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Abstract. We study an optimal control problem for a one dimensional phase-filed
system associated with the total variation energy, from the view-point of numerical anal-
ysis. Our state system consists of two parabolic PDEs: a heat equation and a singular
diffusion equation of an order parameter. In this paper, we give a class of approximate
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approximate state system. In addition, by means of necessary conditions for the approx-
imate control problem, we propose the numerical scheme to find the stationary point of
the cost functional to the approximate control problem, and show the convergence of our
numerical algorithm. Furthermore, we perform the simple numerical experiments.

Communicated by Editors; Received September 22, 2020.

AMS Subject Classification: 49J20, 35K55, 35R35.

Keywords: Optimal control problem, numerical algorithm, phase-filed system, total variation, singular
diffusion equation, necessary condition, numerical experiment.

495



496

1 Introduction

In this paper, we consider a class of approximate problems for the following one dimen-
sional phase-filed system with singularity:

Problem (P;f,h,()°.

[u+ W]y — Uz = agf(t,z) in Q:=(0,7) x (0, L), (1.1)
wy — K (|Z$|> + 0l qy(w) + g(w) > v in Q, (1.2)

— u,(t,0) + no(u(t,0) — by) = arh(t), te€ (0,7T), (1.3)
uz(t, L) + no(u(t, L) — by) = aol(t), t € (0,7T), (1.4)

w,(t,0) =w,(t,L) =0, te(0,T), (1.5)
u(0,2) = ug(x), w(0,z)=wo(x), z€(0,L), (1.6)

where 0 < T' < o0 and 0 < L < oo are fixed positive constants, ag, ai, as are given
nonnegative constants, k > 0, ng > 0, by, by are given constants, ¢ is a given continuous
function on R, [f, h, ¢] is a triplet of given functions, and ug, wy are given initial data. In
addition, 0I;_11j(-) is the subdifferential of an indicator function I;_; j(-) on the closed
interval [—1, 1], that is defined as:

0, ifze[-1,1],

1.7
+00, otherwise. (1.7)

I10(2) = {

The system (P;f, h, £)? is based on the modeling method of Visintin [48] as a possible
mathematical model of solid-liquid phase transitions in a mesoscopic length scale. In
the physical context, the unknown function u = (¢, x) is the relative temperature, and
w = w(t,z) is the nonconserved order parameter that indicates the physical phase of
material: w = 1 (resp. w = —1) corresponds to pure liquid (resp. solid), for instance.
Note that the equation (1.2) is derived as the L2-gradient flow of the free energy functional
as follows:

L L
Fu(w) == /i/ | Dw| +/ {I[,l,l](w) +g(w) — wu}d$, w e L0, L),
0 0

where fOL | Dw| is the total variation of a function w € L*(0, L) and g is a non-negative
primitive of g. Therefore, we can regard (1.2) as one kind of mathematical formulation
of Gibbs-Thomson law.

Many mathematicians studied the singular diffusion equation (1.2) with or without
constraint 0Ij_; jj(w) from the various point of view (cf. [3, 4, 5, 14, 16, 17, 18, 19,
20, 25, 26, 28, 29, 33, 35, 36, 37, 38, 41, 44, 48]). For instance, Kenmochi-Shirakawa
studied in [25] the precise structure of steady-state solution, and characterized in [26]
the asymptotic stability of steady-states, by means of an original concept named “local
stability”. Furthermore, the line of results [25, 26] was enhanced by Shirakawa—Kimura
[44], under the higher dimensional setting of spatial domain.
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In addition, Ohtsuka—Shirakawa—Yamazaki [36, 37, 38] considered the optimal control
problem of (1.2) with respect to the temperature control u in the case when g(w) = —w.

The system (P;f, h, ()" was considered by Kenmochi-Shirakawa [27] and Shirakawa
[42, 43]. In particular, Kenmochi-Shirakawa [27] discussed the large-time behavior of
solutions to (P;0,0,0)" on the basis of the previous work [25, 26] of stability analysis.
In addition, Shirakawa-Yamazaki [45] considered the optimal control problem and its
optimality condition for (P;f, h,£)° with g(w) = vw? — w for some small constant v > 0
via the limiting observation of approximate problems : in such approximate problems, the

singular diffusion term { ;2 ) and the constraint 9/;_ y (w) as in (1.2) were approximated
by ’
wf':
\/% +Ew; and KE('UJE), (18)
ws|“+¢€

respectively, for given small parameter ¢ € (0, 1]. Here, K¢ is a nondecreasing function
on R defined by

K*(r) := sign(r) /0‘|7“| - {1’ [s —1]*"

€ g2

}ds for r € R, (1.9)

where [-]* denotes the positive part of a function and sign(+) is a signum function so that
sign(0) = 0.
In this present paper, we consider a class of approximate functions for singular diffusion

term <‘$z|> in (P;f,h,0)°. Then we investigate the following approximate problems,
denoted by (P;f, h, ()¢, with small parameter ¢ € (0, 1]:

Problem (P;f, h,0)c.
[U’€ + ws]t - U;m = a’()f(t7 [L’) in Q7

(

wy — k(o (wy) + ewy), + K°(w°) + g(w®) = v* in @, (
— W (H,0) + no(wf(£,0) — by) = arh(t), e (0,T), (1.12

(

(

us(t, L) + no(u(t, L) — by) = axl(t), te(0,T), 1.13

wi(t,0) = wi(t,L) =0, te(0,T), 1.14

u®(0,z) = up(x), w(0,2) =wp(x), =z € (0,L), (1.15

where a° is a given function on R with a°(r) — a°(r) := 77 in an appropriate sense as
¢ — 0. The typical example is a*(r) = == (cf. (1.8)). Then, we clarify the class of

approximate functions a® so that (P;f, h, () is the approximate problem for (P;f,h,¢)°
ase — 0.

In addition, we consider a class of approximate optimal control problems, denoted by
(OP)=, as follows:

Problem (OP)<: Find a triplet of control functions [f¢, hS, 5] € U, call optimal control,
such that

JE(FE hE 5) = inf  JE(f,h.0).
(f5,hs, 65) st (f,h,0)
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Here, we set U := L?(0,T; L*(0, L)) x L*(0,T) x L?(0,T) as a control space, and J*(f, h, {)
is the cost functional defined by

C T e C T c
P = [l o dt+ G [ 1 = O d

T T g
+%/ Al dt+%/ a?|h(t)l2dt+%/ as et dt,
0 0 0

(1.16)

where | - |12(0,1) is a standard norm of L*(0, L), ¢y, ¢1, mg, mi, my are given nonnegative
constants, and wug, wy are the given desired target profiles in L*(0,T; L*(0,L)). In addi-
tion, a couple of functions [u®, w®] is a unique solution to the initial-boundary value state
problem (P;f, h, £)¢ with the control parameter [f, h,{] € U.

Note that (OP)¢ can be regarded as an optimal control problem in solid-liquid phase
transition phenomena. Indeed, if the constant aq is equal to 0, then (OP)® is a boundary
control problem. Similarly, if a; = ay = 0, then (OP)® reduces to a distributed control
problem with the heat source as control. Note that b; (resp. by) denotes the outside
temperature at x = 0 (resp. © = L). There is a vast amount of literature on optimal
control of phase transitions problems. In particular, we refer to the contributions [1, 10,
13, 21, 34, 35, 36, 37, 38, 39, 40, 45, 46, 47].

In addition, note that (OP)Y is an optimal control problem for our original phase-
filed system (P;f,h,¢)° with singularity. Therefore, in this present paper, we show the
relationship between (OP)¢ and its limiting problem (OP)Y as ¢ — 0. Furthermore,
by using necessary conditions for (OP)®, we propose the numerical scheme to find the
stationary point of the cost functional J=(-,-,-) to (OP)?, and show the convergence of
our numerical algorithm. Moreover, we give some numerical experiments for (OP)¢ under
the simple situations.

The main novelties found in this paper are the following:

(i) to prove the existence-uniqueness of solutions to (P;f, h,¢)¢ for any € > 0;

(ii) to prove continuous dependence of solutions to the systems (P;f, h, £)¢ with respect
to e — 0;

(iii) to prove the existence of an optimal control (optimal pair) to (OP)* for any £ > 0;

(iv) to show the relationship between the limits (w-limit points) of sequences of approx-
imate optimal pairs and the optimal pairs of the limiting problem (OP)?;

(v) toshow the necessary conditions to the approximate optimal control problems (OP)®
for any ¢ > 0;

(vi) to derive a weak formula of the necessary conditions to the original problem (OP)°
through the limiting observation of approximate situations, as ¢ | 0;

(vii) to propose the numerical scheme to find the stationary point of the cost functional
to the approximate control problem (OP)¢;

(viii) to show the convergence of our numerical algorithm;



499

(ix) to perform numerical experiments of (OP)¢ for the sufficient small € > 0 under the
simple situations.

