w0 in H.

Remark 3.2. By the definition of subdifferentials, we observe that the evolution equation
in (S4) of Definition 3.1 is equivalent to the following variational inequality:

((wε)′(t) + g(wε(t))− uε(t), wε(t)− z)H + κV ε(wε(t))− κV ε(z) ≤ 0

for any z ∈ D(V ε) and a.a. t ∈ (0, T ).
(3.4)

Note that (3.4) corresponds to a weak formulation of the second equation of (P;f, h, ℓ)ε,
for any ε ≥ 0.

Remark 3.3. Let ε ∈ (0, 1]. Then, note that the subdifferential operator ∂V ε is single-
valued. In addition, we observe from the definition of subdifferential that w∗ = ∂V ε(wε)
if and only if

(w∗, z)H = (aε(wε
x) + εwε

x, zx)H +
1

κ
(Kε(wε), z)H , ∀z ∈ D(V ε).

The expression of ∂V ε is obtained by computing the first variations of the convex function
V ε, and the variational inequality (3.4) implicitly includes the homogeneous Neumann
type boundary condition.

Remark 3.4 (cf. [45, Remarks 3.1, 3.2, and 3.3]). Let ε = 0. By Proposition 2.4, the
condition (S4) of Definition 3.1 is equivalent to the following condition (S4)′ :

(S4)′ There is a function (wε
0)

∗ ∈ L2(0, T ;H) and a function ξε ∈ L2(0, T ;H) such that

(wε
0)

∗(t) ∈ ∂ (V0|H) (w
ε(t)) in H, ξε(t) ∈ ∂I[−1,1](w

ε(t)) in H,

(wε)′(t) + κ(wε
0)

∗(t) + ξε(t) + g(wε(t)) = uε(t) in H

for a.a. t ∈ (0, T ).
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Note that the function (wε
0)

∗ ∈ L2(0, T ;H) as in (S4)’ somehow links to the first variation
of the total variation functional V0|H . In addition, as is well-known (cf. [11, Proposition
2.16]),

∂I[−1,1](z) =
{
ξ ∈ H; ξ ∈ ∂I[−1,1](z), a.e. on (0, L)

}
for any z ∈ D(I[−1,1]).

Hence, the subdifferential ∂V 0 corresponds to the rigorous expression of the singular term
−
(

wx

|wx|

)
x
+ 1

κ
∂I[−1,1](w) as in (1.2), and the variational inequality (3.4) implicitly includes

the homogeneous Neumann type boundary condition.

We now mention the first main result in this paper, which is concerned with the
existence-uniqueness of solutions to (P;u0, w0, f, h, ℓ)

ε for each ε ∈ [0, 1].
Theorem 3.1 (cf. [45, Propositions 3.1 and 3.2]). Assume (A1), (A2), (A3), and ε ∈
[0, 1]. Let [f, h, ℓ] be arbitrary triplet of functions in U . Then, for each u0 ∈ H and
w0 ∈ D(V ε), there is a unique solution [uε, wε] to (P;u0, w0, f, h, ℓ)

ε on [0, T ]. In addition,
there is a positive constant N1, dependent only on T and n0, and independent of ε ∈ [0, 1],
such that the following bounded estimate holds:

|(uε)′|2L2(0,T ;X′) + |uε|2L∞(0,T ;H) + |uε|2L2(0,T ;X) + |(wε)′|2L2(0,T ;H) + |wε|2L∞(0,T ;H)

+κ sup
0≤t≤T

V ε(wε(t)) + sup
0≤t≤T

∫ L

0

ĝ(wε(t, x)) dx

≤ N1

(
|u0|2H + |w0|2H + κV ε(w0) +

∫ L

0

ĝ(w0(x)) dx+ a20|f |2L2(0,T ;H)

+a21|h|2L2(0,T ) + a22|ℓ|2L2(0,T ) + b21 + b22

)
.

(3.5)

Proof. By a similar argument to [24, Theorem 2.1], we get the unique solution [uε, wε] to
(P;u0, w0, f, h, ℓ)

ε on [0, T ]. In fact, let [uεi , wε
i ] (i = 1, 2) be two solutions to (P;u0, w0, f, h, ℓ)

ε

on [0, T ]. Then, note that the following variational identity holds:
⟨((uε1)′ − (uε2)

′)(τ), z⟩+ (((wε
1)

′ − (wε
2)

′)(τ), z)H + ⟨(Fuε1 − Fuε2)(τ), z⟩ = 0

for all z ∈ X and a.a. τ ∈ (0, T ).
(3.6)

By integrating (3.6) in time, we obtain that

((uε1 − uε2)(t), z)H + ((wε
1 − wε

2)(t), z)H +
(
(
∫ t

0
(uε1 − uε2)(τ)dτ)x, zx

)
H

+n0

{(∫ t

0
(uε1 − uε2)(τ, 0)dτ

)
z(0) +

(∫ t

0
(uε1 − uε2)(τ, L)dτ

)
z(L)

}
= 0

for all z ∈ X and all t ∈ [0, T ].

(3.7)

Taking z = (uε1 − uε2)(t) in (3.7), we get that

|(uε1 − uε2)(t)|2H + ((wε
1 − wε

2)(t), (u
ε
1 − uε2)(t))H +

1

2

d

dt

∣∣∣∣(∫ t

0

(uε1 − uε2)(τ)dτ

)
x

∣∣∣∣2
H

+
n0

2

d

dt

{∣∣∣∣∫ t

0

(uε1 − uε2)(τ, 0)dτ

∣∣∣∣2 + ∣∣∣∣∫ t

0

(uε1 − uε2)(τ, L)dτ

∣∣∣∣2
}

= 0

for all t ∈ [0, T ].

(3.8)
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By using the Schwarz inequality in (3.8), and integrating in time, we obtain:

1

2

∫ t

0

|(uε1 − uε2)(τ)|2Hdτ +
1

2

∣∣∣∣(∫ t

0

(uε1 − uε2)(τ)dτ

)
x

∣∣∣∣2
H

+
n0

2

{∣∣∣∣∫ t

0

(uε1 − uε2)(τ, 0)dτ

∣∣∣∣2 + ∣∣∣∣∫ t

0

(uε1 − uε2)(τ, L)dτ

∣∣∣∣2
}

≤ 1

2

∫ t

0

|(wε
1 − wε

2)(τ)|2Hdτ for all t ∈ [0, T ].

(3.9)

Note from the monotonicity of ∂V ε that

(((wε
1)

∗ − (wε
2)

∗)(τ), (wε
1 − wε

2)(τ))H ≥ 0, a.a. τ ∈ (0, T ),

where (wε
i )

∗(τ) ∈ ∂V ε(wε
i (τ)) in H for a.a. τ ∈ (0, T ) (i = 1, 2). Therefore, it follows

from (S4) of Definition 3.1 and (A2), i.e., the monotonicity of g(r) + Cgr, that

1

2

d

dτ
|(wε

1 − wε
2)(τ)|2H ≤ ((uε1 − uε2)(τ), (w

ε
1 − wε

2)(τ))H + Cg|(wε
1 − wε

2)(τ)|2H
for a.a. τ ∈ (0, T ).

(3.10)

By using the Schwarz inequality in (3.10), and integrating in time, we obtain:

1

2
|(wε

1 − wε
2)(t)|2H ≤

(
1

2
+ Cg

)∫ t

0

|(wε
1 − wε

2)(τ)|2Hdτ +
1

2

∫ t

0

|(uε1 − uε2)(τ)|2Hdτ

for all t ∈ [0, T ].
(3.11)

Hence, we infer from (3.9) and (3.11) that

1

2
|(wε

1 − wε
2)(t)|2H ≤ (1 + Cg)

∫ t

0

|(wε
1 − wε

2)(τ)|2Hdτ for all t ∈ [0, T ]. (3.12)

Thus, applying the Gronwall inequality to (3.12), we observe that

wε
1(t) = wε

2(t) in H for all t ∈ [0, T ]. (3.13)

By the quite standard arguments, we conclude from (3.6) with (3.13) that

uε1(t) = uε2(t) in H for all t ∈ [0, T ]. (3.14)

Thus, the solutions to (P;u0, w0, f, h, ℓ)
ε on [0, T ] is unique.

Now, we show the existence of solutions to (P;u0, w0, f, h, ℓ)
ε. Note that (P;u0, w0, f, h, ℓ)

ε

can be reformulated to abstract evolution equations of the form:

(uε)′(t) + (wε)′(t) + ∂φ(uε(t)) ∋ f̃(t) in X ′, for t ∈ (0, T ), (3.15)

(wε)′(t) + κ∂V ε(wε(t)) + g(wε(t)) ∋ uε(t) in H, for t ∈ (0, T ), (3.16)
uε(0) = u0 in X ′ and wε(0) = w0 in H, (3.17)
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where ∂φ(·) is the subdifferential of a convex function φ(·) on X ′ defined by

φ(z) :=


1

2
|z|2H , if z ∈ H,

∞, otherwise.
(3.18)

Also, ∂V ε(·) is the subdifferential of the convex functional V ε on H defined in (3.3).
We first show the existence of a local (in time) solution to (3.15)–(3.17) by employing

the fixed point argument for continuous operators in compact convex sets. To this end,
for T > 0 and M > 0, we define a (non-empty) compact convex subset E(T,M) of
L2(0, T ;H) by

E(T,M) :=

u ∈ L2(0, T ;H)

∣∣∣∣∣∣
u ∈ W 1,2(0, T ;X ′) ∩ L2(0, T ;X) ⊂ C([0, T ];H),

|u′|2L2(0,T ;X′) + |u|2L2(0,T ;X) + sup
0≤t≤T

|u(t)|2H ≤M

 .

Now, for each u ∈ E(T,M) we consider the following problem, denoted by (P2)u, with
a given function u ∈ E(T,M). For a moment, we often omit the superscript ε ∈ [0, 1].
Problem (P2)u. Find a function w : [0, T ] → H which fulfills the following equation:

w′(t) + κ∂V ε(w(t)) + g(w(t)) ∋ u(t) in H, for t ∈ (0, T ), (3.19)

w(0) = w0 in H. (3.20)

Taking account of (2.1) with Propositions 2.2–2.3 and (3.3) with (A1), we observe that
for each ε ∈ [0, 1], V ε is proper, l.s.c., and convex on H such that the level set of V ε is
compact in H, i.e.,

{z ∈ H ; V ε(z) ≤ r} is compact in H for any r > 0. (3.21)

Therefore, by using the abstract theory established by Brézis [11] and the perturbation
theory (cf. [12, 22]), we observe that (P2)u has a unique solution w ∈ W 1,2(0, T ;H) with
V ε(w) ∈ L∞(0, T ) for each w0 ∈ D(V ε) and u ∈ E(T,M). Indeed, (3.19) is equivalent to
the following equation:

w′(t) + κ∂V ε(w(t)) + g(w(t)) + Cgw(t)− Cgw(t) ∋ u(t) in H, for t ∈ (0, T ),

where Cg is the positive constant in (A2). Therefore, by applying the general theory of
evolution equations with monotone and Lipschitz linear perturbations, we can get the
unique solution to (P2)u on [0, T ].

Moreover, by the standard calculation (cf. (3.29) below), we can obtain the following
inequality: ∫ t

0

|w′(τ)|2Hdτ + 2κV ε(w(t)) + 2

∫ L

0

ĝ(w(t, x))dx

≤ 2κV ε(w0) + 2

∫ L

0

ĝ(w0(x))dx+

∫ T

0

|u(τ)|2Hdτ, ∀t ∈ (0, T ).

(3.22)
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Next, for the function w constructed above, we consider the following problem, denoted
by (P1)w.
Problem (P1)w. Find a function u : [0, T ] → X ′ which fulfills the following equation:

u′(t) + ∂φ(u(t)) ∋ f̃(t)− w′(t) in X ′, for t ∈ (0, T ), (3.23)

u(0) = u0 in X ′. (3.24)
We observe from (1.17) and (3.18) that φ is proper, l.s.c., and convex on X ′ such that the
level set of φ is compact in X ′. Since f̃ − w′ ∈ L2(0, T ;X ′), we can apply the abstract
theory established by Brézis [11]. Thus, we observe that (P1)w has a unique solution
u ∈ W 1,2(0, T ;X ′) ∩ L2(0, T ;X) ⊂ C([0, T ];H) for each u0 ∈ H and solution w to (P2)u.
Moreover, by the standard calculation (cf. (3.28) below), we can obtain the following
inequality:

|u(t)|2H + 2

∫ t

0

|ux(τ)|2Hdτ + n0

(∫ t

0

|u(τ, 0)|2dτ +
∫ t

0

|u(τ, L)|2dτ
)

≤ e2T
(
|u0|2H + a20

∫ T

0

|f(τ)|2Hdτ +
2a21
n0

∫ T

0

|h(τ)|2dτ + 2a22
n0

∫ T

0

|ℓ(τ)|2dτ
)

+2n0Te
2T (b21 + b22) + e2T

∫ T

0

|w′(τ)|2Hdτ, ∀t ∈ (0, T ).

(3.25)

Note that the solution u to (P1)w satisfies the following identity (cf. (S3) in Definition
3.1):∫ T

0

⟨u′(t), ζ(t)⟩dt+
∫ T

0

⟨Fu(t), ζ(t)⟩dt =
∫ T

0

⟨f̃(t), ζ(t)⟩dt−
∫ T

0

(w′(t), ζ(t))Hdt

for all ζ ∈ L2(0, T ;X).

(3.26)

From (1.18), (3.25), and (3.26), we infer that

|u′|2L2(0,T ;X′) ≤ N2

(
|ux|2L2(0,T ;H) + n0|u(·, 0)|2L2(0,T ) + n0|u(·, L)|2L2(0,T )

+a20|f |2L2(0,T ;H) +
a21
n0

|h|2L2(0,T ) +
a22
n0

|ℓ|2L2(0,T )

+|w′|2L2(0,T ;H) + n0T (b
2
1 + b22)

) (3.27)

for some constant N2 > 0 independent of the given function u ∈ E(T,M).
Here, we define an operator S : E(T,M) −→ L2(0, T ;H) as follows. For each u ∈

E(T,M), we denote by w a unique solution to (P2)u, and subsequently, we denote by u a
unique solution to (P1)w. On that basis, for any given u ∈ E(T,M), we put Su = u via
the solution w.

Now, we show that S is a self-mapping on E(T0,M0) for some positive constants T0
and M0, i.e., Su(= u) ∈ E(T0,M0) for any u ∈ E(T0,M0).

Here, we take M0 > 0 so large such that

(4N2 + 8)

(
|u0|2H + a20|f |2L2(0,T ;H) +

a21
n0

|h|2L2(0,T ) +
a22
n0

|ℓ|2L2(0,T )

)
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+N2

(
a20|f |2L2(0,T ;H) +

a21
n0

|h|2L2(0,T ) +
a22
n0

|ℓ|2L2(0,T )

)
+n0(b

2
1 + b22) + (6N2 + 8)

(
κV ε(w0) +

∫ L

0

ĝ(w0(x))dx+ 1

)
≤M0,

and then, choose T0 ∈ (0, T ] so small such that

e2T0 ≤ 2, M0T0 ≤ 1, N2T0 + 4T0e
2T0 + 2N2T0e

2T0 ≤ 1.

Then, estimates (3.22), (3.25), (3.27) implies that Su(= u) belongs to the set E(T0,M0)
for u ∈ E(T0,M0). Thus, the mapping S maps the set E(T0,M0) into itself for T0 and
M0 chosen as above.

Moreover, on account of the convergence theory as in [6], we observe that S is contin-
uous in E(T0,M0) with respect to the topology of L2(0, T ;H) (cf. Corollary 4.2 below).
Therefore, the Schauder fixed point theorem guarantees that S has at least one fixed
point u in E(T0,M0). The pair of functions [u,w], consisting of the fixed point u of S
and the solution w to (P)u when u = u, is a solution to (P;u0, w0, f, h, ℓ)

ε on the time
interval [0, T0]. Thus, we have shown that the problem (P;u0, w0, f, h, ℓ)

ε has a local (in
time) solution [u,w] on [0, T0].

We now give the energy estimate of the local (in time) solution [u,w] to (P;u0, w0, f, h, ℓ)
ε

on [0, T0]. To this end, take z = u(t) in (S3) of Definition 3.1. Then, by using the Schwarz
inequality, we have:

1

2

d

dt
|u(t)|2H + (w′(t), u(t))H + |ux(t)|2H +

n0

2
|u(t, 0)|2 + n0

2
|u(t, L)|2

≤ 1

2
|u(t)|2H +

a20
2
|f(t)|2H +

a21
n0

|h(t)|2 + a22
n0

|ℓ(t)|2 + n0(b
2
1 + b22)

for a.a. t ∈ (0, T0).

(3.28)

Next, multiplying (3.16) by w′(t) (cf. (S4) of Definition 3.1), we get:

|w′(t)|2H + κ
d

dt
V ε(w(t)) +

d

dt

∫ L

0

ĝ(w(t, x))dx = (u(t), w′(t))H

for a.a. t ∈ (0, T0).

(3.29)

Adding (3.29) to (3.28), and applying the Gronwall inequality to the resultant, we have:

1

2
|u(t)|2H + κV ε(w(t)) +

∫ L

0

ĝ(w(t, x))dx+

+

∫ t

0

{
|ux(τ)|2H +

n0

2
|u(τ, 0)|2 + n0

2
|u(τ, L)|2 + |w′(τ)|2H

}
dτ

≤ eT
(
1

2
|u0|2H + κV ε(w0) +

∫ L

0

ĝ(w0(x))dx+
a20
2
|f |2L2(0,T ;H)

+
a21
n0

|h|2L2(0,T ) +
a22
n0

|ℓ|2L2(0,T ) + n0T (b
2
1 + b22)

)
, ∀t ∈ [0, T0].

(3.30)
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In addition, it follows from (3.26) and (3.30) that

|u′|2L2(0,T0;X′) ≤ N3

(
|u0|2H + κV ε(w0) +

∫ L

0

ĝ(w0(x))dx+ a20|f |2L2(0,T ;H)

+
a21
n0

|h|2L2(0,T ) +
a22
n0

|ℓ|2L2(0,T ) + n0(b
2
1 + b22)

)
,

(3.31)

where N3 is a positive constant independent of T0 and given data u0, w0, f , h, and ℓ.
Multiplying (3.16) by w(t) (cf. (S4) of Definition 3.1), we observe from (A2) that:

1

2

d

dt
|w(t)|2H + κV ε(w(t)) ≤ Cg|w(t)|2H + (u(t), w(t))H

for a.a. t ∈ (0, T0).
(3.32)

By using the Schwarz inequality in (3.32), applying the Gronwall inequality to the resul-
tant, we have:

|w(t)|2H + 2κ

∫ t

0

V ε(w(τ))dτ ≤ e(1+2Cg)T
(
|w0|2H + |u|2L2(0,T0;H)

)
, ∀t ∈ [0, T0]. (3.33)

Therefore, by (3.30), (3.31), and (3.33), we can find a positive constant N4, independent
of T0, such that the following bounded estimate holds:

|u′|2L2(0,T0;X′) + |u|2L∞(0,T0;H) + |u|2L2(0,T0;X) + |w′|2L2(0,T0;H) + |w|2L∞(0,T0;H)

+κ sup
0≤t≤T0

V ε(w(t)) + sup
0≤t≤T0

∫ L

0

ĝ(w(t, x)) dx

≤ N4

(
|u0|2H + |w0|2H + κV ε(w0) +

∫ L

0

ĝ(w0(x)) dx+ a20|f |2L2(0,T ;H)

+a21|h|2L2(0,T ) + a22|ℓ|2L2(0,T ) + b21 + b22

)
.

(3.34)

Hence, by (3.34), we can extend the solution to (P;u0, w0, f, h, ℓ)
ε beyond the time interval

[0, T0]. Namely, we get the existence of a solution to (P;u0, w0, f, h, ℓ)
εon [0, T ].

The a priori estimate (3.5) can be obtained by calculations similar to (3.34).
Thus, the proof of Theorem 3.1 has been completed.

4 Continuous dependence of solutions to (P;f, h, ℓ)ε

In this section, we discuss the continuous dependence of solutions to systems (P;u0, w0, f, h, ℓ)
ε

with respect to ε→ 0.
We begin with proving the Mosco convergence of V ε on H as ε→ 0.

Lemma 4.1 (cf. [31, Theorem 4.1], [41, Lemma 3.1]). Let V 0 and V ε (ε ∈ (0, 1]) be
convex functions given in (2.1) and (3.3), respectively. Then:

V ε(·) −→ V 0(·) on H in the sense of Mosco [32] as ε→ 0. (4.1)
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Proof. The proof of this lemma is merely a slight modification of that as in [31, Theorem
4.1] and [41, Lemma 3.1].

Indeed, note that:∫ L

0

K̂ε(·)dx −→
∫ L

0

I[−1,1](·)dx on H in the sense of Mosco [32] as ε→ 0; (4.2)

we easily show (4.2), therefore, we omit the detailed proof of (4.2).
Now, we show (i) of Definition 1.1 by using (A1), Proposition 2.2(I), and (4.2). To

this end, assume {εk}k∈N ⊂ (0, 1], {zk}k∈N ⊂ H, and z ∈ H so that

εk → 0 and zk → z weakly in H as k → ∞.

Note that we may suppose lim infk→∞ V εk(zk) < ∞, because the other case is trivial.
Then, from (A1), Proposition 2.2(I), and (4.2), we infer that:

∞ > lim inf
k→∞

V εk(zk)

= lim inf
k→∞

[∫ L

0

âεk((zk)x(x))dx+
εk
2

∫ L

0

|(zk)x(x)|2dx+
1

κ

∫ L

0

K̂εk(zk(x)) dx

]
≥ lim inf

k→∞

[∫ L

0

{
δ1(εk)â

0((zk)x(x))− δ2(εk)
}
dx+

1

κ

∫ L

0

K̂εk(zk(x)) dx

]
≥ lim

k→∞
δ1(εk) lim inf

k→∞

∫ L

0

â0((zk)x(x))dx− lim
k→∞

δ2(εk)L

+
1

κ
lim inf
k→∞

∫ L

0

K̂εk(zk(x)) dx

≥ lim inf
k→∞

V0(zk) +
1

κ

∫ L

0

I[−1,1](z(x))dx

≥ V0(z) +
1

κ

∫ L

0

I[−1,1](z(x))dx = V 0(z),

which implies that (i) of Definition 1.1 holds.
Next, we show (ii) of Definition 1.1. To this end, Let {εn}n∈N ⊂ (0, 1] be any sequence

such that εn → 0 as n→ ∞, and let z be any element of D(V 0). According to the result in
[2, Theorem 3.9] and [15, Chapter 5], there is a sequence {z̃i}i∈N∪{0} ⊂ C∞(0, L)∩D(V 0)
such that

|z̃i − z|H <
1

2i+1
and |V0(z̃i)− V0(z)| <

1

2i+1
for all i ∈ N ∪ {0}. (4.3)

By (A1), we can find a sequence {ni}i∈N such that

n0 = 1, ni ≥ i, ni+1 > ni,
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and for any i ∈ N ∪ {0},
sup
n≥ni

∣∣∣∣∫ L

0

âεn((z̃i)x(x))dx−
∫ L

0

â0((z̃i)x(x))dx

∣∣∣∣ < 1

2i+1
,

sup
n≥ni

εn
2
|(z̃i)x|2H <

1

2i+1
.

(4.4)

Based on these, let us define:

zn := z̃i if ni ≤ n < ni+1 for some i ∈ N ∪ {0}.

Then, we infer from (4.3) and (4.4) that

|zn − z|H = |z̃i − z|H <
1

2i+1

and
|V εn(zn)− V 0(z)|

≤
∣∣∣∣∫ L

0

âεn((zn)x(x))dx−
∫ L

0

â0((zn)x(x))dx

∣∣∣∣
+

∣∣∣∣∫ L

0

â0((zn)x(x))dx− V0(z)

∣∣∣∣+ εn
2
|(zn)x|2H

≤ 1

2i+1
+

1

2i+1
+

1

2i+1
<

1

2i−1

for any i ∈ N ∪ {0} and n ≥ ni,

which implies that (ii) of Definition 1.1 holds.
Thus, the proof of Lemma 4.1 is complete.

Taking account of (4.1), we get the following Corollary 4.1. For the detailed proof, we
refer to [6] or [18, Appendix], for instance.

Corollary 4.1 (cf. [6], [18, Appendix]). Let V 0 and V ε (ε ∈ (0, 1]) be convex functions
given in (2.1) and (3.3), respectively. Define

V̂ 0(z) :=

∫ T

0

V 0(z(t))dt and V̂ ε(z) :=

∫ T

0

V ε(z(t))dt, ∀z ∈ L2(0, T ;H).

Then:

V̂ ε(·) −→ V̂ 0(·) on L2(0, T ;H) in the sense of Mosco [32] as ε→ 0.

Now, we mention the main theorem concerning the continuous dependence of solutions
to systems (P;u0, w0, f, h, ℓ)

ε with respect to ε→ 0.
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Theorem 4.1. Assume (A1), (A2), and (A3). Let [f, h, ℓ] ∈ U , u0 ∈ H, and w0 ∈ D(V 0).
Also, let ε ∈ (0, 1], {[f ε, hε, ℓε]}ε∈(0,1] ⊂ U , {uε0}ε∈(0,1] ⊂ H, and {wε

0}ε∈(0,1] ⊂ D(V ε).
Furthermore, suppose that

f ε → f weakly in L2(0, T ;H), (4.5)

hε → h weakly in L2(0, T ), (4.6)

ℓε → ℓ weakly in L2(0, T ), (4.7)

uε0 → u0 in X ′, wε
0 → w0 in H, and V ε(wε

0) → V 0(w0) (4.8)

as ε → 0. Then, the unique solution [uε, wε] to (P;uε0, wε
0, f

ε, hε, ℓε)ε converges to the
solution [u,w] to (P;u0, w0, f, h, ℓ)

0 in the following sense:

[uε, wε] −→ [u,w] in L2(0, T ;H)× C([0, T ];H) as ε→ 0. (4.9)

Proof. Note from the Mosco convergence (4.1) in Lemma 4.1 that for each w0 ∈ D(V 0),
we can always find a sequence {wε

0}ε∈(0,1] ⊂ D(V ε) satisfying (4.8).
From (4.8), we infer that

V ε(wε
0) is bounded uniformly in ε ∈ (0, 1]. (4.10)

Therefore, we observe from (A1), Proposition 2.1(i), Remark 2.1, and the definitions of
V0(·) and V ε(·) that

V0(w
ε
0) is bounded uniformly in ε ∈ (0, 1]. (4.11)

Therefore, it follows from Propositions 2.2–2.3, (4.8), and (4.11) that |wε
0|BV (0,L) is bounded

uniformly in ε ∈ (0, 1], hence,

|wε
0|L∞(0,L) is bounded uniformly in ε ∈ (0, 1]. (4.12)

Thus, we observe from (A2) and (4.12) that∫ L

0

ĝ(wε
0(x)) dx is bounded uniformly in ε ∈ (0, 1]. (4.13)

Now, let [uε, wε] be the unique solution to (P;uε0, wε
0, f

ε, hε, ℓε)ε on [0, T ]. Then, from
(4.5)–(4.8) and the stability estimate (3.5) with (4.10)–(4.13), we observe that

uε is bounded in W 1,2(0, T ;X ′) ∩ L2(0, T ;X) ∩ L∞(0, T ;H), (4.14)

wε is bounded in W 1,2(0, T ;H), (4.15)

and
sup

0≤t≤T
V ε(wε(t)) is bounded (4.16)

uniformly in ε ∈ (0, 1].
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Additionally, from similar arguments as above (cf. (4.10)–(4.12)), we infer that

sup
0≤t≤T

V0(w
ε(t)) is bounded uniformly in ε ∈ (0, 1], (4.17)

therefore,
sup

0≤t≤T
|wε(t)|BV (0,L) is bounded uniformly in ε ∈ (0, 1].

Hence, we have

sup
0≤t≤T

|wε(t)|L∞(0,L) is bounded uniformly in ε ∈ (0, 1] (4.18)

and
sup

0≤t≤T

∫ L

0

ĝ(wε(t, x))dx is bounded uniformly in ε ∈ (0, 1]. (4.19)

Thus, by (4.14)–(4.19), there is a subsequence {εk}k∈N of {ε}ε∈(0,1] and functions u ∈
W 1,2(0, T ;X ′) ∩ L2(0, T ;X) ∩ L∞(0, T ;H) and w ∈ W 1,2(0, T ;H) ∩ L∞(Q) with V0(w) ∈
L∞(0, T ) such that εk → 0,

uεk → u in L2(0, T ;H),
in C([0, T ];X ′),
weakly in W 1,2(0, T ;X ′),
weakly in L2(0, T ;X),
weakly-∗ in L∞(0, T ;H),

 (4.20)

wεk → w in C([0, T ];H),
weakly in W 1,2(0, T ;H),
weakly-∗ in L∞(Q),

 (4.21)

and
wεk(t) → w(t) weakly-∗ in BV (0, L), for any t ∈ [0, T ]

as k → ∞.
We now show that the pair of functions [u,w] is the solution to (P;u0, w0, f, h, ℓ)

0 on
[0, T ]. To this end, we recall Corollary 4.1. Let z be any element in D(V̂ 0). Then, by the
Mosco convergence of V̂ ε(·), we can find a sequence {zk}k∈N ⊂ L2(0, T ;H) such that

zk → z in L2(0, T ;H) and V̂ εk(zk) → V̂ 0(z) (4.22)

as k → ∞.
Since [uεk , wεk ] is the unique solution to (P;uεk0 , w

εk
0 , f

εk , hεk , ℓεk)εk on [0, T ], we easily
observe that:∫ T

0

⟨(uεk)′(t), ϖ(t)⟩dt+
∫ T

0

((wεk)′(t), ϖ(t))Hdt+

∫ T

0

⟨Fuεk(t), ϖ(t)⟩dt

=

∫ T

0

(a0f
εk(t), ϖ(t))Hdt+

∫ T

0

(a1h
εk(t) + n0b1)ϖ(t, 0)dt

+

∫ T

0

(a2ℓ
εk(t) + n0b2)ϖ(t, L)dt for any ϖ ∈ L2(0, T ;X),

(4.23)
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∫ T

0

((wεk)′(t) + g(wεk(t))− uεk(t), wεk(t)− zk(t))Hdt

+κ

∫ T

0

V εk(wεk(t))dt− κ

∫ T

0

V εk(zk(t))dt ≤ 0,

(4.24)

and
uεk(0) = uεk0 in X ′ and wεk(0) = wεk

0 in H. (4.25)

Therefore, from (4.5)–(4.8), (4.20)–(4.25), the Mosco convergence of V̂ ε(·), and the Lebesgue
dominated convergence theorem, we observe that:∫ T

0

⟨u′(t), ϖ(t)⟩dt+
∫ T

0

(w′(t), ϖ(t))Hdt+

∫ T

0

⟨Fu(t), ϖ(t)⟩dt

=

∫ T

0

(a0f(t), ϖ(t))Hdt+

∫ T

0

(a1h(t) + n0b1)ϖ(t, 0)dt

+

∫ T

0

(a2ℓ(t) + n0b2)ϖ(t, L)dt for any ϖ ∈ L2(0, T ;X),

(4.26)

∫ T

0

(w′(t) + g(w(t))− u(t), w(t)− z(t))Hdt

+κ

∫ T

0

V 0(w(t))dt− κ

∫ T

0

V 0(z(t))dt ≤ 0

for any z ∈ L2(0, T ;H) with V 0(z) ∈ L1(0, T ),

(4.27)

and
u(0) = u0 in X ′ and w(0) = w0 in H. (4.28)

Thus, we conclude from (4.20), (4.21), and (4.26)–(4.28) that [u,w] is a unique solution to
(P;u0, w0, f, h, ℓ)

0 on [0, T ], whence (4.9) holds without extracting any subsequence from
{ε}ε∈(0,1]. Thus, the proof of Theorem 4.1 has been completed.

By the slight modification of the proof of Theorem 4.1, we have the following conver-
gence result of solutions to (P;u0, w0, f, h, ℓ)

ε on [0, T ] for the fixed parameter ε ∈ [0, 1].

Corollary 4.2 (cf. [6], [18, Appendix]). Assume (A1), (A2), and (A3). Let ε ∈ [0, 1]
be a fixed parameter, and let [f, h, ℓ] ∈ U , u0 ∈ H, and w0 ∈ D(V ε). Also, let
{[fn, hn, ℓn]}n∈N ⊂ U , {u0n}n∈N ⊂ H, and {w0n}n∈N ⊂ D(V ε). Furthermore, suppose
that

fn → f weakly in L2(0, T ;H),

hn → h weakly in L2(0, T ),

ℓn → ℓ weakly in L2(0, T ),

u0n → u0 in X ′, w0n → w0 in H, and V ε(w0n) → V ε(w0)

as n → ∞. Then, the sequence of solutions [un, wn] to (P;u0n, w0n, fn, hn, ℓn)
ε converges

to the solution [u,w] to (P;u0, w0, f, h, ℓ)
ε in the following sense:

[un, wn] −→ [u,w] in L2(0, T ;H)× C([0, T ];H) as n→ ∞.
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5 Optimal control to (OP)ε

In this section, we consider a class of approximate optimal control problems (OP)ε. In-
deed, we prove the following main result, which is concerned with the existence of an
optimal control to (OP)ε for each ε ∈ [0, 1] and the relationship between the limits (ω-
limit points) of sequences of approximate optimal pairs and the optimal pairs of the
limiting problem (OP)0.

Theorem 5.1. Suppose (A1)–(A4). Then, the following two statements hold.

(I) Let ε ∈ [0, 1], uε0 ∈ H, and wε
0 ∈ D(V ε). Then, the problem (OP)ε has at least one

optimal control [f ε
∗ , h

ε
∗, ℓ

ε
∗] ∈ U , so that:

Jε(f ε
∗ , h

ε
∗, ℓ

ε
∗) = inf

[f,h,ℓ]∈U
Jε(f, h, ℓ).

(II) Assume u0 ∈ H, {uε0}ε∈(0,1] ⊂ H, w0 ∈ D(V 0), {wε
0}ε∈(0,1] ⊂ D(V ε),

uε0 → u0 in X ′, wε
0 → w0 in H, and V ε(wε

0) −→ V 0(w0) as ε→ 0. (5.1)

Let [f ε
∗ , h

ε
∗, ℓ

ε
∗] ∈ U be the optimal control of (OP)ε obtained in (I). In addition, let

[uε∗, w
ε
∗] be the unique solution to (P;uε0, wε

0, f
ε
∗ , h

ε
∗, ℓ

ε
∗)

ε on [0, T ]. Then, there exist a
subsequence {εk}k∈N ⊂ {ε}ε∈(0,1], the triplet of functions [f∗∗, h∗∗, ℓ∗∗] ∈ U , and the
unique solution [u∗∗, w∗∗] to (P;u0, w0, f∗∗, h∗∗, ℓ∗∗)

0 on [0, T ] such that [f∗∗, h∗∗, ℓ∗∗]
is the optimal control of (OP)0, εk → 0,

f εk
∗ → f∗∗ weakly in L2(0, T ;H), (5.2)
hεk∗ → h∗∗ weakly in L2(0, T ), (5.3)
ℓεk∗ → ℓ∗∗ weakly in L2(0, T ), (5.4)

and
[uεk∗ , w

εk
∗ ] −→ [u∗∗, w∗∗] in L2(0, T ;H)× C([0, T ];H) (5.5)

as k → ∞.

Proof. By Corollary 4.2 and taking a minimizing sequence {[fn, hn, ℓn]}n∈N ⊂ U so that

lim
n→∞

Jε(fn, hn, ℓn) = inf
[f,h,ℓ]∈U

Jε(f, h, ℓ),

we can prove (I). Such an argument is quite standard, thus, we omit the detailed proof of
(I).

Next, let us prove (II), which is concerned with the relationship between the optimal
control problems (OP)ε and (OP)0. To this end, let us fix any sequence {[f ε

∗ , h
ε
∗, ℓ

ε
∗]}ε∈(0,1] ⊂

U of the optimal controls [f ε
∗ , h

ε
∗, ℓ

ε
∗] to (OP)ε for ε ∈ (0, 1]. Let [f, h, ℓ] be any function

in U . In addition, let [uε, wε] be a unique solution to (P;uε0, wε
0, f, h, ℓ)

ε on [0, T ], and let
[u,w] be a unique solution to (P;u0, w0, f, h, ℓ)

0 on [0, T ]. Then, we observe from Theorem
4.1 with (5.1) that

[uε, wε] −→ [u,w] in L2(0, T ;H)× C([0, T ];H) as ε→ 0. (5.6)
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Since [f ε
∗ , h

ε
∗, ℓ

ε
∗] is the optimal control to (OP)ε, we observe that

Jε(f ε
∗ , h

ε
∗, ℓ

ε
∗) ≤ Jε(f, h, ℓ)

=
c0
2

∫ T

0

|(uε − ud)(t)|2H dt+
c1
2

∫ T

0

|(wε − wd)(t)|2H dt

+
m0

2

∫ T

0

a20|f(t)|2H dt

+
m1

2

∫ T

0

a21|h(t)|2 dt+
m2

2

∫ T

0

a22|ℓ(t)|2 dt.

(5.7)

Clearly, it follows from (1.16), (5.6), and (5.7) that {[f ε
∗ , h

ε
∗, ℓ

ε
∗]}ε∈(0,1] is bounded in U

with respect to ε ∈ (0, 1]. Therefore, there are a subsequence {εk}k∈N ⊂ {ε}ε∈(0,1] and the
triplet of functions [f∗∗, h∗∗, ℓ∗∗] ∈ U such that εk → 0,

f εk
∗ → f∗∗ weakly in L2(0, T ;H), (5.8)

hεk∗ → h∗∗ weakly in L2(0, T ), (5.9)
ℓεk∗ → ℓ∗∗ weakly in L2(0, T ) (5.10)

as k → ∞.
Let [uεk∗ , w

εk
∗ ] be a unique solution to (P;uεk0 , w

εk
0 , f

εk
∗ , h

εk
∗ , ℓ

εk
∗ )εk on [0, T ]. Then, from

Theorem 4.1 with (5.1) and (5.8)–(5.10), we infer that [uεk∗ , w
εk
∗ ] converges to the unique

solution [u∗∗, w∗∗] to (P;u0, w0, f∗∗, h∗∗, ℓ∗∗)
0 on [0, T ] in the sense that

[uεk∗ , w
εk
∗ ] −→ [u∗∗, w∗∗] in L2(0, T ;H)× C([0, T ];H) as k → ∞, (5.11)

hence, the convergence (5.5) holds.
Now, by using (5.6)–(5.11) and the weak lower semicontinuity of L2-norm, we see that

J0(f∗∗, h∗∗, ℓ∗∗) ≤ lim inf
k→∞

Jεk(f εk
∗ , h

εk
∗ , ℓ

εk
∗ ) ≤ lim

k→∞
Jεk(f, h, ℓ) = J0(f, h, ℓ).

Since [f, h, ℓ] is any function in U , we infer from the above inequality that [f∗∗, h∗∗, ℓ∗∗] is
the optimal control to (OP)0. Hence, the assertion (II) of Theorem 5.1 holds. Thus, the
proof of Theorem 5.1 has been completed.

Remark 5.1. Unfortunately, Theorem 5.1 does not cover the uniqueness of optimal
controls. Although Hoffmann–Jiang [21] reported the uniqueness of optimal controls for
a regular Fix–Caginalp system, their technique is not applicable to our problem (OP)ε
because of the nonlinear terms aε(wx) and Kε(w). Therefore, the uniqueness question of
optimal controls to (OP)ε is still open.

Remark 5.2. Theorem 5.1(II) shows that the weak limit function of optimal control of
(OP)ε is an optimal control for (OP)0. Note that we can approximate any optimal control
of (OP)0 by considering the following approximate control problems:
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(⋆) Let α > 0 be a fixed constant. In addition, let [f∗, h∗, ℓ∗] ∈ U be any optimal
control of (OP)0 obtained in Theorem 5.1(I). Then, for each ε ∈ (0, 1], we consider
the following approximate optimal control problem:

Problem (OP)εα . Find a triplet of control functions [f ε
∗ , h

ε
∗, ℓ

ε
∗] ∈ U , called optimal

control, such that
Jε
α(f

ε
∗ , h

ε
∗, ℓ

ε
∗) = inf

[f,h,ℓ]∈U
Jε
α(f, h, ℓ).