Consequently, an effective class of approximate optimal pairs of our control problem (OP)°
will be presented as a further conclusion derived from the main results. In addition, it is
worthy of considering approximate optimal control problems (OP)¢ from the view-point
of numerical analysis.

The plan of this paper is as follows. In Section 2, we recall the fundamentals of
the theory of functions of bounded variation, including the exact definition of the total
variation functional. In Section 3, we prove Theorem 3.1 concerned with the item (i)
listed in the above. In Section 4, we discuss the continuous dependence of solutions to
the systems (P;f, h, £)¢ with respect to ¢ — 0, corresponding to the item (ii) listed in the
above. In Sections 5, 6, and 7, we consider optimal control problems (OP)¢ for any € > 0,
which correspond to the items (iii), (iv), (v), and (vi) listed in the above. In Section 8, we
mention and prove the main theorem, concerned with the items (vii) and (viii) listed in
the above. In the final Section 9, we show the item (ix). Indeed, we give three numerical
experiments to (OP) for the sufficient small £ > 0.

1.1 Notations and basic assumptions

First, we mention the notations that are used throughout this paper.

For each dimension n € N, we denote by .Z" the n-dimensional Lebesgue measure,
and we use this measure unless otherwise specified.

For any reflexive Banach space B, we denote by | - | the norm of B, and denote by
B’ the dual space of B. Additionally, we denote by (-,-)p p the duality pairing between
B’ and B.

In particular, we put H := L?(0, L) with the usual real Hilbert structure, and denote
by (-, )y the inner product in H, for simplicity.

Also, let X be the Sobolev space H'(0, L) with the norm

l2lx = {|zl% + 10 (120)> + |2(L)2) }'* for any z € X,

which is equivalent to the standard norm of H'(0, L). We denote by X’ the dual space
of X. Also, (-,-) denotes the duality pairing between X’ and X. By identifying Hilbert
spaces with their duals, we suppose that

XCH=H cX (1.17)

with dense and compact embeddings, and then we have (v,z) = (v, z)y for v € H and
z € X. Furthermore, let F': X — X’ be the duality mapping defined by

(Fvu,z) = (g, zo)m + 0 (v(0)2(0) + v(L)z(L)) forall v,z € X. (1.18)

Also, for given f € H,h € R, L €R, ap €R, a; € R, a; €R, by € R, by € R, and ng € R,
an element f € X’ is uniquely determined by

<f, 2y = (aof, 2)g + (a1h + ngb1)z(0) + (azl + nobe)z(L)  for all z € X.
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For this f, it is easy to check that F'v = fis formally equivalent to

—VUze = aof in (0, L),
{ —02(0) + no(v(0) — by) = arh, v,(L) + no(v(L) — by) = asl. (1.19)

Note that X’ becomes a Hilbert space with inner product (-,-)xs given by
(v,2)x = (v, F7'2)  forallv,z € X'

We next list some notation and definitions of subdifferentials of convex functions. For
a proper (i.e., not identically equal to infinity), l.s.c. (lower semi-continuous), and convex
function ¢ : H — R U {oo}, the effective domain D(v)) of v is defined by D(¢)) := {z €
H; ¢(z) < oo}. We denote by 0¢ the subdifferential of ¢ in the topology of H. In
general, the subdifferential is a possibly multi-valued operator from H into itself, and for
any z € H, the value 0¢(z) is defined as:

OPp(z):={z"€ H; (Z"y—2)g <Y(y) —(z) forallye H}.

Then, a set D(0y) = {z € H; 0¢(z) # 0} is called the domain of 9¢. For various
properties and related notions of a proper, l.s.c., convex function v and its subdifferential
0, we refer to the monograph by Brézis [11]. In particular, for those in Banach spaces,
we quote the books by Barbu [8, 9].

We also recall a notion of convergence for convex functions, developed by Mosco [32].

Definition 1.1 (cf. [32]). Let v, ¥, (n € N) be proper, ls.c., and convex functions on
H. Then, we say that 1,, converges to ) on H in the sense of Mosco [32] as n — oo if the
following two conditions are satisfied:

(i) for any subsequence {¢n, }ken C {¥n}nen, if 2x — 2z weakly in H as k — oo, then

lim inf ¢, (2) > (2);

k—

(ii) for any z € D(v), there is a sequence {z, }nen in H such that

Zn = zin Hasn—oo and  lim ¢,(z,) = ¢¥(z2).

n—oo

As well as, if the sequence of convex functions {1, }.c= is labeled by a continuous argument
e € = with a infinite set = C R, then for any ¢y € Z, the Mosco-convergence of {1, }.cz,
as € — €o, is defined by those of subsequences {1, }nen, for all sequences {&, }nen C =,
satisfying €, — €9 as n — oc.

Finally, throughout this paper, N;, ¢ = 1,2,3,---, denotes positive (or nonnegative)
constants depending only on their argument(s).
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2 Preliminaries

In this section, we recall the fundamentals concerned with the total variation and functions
of bounded variation. These notions are rigorously defined as follows.

Definition 2.1. (I) Let z € L*(0, L). Then, z is called a function of bounded variation,
or simply a BV-function, on (0, L), if and only if:

L w € 0, L] with a compact support on (0, L),
Vo(z) : =sup / 2w dr; < 00.
0 |ow| <1 on [0, L]

Here, we call Vj(z) the total variation of z.
(II) We denote by BV (0, L) the space of all BV-functions on (0, L).

Here are listed usual properties of BV-functions and the space BV (0, L), in forms of
some propositions and remarks.

Proposition 2.1 (cf. [15, Chapter 5]). Let z € BV(0,L). Then, there exists a Radon
measure |Dz| on (0, L), and |Dz|-measurable function o, : (0, L) — R such that

(i) Vo(z) = [i'|Dz|, and |o.| =1, |Dz|-a.e. on (0,L);
(i7) fOL zwgdr = — fOL w 0,|Dz| for any w € C'(0, L] with a compact support on (0, L).

Remark 2.1. If z belongs to the Sobolev space W(0, L), then |Dz| is absolutely con-
tinuous with respect to the Lebesgue measure, and it follows that:

/ |Dz| = / |2.(z)|dz  for all Borel subsets U C (0, L)
U U

and (@)
Zp\ T
T if ’ O,
o) = Ty L@ aa. z€(0,L)
0, otherwise,

Proposition 2.2 (cf. [7, Chapter 10], [15, Chapter 5]). (I) The functional z € L'(0, L) —
Vo(2) forms a proper, l.s.c., and convex function on L*(0,L).
(II) The space BV (0, L) is a Banach space with the norm:

2[Bv(0,2) = [2|p10,0) + Vo(2)  for all z € BV(0, L).

Proposition 2.3 (cf. [2, Corollary 3.49], [7, Chapter 10]). BV (0, L) is continuously em-
bedded in L>(0, L), and compactly embedded in LP(0, L) for any 1 < p < oo.
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Next, let us set a proper, l.s.c., and convex functional Z;_; ;; on H, by putting:
L
Zi1(2) = / I_1qy(2(x))dz  forall z € H;
0

to define the following total variation functional V° with a constraint by the indicator
function I}y y:
1
VO(z) = Vo(2) + =Zj_14(2) forall z € H. (2.1)
K
Clearly, V9 is proper, ls.c., and convex on H, and its effective domain is formulated by:

D(V% ={2€ BV(0,L); |2| <1, ae. on (0,L)}.

Finally, we recall the decomposition result of the subdifferential OV° of V°. For the
detailed proof, we refer to [44, Theorem 3.1].

Proposition 2.4 (cf. [44, Theorem 3.1]). The subdifferential OV° of V is decomposed
into the following form:

Vo) =0 (Voly) () + %01[171}(2) in H forall z€ H,

where Vo, denotes the restriction of Vi onto H.

3 Solvability of (P;f,h,()*

In this section, we discuss the existence-uniqueness of solutions to (P;f,h,f)® for any
e>0.

We begin with giving some assumptions on data. Throughout this paper, we assume
the following conditions (A1)—(A4).

(A1) @° is an absolute value function on R, i.e., @°(r) := |r| for all » € R. In addition,
let {@°}ec(0.1] € C'(R) be a sequence of convex functions and C'-regularizations for
a’(-) := | -], such that:

a*(r) >0 for any r € R and any ¢ € (0, 1],

{ a(r) —a’(r) for any r € R,

0,
a() — aﬂ(.) on R, in the sense of Mosco, asel

and there exists a constant §y > 0, independent of € € (0, 1], satisfying:

la®(r)] < do(Jr] + 1) for any r € R and any ¢ € (0, 1],

where a® := (a°)’ is the derivative of @°. Furthermore, there exist bounded functions

01 :(0,1] = (0,1] and d5 : (0,1] — [0, 00) such that
01(e) =1, d9(e) >0 ase O,

and
a*(r) > 6,()a’(r) — dy(e) for any r € R and any ¢ € (0, 1].



203

(A2) g is a continuous and semi-monotone function on R, i.e., there is a constant Cy > 0
such that ¢(r) + C,r is monotone in r € R. In addition, the function g(r) has a
non-negative potential function g(r), that is,

g(r) >0 and (9)'(r) = g(r) for any r € R.

(A3) T>0,L>0,k>0,n9>0,¢0>0,¢; >0, mg >0, my >0, mg >0 are fixed
constants. Also, ag, a1, as, by, by are fixed real numbers.

(A4) uy and wy are the given desired target profiles in L*(0,T; H).

Remark 3.1 (cf. [14, 31]). The assumption (Al) was introduced in [14, (A4)]. The
similar assumption was found in [31, Definition 3.1]. In addition, the typical examples of
a* are the followings:

« (Hyperbola type) @°(r) = v/r?+¢€? for any r € R and any ¢ € (0, 1].

» (Hyperbolic-tangent type) a°(r) = elog (cosh (t>) for any r € R and any ¢ €
£

0,1].

- 2 1 2
o (Arctangent type) a°(r) = = [f tan ™! <Z> — §log (1 -+ (C> ﬂ for any r € R
5 5

and any ¢ € (0, 1].

1
o 1+4e?
Clearly, such functions satisfy (A1).

52
o (p-growth type) a°(r) Ir? + 52\1+T for any r € R and any ¢ € (0, 1].

We now give the notion of solutions to (P;f,h,@g. To this end, for given f €
L*(0,T;H), h € L*(0,T), and £ € L*(0,T), we define f € L?(0,T; X') by putting

(f(t), 2) := (aof(t), 2) i + (arh(t) + nob1)2(0) + (azf(t) + nobs)z(L)

(3.1)
for all z € X and a.a. t € (0,7T).

In addition, let K¢ be a function on R defined by (1.9). Clearly, K¢ is a C'-function
with derivative (K°) € W1(R). We fix a primitive K= € C%(R) N W2 (R) of K= such
that R R

K(0)=0 and K°(r)>0 forallreR. (3.2)

Then, for any € € (0, 1], let us set:

L/\a € g 2 l L e .
Ve(s) i /0 a (zx(x))dx+§/0 |22 (2)|“dx + H/o K®(z(x))dz, if z€ X, (3.3)

00, otherwise.

Clearly, each functional V¢ (e € (0, 1]) forms a proper, Ls.c., and convex functional on H.
Based on functionals V¢ (¢ € (0,1]) and V° (cf. (2.1)), the solutions to (P;f, h,£)¢,
for € > 0, are defined as follows.
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Definition 3.1. Let € € [0, 1], ugp € X', and wy € H. Then, a couple of functions [u®, w®]
is called a solution to (P;f, h, )%, or (P;ug, wo, f, h, )¢ when the initial data are specified,
on [0, T}, if the following conditions are satisfied:

(S1) us € W2(0,T: X') N L2(0,T: X) c C([0,T); H).
(S2) w® € W2(0,T; H) with V(w?) € L=(0,T).
(83) For all z € X and a.a. t € (0,T),
(W) (1), 2) + (W) (t), 2)u + (Fu(t), 2) = (f(1), 2).
(S4) There is a function (w®)* € L2(0,T; H) such that (w®)*(t) € OV (w(¢)) in H and
(W) (£) + k(w®)*(t) + g(w(t)) = u(t) in H, aa. te(0,T).

(S5) u®(0) = up in X" and w*(0) = wyp in H.

Remark 3.2. By the definition of subdifferentials, we observe that the evolution equation
in (S4) of Definition 3.1 is equivalent to the following variational inequality:

((wo)'(t) + g(ws(t)) — w(t), w*(t) — 2)u + £V (w(t)) — £V(2) <0

3.4
for any z € D(V¢) and a.a. t € (0,7T). (3:4)

Note that (3.4) corresponds to a weak formulation of the second equation of (P;f, h,¢)s,
for any € > 0.

Remark 3.3. Let € € (0,1]. Then, note that the subdifferential operator OV¢ is single-
valued. In addition, we observe from the definition of subdifferential that w* = V¢ (w®)
if and only if

1
(", )i = (0 () + 2, 20)y + (K@), 2)y, ¥z € D(VF).

The expression of V¢ is obtained by computing the first variations of the convex function
Ve, and the variational inequality (3.4) implicitly includes the homogeneous Neumann
type boundary condition.

Remark 3.4 (cf. [45, Remarks 3.1, 3.2, and 3.3]). Let ¢ = 0. By Proposition 2.4, the
condition (S4) of Definition 3.1 is equivalent to the following condition (S4)" :

(S4)" There is a function (w§)* € L*(0,T; H) and a function & € L?(0,T; H) such that
(w5)"(t) € 0 (Vol ) (w(t)) in H,  &°(t) € OLj—1q(w(t)) in H,

(w)'(£) + w(w)"(t) + &°(t) + g(w*(t)) = v*(t) in H
for a.a. t € (0,7).
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Note that the function (w§)* € L*(0,T; H) as in (S4)’ somehow links to the first variation
of the total variation functional Vp|,. In addition, as is well-known (cf. [11, Proposition
2.16)),

OLi_17)(z) = {€ € H; £ € 0l_11)(2), a.e. on (0,L)} for any z € D(Z_1 ).

Hence, the subdifferential OV corresponds to the rigorous expression of the singular term
- ( . > + 20111 (w) as in (1.2), and the variational inequality (3.4) implicitly includes

|wa|

the homogeneous Neumann type boundary condition.

We now mention the first main result in this paper, which is concerned with the
existence-uniqueness of solutions to (P;ug, wo, f, h,£)® for each € € [0, 1].

Theorem 3.1 (cf. [45, Propositions 3.1 and 3.2]). Assume (Al), (A2), (A3), and € €
[0,1]. Let [f, h,£] be arbitrary triplet of functions in U. Then, for each uy € H and
wy € D(V®), there is a unique solution [u®, we| to (P;ug, wo, f, h, )¢ on [0,T]. In addition,
there is a positive constant Ny, dependent only on T and ng, and independent of € € [0, 1],
such that the following bounded estimate holds:

|(u6),|%Q(O,T;X’) + |u6|i°°(0,T;H) + |u6|%2(o,T;X) + ‘(wa),‘%%o,T;H) + |w€|%°°(0,T;H)

L

+x sup VE(w(t)) + sup / g(ws(t,z))dx
0<t<T 0<t<T Jo
I (3.5)
< i (Juolh -+ oy +oV=(an) + [l do + a1
0
a1l + a3y + V2 + 82

Proof. By a similar argument to [24, Theorem 2.1], we get the unique solution [u®, w®] to
(P;ug, wo, f, h, )¢ on [0,T). In fact, let [uF, ws] (i = 1,2) be two solutions to (P;ug, wo, f, h, £)°
on [0, 7). Then, note that the following variational identity holds:

(((uD)" = (@) )(7), 2) + (W) = (w3))(7), 2)u + ((Fui — Fu3)(7),2) =0

(3.6)
for all z € X and a.a. 7€ (0,7).

By integrating (3.6) in time, we obtain that
(w5 = ws)(t), 2)ar + (i = w§)(t), 2D+ (o (uf = w)()dr)en )

o { (fo (s = us)(7,0)dr ) 2(0) + (fy (w5 = w5)(r, L)dr ) (L) } = 0 (3.7)
for all z € X and all ¢ € [0,7].
Taking z = (u] — u5)(t) in (3.7), we get that

= O, + ((f = w005 500+ 3| ([ 08 = rar)

2} 0 (3.8)

2
+

/0 ' — ) (7. 0)dr /0 (i — ) (r. L)dr

for all ¢ € [0, T].
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By using the Schwarz inequality in (3.8), and integrating in time, we obtain:
1 t
/y Pydr + (/Qﬁ—@xﬂw>
2 0 x| H
no t t 2
—i-? / (ui —u5)(7,0)dr / (uj —u3) (7, L)dr (3.9)
0 0

1 t
< 5/ |(w$ — ws)(7)|%dr  for all t € [0,T).
0

2

2
+

Note from the monotonicity of 0V that

(((wi)* = (W3)")(7), (wi —w3)(7))y 20, aa 7e(0,T),

where (w$)*(7) € OVE(wi(r)) in H for a.a. 7 € (0,7) (i = 1,2). Therefore, it follows

7

from (S4) of Definition 3.1 and (A2), i.e., the monotonicity of ¢(r) + C,r, that

1 d g g g g 13 g g g
571wl = wd)(7)f < ((ug = ud)(7), (wi = wd)(7))m + Cyl(w] — wd)(7)[ (3.10)
for a.a. 7 € (0,7).
By using the Schwarz inequality in (3.10), and integrating in time, we obtain:
1 1>
5‘(11)1 —wy)(t )’H + Cy ‘ wi — w)( HdT + | HdT (3.11)
for all t € [0,T].