Here, Jε
α(f, h, ℓ) is the cost functional defined by

Jε
α(f, h, ℓ) :=

c0
2

∫ T

0

|(uε − ud)(t)|2H dt+
c1
2

∫ T

0

|(wε − wd)(t)|2H dt

+
m0

2

∫ T

0

a20|f(t)|2H dt+
m1

2

∫ T

0

a21|h(t)|2 dt

+
m2

2

∫ T

0

a22|ℓ(t)|2 dt+
α

2

∫ T

0

|(f − f∗)(t)|2H dt

+
α

2

∫ T

0

|(h− h∗)(t)|2 dt+
α

2

∫ T

0

|(ℓ− ℓ∗)(t)|2 dt,

(5.12)

where [f, h, ℓ] ∈ U is the control, and a couple of functions [uε, wε] is a unique
solution to the state problem (P;uε0, wε

0, f, h, ℓ)
ε.

Then, by arguments similar to those in [45, Theorem 3.3(II)], we can prove that there is
a subsequence {εk}k∈N ⊂ {ε}ε∈(0,1] such that εk → 0,

f εk
∗ → f∗ in L2(0, T ;H), hεk∗ → h∗ in L2(0, T ), ℓεk∗ → ℓ∗ in L2(0, T ),

and
[uεk∗ , w

εk
∗ ] −→ [u∗, w∗] in L2(0, T ;H)× C([0, T ];H)

as k → ∞, where [uεk∗ , w
εk
∗ ] is a unique solution to (P;uεk0 , w

εk
0 , f

εk
∗ , h

εk
∗ , ℓ

εk
∗ )εk and [u∗, w∗]

is a unique solution to (P;u0, w0, f∗, h∗, ℓ∗)
0 on [0, T ].

6 Optimality condition for (OP)ε with ε > 0

In this section we show the necessary condition of an optimal pair [uε∗, w
ε
∗, f

ε
∗ , h

ε
∗, ℓ

ε
∗] to

(OP)ε with ε > 0, where [uε∗, w
ε
∗] is the unique solution to (P;uε0, wε

0, f
ε
∗ , h

ε
∗, ℓ

ε
∗)

ε, and
[f ε

∗ , h
ε
∗, ℓ

ε
∗] ∈ U is the optimal control to (OP)ε obtained in Theorem 5.1(I).

Theorem 6.1. Suppose the same conditions as in Theorem 5.1. Additionally, assume

(A5) {âε}ε∈(0,1] ⊂ C2(R) is a sequence of convex functions and C2-regularizations for
â0(·) := | · |. Moreover, there exists a positive constant δ3, independent of ε ∈ (0, 1],
such that

0 ≤ (âε)′′(r) ≤ δ3
ε

for any r ∈ R.
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(A6) g is a C1 function on R.

For the fixed number ε ∈ (0, 1], let uε0 ∈ H, wε
0 ∈ D(V ε), and let [f ε

∗ , h
ε
∗, ℓ

ε
∗] ∈ U be the

optimal control to (OP)ε obtained in Theorem 5.1(I). In addition, let [uε∗, wε
∗] be the unique

solution to (P;uε0, wε
0, f

ε
∗ , h

ε
∗, ℓ

ε
∗)

ε on [0, T ]. Then, there exists a unique solution [pε, qε] to
the adjoint equation on [0, T ] as follows:

pε ∈ W 1,2(0, T ;H) ∩ L∞(0, T ;X), (6.1)

qε ∈ W 1,2(0, T ;X ′) ∩ L2(0, T ;X) ⊂ C([0, T ];H), (6.2)

− (pε)′ − pεxx − qε = c0(u
ε
∗ − ud) in Q, (6.3)∫ T

0

(−(pε)′(τ), ζ(τ))Hdτ +

∫ T

0

⟨−(qε)′(τ), ζ(τ)⟩dτ

+κ

∫ T

0

(((aε)′((wε
∗)x(τ)) + ε)qεx(τ), ζx(τ))H dτ

+

∫ T

0

((Kε)′(wε
∗(τ))q

ε(τ), ζ(τ))H dτ +

∫ T

0

(g′(wε
∗(τ))q

ε(τ), ζ(τ))H dτ

= c1

∫ T

0

((wε
∗ − wd)(τ), ζ(τ))H dτ for all ζ ∈ L2(0, T ;X),

(6.4)

− pεx(t, 0) + n0p
ε(t, 0) = pεx(t, L) + n0p

ε(t, L) = 0, t ∈ (0, T ), (6.5)

pε(T, x) = qε(T, x) = 0, x ∈ (0, L), (6.6)

where (aε)′(·) and g′(·) are the derivatives of aε(·) and g(·), respectively. Moreover, pε
satisfies the following equations:

a0(p
ε +m0a0f

ε
∗ ) = 0 in L2(0, T ;H), (6.7)

a1(p
ε(·, 0) +m1a1h

ε
∗) = 0 in L2(0, T ), (6.8)

a2(p
ε(·, L) +m2a2ℓ

ε
∗) = 0 in L2(0, T ). (6.9)

We prove Theorem 6.1 by showing the result of Gâteaux differentiability of the cost
functional Jε(·, ·, ·). To this end, we fix ε ∈ (0, 1] and the initial data [uε0, w

ε
0] ∈ H×D(V ε).

Then, we define the solution operator Λε to (P;uε0, wε
0, f, h, ℓ)

ε as follows.

Definition 6.1. (I) We denote by Λε : U → L2(0, T ;H)×L2(0, T ;H) a solution operator
to (P;uε0, wε

0, f, h, ℓ)
ε that assigns to any control [f, h, ℓ] ∈ U the unique solution [uε, wε] :=

Λε(f, h, ℓ) to the state system (P;uε0, wε
0, f, h, ℓ)

ε.
(II) Let [f ε

∗ , h
ε
∗, ℓ

ε
∗] ∈ U be the optimal control to (OP)ε. Then, [uε∗, w

ε
∗, f

ε
∗ , h

ε
∗, ℓ

ε
∗] =

[Λε(f ε
∗ , h

ε
∗, ℓ

ε
∗), f

ε
∗ , h

ε
∗, ℓ

ε
∗] is called the optimal pair to the optimal control problem (OP)ε.

For a moment, we often omit the superscript ε ∈ (0, 1].
At first, we show the Gâteaux differentiability of Λε and Jε. For any λ ∈ [−1, 1] \ {0},

any [f, h, ℓ] ∈ U , and any [f̌ , ȟ, ℓ̌] ∈ U , we put [uλ, wλ] := Λε(f + λf̌ , h + λȟ, ℓ + λℓ̌),
[u,w] := Λε(f, h, ℓ), θλ := uλ−u

λ
, and χλ := wλ−w

λ
.
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Note that the pair of functions [θλ, χλ] satisfies the following system:

⟨θ′λ(t), z⟩+ ⟨χ′
λ(t), z⟩+ ((θλ)x(t), zx)H + n0θλ(t, 0)z(0) + n0θλ(t, L)z(L)

= (a0f̌(t), z)H + a1ȟ(t)z(0) + a2ℓ̌(t)z(L),

a.a. t ∈ (0, T ), for all z ∈ X;
(6.10)

⟨χ′
λ(t), z⟩+ κ(aελ(t)(χλ)x(t), zx)H +

(
K

ε

λ(t)χλ(t), z
)
H
+ (gλ(t)χλ(t), z)H = (θλ(t), z)H ,

a.a. t ∈ (0, T ), for all z ∈ X; (6.11)

θλ(0, x) = χλ(0, x) = 0, a.a. x ∈ (0, L), (6.12)

where notations aελ, Kε

λ, and gλ are functions on Q, given as:

aελ(t, x) =

∫ 1

0

(aε)′(wx(t, x) + s((wλ)x(t, x)− wx(t, x)))ds+ ε;

K
ε

λ(t, x) =

∫ 1

0

(Kε)′(w(t, x) + s(wλ(t, x)− w(t, x)))ds;

gλ(t, x) =

∫ 1

0

g′ (w(t, x) + s(wλ(t, x)− w(t, x))) ds;

for (t, x) ∈ Q, with use of the derivatives (aε)′, (Kε)′, and g′ of the single-valued functions.
Now, we give the uniform estimate of solutions [θλ, χλ] to (6.10)–(6.12) with respect

to λ ∈ [−1, 1] \ {0}.

Lemma 6.1. Suppose all the same conditions in Theorem 6.1. Then, there is a positive
number N5 > 0, dependent on ε, T, κ, n0 and independent of λ, such that

sup
0≤t≤T

|θλ(t)|2H +

∫ T

0

|θ′λ(t)|2X′dt+

∫ T

0

|θλ(t)|2Xdt

+ sup
0≤t≤T

|χλ(t)|2H +

∫ T

0

|χ′
λ(t)|2X′dt+

∫ T

0

|χλ(t)|2Xdt

≤ N5

(
a20|f̌ |2L2(0,T ;H) + a21|ȟ|2L2(0,T ) + a22|ℓ̌|2L2(0,T )

) (6.13)

for any [f̌ , ȟ, ℓ̌] ∈ U .

Proof. Clearly, we observe from (A1) and (A5) that (âε)′(·) = aε(·) ∈ C1(R) and

0 ≤ (aε)′(r) ≤ δ3
ε

for any r ∈ R. (6.14)

In addition, from the definitions of Kε in (1.9) we infer that

0 ≤ K
ε

λ(t, x) ≤
1

ε
, a.a. (t, x) ∈ Q. (6.15)
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Here, from the boundedness (3.5) of solutions to (P;f, h, ℓ)ε, we note that

sup
0≤t≤T

|w(t)|2H + sup
0≤t≤T

|wλ(t)|2H + κ sup
0≤t≤T

V ε(w(t)) + κ sup
0≤t≤T

V ε(wλ(t))

≤ N6

(
|uε0|2H + |wε

0|2H + κV ε(wε
0) +

∫ L

0

ĝ(wε
0(x))dx

+a20|f |2L2(0,T ;H) + a21|h|2L2(0,T ) + a22|ℓ|2L2(0,T )

+a20|f̌ |2L2(0,T ;H) + a21|ȟ|2L2(0,T ) + a22|ℓ̌|2L2(0,T ) + b21 + b22

)
,

(6.16)

where N6 > 0 is a positive constant independent of λ ∈ [−1, 1]\{0}. Since the embedding
BV (0, L) ↪→ L∞(0, L) is continuous (cf. Proposition 2.3), we infer from (6.16) that

sup
0≤t≤T

|w(t)|2L∞(0,L) + sup
0≤t≤T

|wλ(t)|2L∞(0,L)

≤ N ′
6

(
|uε0|2H + |wε

0|2H + κV ε(wε
0) +

∫ L

0

ĝ(wε
0(x))dx

+a20|f |2L2(0,T ;H) + a21|h|2L2(0,T ) + a22|ℓ|2L2(0,T )

+a20|f̌ |2L2(0,T ;H) + a21|ȟ|2L2(0,T ) + a22|ℓ̌|2L2(0,T ) + b21 + b22

)
,

(6.17)

for some positive constant N ′
6 independent of λ ∈ [−1, 1] \ {0} (cf. (4.18)). Thus, by

(6.17), we find a positive constant N7, independent of λ ∈ [−1, 1] \ {0}, such that

sup
0≤t≤T

|gλ(t)|L∞(0,L) ≤ N7, for all λ ∈ [−1, 1] \ {0}. (6.18)

Now, we show a priori estimate (6.13). Taking account of (6.14)–(6.18), we can get
the following estimate:

sup
0≤t≤T

|θλ(t)|2H +

∫ T

0

|θλ(t)|2Xdt+ sup
0≤t≤T

|χλ(t)|2H +

∫ T

0

|χλ(t)|2Xdt

≤ N8

(
a20|f̌ |2L2(0,T ;H) + a21|ȟ|2L2(0,T ) + a22|ℓ̌|2L2(0,T )

)
,

(6.19)

where N8 > 0 is some positive constant, dependent on ε, T, κ, n0 and independent of
λ ∈ [−1, 1] \ {0}. In fact, taking the sum of (6.10) with z = θλ, (6.11) with z = θλ,
and (6.11) with z = κ

ε
( δ3
ε
+ ε)2χλ, and applying the Gronwall-type inequality (e.g., [23,

Proposition 0.4.1]), we get (6.19). Such calculations are standard one, so we omit the
detailed arguments (cf. (8.34) in Lemma 8.1).

By using (6.14), (6.15), and (6.18), we infer from (6.11) that∣∣∣∣∫ T

0

⟨χ′
λ(t), ζ(t)⟩dt

∣∣∣∣ ≤ N9

(
|χλ|L2(0,T ;X) + |θλ|L2(0,T ;H)

)
|ζ|L2(0,T ;X)

for any ζ ∈ L2(0, T ;X),
(6.20)

where N9 > 0 is some positive constant, dependent on ε, κ and independent of λ ∈
[−1, 1] \ {0}. Hence, we infer from (6.19) and (6.20) that

|χ′
λ|L2(0,T ;X′) ≤ N ′

9

(
|a0||f̌ |L2(0,T ;H) + |a1||ȟ|L2(0,T ) + |a2||ℓ̌|L2(0,T )

)
(6.21)
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for some positive constant N ′
9 > 0, dependent on ε, T, κ, n0 and independent of λ ∈

[−1, 1] \ {0}.
Similarly, we infer from (6.10), (6.19), and (6.21) that

|θ′λ|L2(0,T ;X′) ≤ N10

(
|a0||f̌ |L2(0,T ;H) + |a1||ȟ|L2(0,T ) + |a2||ℓ̌|L2(0,T )

)
(6.22)

for some positive constant N10 > 0, dependent on ε, T, κ, n0 and independent of λ ∈
[−1, 1] \ {0}.

By (6.19), (6.21), and (6.22), we get the boundedness (6.13). Thus, the proof of
Lemma 6.1 has been completed.

Now, let us mention the result of the Gâteaux differentiability of Λε and Jε.

Proposition 6.1. Assume the same conditions in Theorem 6.1. Then, the following two
statements hold.

(I) The solution operator Λε admits the Gâteaux derivative at any [f, h, ℓ] ∈ U . More pre-
cisely, for arbitrary [f, h, ℓ] ∈ U , there exists a pair of functions [θ, χ] ∈ L2(0, T ;H)×
L2(0, T ;H) such that:

D[f̌ ,ȟ,ℓ̌]Λ
ε(f, h, ℓ) := lim

λ→0

Λε(f + λf̌ , h+ λȟ, ℓ+ λℓ̌)− Λε(f, h, ℓ)

λ
= [θ, χ]

for all direction [f̌ , ȟ, ℓ̌] ∈ U ,
(6.23)

θ ∈ W 1,2(0, T ;X ′) ∩ L2(0, T ;X) ⊂ C([0, T ];H), (6.24)

χ ∈ W 1,2(0, T ;X ′) ∩ L2(0, T ;X) ⊂ C([0, T ];H), (6.25)

and [θ, χ] solves the following linear system:

⟨θ′(t), z⟩+ ⟨χ′(t), z⟩+ (θx(t), zx)H + n0 (θ(t, 0)z(0) + θ(t, L)z(L))

= (a0f̌(t), z)H + a1ȟ(t)z(0) + a2ℓ̌(t)z(L),

a.a. t ∈ (0, T ), for all z ∈ X;
(6.26)

⟨χ′(t), z⟩+ κ (((aε)′(wx(t)) + ε)χx(t), zx)H + ((Kε)′(w(t))χ(t), z)H

+(g′(w(t))χ(t), z)H = (θ(t), z)H ,

a.a. t ∈ (0, T ), for all z ∈ X;
(6.27)

θ(0, x) = χ(0, x) = 0, a.a. x ∈ (0, L). (6.28)

(II) The cost function Jε admits the Gâteaux derivative at any [f, h, ℓ] ∈ U . More
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precisely,

D[f̌ ,ȟ,ℓ̌]J
ε(f, h, ℓ) := lim

λ→0

Jε(f + λf̌ , h+ λȟ, ℓ+ λℓ̌)− Jε(f, h, ℓ)

λ

= c0

∫ T

0

((u− ud)(t), θ(t))Hdt+ c1

∫ T

0

((w − wd)(t), χ(t))Hdt

+m0a
2
0

∫ T

0

(f(t), f̌(t))Hdt

+m1a
2
1

∫ T

0

h(t)ȟ(t)dt+m2a
2
2

∫ T

0

ℓ(t)ℓ̌(t)dt

(6.29)
for any [f, h, ℓ] ∈ U and any direction [f̌ , ȟ, ℓ̌] ∈ U , where [u,w] = Λε(f, h, ℓ) is the
solution to (P;uε0, wε

0, f, h, ℓ)
ε, ud and wd are the given target profiles in L2(0, T ;H),

and [θ, χ](= D[f̌ ,ȟ,ℓ̌]Λ
ε(f, h, ℓ)) is the pair of functions obtained in the assertion (I).

Proof. At first, we show (I). To this end, we put [uλ, wλ] := Λε(f + λf̌ , h + λȟ, ℓ + λℓ̌),
[u,w] := Λε(f, h, ℓ), θλ := uλ−u

λ
, and χλ := wλ−w

λ
for all [f, h, ℓ] ∈ U , [f̌ , ȟ, ℓ̌] ∈ U , and

λ ∈ [−1, 1] \ {0}. Then, by the uniform estimate (6.13) of [θλ, χλ], there is a subse-
quence {λn}n∈N ⊂ {λ}λ∈[−1,1]\{0} and the functions θ, χ ∈ W 1,2(0, T ;X ′) ∩ L2(0, T ;X) ⊂
C([0, T ];H) such that λn → 0,

θλn → θ in C([0, T ];X ′),
in L2(0, T ;H),
weakly in W 1,2(0, T ;X ′),
weakly in L2(0, T ;X),
weakly-∗ in L∞(0, T ;H),

 (6.30)

χλn → χ in C([0, T ];X ′),
in L2(0, T ;H),
weakly in W 1,2(0, T ;X ′),
weakly in L2(0, T ;X),
weakly-∗ in L∞(0, T ;H),

 (6.31)

as n→ ∞, and

sup
0≤t≤T

|θ(t)|2H +

∫ T

0

|θ′(t)|2X′dt+

∫ T

0

|θ(t)|2Xdt

+ sup
0≤t≤T

|χ(t)|2H +

∫ T

0

|χ′(t)|2X′dt+

∫ T

0

|χ(t)|2Xdt

≤ N5

(
a20|f̌ |2L2(0,T ;H) + a21|ȟ|2L2(0,T ) + a22|ℓ̌|2L2(0,T )

)
,

(6.32)

where N5 is the same constant as in Lemma 6.1.
Now, let us show a pair of the limit functions [θ, χ] of [θλn , χλn ] satisfies (6.26)–(6.28).

To this end, note from (6.13) that
|wλ − w|L2(0,T ;X) = λ|χλ|L2(0,T ;X)

≤ λN
1
2
5

(
|a0||f̌ |L2(0,T ;H) + |a1||ȟ|L2(0,T ) + |a2||ℓ̌|L2(0,T )

)
→ 0 as λ→ 0.

(6.33)
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So, taking a subsequence if necessary, we see from the definition of functions aελ, Kε

λ, gλ
(λ ∈ [−1, 1] \ {0}) and continuity of functions (aε)′, (Kε)′, and g′(·) that

aελn
(t, x) → (aε)′(wx(t, x)) + ε,

K
ε

λn
(t, x) → (Kε)′(w(t, x)),

gλn
(t, x) → g′(w(t, x)),

a.a. (t, x) ∈ Q, in the pointwise sense, as n→ ∞.