Hence, we infer from (3.9) and (3.11) that
1 t
5\(w§ —wi) ()5 < (1+ Cg)/o |(w§ — w)(7)|3dr  for all t € [0, T). (3.12)

Thus, applying the Gronwall inequality to (3.12), we observe that

wi(t) = ws(t) in H for all t € [0, 7. (3.13)
By the quite standard arguments, we conclude from (3.6) with (3.13) that

ui(t) = u5(t) in H for all t € [0,T]. (3.14)
Thus, the solutions to (P;ug, wo, f, h,€)¢ on [0, T] is unique.

Now, we show the existence of solutions to (P;ug, wo, f, h, £)¢. Note that (P;ug, wo, f, h, ()¢
can be reformulated to abstract evolution equations of the form:

() (t) + (W) (£) + Op(uf(t)) 3 f(t) in X', for t € (0,T), (3.15)

(W) (t) + KOVE(w(t)) + g(w®(t)) 2 u®(t) in H, forte (0,T), (3.16)
u®(0) = ug in X’ and w®(0) = wp in H, (3.17)
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where dg(+) is the subdifferential of a convex function ¢(-) on X’ defined by

1

o(z) = (3.18)

00, otherwise.

Also, OV¢(-) is the subdifferential of the convex functional V¢ on H defined in (3.3).

We first show the existence of a local (in time) solution to (3.15)—(3.17) by employing
the fixed point argument for continuous operators in compact convex sets. To this end,
for T > 0 and M > 0, we define a (non-empty) compact convex subset E(T, M) of
L*(0,T; H) by

we WH2(0,T; X') N L*(0,T; X) C C(0,T]; H),

- 2 .
B = v & O iy + ulfao i + sup [u@)fy < M

Now, for each w € E (T, M) we consider the following problem, denoted by (P2)z, with
a given function w € F(T, M). For a moment, we often omit the superscript ¢ € [0, 1].

Problem (P2);. Find a function w : [0,7] — H which fulfills the following equation:
w'(t) + KOVE(w(t)) + g(w(t)) > u(t) in H, forte (0,7), (3.19)

w(0) = wy in H. (3.20)

Taking account of (2.1) with Propositions 2.2-2.3 and (3.3) with (A1), we observe that
for each e € [0, 1], V* is proper, Ls.c., and convex on H such that the level set of V¢ is
compact in H, i.e.,

{z€ H; V¢(z) <r} is compact in H for any r > 0. (3.21)

Therefore, by using the abstract theory established by Brézis [11] and the perturbation
theory (cf. [12, 22]), we observe that (P2)z has a unique solution w € W2(0, T; H) with
Ve(w) € L>(0,T) for each wy € D(V®) and w € E(T, M). Indeed, (3.19) is equivalent to
the following equation:

w'(t) + KOVE(w(t)) + g(w(t)) + Cyw(t) — Cyw(t) 3 a(t) in H, fort e (0,7,

where C, is the positive constant in (A2). Therefore, by applying the general theory of
evolution equations with monotone and Lipschitz linear perturbations, we can get the
unique solution to (P2)z on [0, 7.

Moreover, by the standard calculation (cf. (3.29) below), we can obtain the following
inequality:

/ W' (7) |[3d7 + 26V (w / g(w
. (3.22)
< 26V (wo) + 2/ / m)|4dr, Vte (0,T).
0
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Next, for the function w constructed above, we consider the following problem, denoted
by (P1),.
Problem (P1),. Find a function u : [0, 7] — X’ which fulfills the following equation:

W () + Op(u(t)) > f(t) —w'(t) in X', forte (0,7), (3.23)

u(0) = uy in X' (3.24)

We observe from (1.17) and (3.18) that ¢ is proper, l.s.c., and convex on X’ such that the

level set of ¢ is compact in X'. Since f —w' € L*(0,T; X’), we can apply the abstract

theory established by Brézis [11]. Thus, we observe that (P1), has a unique solution

uwe Wh2(0,T; X') N L*(0,T; X) C C([0,T); H) for each ug € H and solution w to (P2).

Moreover, by the standard calculation (cf. (3.28) below), we can obtain the following
inequality:

() + 2/; () adr + 1m0 (/Ot lu(r, 0 2dr + /Dt lu(r, L)|2d7>

2T 2 2 r 2 2“% g 2 2“3 g 2
< e luol7 + ag |f(7)|5dm + — |h(T)|?dT + —= |0(T)|“dr (3.25)
0 no Jo no Jo

T
+2noTe*T (b3 +b3) + &7 / lw'(7)|%dr, vt e (0,T).
0

Note that the solution u to (P1),, satisfies the following identity (cf. (S3) in Definition
3.1):

/O (W (1), C()dt + /O (Fu(t), C(t))dt = /0 (f(£),C(t)dt — /0 (W' (), C)mdt 3 95
for all ¢ € L*(0,T; X).

From (1.18), (3.25), and (3.26), we infer that

' [20.rx) < Na <|U:c|%2(o,T;H) + nolu(-, 0)[720.1) + nolul, L) 7201
20 £12 ai a3, o 3.97
+a0|f|L2(O,T;H) + n_0|h‘L2(O,T) + n_0|£|L2(O,T) (3.27)

1" a0 gm0+ moT (5 + 1))

for some constant Ny > 0 independent of the given function w € E(T, M).

Here, we define an operator S : E(T, M) — L*(0,T; H) as follows. For each u €
E(T, M), we denote by w a unique solution to (P2)z, and subsequently, we denote by u a
unique solution to (P1),. On that basis, for any given w € E(T, M), we put Su = u via
the solution w.

Now, we show that S is a self-mapping on E(Ty, My) for some positive constants T
and My, i.e., Su(=u) € E(Ty, My) for any w € E(Ty, M,).

Here, we take My > 0 so large such that

a2 CL2
(4N +8) (|U0@1 + a8|f|%Q(O,T;H) + n_:)|h|%2(0,T) + n—2|£|i2(o,T)>
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a? a’
N. 2 2 . -1 h 2 2 f 2
V2 <a0‘f|L2(O,T,H) + n0| |L2(0,T) + n0| |L2(0,T)

L
+n9 (b3 + b3) + (6Ng + 8) (ﬁvf(wg) - / G(wo(z))dz + 1) < Mo,
0
and then, choose T € (0,7] so small such that
€2T0 S 27 MOTO S 1, N2T0 + 4T062T0 —+ 2N2T062T0 S 1.

Then, estimates (3.22), (3.25), (3.27) implies that Su(= u) belongs to the set E(Ty, M)
for w € E(Ty, My). Thus, the mapping S maps the set F(Ty, M) into itself for Ty and
M, chosen as above.

Moreover, on account of the convergence theory as in [6], we observe that S is contin-
uous in E(Ty, My) with respect to the topology of L?(0,T; H) (cf. Corollary 4.2 below).
Therefore, the Schauder fixed point theorem guarantees that S has at least one fixed
point w in E(Ty, My). The pair of functions [u,w], consisting of the fixed point u of S
and the solution w to (P)z when @ = w, is a solution to (P;ug,wy, f, h, )¢ on the time
interval [0, Tp]. Thus, we have shown that the problem (P;uq, wy, f, h,£)¢ has a local (in
time) solution [u,w] on [0, Tp].

We now give the energy estimate of the local (in time) solution [u, w] to (P;ug, wo, f, h, £)*
on [0, Tp]. To this end, take z = u(t) in (S3) of Definition 3.1. Then, by using the Schwarz
inequality, we have:

1d n n
éa\uwl%{ + (W' (t), u(t) g + |ua(t)|3 + EO!W, 0)]> + §O\U(t, L)
1 a? a? a?
< Su®)F + 2O + =R+ Z2)]7 + no(bT + b3) (3.28)
2 2 7’L0 nO

for a.a. t € (0,T)).

Next, multiplying (3.16) by w'(¢) (cf. (S4) of Definition 3.1), we get:

|w'(t)|?{ + H%Vg(w(t» + %/0 g(w(t,x))dr = (u(t), w/(t>>H (3.29)
for a.a. t € (0,Tp).

Adding (3.29) to (3.28), and applying the Gronwall inequality to the resultant, we have:
1 L
IO + Ve (®) + [ glutto)dss
0

+ / {la() s + S lu(r, 0)2 + Zfu(r, L) + [/ (7 | dr
(3.30)

CL2

1 =
< gl (o) + [ Gl + P
0

a2 CL2
+n—;|h|iQ(O,T) + n—2|£|§2(0,T) + noT(b? + b§)> . YVt e [0,Ty).
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In addition, it follows from (3.26) and (3.30) that

L
|U’,|%2(O,TO;X’) E (|U0|fq + KV (wo) +/ g(wo(x))dz + a(2)|f|%2(0,T;H)
0 (3.31)
ai
_|_

a2
“Lin 2 2 /¢ 2 b2 b? ’
Tlo‘ 220 T n0| 2200,y + no(b7 + 03)

where N3 is a positive constant independent of T and given data wug, wy, f, h, and /.
Multiplying (3.16) by w(t) (cf. (S4) of Definition 3.1), we observe from (A2) that:

52w+ £V (w(t) < Colw(t)f + (ut), w(t)n
for a.a. t € (0,Tp).

(3.32)

By using the Schwarz inequality in (3.32), applying the Gronwall inequality to the resul-
tant, we have:

¢
lw(t)|3 + 21@/0 VeE(w(r))dr < 12T (|w0ﬁ{ + |u|%2(07T0;H)> , Vtel0,Tp]. (3.33)

Therefore, by (3.30), (3.31), and (3.33), we can find a positive constant Ny, independent
of Tp, such that the following bounded estimate holds:

|ul|%2(0,T0;X’) + |u|%°°(0,T0;H) + |U’2L2(0,TO;X) + |w/|%2(O,TO;H) + |w|%°°(O,T0;H)

+x sup VE(w(t)) + sup /0 g(w(t,z))dx

0<t<Tp 0<t<Tp
L (3.34)
< N (Juolf-+ oy + 6V=(an) + [ ) do + o
0

a1l ) + a3y + U+ 83

Hence, by (3.34), we can extend the solution to (P;ug, wo, f, h, ¢)® beyond the time interval
[0, 7). Namely, we get the existence of a solution to (P;uq,wo, f, h,€)%on [0,T].

The a priori estimate (3.5) can be obtained by calculations similar to (3.34).

Thus, the proof of Theorem 3.1 has been completed. [

4 Continuous dependence of solutions to (P;f, h,()°

In this section, we discuss the continuous dependence of solutions to systems (P;uq, wo, f, h, )¢
with respect to ¢ — 0.
We begin with proving the Mosco convergence of V¢ on H as ¢ — 0.

Lemma 4.1 (cf. [31, Theorem 4.1], [41, Lemma 3.1]). Let V° and V¢ (¢ € (0,1]) be
convez functions given in (2.1) and (3.3), respectively. Then:

V() — V°(:) on H in the sense of Mosco [32] as & — 0. (4.1)
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Proof. The proof of this lemma is merely a slight modification of that as in [31, Theorem
4.1] and [41, Lemma 3.1].
Indeed, note that:

L L
/ Ke(")der — / Ii_11)(-)dxz on H in the sense of Mosco [32] as € — 0; (4.2)
0 0

we easily show (4.2), therefore, we omit the detailed proof of (4.2).
Now, we show (i) of Definition 1.1 by using (A1), Proposition 2.2(I), and (4.2). To
this end, assume {ex }ren C (0, 1], {2k }reny C H, and z € H so that

er — 0 and 2z, — 2z weakly in H as k — oo.

Note that we may suppose liminfy ,., V= (2;) < oo, because the other case is trivial.
Then, from (A1), Proposition 2.2(I), and (4.2), we infer that:

oo > liminf Vo (z)
k—o0

_ liggglf[/ () dx+—/ (2a)a(2) 2 + = /Kekzk( ))dx]

[/ {01(er)a”((zn)a (2 )>_52(5k)}d$+%/0 f(\—ak(Zk(ZE))dx]

v
=
=
=4

A%

hm 51(5k)11m inf ao((zk) (x))dx — hm da(e)L

— 00

—hmlnf/ Ka’“ (zx(z

K k—oo

> hIIllanO(Zk)-i- / Iy 4y(2(x))dx
K Jo

> Vi) + 1 [ Te@)de = V)

which implies that (i) of Definition 1.1 holds.

Next, we show (ii) of Definition 1.1. To this end, Let {&, }nen C (0, 1] be any sequence
such that £, — 0 as n — oo, and let 2 be any element of D(V?). According to the result in
2, Theorem 3.9] and [15, Chapter 5], there is a sequence {Z; }ienugoy € C*°(0, L) N D(V?)
such that

1
and |Vo(Z) — W(2)| < =— St for all i € NU {0}. (4.3)

By (A1), we can find a sequence {n;};en such that

no =1, n; 21, niy1 > ny,
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and for any ¢ € NU {0},

sup
n>n;

(4.4)

Based on these, let us define:
Zn =% if n; <m < n;pp for some i € NU{0}.

Then, we infer from (4.3) and (4.4) that

|Zn_Z|H = |2z —Z|H < it

and

|V€”( n) = VO(2)]

a ((zy, dx—/’\oznx dx

5n

((zn)z(x))dx — Vo(2)| +

1
S 21+1 + 2z+1 + 21—}-1 < 2i—1

for any i € NU {0} and n > n;,

which implies that (ii) of Definition 1.1 holds.
Thus, the proof of Lemma 4.1 is complete. O

Taking account of (4.1), we get the following Corollary 4.1. For the detailed proof, we
refer to [6] or [18, Appendix], for instance.

Corollary 4.1 (cf. [6], [18, Appendix]). Let V° and V¢ (e € (0,1]) be convex functions
given in (2.1) and (3.3), respectively. Define

VO(z) = /OTVO(z(t))dt and V*(z):= /OTvg(z(t))dt, Vz e L*0,T;: H).

Then:

~

Ve() — 170(~) on L*(0,T; H) in the sense of Mosco [32] as e — 0.

Now, we mention the main theorem concerning the continuous dependence of solutions
to systems (P;ug, wo, f, h, £)¢ with respect to e — 0.
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Theorem 4.1. Assume (A1), (A2), and (A3). Let [f,h,l] €U, ug € H, and wy € D(V?).
AZSO; let e € (07 1]7 {[faahav‘ga}}se(o,l] - u; {U(a)}se(o,l] - H; and {wg}se(o,l] C D(V&)

Furthermore, suppose that

[ — f weakly in L*(0,T; H), (4.5)

he — h weakly in L*(0,T), (4.6)

(¢ — { weakly in L*(0,T), (4.7)

uy — ug in X', ws — wo in H, and VE(w) — VO(wp) (4.8)

as € — 0. Then, the unique solution [u®,w®] to (P;uf,w§, ¢, he, (°)° converges to the
solution [u,w] to (Pyug, wo, f,h,£)° in the following sense:

[uf, w®] — [u,w] in L*(0,T; H) x C([0,T); H) as e — 0. (4.9)
Proof. Note from the Mosco convergence (4.1) in Lemma 4.1 that for each wy € D(V?),
we can always find a sequence {w§}.c,1 C D(V?) satisfying (4.8).
From (4.8), we infer that
V*(wg) is bounded uniformly in ¢ € (0, 1]. (4.10)

Therefore, we observe from (A1), Proposition 2.1(i), Remark 2.1, and the definitions of
Vo(+) and V=(-) that

Vo(wg) is bounded uniformly in e € (0, 1]. (4.11)

Therefore, it follows from Propositions 2.2-2.3, (4.8), and (4.11) that |w§| gy (o) is bounded
uniformly in € € (0, 1], hence,

|wE| Loo(0,) is bounded uniformly in € € (0, 1]. (4.12)
Thus, we observe from (A2) and (4.12) that

L
/ g(wg(x)) dz is bounded uniformly in € € (0, 1]. (4.13)
0

Now, let [u®,w®] be the unique solution to (P;uf,w§, f¢, h, €)% on [0,T]. Then, from
(4.5)-(4.8) and the stability estimate (3.5) with (4.10)-(4.13), we observe that

u® is bounded in WH2(0,T; X') N L*(0,T; X) N L>(0,T; H), (4.14)
w® is bounded in W12(0,T; H), (4.15)
and
sup Ve(w(t)) is bounded (4.16)
0<t<T

uniformly in € € (0, 1].
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Additionally, from similar arguments as above (cf. (4.10)—(4.12)), we infer that

sup Vo(w®(t)) is bounded uniformly in e € (0, 1], (4.17)
0<t<T

therefore,

sup |w®(t)|pvo,r) is bounded uniformly in e € (0, 1].
0<t<T

Hence, we have

sup |w®(t)|r(,z) is bounded uniformly in e € (0, 1] (4.18)
0<t<T
and
L
sup / g(w®(t,x))dz is bounded uniformly in ¢ € (0, 1]. (4.19)
o<t<T Jo

Thus, by (4.14)—(4.19), there is a subsequence {ej}ren of {€}ec(,1) and functions u €
W2(0,T; X')  L2(0,T; X) N L=(0, T; H) and w € W2(0, T; H) N L™(Q) with Vp(w) €
L>(0,T) such that e — 0,

ut* —w in L?(0,T; H),
in C(0,T}; X'),
weakly in W12(0,T; X'), (4.20)
weakly in L2(0,T; X),
weakly-* in L>°(0,7; H),

w* —w in C([0,T]; H),
weakly in W12(0,T; H), (4.21)
weakly-* in L>(Q),

and
w™(t) = w(t) weakly-x in BV (0, L), for any ¢ € [0,T]

as k — oo.