Here, let us fix arbitrary 0 ≤ t0 < t1 ≤ T . Since functions aελ, Kε

λ and gλ (λ ∈
[−1, 1] \ {0}) are respectively bounded in senses of (6.14), (6.15), and (6.18), we can
apply the Lebesgue dominated convergence theorem to show that

aελn
→ (aε)′(wx) + ε,

K
ε

λn
→ (Kε)′(w),

gλn
→ g′(w),

in L2(t0, t1;H), as n→ ∞. (6.34)

Combining (6.30), (6.31), (6.32), and (6.34), it is deduced that:

θλn → θ weakly in L2(t0, t1;X), (6.35)

θ′λn
→ θ′ weakly in L2(t0, t1;X

′), (6.36)
χλn → χ weakly in L2(t0, t1;X), (6.37)
χ′
λn

→ χ′ weakly in L2(t0, t1;X
′), (6.38)

and 
aελn

(χλn)x → ((aε)′(wx) + ε)χx,

K
ε

λn
χλn → (Kε)′(w)χ,

gλn
χλn → g′(w)χ,

weakly in L2(t0, t1;H) (6.39)

as n→ ∞.
Here, note from (6.10) and (6.11) that∫ t1

t0

⟨θ′λn
(t), z⟩dt+

∫ t1

t0

⟨χ′
λn
(t), z⟩dt+

∫ t1

t0

((θλn)x(t), zx)H dt

+n0

∫ t1

t0

θλn(t, 0)z(0)dt+ n0

∫ t1

t0

θλn(t, L)z(L)dt

=

∫ t1

t0

(a0f̌(t), z)Hdt+

∫ t1

t0

a1ȟ(t)z(0)dt+

∫ t1

t0

a2ℓ̌(t)z(L)dt

for all z ∈ X and n = 1, 2, 3, · · ·

(6.40)

and ∫ t1

t0

⟨χ′
λn
(t), z⟩dt+ κ

∫ t1

t0

(aελn
(t)(χλn)x(t), zx)Hdt+

∫ t1

t0

(K
ε

λn
(t)χλn(t), z)Hdt

+

∫ t1

t0

(gλn
(t)χλn(t), z)Hdt =

∫ t1

t0

(θλn(t), z)Hdt

for all z ∈ X and n = 1, 2, 3, · · · .
(6.41)
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On account of (6.35)–(6.39), we obtain the variational form (6.26) (resp. (6.27)) by taking
the limits in (6.40) (resp. (6.41)) as n→ ∞.

On the other hand, by (6.30) and (6.31),
θ(0, ·) = lim

n→∞
θλn(0, ·) = 0 (∈ H) in X ′,

χ(0, ·) = lim
n→∞

χλn(0, ·) = 0 (∈ H) in X ′,

which implies (6.28).
Furthermore, by the usual method with helps from the facts that (aε)′ ≥ 0 (on R),

(Kε)′ ≥ 0 (on R), and g′(w) +Cg ≥ 0, a.e. in Q, we easily prove that the solutions to the
Cauchy problem {(6.26)–(6.28)} are uniquely determined within (6.24)–(6.25). Hence, the
uniqueness of solution to {(6.26)–(6.28)} guarantees that of cluster points of the sequence
[θλ, χλ] as λ→ 0. Namely:
(∗) [θλ, χλ] originally converges to the unique solution [θ, χ] to {(6.26)–(6.28)} in the

senses as in (6.30)–(6.31), as λ→ 0, and hence the operator X[f,h,ℓ] : U → L2(0, T ;H)×
L2(0, T ;H), defined by X[f,h,ℓ](f̌ , ȟ, ℓ̌) := D[f̌ ,ȟ,ℓ̌]Λ

ε(f, h, ℓ) for all direction [f̌ , ȟ, ℓ̌] ∈
U , is well-defined.

Now, on account of the linearity inherent in (6.26)–(6.27) and the estimate (6.32), we
observe that each operator X[f,h,ℓ] ([f, h, ℓ] ∈ U) is a bounded and linear operator from U
into L2(0, T ;H) × L2(0, T ;H), and hence, the solution operator Λε admits the Gâteaux
derivative at any [f, h, ℓ] ∈ U . Thus, we conclude the assertion (I) of this proposition.

Next, we show (II). The Gâteaux differentiability of the cost function Jε will be a
direct consequence of the assertion (I). In fact, note from (6.13) that

|uλ − u|L2(0,T ;X) = λ|θλ|L2(0,T ;X)

≤ λN
1
2
5

(
|a0||f̌ |L2(0,T ;H) + |a1||ȟ|L2(0,T ) + |a2||ℓ̌|L2(0,T )

)
→ 0 as λ→ 0.

(6.42)

Then, by virtue of (6.33), (6.42), and (∗), it is computed that
D[f̌ ,ȟ,ℓ̌]J

ε(f, h, ℓ)

:= lim
λ→0

Jε(f + λf̌ , h+ λȟ, ℓ+ λℓ̌)− Jε(f, h, ℓ)

λ

= lim
λ→0

{
c0
2

∫ T

0

((uλ + u− 2ud)(t), θλ(t))Hdt+
c1
2

∫ T

0

((wλ + w − 2wd)(t), χλ(t))Hdt

+
m0a

2
0

2

∫ T

0

((2f + λf̌)(t), f̌(t))Hdt

+
m1a

2
1

2

∫ T

0

(2h+ λȟ)(t)ȟ(t)dt+
m2a

2
2

2

∫ T

0

(2ℓ+ λℓ̌)(t)ℓ̌(t)dt

}
= c0

∫ T

0

((u− ud)(t), θ(t))Hdt+ c1

∫ T

0

((w − wd)(t), χ(t))Hdt

+m0a
2
0

∫ T

0

(f(t), f̌(t))Hdt+m1a
2
1

∫ T

0

h(t)ȟ(t)dt+m2a
2
2

∫ T

0

ℓ(t)ℓ̌(t)dt



526

for any [f, h, ℓ] ∈ U and any direction [f̌ , ȟ, ℓ̌] ∈ U .
Clearly, we infer from (6.32) and (∗) that for any [f, h, ℓ] ∈ U , the functional:

[f̌ , ȟ, ℓ̌] ∈ U 7→ D[f̌ ,ȟ,ℓ̌]J
ε(f, h, ℓ)

will form a bounded linear functional on U . Hence, the cost functional Jε admits the
Gâteaux derivative at any [f, h, ℓ] ∈ U with the directional derivative as in (6.29).

Thus, the proof of Proposition 6.1 has been completed.

By taking account of Proposition 6.1, we can prove Theorem 6.1 concerning the nec-
essary condition of an optimal pair [uε∗, w

ε
∗, f

ε
∗ , h

ε
∗, ℓ

ε
∗] = [Λε(f ε

∗ , h
ε
∗, ℓ

ε
∗), f

ε
∗ , h

ε
∗, ℓ

ε
∗] to (OP)ε

with ε > 0.

Proof of Theorem 6.1. By using the Schauder fixed point theorem and the general results
by Ladyženskaja–Solonnikov–Ural’ceva [30, Chapter 3], we can get the unique solution
[pε, qε] to the adjoint equations (6.1)–(6.6).

Now, let [uε∗, w
ε
∗, f

ε
∗ , h

ε
∗, ℓ

ε
∗] = [Λε(f ε

∗ , h
ε
∗, ℓ

ε
∗), f

ε
∗ , h

ε
∗, ℓ

ε
∗] be the optimal pair to the prob-

lem (OP)ε with ε > 0. Let [θε∗, χε
∗] be the limit of Λε(fε

∗+λf̌ ,hε
∗+λȟ,ℓε∗+λℓ̌)−Λε(fε

∗ ,h
ε
∗,ℓ

ε
∗)

λ
as λ→ 0

in the sense of (6.23).
Since [f ε

∗ , h
ε
∗, ℓ

ε
∗] is a minimizer for Jε(·, ·, ·), we have

0 ≤ lim
λ→0

Jε(f ε
∗ + λf̌ , hε∗ + λȟ, ℓε∗ + λℓ̌)− Jε(f ε

∗ , h
ε
∗, ℓ

ε
∗)

λ

= c0

∫ T

0

((uε∗ − ud)(t), θ
ε
∗(t))Hdt+ c1

∫ T

0

((wε
∗ − wd)(t), χ

ε
∗(t))Hdt

+m0a
2
0

∫ T

0

(f ε
∗ (t), f̌(t))Hdt+m1a

2
1

∫ T

0

hε∗(t)ȟ(t)dt+m2a
2
2

∫ T

0

ℓε∗(t)ℓ̌(t)dt

=

∫ T

0

⟨−(pε)′(t), θε∗(t)⟩dt+
∫ T

0

(pεx(t), (θ
ε
∗)x(t))Hdt+ n0

∫ T

0

pε(t, 0)θε∗(t, 0)dt

+n0

∫ T

0

pε(t, L)θε∗(t, L)dt−
∫ T

0

(qε(t), θε∗(t))Hdt

+

∫ T

0

(−(pε)′(t), χε
∗(t))Hdt+

∫ T

0

⟨−(qε)′(t), χε
∗(t)⟩dt

+κ

∫ T

0

(((aε)′ ((wε
∗)x(t)) + ε)qεx(t), (χ

ε
∗)x(t))H dt+

∫ T

0

((Kε)′(wε
∗(t))q

ε(t), χε
∗(t))H dt

+

∫ T

0

(g′(wε
∗(t))q

ε(t), χε
∗(t))H dt

+m0a
2
0

∫ T

0

(f ε
∗ (t), f̌(t))Hdt+m1a

2
1

∫ T

0

hε∗(t)ȟ(t)dt+m2a
2
2

∫ T

0

ℓε∗(t)ℓ̌(t)dt

=

∫ T

0

⟨(θε∗)′(t), pε(t)⟩dt+
∫ T

0

((θε∗)x(t), p
ε
x(t))Hdt+ n0

∫ T

0

θε∗(t, 0)p
ε(t, 0)dt
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+n0

∫ T

0

θε∗(t, L)p
ε(t, L)dt−

∫ T

0

(qε(t), θε∗(t))Hdt

+

∫ T

0

⟨(χε
∗)

′(t), pε(t)⟩dt+
∫ T

0

⟨(χε
∗)

′(t), qε(t)⟩dt

+κ

∫ T

0

(((aε)′ ((wε
∗)x(t)) + ε)(χε

∗)x(t), q
ε
x(t))H dt+

∫ T

0

((Kε)′(wε
∗(t))χ

ε
∗(t), q

ε(t))H dt

+

∫ T

0

(g′(wε
∗(t))χ

ε
∗(t), q

ε(t))H dt

+m0a
2
0

∫ T

0

(f ε
∗ (t), f̌(t))Hdt+m1a

2
1

∫ T

0

hε∗(t)ȟ(t)dt+m2a
2
2

∫ T

0

ℓε∗(t)ℓ̌(t)dt

=

∫ T

0

(a0p
ε(t) +m0a

2
0f

ε
∗ (t), f̌(t))Hdt+

∫ T

0

(a1p
ε(t, 0) +m1a

2
1h

ε
∗(t))ȟ(t)dt

+

∫ T

0

(a2p
ε(t, L) +m2a

2
2ℓ

ε
∗(t))ℓ̌(t)dt

for any [f̌ , ȟ, ℓ̌] ∈ U . Here, we use the equations (6.3)–(6.6) and (6.26)–(6.28) for [pε, qε]
and [θε∗, χ

ε
∗], respectively. Since [f̌ , ȟ, ℓ̌] ∈ U is arbitrary, we infer from the inequality as

above that the equations in (6.7)–(6.9) hold. Thus, the proof of Theorem 6.1 has been
completed.

7 Optimality condition for (OP)0

In previous Section 6, we proved Theorem 6.1, which is concerned with the optimality
condition to the approximate problem (OP)ε with ε > 0. But, in general, it is difficult to
show the necessary condition of the optimal control to (OP)0, i.e., ε = 0, since (1.2) is the
singular diffusion equation with constraint ∂I[−1,1](·). Therefore, by using Theorem 6.1,
more precisely, by the limiting observation of (OP)ε as ε → 0, we derive the optimality
condition to (OP)0.

Now, we mention the main result in this paper, which is concerned with the necessary
condition of the optimal control to (OP)0

Theorem 7.1. Suppose that all the assumptions of Theorem 6.1 are fulfilled. Let u0 ∈ H,
w0 ∈ D(V 0), and let [f∗∗, h∗∗, ℓ∗∗] be the optimal control to (OP)0 obtained in Theorem
5.1(II). Let [u∗∗, w∗∗] be the unique solution to (P;u0, w0, f∗∗, h∗∗, ℓ∗∗)

0 on [0, T ]. Addition-
ally, let us set:

W := {z ∈ H1(Q) ; z(0, x) = 0, a.a. x ∈ (0, L)}.
Then, there are the functions p ∈ W 1,2(0, T ;H) ∩ L∞(0, T ;X), q ∈ L∞(0, T ;H), and an
element µ ∈ W ′ satisfying the following:

− p′ − pxx − q = c0(u∗∗ − ud) in Q, (7.1)∫ T

0

(−p′(τ), z(τ))Hdτ +
∫ T

0

(q(τ), z′(τ))Hdτ + ⟨µ, z⟩W ′,W +

∫ T

0

(g′(w∗∗(τ))q(τ), z(τ))Hdτ
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= c1

∫ T

0

((w∗∗ − wd)(τ), z(τ))Hdτ for all z ∈ W. (7.2)

− px(t, 0) + n0p(t, 0) = px(t, L) + n0p(t, L) = 0, t ∈ (0, T ), (7.3)
p(T, x) = 0, x ∈ (0, L). (7.4)

Moreover, p satisfies the following equations:

a0(p+m0a0f∗∗) = 0 in L2(0, T ;H), (7.5)

a1(p(·, 0) +m1a1h∗∗) = 0 in L2(0, T ), (7.6)
a2(p(·, L) +m2a2ℓ∗∗) = 0 in L2(0, T ). (7.7)

Proof. Let u0 ∈ H and w0 ∈ D(V 0). Then, note from (1.17) and Lemma 4.1 that we find
sequences {uε0}ε∈(0,1] ⊂ H and {wε

0}ε∈(0,1] ⊂ D(V ε) satisfying

uε0 → u0 in X ′, wε
0 → w0 in H, and V ε(wε

0) −→ V 0(w0) as ε→ 0. (7.8)

Now, let [f∗∗, h∗∗, ℓ∗∗] be the optimal control to (OP)0 obtained in Theorem 5.1(II).
Namely, there exists a subsequence of ε ∈ (0, 1] (which we also denote ε for simplicity)
such that [f ε

∗ , h
ε
∗, ℓ

ε
∗] is the optimal control to (OP)ε and

f ε
∗ → f∗∗ weakly in L2(0, T ;H), (7.9)

hε∗ → h∗∗ weakly in L2(0, T ), (7.10)
ℓε∗ → ℓ∗∗ weakly in L2(0, T ), (7.11)

and
[uε∗, w

ε
∗] −→ [u∗∗, w∗∗] in L2(0, T ;H)× C([0, T ];H) (7.12)

as ε → 0, where [uε∗, w
ε
∗] is the unique solution to (P;uε0, wε

0, f
ε
∗ , h

ε
∗, ℓ

ε
∗)

ε on [0, T ], and
[u∗∗, w∗∗] is the unique solution to (P;u0, w0, f∗∗, h∗∗, ℓ∗∗)

0 on [0, T ].
Now, by taking the limit with respect to ε, we prove Theorem 7.1. To this end, we

give a priori estimate of the solution [pε, qε] to the adjoint equations (6.3)–(6.6).
Now, we multiply (6.3) by pε. Then, by applying the Schwarz inequality, we have

−1

2

d

dτ
|pε(τ)|2H + |pεx(τ)|2H + n0|pε(τ, 0)|2 + n0|pε(τ, L)|2

≤ |pε(τ)|2H +
1

2
|qε(τ)|2H +

c20
2
|(uε∗ − ud)(τ)|2H , a.a. τ ∈ (0, T ).

(7.13)

By integrating (7.13) in τ over [T − t, T ] (t ∈ [0, T ]), we have

1

2
|pε(T − t)|2H +

∫ T

T−t

|pεx(τ)|2Hdτ

+n0

∫ T

T−t

|pε(τ, 0)|2dτ + n0

∫ T

T−t

|pε(τ, L)|2dτ

≤
∫ T

T−t

|pε(τ)|2Hdτ +
1

2

∫ T

T−t

|qε(τ)|2Hdτ +
c20
2

∫ T

T−t

|(uε∗ − ud)(τ)|2Hdτ

(7.14)
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for all t ∈ [0, T ].
Next, multiply (6.3) by −(pε)′. Then, by applying the Schwarz inequality, we get

1

2
|(pε)′(τ)|2H − 1

2

d

dτ

{
|pεx(τ)|2H + n0|pε(τ, 0)|2 + n0|pε(τ, L)|2

}
≤ |qε(τ)|2H + c20|(uε∗ − ud)(τ)|2H , a.a. τ ∈ (0, T ).

(7.15)

By integrating (7.15) in τ over [T − t, T ] (t ∈ [0, T ]), we have

1

2

∫ T

T−t

|(pε)′(τ)|2Hdτ +
1

2

{
|pεx(T − t)|2H + n0|pε(T − t, 0)|2 + n0|pε(T − t, L)|2

}
≤
∫ T

T−t

|qε(τ)|2Hdτ + c20

∫ T

T−t

|(uε∗ − ud)(τ)|2Hdτ, ∀t ∈ [0, T ]. (7.16)

Here, note that the pair of functions [pε, qε] satisfies the following variational identity
(cf. (6.4)):∫ T

T−t

(−(pε)′(τ), ζ(τ))Hdτ +

∫ T

T−t

⟨−(qε)′(τ), ζ(τ)⟩dτ

+ κ

∫ T

T−t

(((aε)′((wε
∗)x(τ)) + ε)qεx(τ), ζx(τ))H dτ +

∫ T

T−t

((Kε)′(wε
∗(τ))q

ε(τ), ζ(τ))H dτ

+

∫ T

T−t

(g′(wε
∗(τ))q

ε(τ), ζ(τ))H dτ (7.17)

=c1

∫ T

T−t

((wε
∗ − wd)(τ), ζ(τ))H dτ for all t ∈ [0, T ] and all ζ ∈ L2(T − t, T ;X).

Therefore, let us assign qε to the test function ζ as in (7.17). Then, by applying the
Schwarz inequality, we see that

1

2
|qε(T − t)|2H ≤ (2 + Cg)

∫ T

T−t

|qε(τ)|2Hdτ +
1

4

∫ T

T−t

|(pε)′(τ)|2Hdτ

+
c21
4

∫ T

T−t

|(wε
∗ − wd)(τ)|2Hdτ, ∀t ∈ [0, T ],

(7.18)

since aε and Kε are nondecreasing on R (cf. (6.14), (6.15)), and g′(wε
∗) + Cg ≥ 0, a.e. in

Q. Adding (7.14), (7.16), and (7.18), we have
1

2

{
|pε(T − t)|2H + |qε(T − t)|2H + |pεx(T − t)|2H + n0|pε(T − t, 0)|2 + n0|pε(T − t, L)|2

}
+

1

4

∫ T

T−t

|(pε)′(τ)|2Hdτ +
∫ T

T−t

|pεx(τ)|2Hdτ + n0

∫ T

T−t

|pε(τ, 0)|2dτ + n0

∫ T

T−t

|pε(τ, L)|2dτ

≤
∫ T

T−t

|pε(τ)|2Hdτ +
(
7

2
+ Cg

)∫ T

T−t

|qε(τ)|2Hdτ +
3c20
2

∫ T

T−t

|(uε∗ − ud)(τ)|2Hdτ (7.19)

+
c21
4

∫ T

T−t

|(wε
∗ − wd)(τ)|2Hdτ, ∀t ∈ [0, T ].
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Thus, by (7.12) and applying the Gronwall-type inequality (e.g., [23, Proposition 0.4.1])
to (7.19), we have∫ T

0

{
|pε(t)|2H + |qε(t)|2H + |pεx(t)|2H + n0|pε(t, 0)|2 + n0|pε(t, L)|2

}
dt

≤N11

(∫ T

0

|(u∗∗ − ud)(t)|2Hdt+
∫ T

0

|(w∗∗ − wd)(t)|2Hdt+ 1

)
(7.20)

for some constant N11 > 0, independent of ε ∈ (0, 1] and dependent on T . Hence, it
follows from (7.19) and (7.20) that

sup
0≤t≤T

{
|pε(t)|2H + |qε(t)|2H + |pεx(t)|2H + n0|pε(t, 0)|2 + n0|pε(t, L)|2

}
+

∫ T

0

|(pε)′(t)|2Hdt+
∫ T

0

|pεx(t)|2Hdt+ n0

∫ T

0

|pε(t, 0)|2dt+ n0

∫ T

0

|pε(t, L)|2dt

≤N12

(∫ T

0

|(u∗∗ − ud)(t)|2Hdt+
∫ T

0

|(w∗∗ − wd)(t)|2Hdt+ 1

)
(7.21)

for some constant N12 > 0, independent of ε ∈ (0, 1] and dependent on T .
Now, for any ε ∈ (0, 1], let us define a bounded and linear functional µε ∈ W ′ on W ,

by putting, for all ζ ∈ W ,

⟨µε, ζ⟩W ′,W :=

∫ T

0

{(κ((aε)′((wε
∗)x(t)) + ε)qεx(t), ζx(t))H + ((Kε)′(wε

∗(t))q
ε(t), ζ(t))H} dt.