We now show that the pair of functions [u,w] is the solution to (P;ug, wo, f, h, £)° on
[0, 7. To this end, we recall Corollary 4.1. Let z be any element in D(V9). Then, by the
Mosco convergence of VE( 1), we can find a sequence {z; }reny C L%(0,T; H) such that

2 — 2 in L2(0,T; H) and V(z,) = V°(2) (4.22)

as k — oo.
Since [u®*, w*] is the unique solution to (P;ug*, wg*, fF, h¥k, €55) on [0, T], we easily
observe that:

/0 (Y (1), w(t))dt + / (W™ (t), w(t)) mdt + / (Fuce (t), @ (b)) dt
= /T(aofa’“(t),W(t))HdtJr/T(alhf“k(t)+n0b1)w(t,0)dt (4.23)

0 0
T
+/ (agl?*(t) + noby)w(t, L)dt  for any w € L*(0,T; X),
0
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/0 ((w™)'(8) + g(w™ (£)) — w(t), w™ (t) — 2(t)) mdt

T T (4.24)
+/€/(; VeEr(w(t))dt — H/o Ver (zx(t))dt <0,

and
u™(0) = ug* in X" and w™(0) = wg" in H. (4.25)

Therefore, from (4.5)—(4.8), (4.20)(4.25), the Mosco convergence of V¢(-), and the Lebesgue
dominated convergence theorem, we observe that:

/O (u’(t),w(t)>dt+/o (w’(t),w(t))Hdt+/0 (Fu(t),w(t))dt
= /T(aof(t)7w(t))Hdt+/T((hh(t)+n0b1)w(t,0)dt (4.26)

+/T(a2€(t) + noby)w(t, L)dt ~ for any @ € L*(0,T; X),
(! (£) + g(w(t)) — u(t), w(t) — =(t))md

+/§,/T VO(w(t))dt — K/T VO(2(8))dt < 0 (4.27)

0 0
for any z € L*(0,T; H) with V9(2) € L'(0,T),

0

and
u(0) = up in X" and w(0) = wp in H. (4.28)

Thus, we conclude from (4.20), (4.21), and (4.26)—(4.28) that [u, w] is a unique solution to
(P;ug, wo, f, h,€)° on [0,T], whence (4.9) holds without extracting any subsequence from
{e}ec0,1]- Thus, the proof of Theorem 4.1 has been completed. O

By the slight modification of the proof of Theorem 4.1, we have the following conver-
gence result of solutions to (P;ug, wy, f, h, )% on [0,T] for the fixed parameter ¢ € [0, 1].

Corollary 4.2 (cf. [6], [18, Appendix]). Assume (Al), (A2), and (A3). Let e € [0,1]
be a fixred parameter, and let [f,h,l] € U, ug € H, and wy € D(V®). Also, let

{lfn, Py €] }nen € U, {uontnen € H, and {wo,tnen € D(VE). Furthermore, suppose
that

fn — f weakly in L*(0,T; H),
hn, — h weakly in L*(0,T),
y — € weakly in L*(0,T),
U — up 1 X', wo, = wo in H, and V(we,) — VE(wy)

as n — oco. Then, the sequence of solutions [un,w,] to (Piuon, Won, fr, hn, €n)® converges
to the solution [u,w] to (Pyug,wo, f, h,£)° in the following sense:

[, W] — [u,w] in L*(0,T; H) x C([0,T]; H) as n — oo.
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5 Optimal control to (OP)®

In this section, we consider a class of approximate optimal control problems (OP)c. In-
deed, we prove the following main result, which is concerned with the existence of an
optimal control to (OP)® for each € € [0,1] and the relationship between the limits (w-
limit points) of sequences of approximate optimal pairs and the optimal pairs of the
limiting problem (OP)P.

Theorem 5.1. Suppose (A1)—(A4). Then, the following two statements hold.

(I) Lete €[0,1], uf € H, and wi € D(V®). Then, the problem (OP)¢ has at least one
optimal control [f¢, he, (2] € U, so that:

* ) *) x

JE(fE.hE 65) = inf  JE(f.h.0).
(fs, hs, 65) . (f,h,0)

(IT) Assume ug € H, {uf}eco1) C H, wo € D(V?), {w§}ec01) € D(VE),
ug — ug in X', ws — wy in H, and VE(wj) — V°(wp) as e — 0. (5.1)

Let [f2,h5, 5] € U be the optimal control of (OP)® obtained in (1). In addition, let
[u, we] be the unique solution to (P;uf, ws, f¢,h, (2)¢ on [0,T]. Then, there ezist a
subsequence {ex ren C {€}ec(0,1), the triplet of functions [fi, i, ] € U, and the
unique SolUtion (U, W] 10 (Pitg, Wo, fex, Pass Lax)? 0n [0, T] such that [fee, s, Cus]

is the optimal control of (OP)°, &, — 0,

f* = fu  weakly in L*(0,T; H), (5.2)
he* = h,.  weakly in L*(0,T), .
0k = 0, weakly in L*(0,T), (5.4)
and
[UEF W] — [ty W] im L2(0, T H) x C([0,T); H) (5.5)
as k — oo.

Proof. By Corollary 4.2 and taking a minimizing sequence {[f, fin, {n|}nen C U so that
i J(fo, hiny €n) = inf  J5(f, B, 0),

n—»00 [f,h, L eU

we can prove (I). Such an argument is quite standard, thus, we omit the detailed proof of
(I).

Next, let us prove (II), which is concerned with the relationship between the optimal
control problems (OP)® and (OP)°. To this end, let us fix any sequence {[f£, hS, 2] }.c(0.1] C
U of the optimal controls [f, hS, (2] to (OP)® for € € (0,1]. Let [f, h, ] be any function
in Y. In addition, let [u®, w®] be a unique solution to (P;ug, w§, f, h, )¢ on [0,T], and let
[u, w] be a unique solution to (P;ug, wo, f, h,£)° on [0, T]. Then, we observe from Theorem
4.1 with (5.1) that

[uf, w®] — [u,w] in L*(0,T; H) x C([0,T); H) as € — 0. (5.6)
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Since [fZ, hS, (5] is the optimal control to (OP), we observe that

* 9 Uk T

SR 6) < TR 0)

co [T e 2 a (1 e 2
= 5 I @+ G [ el a
mo T, s (5.7)
+ 2 J, ap| f(t)]3r dt
T T
+%/ a§|h(t)|2dt+%/ a2|0(t)|? dt.
0 0

Clearly, it follows from (1.16), (5.6), and (5.7) that {[f:, RS, (5]} ec0,1) is bounded in U
with respect to € € (0, 1]. Therefore, there are a subsequence {ex }ren C {€}ec(0,1) and the
triplet of functions [fix, hux, Cis] € U such that g, — 0,

f* = fu  weakly in L*(0,T; H), (5.8)
he* — h,, weakly in L*(0,T), (5.9)
ek — 0.,  weakly in L*(0,7) (5.10)

as k — 00.

Let [us, ws*] be a unique solution to (Pug®, wy*, 2+, hek, €2k)% on [0,T]. Then, from
Theorem 4.1 with (5.1) and (5.8)—(5.10), we infer that [uSF, wS*] converges to the unique
SOIUbION (U, Was] 10 (Pito, Wo, fuss Pass £ax)® on [0, T in the sense that

[uEk W] — [, W] in L2(0,T; H) x C([0,T); H) as k — oo, (5.11)
hence, the convergence (5.5) holds.

Now, by using (5.6)—(5.11) and the weak lower semicontinuity of L?-norm, we see that

JO(fes P, L) < lim inf JER(fer hEE 4R < Jim JE(f, hy 0) = JO(f, b, 0).
—00 —00
Since [f, h, f] is any function in U, we infer from the above inequality that [fi., ux, Cis] 18

the optimal control to (OP)°. Hence, the assertion (IT) of Theorem 5.1 holds. Thus, the
proof of Theorem 5.1 has been completed. O

Remark 5.1. Unfortunately, Theorem 5.1 does not cover the uniqueness of optimal
controls. Although Hoffmann—Jiang [21] reported the uniqueness of optimal controls for
a regular Fix—Caginalp system, their technique is not applicable to our problem (OP)®
because of the nonlinear terms a®(w,) and K¢(w). Therefore, the uniqueness question of
optimal controls to (OP)® is still open.