Here, note from (3.5) and (7.8) that (cf. (4.18), (6.17)):

{wε
∗} is bounded in L∞(Q) uniformly in ε ∈ (0, 1]. (7.22)

In addition, we infer from (A6) snd (7.22) that (cf. (4.19), (6.18)):

{g′(wε
∗)} is bounded in L∞(Q) uniformly in ε ∈ (0, 1]. (7.23)

Then, on account of (6.6), (7.12), (7.17), and (7.21)–(7.23), there exists a positive constant
N13, independent of ε ∈ (0, 1], such that

|⟨µε, ζ⟩W ′,W | ≤
∣∣∣∣∫ T

0

((pε)′(t), ζ(t))H dt

∣∣∣∣+ ∣∣∣∣∫ T

0

⟨(qε)′(t), ζ(t)⟩dt
∣∣∣∣

+

∣∣∣∣∫ T

0

(g′(wε
∗(t))q

ε(t), ζ(t))H dt

∣∣∣∣+ ∣∣∣∣c1∫ T

0

((wε
∗ − wd)(t), ζ(t))H dt

∣∣∣∣
=

∣∣∣∣∫ T

0

((pε)′(t), ζ(t))H dt

∣∣∣∣+ ∣∣∣∣∫ T

0

(−qε(t), ζ ′(t))H dt
∣∣∣∣

+

∣∣∣∣∫ T

0

(g′(wε
∗(t))q

ε(t), ζ(t))H dt

∣∣∣∣+ ∣∣∣∣c1∫ T

0

((wε
∗ − wd)(t), ζ(t))H dt

∣∣∣∣
≤ N13

(
|u∗∗ − ud|L2(0,T ;H) + |w∗∗ − wd|L2(0,T ;H) + 1

)
|ζ|W

for any ζ ∈ W := {z ∈ H1(Q) ; z(0, x) = 0, a.a. x ∈ (0, L)}.
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Therefore, we get

|µε|W ′ ≤ N13

(
|u∗∗ − ud|L2(0,T ;H) + |w∗∗ − wd|L2(0,T ;H) + 1

)
(7.24)

for all ε ∈ (0, 1].
By the boundedness estimates (7.21) and (7.24), there are the functions p ∈ W 1,2(0, T ;H)∩

L∞(0, T ;X), q ∈ L∞(0, T ;H) and an element µ ∈ W ′ such that

pε → p in C([0, T ];H),
weakly in W 1,2(0, T ;H),
weakly-∗ in L∞(0, T ;X),

 (7.25)

qε → q weakly-∗ in L∞(0, T ;H), (7.26)
µε → µ weakly in W ′ (7.27)

as ε→ 0, by taking a subsequence if necessary.
Taking account of the convergence (7.9)–(7.12) and (7.25)–(7.27), we observe that the

equations (7.1)–(7.7) hold. In fact, the system {(6.3)–(6.6)} is equivalent to the following
variational identities:∫ T

0

(−(pε)′(t), ζ(t))Hdt+

∫ T

0

(pεx(t), ζx(t))Hdt+ n0

∫ T

0

pε(t, 0)ζ(t, 0)dt

+n0

∫ T

0

pε(t, L)ζ(t, L)dt−
∫ T

0

(qε(t), ζ(t))Hdt

=

∫ T

0

c0((u
ε
∗ − ud)(t), ζ(t))Hdt for all ζ ∈ L2(0, T ;X)

(7.28)

and ∫ T

0

(−(pε)′(t), z(t))Hdt+

∫ T

0

(qε(t), z′(t))Hdt+ ⟨µε, z⟩W ′,W

+

∫ T

0

(g′(wε
∗(t))q

ε(t), z(t))H dt

= c1

∫ T

0

((wε
∗ − wd)(t), z(t))H dt for all z ∈ W.

(7.29)

Thus, we easily see from (7.9)–(7.12), (A6) with (7.23) (cf. (6.39)), and (7.25)–(7.29) that
the equations (7.1)–(7.4) hold. Moreover, we easily see from (6.7)–(6.9), (7.9)–(7.11), and
(7.25) that (7.5)–(7.7) hold. Thus, the proof of Theorem 7.1 has been completed.

Remark 7.1. Theorem 7.1 is to be proved through the limiting observation of the ap-
proximate situations shown in Theorem 6.1. In addition, the identities (6.4) and (7.2)
can be regarded as some variational forms of the equations:

−pεt − qεt − κ(((aε)′((wε
∗)x) + ε)qεx)x + (Kε)′(wε

∗)q
ε + g′(wε

∗)q
ε = c1(w

ε
∗ − wd)

and
−pt − qt + µ+ g′(w∗∗)q = c1(w∗∗ − wd)

in the distribution sense, respectively.
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Remark 7.2. In Remark 5.2 we mentioned that any optimal control of (OP)0 can be
approximated by the control problem (OP)εα with α > 0. Then, by arguments similar to
those in Theorem 7.1 and [45, Theorem 3.5], we can show the necessary conditions for
any optimal control of (OP)0, which are the same ones (7.5)–(7.7) as in Theorem 7.1.

Remark 7.3. In Remark 5.2 we mentioned that for each optimal control [f∗, h∗, ℓ∗] of
(OP)0, we can find the sequence of optimal controls of (OP)εα which converges to [f∗, h∗, ℓ∗]
strongly in U . However, it is very difficult to give the numerical experiments of (OP)εα,
since the cost function Jε

α defined by (5.12) depends on the unknown optimal control
[f∗, h∗, ℓ∗] of (OP)0. Therefore, in the numerical analysis, we are forced to adopt (OP)ε
with ε > 0 as the approximate problem of (OP)0, since the cost function Jε defined
by (1.16) is independent of optimal controls of (OP)0. Thus, from the viewpoint of
applications, the main results for (OP)ε would be more useful than those for (OP)εα with
α > 0.

8 Numerical Scheme for (OP)ε

Note from the singularity and nonlinearity in (1.2) that the numerical consideration of
(OP)0 is very difficult (cf. Theorem 7.1 and Remark 7.1). In Section 5, we proved the
relationship between the limits (ω-limit points) of sequences of approximate optimal pairs
of (OP)ε as ε → 0 and the optimal pairs of the limiting problem (OP)0 (cf. Theorem
5.1(II)). Therefore, it is worth considering the approximate optimal control problem (OP)ε
with ε > 0 from the viewpoint of numerical analysis.

In this section, we propose the numerical scheme to find the stationary point of the
cost functional Jε to (OP)ε with ε > 0, and show the convergence of our numerical
algorithm. To this end, we fix the small parameter ε ∈ (0, 1] and the pair of initial data
[uε0, w

ε
0] ∈ H × D(V ε). Then, we define the solution operator Λε

ad of the adjoint system
{(6.3)–(6.6)}:

Definition 8.1. We denote by Λε
ad : U → L2(0, T ;H)×L2(0, T ;H) the solution operator

that assigns to any control [f, h, ℓ] ∈ U the unique solution [pε, qε] := Λε
ad(f, h, ℓ) to the

adjoint system {(6.3)–(6.6)} on [0, T ].

For a moment, we often omit the superscript ε ∈ (0, 1].
Now, by the similar idea used in [1, 34, 37, 38, 39, 46], namely, by using the necessary

conditions (6.7), (6.8), and (6.9) of (OP)ε obtained in Theorem 6.1, we propose the
following numerical algorithm, denoted by (NA), to find the stationary point of the cost
functional Jε with ε > 0.

Numerical Algorithm (NA) of (OP)ε with ε > 0

(Step 0) Give the stop parameter µ;

(Step 1) Choose the triplet of initial functions [f, h, ℓ] ∈ U , and put [fn, hn, ℓn] :=
[f, h, ℓ];
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(Step 2) Solve the approximate state system (P;uε0, wε
0, fn, hn, ℓn)

ε for n, and let [un, wn] :=
Λε(fn, hn, ℓn), where Λε is the solution operator to (P;uε0, wε

0, fn, hn, ℓn)
ε defined in

Definition 6.1(I);

(Step 3) Solve the adjoint system {(6.3)–(6.6)} for n, and let [pn, qn] := Λε
ad(fn, hn, ℓn);

(Step 4) Put

d0n := a0(pn+m0a0fn), d1n := a1(pn(·, 0)+m1a1hn), and d2n := a2(pn(·, L)+m2a2ℓn).

Test: If
|[d0n, d1n, d2n]|U < µ,

then, STOP; Otherwise, go to (Step 5); note here that U is the product Hilbert
space endowed with the usual norm

|[f, h, ℓ]|2U := |f |2L2(0,T ;H) + |h|2L2(0,T ) + |ℓ|2L2(0,T ), ∀[f, h, ℓ] ∈ U ; (8.1)

(Step 5) Put

fn+1 := fn − ρnd0n, hn+1 := hn − ρnd1n, and ℓn+1 := ℓn − ρnd2n,

where ρn is some appropriate constant found by using a line search. More precisely,
let β ∈ (0, 1). Then, find the minimal constant ςn ∈ N ∪ {0} such that

Jε (fn − βςnd0n, hn − βςnd1n, ℓn − βςnd2n)− Jε(fn, hn, ℓn)

≤ −µβςn |[d0n, d1n, d2n]|U ,

and put the constant ρn := βςn ;

(Step 6) Set n = n+ 1, and go to (Step 2).

Remark 8.1. In (Step 5), we need to find the constant ρn (cf. the so-called ”the learning
rate” in neural networks) for each step n, because of the nonlinear term (aε(wε

x))x in (1.11)
(cf. Remark 3.1). If the main diffusion term in (1.11) is just only linear (i.e., wε

xx), we can
take the constant ρ ≡ ρn independent of n. Indeed, Aiki et al. [1] considered the optimal
control problem for phase-field equations of a regular Fix–Caginalp type with dynamic
boundary conditions, and proved the existence of a constant ρ, independent of n, in the
descend method. For the detailed statement, we refer to [1, Section 4].

Now, we mention our final theoretical result in this paper, which is concerned with
the convergence of the numerical algorithm (NA).

Theorem 8.1. Suppose that all the assumptions of Theorem 6.1 are fulfilled. Let ε ∈ (0, 1]
and [uε0, w

ε
0] ∈ H×D(V ε). Let {[fn, hn, ℓn]}n∈N be a sequence in U defined by the numerical

algorithm (NA). In addition, let [pn, qn] = Λε
ad(fn, hn, ℓn). Then:

(I) lim
n→∞

Jε(fn, hn, ℓn) exists.
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(II)
lim
n→∞

a0(pn +m0a0fn) = 0 in L2(0, T ;H), (8.2)

lim
n→∞

a1(pn(·, 0) +m1a1hn) = 0 in L2(0, T ), (8.3)

lim
n→∞

a2(pn(·, L) +m2a2ℓn) = 0 in L2(0, T ). (8.4)

(III) There are the triplet of functions [f ε
∗∗, h

ε
∗∗, ℓ

ε
∗∗] ∈ U , the pair of functions [pε∗∗, q

ε
∗∗] ∈

L2(0, T ;H) × L2(0, T ;H), and a subsequence {nk}k∈N ⊂ {n}n∈N such that pε∗∗ ∈
W 1,2(0, T ;H)∩L∞(0, T ;X), qε∗∗ ∈ W 1,2(0, T ;X ′)∩L2(0, T ;X)∩L∞(0, T ;H), [pε∗∗, qε∗∗]
is a unique solution of the adjoint system {(6.3)–(6.6)} for (P;uε0, wε

0, f
ε
∗∗, h

ε
∗∗, ℓ

ε
∗∗)

ε,
i.e., [pε∗∗, qε∗∗] = Λε

ad(f
ε
∗∗, h

ε
∗∗, ℓ

ε
∗∗),

fnk
−→ f ε

∗∗ in L2(0, T ;H), (8.5)

hnk
−→ hε∗∗ in L2(0, T ), (8.6)

ℓnk
−→ ℓε∗∗ in L2(0, T ), (8.7)

pnk
−→ pε∗∗ in C([0, T ];H),

in L2(0, T ;X),

}
(8.8)

qnk
−→ qε∗∗ in L2(0, T ;H) (8.9)

as k → ∞, and
a0(p

ε
∗∗ +m0a0f

ε
∗∗) = 0 in L2(0, T ;H), (8.10)

a1(p
ε
∗∗(·, 0) +m1a1h

ε
∗∗) = 0 in L2(0, T ), (8.11)

a2(p
ε
∗∗(·, L) +m2a2ℓ

ε
∗∗) = 0 in L2(0, T ). (8.12)

Hence,

D[f̌ ,ȟ,ℓ̌]J
ε(f ε

∗∗, h
ε
∗∗, ℓ

ε
∗∗)

:= lim
λ→0

Jε(f ε
∗∗ + λf̌ , hε∗∗ + λȟ, ℓε∗∗ + λℓ̌)− Jε(f ε

∗∗, h
ε
∗∗, ℓ

ε
∗∗)

λ
= 0

for all direction [f̌ , ȟ, ℓ̌] ∈ U ;

(8.13)

thus, [f ε
∗∗, h

ε
∗∗, ℓ

ε
∗∗] ∈ U is the stationary point of the cost functional Jε with ε ∈ (0, 1].

To prove Theorem 8.1, we need some lemmas.
Note from Corollary 4.2 that we have the result of continuous dependence of solutions

to the approximate state system (P;uε0, wε
0, f, h, ℓ)

ε. In addition, note from Proposition
6.1(I) that the solution operator Λε admits the Gâteaux derivative at any [f, h, l] ∈ U .

Now we show the continuity of Gâteaux derivative of Λε, which is the key to proving
Theorem 8.1.
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Lemma 8.1. Assume the same conditions as in Theorem 8.1. Let ε ∈ (0, 1], ξ ∈ [−1, 1] \
{0}, and fix the pair of initial data [uε0, w

ε
0] ∈ H ×D(V ε). Then, the Gâteaux derivative

of the control-to-state mapping Λε is continuous in the following sense:

[θξ, χξ] := D[f̌ ,ȟ,ℓ̌]Λ
ε(f + ξϖ1, h+ ξϖ2, ℓ+ ξϖ3)

−→ [θ, χ] = D[f̌ ,ȟ,ℓ̌]Λ
ε(f, h, ℓ) in L2(0, T ;H)× L2(0, T ;H)

for all [f, h, ℓ] ∈ U , [ϖ1, ϖ2, ϖ3] ∈ U , and all direction [f̌ , ȟ, ℓ̌] ∈ U

(8.14)

as ξ → 0.

Proof. For any [f, h, ℓ] ∈ U , [ϖ1, ϖ2, ϖ3] ∈ U , and ξ ∈ [−1, 1] \ {0}, we put [uξ, wξ] :=
Λε(f + ξϖ1, h+ ξϖ2, ℓ+ ξϖ3) and [u,w] := Λε(f, h, ℓ). Then, we observe from Corollary
4.2 that

[uξ, wξ] −→ [u,w] in L2(0, T ;H)× C([0, T ];H) as ξ → 0. (8.15)

In addition, we have:
wξ −→ w in L2(0, T ;X) as ξ → 0. (8.16)

Indeed, subtract (1.11) for (P;uε0, wε
0, f+ξϖ1, h+ξϖ2, ℓ+ξϖ3)

ε from the one for (P;uε0, wε
0, f, h, ℓ)

ε,
and multiply it by wξ −w. Then, from the monotonicity of aε(wε

x), Kε(wε), and g(wε) +
Cgw

ε (cf. (A1), (1.9), and (A2)), and the Schwarz inequality, we observe that

1

2

d

dt
|(wξ−w)(t)|2H+εκ|(wξ−w)x(t)|2H ≤

(
1

2
+ Cg

)
|(wξ−w)(t)|2H+

1

2
|(uξ−u)(t)|2H (8.17)

for a.a. t ∈ (0, T ). Hence, applying the Gronwall inequality to (8.17), we conclude that

1

2
sup

t∈[0,T ]

|(wξ − w)(t)|2H + εκ

∫ T

0

|(wξ − w)x(t)|2Hdt ≤
1

2
e(1+2Cg)T |uξ − u|2L2(0,T ;H). (8.18)

Thus, we infer from (8.15) and (8.18) that the convergence (8.16) holds.
Now, we show (8.14) by using the convergences (8.15) and (8.16). Note from Propo-

sition 6.1(I) that [θξ, χξ] = D[f̌ ,ȟ,ℓ̌]Λ
ε(f + ξϖ1, h + ξϖ2, ℓ + ξϖ3) satisfies the following

variational identities:

⟨θ′ξ(t), z⟩+ ⟨χ′
ξ(t), z⟩+ ((θξ)x(t), zx)H + n0 (θξ(t, 0)z(0) + θξ(t, L)z(L))

= (a0f̌(t), z)H + a1ȟ(t)z(0) + a2ℓ̌(t)z(L),

a.a. t ∈ (0, T ), for all z ∈ X;
(8.19)

⟨χ′
ξ(t), z⟩+ κ (((aε)′((wξ)x(t)) + ε)(χξ)x(t), zx)H + ((Kε)′(wξ(t))χξ(t), z)H

+(g′(wξ(t))χξ(t), z)H = (θξ(t), z)H ,

a.a. t ∈ (0, T ), for all z ∈ X;
(8.20)

θξ(0, x) = χξ(0, x) = 0, a.a. x ∈ (0, L). (8.21)
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Then, by arguments similar to Lemma 6.1, we can obtain the uniform estimate of functions
θξ and χξ with respect to ξ ∈ [−1, 1] \ {0}. Indeed, taking z = θξ in (8.19), using the
Schwarz inequality, and integrating in time, we obtain:

1

2
|θξ(t)|2H +

∫ t

0

⟨χ′
ξ(s), θξ(s)⟩ds+

∫ t

0

|(θξ)x(s)|2Hds

+
n0

2

∫ t

0

|θξ(s, 0)|2ds+
n0

2

∫ t

0

|θξ(s, L)|2ds

≤ 1

2

∫ t

0

|θξ(s)|2Hds+
a20
2

∫ t

0

|f̌(s)|2Hds+
a21
2n0

∫ t

0

|ȟ(s)|2ds+ a22
2n0

∫ t

0

|ℓ̌(s)|2ds

for all t ∈ [0, T ].

(8.22)

Next, we note from (A1) and (A5) that (âε)′(·) = aε(·) ∈ C1(R) and

0 ≤ (aε)′(r) ≤ δ3
ε

for any r ∈ R. (8.23)

In addition, note from (1.9) that Kε(·) ∈ C1(R) and

0 ≤ (Kε)′(r) ≤ 1

ε
for any r ∈ R. (8.24)

Furthermore, note from (A2) and (A6) that g(·) ∈ C1(R) and

g′(r) + Cg ≥ 0 for any r ∈ R. (8.25)

Then, taking z = χξ in (8.20), using (8.23)–(8.25) and the Schwarz inequality, and
integrating in time, we obtain:

1

2
|χξ(t)|2H + εκ

∫ t

0

|(χξ)x(s)|2Hds ≤
(
1

2
+ Cg

)∫ t

0

|χξ(s)|2Hds+
1

2

∫ t

0

|θξ(s)|2Hds

for all t ∈ [0, T ].
(8.26)

Similarly, taking z = θξ in (8.20), using (8.23), (8.24), and the Höder inequality, and
integrating in time, we obtain:∣∣∣∣∫ t

0

⟨χ′
ξ(s), θξ(s)⟩ds

∣∣∣∣ ≤ κ

(
δ3
ε
+ ε

)∫ t

0

|(χξ)x(s)|H |(θξ)x(s)|Hds

+
1

ε

∫ t

0

|χξ(s)|H |θξ(s)|Hds

+

∫ t

0

|g′(wξ(s))χξ(s)|H |θξ(s)|Hds+
∫ t

0

|θξ(s)|2Hds

for all t ∈ [0, T ].