Remark 5.2. Theorem 5.1(II) shows that the weak limit function of optimal control of
(OP)¢ is an optimal control for (OP)Y. Note that we can approximate any optimal control
of (OP)? by considering the following approximate control problems:
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(x) Let @ > 0 be a fixed constant. In addition, let [f.,h., (] € U be any optimal
control of (OP)? obtained in Theorem 5.1(I). Then, for each ¢ € (0,1], we consider
the following approximate optimal control problem:

Problem (OP): . Find a triplet of control functions [f¢, hS, (2] € U, called optimal
control, such that

Jo(fe, hi, b)) = it JI(f, h,0).
L) = inf (0

Here, J5(f, h,{) is the cost functional defined by
Co T

C1 T
Talhiht) =5 | I(us—uzi)(t)|?{dt+§/o [ (w® — wa) (t)[} dt

T T
0 [l de+ 5 [ @bear
0 0

o T (5.12)
2 [ aora+ g 1= 2w

5 [P+ 5 [l iop

where [f,h,f] € U is the control, and a couple of functions [u®, w®] is a unique
solution to the state problem (P;ug, w§, f, h, £)°.

Then, by arguments similar to those in [45, Theorem 3.3(II)], we can prove that there is
a subsequence {e}ren C {€}ec(0,1) such that e, — 0,

f* — f, in L*(0,T; H), h% — h, in L*(0,T), (= — ¢, in L*(0,T),

and
[usk, wiF] — [uy, wi] in L2(O,T; H) x C([0,T); H)

as k — oo, where [ufk, wS*] is a unique solution to (P;ugt,wg®, fo&, hek, 05#)%k and [, w,]
is a unique solution to (P;ug, wo, fx, hs, £:)° on [0, T].

6 Optimality condition for (OP)® with ¢ > 0

In this section we show the necessary condition of an optimal pair [uS, wS, f2, h, (2] to

* 7 * ) Uk

(OP)® with ¢ > 0, where [u,w] is the unique solution to (P;uf,w§, f<, hE, (%)%, and

* ) * ) Uk

[fe,hS, 5] € U is the optimal control to (OP)® obtained in Theorem 5.1(I).
Theorem 6.1. Suppose the same conditions as in Theorem 5.1. Additionally, assume

(A5) {a®}eco1) C C*(R) is a sequence of convexr functions and C?*-regularizations for
a’(+) := |- |. Moreover, there exists a positive constant d3, independent of € € (0,1],
such that

-
0< @) (r)<= foranyreR.
£
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(A6) g is a C* function on R.

For the fized number € € (0,1], let u € H, w5 € D(V®), and let [fE,hS, (5] € U be the
optimal control to (OP)¢ obtained in Theorem 5.1(1). In addition, let [us, ws] be the unique
solution to (Pyuf, w§, f2,hs, €5)° on [0,T]. Then, there exists a unique solution [p°, ¢¢| to

the adjoint equation on [0,T] as follows:

p° € WH0,T; H) N L™®(0,T; X), (6.1)
¢ € WH(0,T; X")N L*(0,T; X) c C([0,T); H), (6.2)
— (%) =P — ¢ =co(u —uq) in Q, (6.3)

/0 () (), () + / (—(¢") (r), C(r)dr
- / (@) (WE)al(r)) + (), Calr)) g 7

T T (64)
+/0 ((KE)/(Wi(T))qE(T),C(T))HdT+/0 (¢'(wi(7))q* (1), (7)) y dT
_ cl/o (uf — wa)(7), C(7)y dr for all ¢ € L2(0,T; X),
—pi(t,0) +nep(t,0) = p5(t, L) + nop°(t,L) =0, te (0,7), (6.5)
p (T,x)=q¢(T,x) =0, z€(0,L), (6.6)

where (a®)'(+) and ¢'(+) are the derivatives of a*(-) and g(-), respectively. Moreover, p°
satisfies the following equations:

ag(p® +moao f7) =0 in L*(0,T; H), (6.7)
ar(p°(-,0) + myahe) =0 dn L*(0,T), (6.8)
as(p°(+, L) + maagls) =0 in L*(0,T). (6.9)

We prove Theorem 6.1 by showing the result of Gateaux differentiability of the cost
functional J=(-, -, ). To this end, we fix ¢ € (0, 1] and the initial data [uf, w§] € H x D(V*).
Then, we define the solution operator A® to (P;uf, w§, f, h, £)° as follows.

Definition 6.1. (I) We denote by A° : U — L*(0,T; H) x L*(0,T; H) a solution operator
to (P;uf, wg, f, h, £)° that assigns to any control [f, h, ¢] € U the unique solution [uf, w®] :=
A=(f, h,?) to the state system (P;uf, w§, f,h, 0)°.

(IT) Let [f¢, A5, £5] € U be the optimal control to (OP)®. Then, [uS,ws, fS,hS, (5] =

[AS(fe,he, €2), f2, hE, £2] is called the optimal pair to the optimal control problem (OP)e.
For a moment, we often omit the superscript € € (0, 1].
At first, we show the Géateaux differentiability of A® and J°. For any A € [-1,1]\ {0},
any [f,h,l] € U, and any [f,h,l] € U, we put [uy,w,] := A(f + Af,h + A\h, 0 + \),

[u, w] := A°(f, h,£), O\ := ==, and x) 1= .
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Note that the pair of functions [y, x,] satisfies the following system:

(05(1), 2) + (XA (), 2) + ((00)2 (1), 22) i + n0Oa(2, 0)2(0) + noOa(t, L)2(L)
= (agf(t), 2) g + arh(t)z(0) + axfl(t)z(L), (6.10)
a.a. t € (0,7), forall z € X;

<X/)\(t)7 Z> + H(ai(tx)()\)m(t)? Zm)H + (?i(t)X)\@)? Z)H + (EA(t)X/\(t)v z>H = (ek(t)a Z)Ha
a.a. t € (0,7), forall z € X; (6.11)

0,(0,z) = xA(0,2) =0, aa.xze€(0,L), (6.12)

where notations a5, fi, and g, are functions on @), given as:
1
B(t0) = [ (@ wnlt) + sl(wn)a(t.) = wslt,2))ds + =
0
Ri(ta) = [ (Y (wt.o) + s(un(t,2) — w(t.0)ds
0

gy(t.) = / ¢ (w(t,z) + s(wa(t, ) — w(t, z))) ds,

for (t,z) € Q, with use of the derivatives (a®)’, (K¢)’, and ¢ of the single-valued functions.

Now, we give the uniform estimate of solutions [0, x»] to (6.10)—(6.12) with respect
to A € [—1,1] \ {0}.

Lemma 6.1. Suppose all the same conditions in Theorem 6.1. Then, there is a positive
number N5 > 0, dependent on €, T, k,ng and independent of A, such that

T T
sup [0 + / 18,(8) [t + / 105(8) et
0 0

0<t<T
T

T
+ sup @+ [ OB+ [ ol (6.13)
0 0

0<t<T
< Ns <a(2)|ﬂ%2(0,T;H) + aﬂh&?(oﬂ + a%|€|i2(0»T)>

for any [f,h,0] € U.

Proof. Clearly, we observe from (A1) and (A5) that (a°)'(-) = a°(-) € C*(R) and
0<(a®)(r) < ?3 for any r € R. (6.14)

In addition, from the definitions of K¢ in (1.9) we infer that

0<K,(tz) <

™ | =

, aa. (t,x) € Q. (6.15)
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Here, from the boundedness (3.5) of solutions to (P;f, h, ¢)®, we note that

sup |w(t)|f + sup [wa(t)[F + & sup VE(w(t)) +k sup V(wa(t))
0<t<T 0<t<T 0<t<T 0<t<T

< N (|u8\?q+lw8\?q+ﬁv€(w8)+ | atwstanas (6.16)
+a0|f|L2 orm) T ailhlz o1 T a2|£|L2(0 T)

+CL0|f|L2 o15H) T a1|h|L2(o,T) + a2|E|L2(o7T) + b7 + b%) ’

where Ng > 0 is a positive constant independent of A € [—1, 1]\ {0}. Since the embedding
BV (0, L) < L*(0, L) is continuous (cf. Proposition 2.3), we infer from (6.16) that

sup ‘w(t)’%w(o,L)WL sup ‘wA(t)‘%oo(o,L)
0<t<T 0<t<T .