(8.27)

Note from (3.5) that we get the the following uniform estimate of solutions [uξ, wξ] :=
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Λε(f + ξϖ1, h+ ξϖ2, ℓ+ ξϖ3) with respect to ξ ∈ [−1, 1] \ {0}:

|u′ξ|2L2(0,T ;X′) + |uξ|2L∞(0,T ;H) + |uξ|2L2(0,T ;X) + |w′
ξ|2L2(0,T ;H)

+|wξ|2L∞(0,T ;H) + κ sup
0≤t≤T

V ε(wξ(t)) + sup
0≤t≤T

∫ L

0

ĝ(wξ(t, x)) dx

≤ N1

(
|uε0|2H + |wε

0|2H + κV ε(wε
0) +

∫ L

0

ĝ(wε
0(x)) dx+ a20|f + ξϖ1|2L2(0,T ;H)

+a21|h+ ξϖ2|2L2(0,T ) + a22|ℓ+ ξϖ3|2L2(0,T ) + b21 + b22

)
,

(8.28)

where N1 is the same positive constant in (3.5).
Taking account of (8.28), ξ ∈ [−1, 1]\{0}, and the continuous embedding BV (0, L) ↪→

L∞(0, L) (cf. Proposition 2.3), we see that

sup
t∈[0,T ]

|wξ(t)|L∞(0,L) ≤ N14

(
|uε0|2H + |wε

0|2H + κV ε(wε
0) +

∫ L

0

ĝ(wε
0(x)) dx

+a20|f |2L2(0,T ;H) + a20|ϖ1|2L2(0,T ;H)

+a21|h|2L2(0,T ) + a21|ϖ2|2L2(0,T )

+a22|ℓ|2L2(0,T ) + a22|ϖ3|2L2(0,T ) + b21 + b22

)
,

(8.29)

hence, we observe from (A6) that

sup
t∈[0,T ]

|g′(wξ(t))|L∞(0,L) ≤ N14,ε, (8.30)

where N14 and N14,ε are positive constants independent of ξ ∈ [−1, 1] \ {0}. Therefore, it
follows from (8.27), (8.30), and the Schwarz inequality that∣∣∣∣∫ t

0

⟨χ′
ξ(s), θξ(s)⟩ds

∣∣∣∣ ≤ 1

2

∫ t

0

|(θξ)x(s)|2Hds+
1

2
κ2
(
δ3
ε
+ ε

)2 ∫ t

0

|(χξ)x(s)|2Hds

+

(
1

2ε2
+
N2

14,ε

2

)∫ t

0

|χξ(s)|2Hds+ 2

∫ t

0

|θξ(s)|2Hds

for all t ∈ [0, T ].

(8.31)

Hence, we infer from (8.22) and (8.31) that
1

2
|θξ(t)|2H +

1

2

∫ t

0

|(θξ)x(s)|2Hds+
n0

2

∫ t

0

|θξ(s, 0)|2ds+
n0

2

∫ t

0

|θξ(s, L)|2ds

≤ 1

2
κ2
(
δ3
ε
+ ε

)2 ∫ t

0

|(χξ)x(s)|2Hds+
5

2

∫ t

0

|θξ(s)|2Hds

+

(
1

2ε2
+
N2

14,ε

2

)∫ t

0

|χξ(s)|2Hds

+
a20
2

∫ t

0

|f̌(s)|2Hds+
a21
2n0

∫ t

0

|ȟ(s)|2ds+ a22
2n0

∫ t

0

|ℓ̌(s)|2ds

for all t ∈ [0, T ].

(8.32)
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Now, by adding (8.32) and (8.26)×κ
ε

(
δ3
ε
+ ε
)2, we have

1

2
|θξ(t)|2H +

κ

2ε

(
δ3
ε
+ ε

)2

|χξ(t)|2H +
1

2

∫ t

0

|(θξ)x(s)|2Hds

+
1

2
κ2
(
δ3
ε
+ ε

)2 ∫ t

0

|(χξ)x(s)|2Hds

+
n0

2

∫ t

0

|θξ(s, 0)|2ds+
n0

2

∫ t

0

|θξ(s, L)|2ds

≤

(
5

2
+

κ

2ε

(
δ3
ε
+ ε

)2
)∫ t

0

|θξ(s)|2Hds

+

(
1

2ε2
+
N2

14,ε

2
+
κ

ε

(
1

2
+ Cg

)(
δ3
ε
+ ε

)2
)∫ t

0

|χξ(s)|2Hds

+
a20
2

∫ t

0

|f̌(s)|2Hds+
a21
2n0

∫ t

0

|ȟ(s)|2ds+ a22
2n0

∫ t

0

|ℓ̌(s)|2ds

for all t ∈ [0, T ].

(8.33)

Thus, by applying the Gronwall inequality to (8.33) and the standard calculations, we
have

|θξ(t)|2H + C1(ε)|χξ(t)|2H +

∫ t

0

|(θξ)x(s)|2Hds+ C2(ε)

∫ t

0

|(χξ)x(s)|2Hds

+n0

∫ t

0

|θξ(s, 0)|2ds+ n0

∫ t

0

|θξ(s, L)|2ds

≤ N15,ε

(
a20|f̌ |2L2(0,T ;H) +

a21
n0

|ȟ|2L2(0,T ) +
a22
n0

|ℓ̌|2L2(0,T )

)
for all t ∈ [0, T ],

(8.34)

where C1(ε), C2(ε), and N15,ε are positive constants dependent on ε and are independent
of ξ ∈ [−1, 1] \ {0}. In addition, by (8.20), (8.23), and (8.24), we have (cf. (8.27)):∣∣∣∣∫ T

0

⟨χ′
ξ(s), z(s)⟩ds

∣∣∣∣ ≤ κ

(
δ3
ε
+ ε

)
|(χξ)x|L2(0,T ;H)|zx|L2(0,T ;H)

+
1

ε
|χξ|L2(0,T ;H)|z|L2(0,T ;H)

+ |g′(wξ)χξ|L2(0,T ;H) |z|L2(0,T ;H)

+|θξ|L2(0,T ;H)|z|L2(0,T ;H), ∀z ∈ L2(0, T ;X).

(8.35)

Hence, we infer from (8.30), (8.34), and (8.35) that

|χ′
ξ|L2(0,T ;X′) ≤ N16,ε

(
a0|f̌ |L2(0,T ;H) +

a1√
n0

|ȟ|L2(0,T ) +
a2√
n0

|ℓ̌|L2(0,T )

)
, (8.36)

where N16,ε is a positive constant dependent on ε and is independent of ξ ∈ [−1, 1] \ {0}.
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Similarly, we observe from (8.19), (8.34), and (8.36) that

|θ′ξ|L2(0,T ;X′) ≤ Ñ16,ε

(
a0|f̌ |L2(0,T ;H) +

a1√
n0

|ȟ|L2(0,T ) +
a2√
n0

|ℓ̌|L2(0,T )

)
, (8.37)

where Ñ16,ε is a positive constant dependent on ε and is independent of ξ ∈ [−1, 1] \ {0}.
By the uniform estimates (8.34), (8.36), and (8.37) of [θξ, χξ], there is a subsequence

{ξn}n∈N ⊂ {ξ}ξ∈[−1,1]\{0} and the functions θ, χ ∈ W 1,2(0, T ;X ′)∩L2(0, T ;X)∩L∞(0, T ;H)
such that ξn → 0,

θξn → θ in C([0, T ];X ′),
in L2(0, T ;H),
weakly in W 1,2(0, T ;X ′),
weakly in L2(0, T ;X),
weakly-∗ in L∞(0, T ;H),

 (8.38)

θξn(·, 0) → θ(·, 0) weakly in L2(0, T ), (8.39)
θξn(·, L) → θ(·, L) weakly in L2(0, T ), (8.40)

and
χξn → χ in C([0, T ];X ′),

in L2(0, T ;H),
weakly in W 1,2(0, T ;X ′),
weakly in L2(0, T ;X),
weakly-∗ in L∞(0, T ;H),

 (8.41)

as n→ ∞.
Here, from (8.16), (8.23), (8.24), (8.30), continuity of functions (aε)′, (Kε)′, and g′,

and the Lebesgue dominated convergence theorem, we note that:
(aε)′((wξn)x) −→ (aε)′(wx),

(Kε)′(wξn) −→ (Kε)′(w),

g′(wξn) −→ g′(w),

in L2(0, T ;H),
weakly-∗ in L∞(Q),

as n→ ∞. (8.42)

Thus, taking a subsequence if necessary, we observe from (8.23), (8.24), (8.30), and (8.38)–
(8.42) that:

(aε)′((wξn)x)(χξn)x ⇀ (aε)′(wx)χx,

(Kε)′(wξn)χξn ⇀ (Kε)′(w)χ,

g′(wξn)χξn ⇀ g′(w)χ,

weakly in L2(0, T ;H), as n→ ∞. (8.43)

Note from Proposition 6.1(I) that [θξn , χξn ] = D[f̌ ,ȟ,ℓ̌]Λ
ε(f + ξnϖ1, h+ ξnϖ2, ℓ+ ξnϖ3)

satisfies the following variational identities:∫ T

0

⟨θ′ξn(t), z(t)⟩dt+
∫ T

0

⟨χ′
ξn(t), z(t)⟩dt+

∫ T

0

((θξn)x(t), zx(t))H dt

+n0

∫ T

0

θξn(t, 0)z(t, 0)dt+ n0

∫ T

0

θξn(t, L)z(t, L)dt

=

∫ T

0

(a0f̌(t), z(t))Hdt+ a1

∫ T

0

ȟ(t)z(t, 0)dt+ a2

∫ T

0

ℓ̌(t)z(t, L)dt

for all z ∈ L2(0, T ;X) and all direction [f̌ , ȟ, ℓ̌] ∈ U ;

(8.44)
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∫ T

0

⟨χ′
ξn(t), z(t)⟩dt+ κ

∫ T

0

(((aε)′((wξn)x(t)) + ε)(χξn)x(t), zx(t))H dt

+

∫ T

0

((Kε)′(wξn(t))χξn(t), z(t))Hdt+

∫ T

0

(g′(wξn(t))χξn(t), z(t))Hdt

=

∫ T

0

(θξn(t), z(t))Hdt for all z ∈ L2(0, T ;X);

(8.45)

θξn(0, x) = χξn(0, x) = 0 (∈ H) in X ′. (8.46)

By (8.38)–(8.43), and by taking the limits in (8.44)–(8.46) as n→ ∞, we observe that
[θ, χ] satisfies the following system:∫ T

0

⟨θ′(t), z(t)⟩dt+
∫ T

0

⟨χ′(t), z(t)⟩dt+
∫ T

0

(
θx(t), zx(t)

)
H
dt

+n0

∫ T

0

θ(t, 0)z(t, 0)dt+ n0

∫ T

0

θ(t, L)z(t, L)dt

=

∫ T

0

(a0f̌(t), z(t))Hdt+ a1

∫ T

0

ȟ(t)z(t, 0)dt+ a2

∫ T

0

ℓ̌(t)z(t, L)dt

for all z ∈ L2(0, T ;X) and all direction [f̌ , ȟ, ℓ̌] ∈ U ;

(8.47)

∫ T

0

⟨χ′(t), z(t)⟩dt+ κ

∫ T

0

(((aε)′(wx(t)) + ε)χx(t), zx(t))H dt

+

∫ T

0

((Kε)′(w(t))χ(t), z(t))Hdt+

∫ T

0

(g′(w(t))χ(t), z(t))Hdt

=

∫ T

0

(θ(t), z(t))Hdt for all z ∈ L2(0, T ;X);

(8.48)

θ(0, x) = χ(0, x) = 0 (∈ H) in X ′. (8.49)

Since the solutions of the Cauchy problem {(8.47)–(8.49)} are uniquely determined,
we observe that [θ, χ] = [θ, χ] and the convergence (8.14) holds without extracting any
subsequence from {ξ}ξ∈[−1,1]\{0}, i.e.,

[θξ, χξ] = D[f̌ ,ȟ,ℓ̌]Λ
ε(f + ξϖ1, h+ ξϖ2, ℓ+ ξϖ3)

−→ [θ, χ] = D[f̌ ,ȟ,ℓ̌]Λ
ε(f, h, ℓ) in L2(0, T ;H)× L2(0, T ;H)

for all [f, h, ℓ] ∈ U , [ϖ1, ϖ2, ϖ3] ∈ U , and all direction [f̌ , ȟ, ℓ̌] ∈ U

as ξ → 0.
Thus, the proof of this lemma has been completed.

Note from Proposition 6.1(II) that the cost functional Jε admits the Gâteaux deriva-
tive at any [f, h, l] ∈ U . Moreover, by Lemma 8.1 we can prove the continuity of Gâteaux
derivative of Jε as follows:
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Corollary 8.1. Assume the same conditions as in Theorem 8.1. Let ε ∈ (0, 1] and
ξ ∈ [−1, 1] \ {0}. Then, the Gâteaux derivative of the cost functional Jε is continuous in
the following sense:

D[f̌ ,ȟ,ℓ̌]J
ε(f + ξϖ1, h+ ξϖ2, ℓ+ ξϖ3) −→ D[f̌ ,ȟ,ℓ̌]J

ε(f, h, ℓ)

for all [f, h, ℓ] ∈ U , [ϖ1, ϖ2, ϖ3] ∈ U , and all direction [f̌ , ȟ, ℓ̌] ∈ U
(8.50)

as ξ → 0.
Proof. Note from (6.29) that

D[f̌ ,ȟ,ℓ̌]J
ε(f + ξϖ1, h+ ξϖ2, ℓ+ ξϖ3)

= c0

∫ T

0

((uξ − ud)(t), θξ(t))Hdt+ c1

∫ T

0

((wξ − wd)(t), χξ(t))Hdt

+m0a
2
0

∫ T

0

((f + ξϖ1)(t), f̌(t))Hdt

+m1a
2
1

∫ T

0

(h+ ξϖ2)(t)ȟ(t)dt+m2a
2
2

∫ T

0

(ℓ+ ξϖ3)(t)ℓ̌(t)dt

for any [f, h, ℓ] ∈ U , [ϖ1, ϖ2, ϖ3] ∈ U , and any direction [f̌ , ȟ, ℓ̌] ∈ U , where [uξ, wξ] =
Λε(f + ξϖ1, h+ ξϖ2, ℓ+ ξϖ3) and [θξ, χξ] = D[f̌ ,ȟ,ℓ̌]Λ

ε(f + ξϖ1, h+ ξϖ2, ℓ+ ξϖ3). Thus,
taking account of (8.14) and (8.15), we easily observe that the convergence (8.50) holds.

Lemma 8.2. Suppose the same conditions as in Theorem 8.1. Fix ε ∈ (0, 1] and the pair
of initial data [uε0, w

ε
0] ∈ H ×D(V ε). In addition, for any ξ ∈ [−1, 1] \ {0}, [f, h, ℓ] ∈ U ,

and [ϖ1, ϖ2, ϖ3] ∈ U , let [pξ, qξ] = Λε
ad(f + ξϖ1, h + ξϖ2, ℓ + ξϖ3). Then, [pξ, qξ] =

Λε
ad(f+ξϖ1, h+ξϖ2, ℓ+ξϖ3) converges to [p, q] = Λε

ad(f, h, ℓ) in L2(0, T ;H)×L2(0, T ;H)
as ξ → 0. Furthermore,

pξ → p in L2(0, T ;X) as ξ → 0. (8.51)

Proof. For any ξ ∈ [−1, 1] \ {0}, [f, h, ℓ] ∈ U , and [ϖ1, ϖ2, ϖ3] ∈ U , let [uξ, wξ] =
Λε(f + ξϖ1, h + ξϖ2, ℓ + ξϖ3). Then, note from Theorem 6.1 that [pξ, qξ] = Λε

ad(f +
ξϖ1, h+ ξϖ2, ℓ+ ξϖ3) satisfies the following:

− p′ξ − (pξ)xx − qξ = c0(uξ − ud) in Q; (8.52)∫ T

t

(−p′ξ(τ), ζ(τ))Hdτ +
∫ T

t

⟨−q′ξ(τ), ζ(τ)⟩dτ

+κ

∫ T

t

(((aε)′((wξ)x(τ)) + ε)(qξ)x(τ), ζx(τ))H dτ

+

∫ T

t

((Kε)′(wξ(τ))qξ(τ), ζ(τ))H dτ +

∫ T

t

(g′(wξ(τ))qξ(τ), ζ(τ))H dτ

= c1

∫ T

t

((wξ − wd)(τ), ζ(τ))H dτ

for all t ∈ [0, T ] and ζ ∈ L2(0, T ;X);

(8.53)
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− (pξ)x(t, 0) + n0pξ(t, 0) = (pξ)x(t, L) + n0pξ(t, L) = 0, t ∈ (0, T ), (8.54)

pξ(T, x) = qξ(T, x) = 0, x ∈ (0, L). (8.55)

Now, we give the uniform estimate of functions pξ and qξ with respect to ξ ∈ [−1, 1] \
{0}.

Multiplying (8.52) by pξ and using the Schwarz inequality, we obtain:

−1

2

d

dt
|pξ(t)|2H + |(pξ)x(t)|2H + n0|pξ(t, 0)|2 + n0|pξ(t, L)|2

≤ |pξ(t)|2H +
1

2
|qξ(t)|2H +

c20
2
|(uξ − ud)(t)|2H , a.a. t ∈ (0, T ).

(8.56)

Then, by (8.56) and the standard calculation (e.g., Gronwall inequality), we have

|pξ(t)|2H +

∫ T

t

|(pξ)x(s)|2Hds+ n0

∫ T

t

|pξ(s, 0)|2ds+ n0

∫ T

t

|pξ(s, L)|2ds

≤ N17

(∫ T

t

|qξ(s)|2Hds+ c20

∫ T

t

|(uξ − ud)(s)|2Hds
)

for all t ∈ [0, T ],
(8.57)

where N17 is a positive constant independent of ξ ∈ [−1, 1] \ {0}.
Next, multiplying (8.52) by −p′ξ, using the Schwarz inequality, and integrating in time,

we obtain:

1

2

∫ T

t

|p′ξ(s)|2Hds+
1

2
|(pξ)x(t)|2H +

n0

2
|pξ(t, 0)|+

n0

2
|pξ(t, L)|

≤
∫ T

t

|qξ(s)|2Hds+ c20

∫ T

t

|(uξ − ud)(s)|2Hds for all t ∈ [0, T ].
(8.58)

In addition, taking ζ = qξ in (8.53), using (8.23)–(8.25), (8.58), and the Schwarz
inequality, and integrating in time, we obtain:

1

2
|qξ(t)|2H + εκ

∫ T

t

|(qξ)x(s)|2Hds

≤ (2 + Cg)

∫ T

t

|qξ(s)|2Hds+ c20

∫ T

t

|(uξ − ud)(s)|2Hds

+
c21
2

∫ T

t

|(wξ − wd)(s)|2Hds for all t ∈ [0, T ].

(8.59)

On account of (8.15), (8.59), and the Gronwall inequality, we can get the following esti-
mate:

|qξ(t)|2H + εκ

∫ T

t

|(qξ)x(s)|2Hds

≤ N18

(
c20|u− ud|2L2(0,T ;H) + c21|w − wd|2L2(0,T ;H) + 1

)
for all t ∈ [0, T ],

(8.60)
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where N18 is a positive constant independent of ξ ∈ [−1, 1] \ {0}. Consequently, we infer
from (8.57), (8.58), and (8.60) that

|pξ(t)|2H +

∫ T

t

|(pξ)x(s)|2Hds+ n0

∫ T

t

|pξ(s, 0)|2ds+ n0

∫ T

t

|pξ(s, L)|2ds

+

∫ T

t

|p′ξ(s)|2Hds+ |(pξ)x(t)|2H + n0|pξ(t, 0)|+ n0|pξ(t, L)|

≤ N19

(
c20|u− ud|2L2(0,T ;H) + c21|w − wd|2L2(0,T ;H) + 1

)
for all t ∈ [0, T ],

(8.61)

where N19 is a positive constant independent of ξ ∈ [−1, 1] \ {0}.
Additionally, we infer from (8.23), (8.24), and (8.53) that (cf. (8.27)):∣∣∣∣∫ T

0

⟨−q′ξ(τ), ζ(τ)⟩dτ
∣∣∣∣

≤ |p′ξ|L2(0,T ;H)|ζ|L2(0,T ;H) + κ

(
δ3
ε
+ ε

)
|(qξ)x|L2(0,T ;H)|ζx|L2(0,T ;H)

+
1

ε
|qξ|L2(0,T ;H)|ζ|L2(0,T ;H) + |g′(wξ)qξ|L2(0,T ;H) |ζ|L2(0,T ;H)

+c1|wξ − wd|L2(0,T ;H)|ζ|L2(0,T ;H) for all ζ ∈ L2(0, T ;X),

which implies from (8.30), (8.60), and (8.61) that

|q′ξ|L2(0,T ;X′) ≤ Ñ19,ε

(
c20|u− ud|2L2(0,T ;H) + c21|w − wd|2L2(0,T ;H) + 1

)
, (8.62)

where Ñ19,ε is a positive constant dependent on ε and is independent of ξ ∈ [−1, 1] \ {0}.
By the uniform estimates (8.60)–(8.62) of [pξ, qξ], there are a subsequence {ξn}n∈N ⊂

{ξ}ξ∈[−1,1]\{0}, and the functions p ∈ W 1,2(0, T ;H) ∩ L∞(0, T ;X), q ∈ W 1,2(0, T ;X ′) ∩
L2(0, T ;X) ∩ L∞(0, T ;H) such that ξn → 0,

pξn → p in C([0, T ];H),
weakly in W 1,2(0, T ;H),
weakly-∗ in L∞(0, T ;X),

 (8.63)

pξn(·, 0) → p(·, 0) weakly in L2(0, T ), (8.64)
pξn(·, L) → p(·, L) weakly in L2(0, T ), (8.65)

and
qξn → q in C([0, T ];X ′),

in L2(0, T ;H),
weakly in W 1,2(0, T ;X ′),
weakly in L2(0, T ;X),
weakly-∗ in L∞(0, T ;H),

 (8.66)

as n→ ∞.
Then, by (8.42), the uniqueness of the adjoint system {(6.3)–(6.6)}, and the similar

argument in Lemma 8.1, we can show that

[pξ, qξ] = Λε
ad(f + ξϖ1, h+ ξϖ2, ℓ+ ξϖ3)

−→ [p, q] = [p, q] = Λε
ad(f, h, ℓ) in L2(0, T ;H)× L2(0, T ;H) as ξ → 0.
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Finally, we show (8.51). To this end, subtract (6.3) for [pξ, qξ] = Λε
ad(f + ξϖ1, h +

ξϖ2, ℓ+ ξϖ3) from the one for [p, q] = Λε
ad(f, h, ℓ), and multiply it by pξ − p. Then, using

the Schwarz inequality, we obtain:

−1

2

d

dt
|(pξ − p)(t)|2H + |(pξ − p)x(t)|2H

+n0|(pξ − p)(t, 0)|2 + n0|(pξ − p)(t, L)|2

≤ |(pξ − p)(t)|2H +
1

2
|(qξ − q)(t)|2H +

c20
2
|(uξ − u)(t)|2H ,

for a.a. t ∈ (0, T ).

(8.67)

Then, by (8.67) and the standard calculation (e.g., Gronwall inequality), we have

|(pξ − p)(t)|2H +

∫ T

t

|(pξ − p)x(s)|2Hds

+n0

∫ T

t

|(pξ − p)(s, 0)|2ds+ n0

∫ T

t

|(pξ − p)(s, L)|2ds

≤ N20

(∫ T

t

|(qξ − q)(s)|2Hds+ c20

∫ T

t

|(uξ − u)(s)|2Hds
)

for all t ∈ [0, T ],

(8.68)

where N20 is a positive constant independent of ξ ∈ [−1, 1] \ {0}. Hence, we conclude
from (8.15), (8.66), and (8.68) that (8.51) holds.

Thus, the proof of this lemma has been completed.

Definition 8.2. We define the function γ : [0,∞) → [0,∞) by

γ(t) := inf

|[ξϖ1, ξϖ2, ξϖ3]|U ;

∣∣∣∣∣∣
t
 ξϖ1 + a0(pξ − p)
ξϖ2 + a1(pξ − p)(·, 0)
ξϖ3 + a2(pξ − p)(·, L)

∣∣∣∣∣∣
U

≥ t

 , for t ≥ 0, (8.69)

where [ϖ1, ϖ2, ϖ3] ∈ U , ξ ∈ R, the symbol
t
 ϖ1

ϖ2

ϖ3

 means the transposed matrix of ϖ1

ϖ2

ϖ3

, namely,
t
 ϖ1

ϖ2

ϖ3

 = [ϖ1, ϖ2, ϖ3], | · |U is the norm of U defined in (8.1), [pξ, qξ] =

Λε
ad(f + ξϖ1, h + ξϖ2, ℓ + ξϖ3), and [p, q] = Λε

ad(f, h, ℓ). Clearly, γ(·) is a well-defined
increasing function with γ(0) = 0, because of the continuity of Λε

ad and (8.51) (cf. Lemma
8.2).

Lemma 8.3. Assume the same conditions as in Theorem 8.1. Let n ∈ N be a fixed
number, and let {[fk, hk, ℓk]; k = 1, 2, · · · , n} be a sequence in U defined by the numerical
algorithm (NA). Let [pn, qn] = Λε

ad(fn, hn, ℓn), β ∈ (0, 1), and µ ∈ (0, 1). Put

d0n := a0(pn +m0a0fn), d1n := a1(pn(·, 0) +m1a1hn), d2n := a2(pn(·, L) +m2a2ℓn).
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Assume that at least one of the following conditions is satisfied:

d0n ̸= 0 in L2(0, T ;H), d1n ̸= 0 in L2(0, T ), or d2n ̸= 0 in L2(0, T ). (8.70)

Then, there is a minimal constant ςn ∈ N ∪ {0} such that

Jε (fn − βςnd0n, hn − βςnd1n, ℓn − βςnd2n)− Jε(fn, hn, ℓn)

≤ −µβςn |[d0n, d1n, d2n]|2U .
(8.71)

Proof. By assumption (8.70) and by the definition of the Gâteaux derivative of Jε(·, ·, ·),
there is a constant δµ,n > 0 such that∣∣∣∣Jε(fn − λd0n, hn − λd1n, ℓn − λd2n)− Jε(fn, hn, ℓn)

λ
−D[−d0n,−d1n,−d2n]J

ε(fn, hn, ℓn)

∣∣∣∣
<(1− µ)|[d0n, d1n, d2n]|2U for any λ ∈ (−δµ,n, δµ,n) \ {0}. (8.72)

Put [un, wn] = Λε[fn, hn, ℓn] and [θn, χn] = D[−d0n,−d1n,−d2n]Λ
ε(fn, hn, ℓn). Then, by the

proof of Theorem 6.1, we observe that

D[−d0n,−d1n,−d2n]J
ε(fn, hn, ℓn)

= c0

∫ T

0

((un − ud)(t), θn(t))Hdt+ c1

∫ T

0

((wn − wd)(t), χn(t))Hdt

+m0a
2
0

∫ T

0

(fn(t),−d0n(t))Hdt+m1a
2
1

∫ T

0

hn(t)(−d1n(t))dt

+m2a
2
2

∫ T

0

ℓn(t)(−d2n(t))dt

=

∫ T

0

(a0pn(t) +m0a
2
0fn(t),−d0n(t))Hdt

+

∫ T

0

(a1pn(t, 0) +m1a
2
1hn(t))(−d1n(t))dt

+

∫ T

0

(a2pn(t, L) +m2a
2
2ℓn(t))(−d2n(t))dt

= −|[d0n, d1n, d2n]|2U .

(8.73)

Therefore, we observe from (8.72) that

Jε(fn − λd0n, hn − λd1n, ℓn − λd2n)− Jε(fn, hn, ℓn) ≤ −λµ|[d0n, d1n, d2n]|2U

for any λ ∈ (0, δµ,n). Therefore, we have only to take a minimal constant ςn ∈ N ∪ {0}
such that

0 < βςn < δµ,n.

Thus, the proof of this lemma has been completed.



546

Lemma 8.4. Assume the same conditions as in Theorem 8.1. Let n ∈ N be a fixed
number, and let {[fk, hk, ℓk]; k = 1, 2, · · · , n} be a sequence in U defined by the numerical
algorithm (NA). Let [pn, qn] = Λε

ad(fn, hn, ℓn), β ∈ (0, 1), and µ ∈ (0, 1). Put

d0n := a0(pn+m0a0fn), d1n := a1(pn(·, 0)+m1a1hn), d2n := a2(pn(·, L)+m2a2ℓn). (8.74)

Assume that at least one of the following conditions is satisfied:

d0n ̸= 0 in L2(0, T ;H), d1n ̸= 0 in L2(0, T ), or d2n ̸= 0 in L2(0, T ).

Let ςn be the constant obtained in Lemma 8.3, and put

Mmax := max{m0a
2
0, m1a

2
1, m2a

2
2}. (8.75)

Then, we have

βγ ((1− µ)|[d0n, d1n, d2n]|U) ≤ βςnMmax|[d0n, d1n, d2n]|U , (8.76)

where γ(·) is the function defined by (8.69) in Definition 8.2.

Proof. From the definition of ςn obtained in Lemma 8.3, we observe that

Jε

(
fn −

βςn

β
d0n, hn −

βςn

β
d1n, ℓn −

βςn

β
d2n

)
− Jε(fn, hn, ℓn)

> −µβ
ςn

β
|[d0n, d1n, d2n]|2U .

(8.77)

Here, by (8.73), the mean-valued theorem, and the continuity ofD[−d0n,−d1n,−d2n]J
ε(fn+

ξϖ1, hn + ξϖ2, ℓn + ξϖ3) with respect to ξ, there is a constant ϑ ∈ (0, 1) satisfying

Jε

(
fn −

βςn

β
d0n, hn −

βςn

β
d1n, ℓn −

βςn

β
d2n

)
− Jε(fn, hn, ℓn)

=

∫ βςn

β

0

d

dξ
Jε (fn − ξd0n, hn − ξd1n, ℓn − ξd2n) dξ

=
βςn

β
D[−d0n,−d1n,−d2n]J

ε

(
fn − ϑ

βςn

β
d0n, hn − ϑ

βςn

β
d1n, ℓn − ϑ

βςn

β
d2n

)

=
βςn

β

[∫ T

0

(
a0pn,ϑ(t) +m0a

2
0

(
fn(t)− ϑ

βςn

β
d0n(t)

)
,−d0n(t)

)
H

dt

+

∫ T

0

(
a1pn,ϑ(t, 0) +m1a

2
1(hn(t)− ϑ

βςn

β
d1n(t))

)
(−d1n(t))dt

+

∫ T

0

(
a2pn,ϑ(t, L) +m2a

2
2(ℓn(t)− ϑ

βςn

β
d2n(t))

)
(−d2n(t))dt

]
,

(8.78)

where [pn,ϑ, qn,ϑ] = Λε
ad

(
fn − ϑβςn

β
d0n, hn − ϑβςn

β
d1n, ℓn − ϑβςn

β
d2n

)
.
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It follows from (8.77) and (8.78) that

(1− µ) |[d0n, d1n, d2n]|2U

≤ |[d0n, d1n, d2n]|2U +

∫ T

0

(
a0pn,ϑ(t) +m0a

2
0

(
fn(t)− ϑ

βςn

β
d0n(t)

)
,−d0n(t)

)
H

dt

+

∫ T

0

(
a1pn,ϑ(t, 0) +m1a

2
1(hn(t)− ϑ

βςn

β
d1n(t))

)
(−d1n(t))dt

+

∫ T

0

(
a2pn,ϑ(t, L) +m2a

2
2(ℓn(t)− ϑ

βςn

β
d2n(t))

)
(−d2n(t))dt

=

∫ T

0

(
a0pn,ϑ(t) +m0a

2
0

(
fn(t)− ϑ

βςn

β
d0n(t)

)
− d0n(t),−d0n(t)

)
H

dt

+

∫ T

0

(
a1pn,ϑ(t, 0) +m1a

2
1(hn(t)− ϑ

βςn

β
d1n(t))− d1n(t)

)
(−d1n(t))dt

+

∫ T

0

(
a2pn,ϑ(t, L) +m2a

2
2(ℓn(t)− ϑ

βςn

β
d2n(t))− d2n(t)

)
(−d2n(t))dt.

Hence, we infer from the Hölder inequality and (8.74) that

(1− µ)
∣∣[d0n, d1n, d2n]∣∣U ≤

∣∣∣∣∣∣∣∣∣∣∣∣

t


a0pn,ϑ +m0a
2
0

(
fn − ϑ

βςn

β
d0n
)
− d0n

a1pn,ϑ(·, 0) +m1a
2
1

(
hn − ϑ

βςn

β
d1n
)
− d1n

a2pn,ϑ(·, L) +m2a
2
2

(
ℓn − ϑ

βςn

β
d2n
)
− d2n



∣∣∣∣∣∣∣∣∣∣∣∣
U

=

∣∣∣∣∣∣∣∣∣∣∣∣

t


−ϑβ
ςn

β
m0a

2
0d0n + a0(pn,ϑ − pn)

−ϑβ
ςn

β
m1a

2
1d1n + a1(pn,ϑ(·, 0)− pn(·, 0))

−ϑβ
ςn

β
m2a

2
2d2n + a2(pn,ϑ(·, L)− pn(·, L))



∣∣∣∣∣∣∣∣∣∣∣∣
U

.

(8.79)

By the definition of the function γ, we observe from (8.79) and θ ∈ (0, 1) that

γ
(
(1− µ)

∣∣[d0n, d1n, d2n]∣∣U) ≤ ϑ
βςn

β

∣∣[m0a
2
0d0n,m1a

2
1d1n,m2a

2
2d2n

]∣∣
U ,

≤ βςn

β
Mmax|[d0n, d1n, d2n]|U ,

which implies that the inequality (8.76) holds.

Now, we show our main Theorem 8.1 in this paper, which is concerned with the
convergence for numerical algorithm (NA).
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Proof of Theorem 8.1. We show (I). By (Step 5) in the numerical algorithm (NA) (cf.
(8.71) or (8.82) below), we easily observe that Jε(fn, hn, ℓn) is the non-increasing sequence
with respect to n. Thus, from the non-negativity of Jε(·, ·, ·) (cf. (1.16)), we infer that
lim
n→∞

Jε(fn, hn, ℓn) exists.
We next show (II). Indeed, we first prove (8.2) by contradiction. To this end, we

assume that (8.2) does not hold. Then, there exist a constant δ > 0 and a sequence
{k}k∈N such that

|a0(pk +m0a0fk)|L2(0,T ;H) ≥ δ for any k. (8.80)
Since γ(·) is the increasing function (cf. Definition 8.2), it follows from (8.74) and

(8.80) that
γ ((1− µ)δ) ≤ γ

(
(1− µ)

∣∣[d0k, d1k, d2k]∣∣U) for any k. (8.81)
Then, we observe from (8.71), (8.76), (8.80), and (Step 5) that

Jε(fk+1, hk+1, ℓk+1)− Jε(fk, hk, ℓk)

= Jε (fk − βςkd0k, hk − βςkd1k, ℓk − βςkd2k)− Jε(fk, hk, ℓk)

≤ −µβςk
∣∣[d0k, d1k, d2k]∣∣2U

≤ − µβ

Mmax

γ
(
(1− µ)

∣∣[d0k, d1k, d2k]∣∣U) ∣∣[d0k, d1k, d2k]∣∣U
≤ − µβ

Mmax

γ ((1− µ)δ) δ

< 0 for any k ∈ N.

(8.82)

By repeating this procedure, we observe from (8.82) that

Jε(fk+1, hk+1, ℓk+1) ≤ Jε(fk, hk, ℓk)−
µβ

Mmax

γ ((1− µ)δ) δ

≤ Jε(fk−1, hk−1, ℓk−1)−
2µβ

Mmax

γ ((1− µ)δ) δ

≤ · · ·

≤ Jε(f1, h1, ℓ1)−
kµβ

Mmax

γ ((1− µ)δ) δ for any k ∈ N.

Therefore, the above inequality implies that

Jε(fk+1, hk+1, ℓk+1) −→ −∞ as k → ∞. (8.83)

This contradicts the non-negativity of Jε(·, ·, ·) (cf. (1.16)). Hence, (8.2) holds.
Similarly, we can show (8.3) and (8.4), thus, (II) holds.
Now, we show (III). By Theorem 8.1(I) and the definition of Jε(·, ·, ·) (cf. (1.16)),

we observe that {[fn, hn, ℓn]}n∈N is bounded in U . Therefore, there exist a subsequence
{nk}k∈N of {n}n∈N and a triplet of functions [f ε

∗∗, h
ε
∗∗, ℓ

ε
∗∗] ∈ U such that nk → ∞ and

fnk
−→ f ε

∗∗ weakly in L2(0, T ;H),

hnk
−→ hε∗∗ weakly in L2(0, T ),

ℓnk
−→ ℓε∗∗ weakly in L2(0, T )

 (8.84)
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as k → ∞. Then, from Corollary 4.2 concerning the convergence result of solutions to
(P;uε0, wε

0, fnk
, hnk

, ℓnk
)ε, we observe that

[unk
, wnk

] = Λε(fnk
, hnk

, ℓnk
) −→ [uε∗∗, w

ε
∗∗] = Λε(f ε

∗∗, h
ε
∗∗, ℓ

ε
∗∗)

in L2(0, T ;H)× C([0, T ];H) as k → ∞.
(8.85)

In addition, by (8.85) and the slight modification of the proof of Lemma 8.2, there
are functions pε∗∗ ∈ W 1,2(0, T ;H) ∩ L∞(0, T ;X), qε∗∗ ∈ W 1,2(0, T ;X ′) ∩ L2(0, T ;X) ∩
L∞(0, T ;H), and a subsequence of {nk}k∈N (which we also denote {nk}k∈N for simplicity)
such that [pnk

, qnk
] = Λε

ad(fnk
, hnk

, ℓnk
) converges to [pε∗∗, q

ε
∗∗] = Λε

ad(f
ε
∗∗, h

ε
∗∗, ℓ

ε
∗∗) in the

following sense:
pnk

→ pε∗∗ in C([0, T ];H),
weakly in W 1,2(0, T ;H),
weakly-∗ in L∞(0, T ;X),

 (8.86)

pnk
(·, 0) → pε∗∗(·, 0) weakly in L2(0, T ), (8.87)

pnk
(·, L) → pε∗∗(·, L) weakly in L2(0, T ), (8.88)

and
qnk

→ qε∗∗ in C([0, T ];X ′),
in L2(0, T ;H),
weakly in W 1,2(0, T ;X ′),
weakly in L2(0, T ;X),
weakly-∗ in L∞(0, T ;H),

 (8.89)

as k → ∞. In addition, from arguments similar to (8.51), we observe that

pnk
→ pε∗∗ in L2(0, T ;X) as k → ∞, (8.90)

hence, in particular,

pnk
(·, 0) → pε∗∗(·, 0) in L2(0, T ), pnk

(·, L) → pε∗∗(·, L) in L2(0, T ) as k → ∞. (8.91)

Therefore, we infer from (8.2), (8.3), (8.4), (8.84), (8.86), (8.90), and (8.91) that the
assertions (8.5)–(8.12) hold. In addition, we conclude from Theorem 6.1 and (8.10)–
(8.12) (cf. (8.73)) that (8.13) holds, hence, [f ε

∗∗, h
ε
∗∗, ℓ

ε
∗∗] ∈ U is the stationary point of the

cost functional Jε with ε > 0. Thus, the proof of Theorem 8.1 has been completed.

9 Numerical experiments
In this section, by similar approach as in [35, 37, 38] we perform the simple numerical
experiments to (OP)ε with some small ε > 0.
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9.1 State system and its optimal control problem
For the stability of numerics and the propagation speed of the interfaces, we now rescale
(t, x) by the small parameter σ > 0. Indeed, we change the pair of variables (t, x) into
(s, y) := (σt, σx). Then, from the formal calculations we observe that (1.1) and (1.2) are
reformulated as follows, respectively:

[u+ w]s − σuyy =
a0f̃(s, y)

σ
in (s, y) ∈ Qσ := (0, σT )× (0, σL) , (9.1)

ws − κ

(
wy

|wy|

)
y

+
∂I[−1,1](w)

σ
+
g(w)

σ
∋ u

σ
in Qσ, (9.2)

where we put f̃(s, y) := f(s/σ, y/σ) for (s, y) ∈ Qσ, for simplicity.
Ohtsuka [35] and Ohtsuka–Shirakawa–Yamazaki [37, 38] gave numerical experiments

of optimal control problem for the approximate Allen–Cahn type equation associated with
total variation energy, in which the singular diffusion term

(
wy

|wy |

)
y

was approximated by(
wε

y√
|wε

y |2+ε2

)
y

for ε > 0.
In this section, by similar approach as in [35, 37, 38] we perform the simple numerical

experiments to (OP)ε with some small ε > 0. Indeed, we consider a distributed control
problem with the heat source as control, more precisely, (OP)ε in the case when aε(r) =

r√
|r|2+ε2

, g(r) = r3 − r, and a1 = a2 = b1 = b2 = c0 = 0.

Now, for the fixed rescale parameter σ ∈ (0, 1], we take T = T̃ /σ and L = L̃/σ for
some positive constants T̃ and L̃. Then, we give numerical experiments of the optimal
control problem for the following state system that is the approximate problem of (9.1)
and (9.2):

Problem (P;f̃ , 0, 0)ε.

[uε + wε]s − σuεyy =
a0f̃(s, y)

σ
in (s, y) ∈ Q̃σ := (0, T̃ )× (0, L̃), (9.3)

wε
s − κ

 wε
y√

|wε
y|2 + ε2

+ εwε
y


y

+
Kε(wε)

σ
+

(wε)3 − wε

σ
=
uε

σ
in Q̃σ, (9.4)

− uεy(s, 0) + uε(s, 0) = uεy(s, L̃) + uε(s, L̃) = 0, s ∈ (0, T̃ ), (9.5)

wε
y(s, 0) = wε

y(s, L̃) = 0, s ∈ (0, T̃ ), (9.6)

uε(0, y) = uε0(y), wε(0, y) = wε
0(y), y ∈ (0, L̃). (9.7)

In addition, for simplicity, we consider the following distributed control problem with the
heat source as control:
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Problem (OP)ε: Find a control function f̃ ε
∗ ∈ L2(0, T̃ ;H), call optimal control, such

that
Jε(f̃ ε

∗ ) = inf
f̃∈L2(0,T̃ ;H)

Jε(f̃). (9.8)

Here, Jε(f̃) is the cost functional defined by

Jε(f̃) :=
c1
2

∫ T̃

0

|(wε − wd)(s)|2Hds+
m0

2

∫ T̃

0

|f̃(s)|2Hds, (9.9)

where c1, m0 are nonnegative constants, wd is the given desired target profile in L2(0, T̃ ;H),
and a couple of functions [uε, wε] is a unique solution to the initial–boundary value state
problem (P;f̃ , 0, 0)ε for the control parameter f̃ ∈ L2(0, T̃ ;H).

Note that the rescale parameter σ appears in (9.3) and (9.4). However, σ is a fixed
positive constant. Hence, by the slight modification of the proof of Theorems 3.1, 4.1,
5.1, 6.1, 7.1, and 8.1, we can prove the solvability of state systems {(9.3)–(9.7)} for any
ε ∈ (0, 1], the existence of optimal controls to (9.8), and so on.

9.2 Discretization
We perform the numerical experiments of (P;f̃ , 0, 0)ε and (OP)ε via the standard explicit
finite difference scheme. Indeed, let ∆t and ∆h be the mesh size of time and space,
respectively, and set wn,j := wε(n∆t, j∆h) and D±

y wn,j := ±(wn,j±1 − wn,j)/∆h. Then,
the diffusion term in (9.4) is discretized by the following:

Dwn,j :=
1

∆h

κ
 D+

y wn,j√
|D+

y wn,j|2 + ε2
−

D−
y wn,j√

|D−
y wn,j|2 + ε2

+ ε(D+
y wn,j −D−

y wn,j)

 .
Other terms are discretized by the standard forms. For instance, we refer to the explicit
finite difference scheme used in [35].

9.3 Numerical experiments
In this subsection, we give three numerical experiments of (OP)ε with sufficient small
parameter ε under the following numerical data:
Numerical data

• σ = 0.001, the domain Q̃σ = (0, T̃ )× (0, L̃) with T̃ = 0.0025 and L̃ = 1.0, the space
mesh size ∆h = 0.005, the time mesh size ∆t = 0.1×∆h2 = 0.0000025, κ = 0.001,
c1 = 10.0, m0 = 1.0, ε = 0.001, the stop parameter µ = 0.0001 for (NA), and the
given initial data [uε0, w

ε
0] ≡ [0.0, 0.0]. In addition, we take f0 ≡ 0.0 as the initial

control function for (NA).
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(Numerical experiment 1)
In the first experiment, we consider a simple target desired profile wd such that

wd(s, y) :=

{
1, if y ∈ [0.30, 0.70],

−1, otherwise,
∀s ∈ [0, T̃ ], (9.10)

whose graph is the dotted line in Figure 1.

Figure 1: Target profile wd(T̃ , y) and solution wε(T̃ , y) at T̃ = 0.0025 and the iteration
number n = 7.

We perform a numerical experiment of (OP)ε by using the numerical algorithm (NA)
proposed in Section 8. Then, (NA) is finished when the iteration number is n = 7 as in
Figure 2.

Figure 2: The value of the cost functional Jε for (OP)ε.

Figure 3 is the graph of the control function f̃ found by (NA) in the case of the
iteration number n = 7.
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Figure 3: The graph of the control function f̃ found by (NA) at the iteration number
n = 7.

Figure 4 is the picture of the solutions uε and wε for (P;f̃ , 0, 0)ε with initial data
[uε0, w

ε
0] ≡ [0.0, 0.0] in the case of the iteration number n = 7.

Figure 4: The graph of solution [uε, wε] to (P;f̃ , 0, 0)ε at the iteration number n = 7:
(left) uε(s, y); (right) wε(s, y).

In addition, the real line in Figure 1 means the graph of wε(T̃ , y) at T̃ = 0.0025 and
the iteration number n = 7. We observe from Figures 1–4 that the solution wε(T̃ , y) to
(P;f̃ , 0, 0)ε has the similar profile to the desired one wd(T̃ , y) and the data sequence of
cost functional Jε almost reaches a stationary point.
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(Numerical experiment 2)
In the second experiment, we consider a target desired profile wd such that

wd(s, y) :=


1, if y ∈ [0.00, 0.35],

0, if y ∈ (0.35, 0.70],

−1, if y ∈ (0.70, 1.00],

∀s ∈ [0, T̃ ], (9.11)

whose graph is the dotted line in Figure 5.

Figure 5: Target profile wd(T̃ , y) and solution wε(T̃ , y) at T̃ = 0.0025 and the iteration
number n = 15.

We perform a numerical experiment of (OP)ε by using the numerical algorithm (NA)
proposed in Section 8. Then, (NA) is finished when the iteration number is n = 15 as in
Figure 6.

Figure 6: The value of the cost functional Jε for (OP)ε.
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Figure 7 is the graph of the control function f̃ found by (NA) in the case of the
iteration number n = 15.

Figure 7: The graph of the control function f̃ found by (NA) at the iteration number
n = 15.

Figure 8 is the picture of the solutions uε and wε for (P;f̃ , 0, 0)ε with initial data
[uε0, w

ε
0] ≡ [0.0, 0.0] in the case of the iteration number n = 15.

Figure 8: The graph of solution [uε, wε] to (P;f̃ , 0, 0)ε at the iteration number n = 15:
(left) uε(s, y); (right) wε(s, y).

In addition, the real line in Figure 5 means the graph of wε(T̃ , y) at T̃ = 0.0025 and
the iteration number n = 15. We observe from Figures 5–8 that the solution wε(T̃ , y) to
(P;f̃ , 0, 0)ε has the similar profile to the desired one wd(T̃ , y) and the data sequence of
cost functional Jε almost reaches a stationary point.
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(Numerical experiment 3)
In the final experiment, we consider a target desired profile wd such that

wd(s, y) := cos(2πy), y ∈ Ω = [0.0, 1.0], ∀s ∈ [0, T̃ ], (9.12)

whose graph is the dotted line in Figure 9.

Figure 9: Target profile wd(T̃ , y) and solution wε(T̃ , y) at T̃ = 0.0025 and the iteration
number n = 17.

Here we take the stop parameter µ = 0.00025 for (NA). Then, we perform a numerical
experiment of (OP)ε by using the numerical algorithm (NA) proposed in Section 8. Then,
(NA) is finished when the iteration number is n = 17 as in Figure 10.

Figure 10: The value of the cost functional Jε for (OP)ε.

Figure 11 is the graph of the control function f̃ found by (NA) in the case of the
iteration number n = 17.
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Figure 11: The graph of the control function f̃ found by (NA) at the iteration number
n = 17.

Figure 12 is the picture of the solutions uε and wε for (P;f̃ , 0, 0)ε with initial data
[uε0, w

ε
0] ≡ [0.0, 0.0] in the case of the iteration number n = 17.

Figure 12: The graph of solution [uε, wε] to (P;f̃ , 0, 0)ε at the iteration number n = 17:
(left) uε(s, y); (right) wε(s, y).

In addition, the real line in Figure 9 means the graph of wε(T̃ , y) at T̃ = 0.0025 and
the iteration number n = 17. We observe from Figures 9–12 that the data sequence
of cost functional Jε almost reaches a stationary point, however, there is the slight gap
between the solution wε(T̃ , y) to (P;f̃ , 0, 0)ε and the desired profile wd(T̃ , y) (see Figure
9). We guess the reason is that the target profile wd(T̃ , y) defined by (9.12) is not the
stable equilibria for (P;f̃ , 0, 0)ε, and there is no desired profile ud of the temperature in
(OP)ε (cf. (9.9)).
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In the forthcoming paper we will perform numerical experiments for (P;f, h, ℓ)ε and
(OP)ε under various situations (cf. Remark 3.1).

Acknowledgements
This work was supported by Grant-in-Aid for Scientific Research (C) No. 16K05224,
20K03672 (Ken Shirakawa), and 20K03665 (Noriaki Yamazaki), JSPS.

References
[1] T. Aiki, A. Kadoya, and N. Sato, Optimal control problem for phase-field equa-

tions with nonlinear dynamic boundary conditions, Proceedings of the Third World
Congress of Nonlinear Analysts, Part 5 (Catania, 2000), Nonlinear Anal., 47 (2001),
3183–3194.

[2] L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free
Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press,
Oxford University Press, New York, 2000.

[3] F. Andreu, C. Ballester, V. Caselles, and J. M. Mazón, Minimizing total variation
flow, Differential and Integral Equations, 14 (2001), 321–360.

[4] F. Andreu, C. Ballester, V. Caselles, and J. M. Mazón, The Dirichlet problem for
the total variation flow, J. Funct. Anal., 180 (2001), 347–403.

[5] F. Andreu-Vaillo, V. Caselles, and J. M. Mazón, Parabolic Quasilinear Equations
Minimizing Linear Growth Functionals, Progress in Mathematics 223, Birkhäuser
Verlag, 2004.

[6] H. Attouch, Variational Convergence for Functions and Operators, Pitman Advanced
Publishing Program, Boston-London-Melbourne, 1984.

[7] H. Attouch, G. Buttazzo, and G. Michaille, Variational analysis in Sobolev and BV
spaces, Applications to PDEs and optimization, MPS/SIAM Series on Optimization,
6, Society for Industrial and Applied Mathematics (SIAM), Mathematical Program-
ming Society (MPS), Philadelphia, PA, 2006.

[8] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach spaces, No-
ordhoff, Leyden, 1976.

[9] V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces,
Springer Monographs in Mathematics, 2010.

[10] V. Barbu, M. L. Bernardi, P. Colli, and G. Gilardi, Optimal control problems of
phase relaxation models, J. Optim. Theory Appl., 109 (2001), 557–585.



559

[11] H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans
les Espaces de Hilbert, North-Holland, Amsterdam, 1973.

[12] H. Brézis, M. G. Crandall, and A. Pazy, Perturbations of nonlinear maximal mono-
tone sets in Banach space, Comm. Pure Appl. Math., 23 (1970), 123–144.

[13] Z. Chen and K.-H. Hoffmann, Numerical solutions of the optimal control problem
governed by a phase field model, Estimation and control of distributed parameter
systems (Vorau, 1990), pp. 79–97, Internat. Ser. Numer. Math., Vol. 100, Birkhäuser,
Basel, 1991.

[14] P. Colli, G. Gilardi, R. Nakayashiki, and K. Shirakawa, A class of quasi-linear
Allen-Cahn type equations with dynamic boundary conditions, Nonlinear Anal., 158
(2017), 32–59.

[15] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,
Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.

[16] M.-H. Giga and Y. Giga, Very singular diffusion equations: second and fourth order
problems, Jpn. J. Ind. Appl. Math., 27 (2010), 323–345.

[17] M.-H. Giga, Y. Giga, and R. Kobayashi, Very singular diffusion equations, Taniguchi
Conference on Mathematics Nara ’98, pp. 93–125, Adv. Stud. Pure Math., 31, Math.
Soc. Japan, Tokyo, 2001.

[18] Y. Giga, Y. Kashima, and N. Yamazaki, Local solvability of a constrainted gradient
system of total variation, Abstr. Appl. Anal., 2004 (2004), 651–682.

[19] Y. Giga, H. Kuroda and N. Yamazaki, An existence result for a discretized con-
strained gradient system of total variation flow in color image processing, Interdiscip.
Inform. Sci., 11 (2005), 199–204.

[20] Y. Giga, H. Kuroda, and N. Yamazaki, Global solvability of constrained singular dif-
fusion equation associated with essential variation, Free Boundary Problems: Theory
and Applications, pp. 209–218, Int. Series Numer. Math., Vol. 154, Birkhäuser, Basel,
2006.

[21] K.-H. Hoffmann and L. Jiang, Optimal control of a phase field model for solidification,
Numer. Funct. Anal. Optim., 13 (1992), 11–27.

[22] A. Ito, N. Yamazaki, and N. Kenmochi, Attractors of nonlinear evolution systems
generated by time-dependent subdifferentials in Hilbert spaces, Dynamical Systems
and Differential Equations, Missouri 1996 Volume 1, pp. 327–349, Southwest Mis-
souri State University, 1998.

[23] N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent con-
straints and applications, Bull. Fac. Education, Chiba Univ., 30 (1981), 1–87.

[24] N. Kenmochi and M. Niezgódka, Evolution systems of nonlinear variational inequal-
ities arising from phase change problems, Nonlinear Anal., 22 (1994), 1163–1180.



560

[25] N. Kenmochi and K. Shirakawa, Stability for a parabolic variational inequality asso-
ciated with total variation functional, Funkcial. Ekvac., 44 (2001), 119–137.

[26] N. Kenmochi and K. Shirakawa, A variational inequality for total variation functional
with constraint, Nonlinear Anal., 46 (2001), 435–455.

[27] N. Kenmochi and K. Shirakawa, Stability for a phase field model with the total
variation functional as the interfacial energy, Nonlinear Anal., 53 (2003), 425–440.

[28] R. Kobayashi and Y. Giga, Equations with singular diffusivity, J. Statist. Phys., 95
(1999), 1187–1220.

[29] H. Kuroda, The Dirichlet problems with singular diffusivity and inhomogeneous
terms, Adv. Math. Sci. Appl., 19 (2009), 269–284.

[30] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural’ceva, Linear and Quasi-
linear Equations of Parabolic Type, Translations of Mathematical Monographs, 23,
American Mathematical Society, Providence, R.I. 1967.

[31] S. Moll, K. Shirakawa, and H. Watanabe, Energy dissipative solutions to the
Kobayashi-Warren-Carter system, Nonlinearity, 30 (2017), 2752–2784.

[32] U. Mosco, Convergence of convex sets and of solutions of variational inequalities,
Advances Math., 3 (1969), 510–585.

[33] R. Nakayashiki and K. Shirakawa, Weak formulation for singular diffusion equation
with dynamic boundary condition, Solvability, regularity, and optimal control of
boundary value problems for PDEs, pp 405–429, Springer INdAM Ser., 22, Springer,
Cham, 2017.

[34] P. Neittaanmäki and D. Tiba, On the approximation of the boundary control in
two-phase Stefan-type problems, Control Cybernet., 16 (1987), 33–44.

[35] T. Ohtsuka, Numerical simulations for optimal controls of an Allen-Cahn type equa-
tion with constraint, Proceedings of International Conference on: Nonlinear Phenom-
ena with Energy Dissipation–Mathematical Analysis, Modelling and Simulation–, pp.
329–339, GAKUTO Intern. Ser. Math. Appl., vol 29, Gakkotosho, Tokyo, 2008.

[36] T. Ohtsuka, K. Shirakawa, and N. Yamazaki, Optimal control problems of singular
diffusion equation with constraint, Adv. Math. Sci. Appl., 18 (2008), 1–28.

[37] T. Ohtsuka, K. Shirakawa, and N. Yamazaki, Convergence of numerical algorithm for
optimal control problem of Allen-Cahn type equation with constraint, Proceedings
of International Conference on: Nonlinear Phenomena with Energy Dissipation–
Mathematical Analysis, Modelling and Simulation–, pp. 441–462, GAKUTO Intern.
Ser. Math. Appl., vol 29, Gakkotosho, Tokyo, 2008.

[38] T. Ohtsuka, K. Shirakawa, and N. Yamazaki, Optimal control problem for Allen-
Cahn type equation associated with total variation energy, Discrete Contin. Dyn.
Syst. Ser. S, 5 (2012), 159–181.



561

[39] I. Pawłow, Analysis and Control of Evolution Multi-Phase Problems with Free Bound-
aries, Prace habilitacyjne, Polska Akademia Nauk, Instytut Badań Systemowych,
1987.

[40] S.-U. Ryu and A. Yagi, Optimal control for an adsorbate-induced phase transition
model, Appl. Math. Comput., 171 (2005), 420–432.

[41] K. Shirakawa, Asymptotic convergence of p-Laplace equations with constraint as p
tends to 1, Math. Methods Appl. Sci., 25 (2002), 771–793.

[42] K. Shirakawa, Large-time behavior for a phase field system associated with total
variation energy, Adv. Math. Sci. Appl., 15 (2005), 1–27.

[43] K. Shirakawa, Stability for steady-state patterns in phase field dynamics associated
with total variation energies, Discrete Contin. Dyn. Syst., 15 (2006), 1215–1236.

[44] K. Shirakawa and M. Kimura, Stability analysis for Allen-Cahn type equation asso-
ciated with the total variation energy, Nonlinear Anal., 60 (2005), 257–282.

[45] K. Shirakawa and N. Yamazaki, Optimal control problems of phase field system with
total variation functional as the interfacial energy, Adv. Differential Equations, 18
(2013), 309–350.

[46] K. Shirakawa and N. Yamazaki, Convergence of numerical algorithm for approxi-
mating optimal control problems of phase filed system with singular diffusivity, Adv.
Math. Sci. Appl., 25 (2016), 243–272.

[47] J. Sprekels and S. Zheng, Optimal control problems for a thermodynamically consis-
tent model of phase-field type for phase transitions, Adv. Math. Sci. Appl., 1 (1992),
113–125.

[48] A. Visintin, Models of Phase Transitions, Progress in Nonlinear Differential Equa-
tions and their Applications, vol. 28, Birkhäuser, Boston, 1996.


	Introduction
	Notations and basic assumptions

	Preliminaries
	Solvability of (P;f , h, )
	Continuous dependence of solutions to (P;f , h, )
	Optimal control to (OP)
	Optimality condition for (OP) with >0
	Optimality condition for (OP)0
	Numerical Scheme for (OP) 
	Numerical experiments
	State system and its optimal control problem
	Discretization
	Numerical experiments