< 5 (Il + bl + 50 + [ Glas(e)do (6.17

0
+a?)|f‘%2(0,T;H) + a%lh‘%Q(O,T) + G%M%Q(O,T)

+a?)|ﬂ%2(0,T;H) + Q%W%?(o,:r) + agm%%ow) +01 + bg) ;

for some positive constant N} independent of A € [—1,1] \ {0} (cf. (4.18)). Thus, by
(6.17), we find a positive constant N7, independent of A € [—1,1] \ {0}, such that

sup [gx(t)|ze0,0) < N7, for all A € [-1,1]\ {0}. (6.18)

0<t<T

Now, we show a priori estimate (6.13). Taking account of (6.14)—(6.18), we can get
the following estimate:

T

T
sup (I + / AR+ sup [ty + / () et
0<t<T 0 (6.19)

< Ng (aO’.ﬂL?(OTH +a%|h|L2 0,T) +CL2|£|L2 0,T)

where Ng > 0 is some positive constant, dependent on e,T, k,ny and independent of
A€ [-1,1]\ {0}. In fact, taking the sum of (6.10) with z = 6, (6.11) with z = 6},
and (6.11) with z = f(% + €)%x», and applying the Gronwall-type inequality (e.g., [23,
Proposition 0.4.1]), we get (6.19). Such calculations are standard one, so we omit the
detailed arguments (cf. (8.34) in Lemma 8.1).

By using (6.14), (6.15), and (6.18), we infer from (6.11) that

T
/ Oa), C(t))dt‘ < N (Pl 2z + 0al2.rim) [Cle2orix) (6.20)
; .
for any ¢ € L*(0,T; X),

where Ny > 0 is some positive constant, dependent on ¢,k and independent of \ €
[—1,1] \ {0}. Hence, we infer from (6.19) and (6.20) that

XLz < N§ (laol | Fl 2oy + larl|Plzom) + a2l 2.1 (6.21)
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for some positive constant Nj > 0, dependent on e,7T,k,ng and independent of A\ €

(=1, 1]\ {0}
Similarly, we infer from (6.10), (6.19), and (6.21) that

|0;\|L2(0,T;X’) < Ny (|a0||f|L2(0,T;H) + |CL1||71|L2(0,T) + |a2||g|L2(O,T)) (6.22)

for some positive constant Nyg > 0, dependent on &,T,k,ny and independent of A €

(=1, 1]\ {0}
By (6.19), (6.21), and (6.22), we get the boundedness (6.13). Thus, the proof of
Lemma 6.1 has been completed. [

Now, let us mention the result of the Gateaux differentiability of A® and J¢.

Proposition 6.1. Assume the same conditions in Theorem 6.1. Then, the following two
statements hold.

(I) The solution operator A® admits the Gateauz derivative at any [f,h,l] € U. More pre-
cisely, for arbitrary [f, h, ] € U, there exists a pair of functions [0, x] € L*(0,T; H)x
L*(0,T; H) such that:

A(f + M h+ Mh 04+ M) — A(f, b, 0)
lim 3 =10, x]
- (6.23)

for all direction [f, h,{] €

thé]A (fah f)

6 € Wh(0,T; X')n L*(0,T; X) Cc C([0,T]; H), (6.24)
x € WH(0,T; X')N L*(0,T; X) c C([0,T]; H), (6.25)

and [0, x| solves the following linear system:

(0'(2), 2) + (X'(£), 2) + (62(1), 22) iy + mo (6(2,0)2(0) + 6(¢, L)z(L))
= (aof(t),2) g + arh(t)z(0) + azf(t)z(L), (6.26)
a.a. t € (0,T), forall z€ X;

(X'(8), 2) + & (((a%) (wa(t)) + €)X (), 22) i + ((K°) (w(t))x (1), 2)
+(g' (w(@®)x(t), 2)u = (0(t), 2)u, (6.27)
a.a. t € (0,7), forallze X;

0(0,z) = x(0,2) =0, a.a. x €(0,L). (6.28)

(II) The cost function J° admits the Gateauzr derivative at any [f,h,¢] € U. More
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precisely,

€ . J5f+>\,fvah+/\il,€+)\é_Jef’h7€

o [ (= u)©). 00Dt + er [ (0= wa)O)x()
smodd [ (#0), )i

+ma? / C R+ mac / " o

(6.29)
for any [f,h, €] € U and any direction [f,h,l] € U, where [u,w] = A°(f, h,l) is the
solution to (Pyug, ws, f, h, £)°, ug and wy are the given target profiles in L*(0,T; H),
and [0, x](= Dy, g\ (f, b, £)) is the pair of functions obtained in the assertion (I).

Proof. At first, we show (I). To this end, we put [uy, wy] := A*(f + Af, h 4+ M, £ + D),
[u,w] := A°(f, h,0), O\ := ==, and x, := 2~ for all [f,h,{] € U, [f,h,{] € U, and
A € [-1,1] \ {0}. Then, by the uniform estimate (6.13) of [fy, xa], there is a subse-
quence {A, }nen C {Abrel-1,1\f0y and the functions 0, x € W'2(0,T; X’) N L*(0,T; X) C
C([0,T]; H) such that A, — 0,

0y, — 0 in C([0,T); X"),
in L2(0,T; H),
weakly in W12(0,T; X"), (6.30)
weakly in L?(0,T; X),
weakly-* in L>°(0,7T; H),

Xa = x i C([0,T]; X),
in L?(0,T; H),
weakly in W12(0,T; X'), (6.31)
weakly in L2(0,T; X),
weakly-* in L>°(0,7; H),
as n — 0o, and
T T
sup 1605+ [ 10OFede+ [ 10(0)a
0 0

0<t<T
’ ’ 6.32)
+owp OB+ [ OB+ [ xR ©
0<t<T 0 0
< Ns <a3|f|%2(0,T;H) + aﬂhﬁ?(o,n + a§|€|i2(o,T)> ,

where N5 is the same constant as in Lemma 6.1.

Now, let us show a pair of the limit functions [0, x] of [0y, , xa,| satisfies (6.26)—(6.28).
To this end, note from (6.13) that

’wA_w|L2(O,T;X) = /\|XA|L2(07T;X)

< ANZ (laol|fl 20 + lan||B] 20y + |a2] |0 20.1)) (6.33)
—0 as A — 0.
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So, taking a subsequence if necessary, we see from the definition of functions a3, Fi, [
(A€ [-1,1]\ {0}) and continuity of functions (a®)’, (K¢)’, and ¢'(-) that

as (t,x) = (a®) (wy(t,x)) + &,
K, (tx) = (K°) (w(t, x)), a.a. (t,z) € @), in the pointwise sense, as n — oo.
g/\n (t, ZL‘) — gl<w(t7 $)),

Here, let us fix arbitrary 0 < ¢, < ¢; < T. Since functions a5, 7§ and g, (\ €
[—1,1] \ {0}) are respectively bounded in senses of (6.14), (6.15), and (6.18), we can
apply the Lebesgue dominated convergence theorem to show that

a5, — (%) (w,) +¢,
Fin — (K®)(w), in L%(tg,t1; H), as n — oo. (6.34)
9, = g'(w),

Combining (6.30), (6.31), (6.32), and (6.34), it is deduced that:

0y, — 0 weakly in L?(tg,t1; X), (6.35)
0y — 0 weakly in L*(to, t1; X'), (6.36)
Xa, — X weakly in L?(tg, t1; X), (6.37)
X\, = X weakly in L*(to, t1; X'), (6.38)
and
a3, (X )e = ((0°)(wz) + €)Xa,
FinX/\n — (K) (w)x, weakly in L2(tg, t1; H) (6.39)
I Xa, = g/ (W)X,
as n — 0o.

Here, note from (6.10) and (6.11) that

/ 0, (0), 2)dt + / (x, (6), 2)dt + / (B )alt), 22)

to to to

g /t O, (t,0)2(0)dt + ng /t 0, (1, L)=(L)dt (6.40)

_ /t (a0 f(t), 2)ndt + /t " anh(t)2(0)dt + /t asl(t)2(L)dt

forallze X andn=1,2,3,---

and
t1

/ (i, (8), 2} + # / (@ () o) (0)s 2)mdt + / (I (), (1), 2) et

to to to

[ @ 0002t = [ (00,0, 2)

t
" forallz€Xandn=1,23, -
(6.41)
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On account of (6.35)—(6.39), we obtain the variational form (6.26) (resp. (6.27)) by taking
the limits in (6.40) (resp. (6.41)) as n — oc.
On the other hand, by (6.30) and (6.31),

6(0,-) = lim 60,,(0,-) =0 (¢ H) in X,
n—o0
X(0,-) = lim x,,(0,-) =0 (€ H) in X',

which implies (6.28).

Furthermore, by the usual method with helps from the facts that (a®)’ > 0 (on R),
(K¢) >0 (on R), and ¢'(w) +C, > 0, a.e. in (), we easily prove that the solutions to the
Cauchy problem {(6.26)—(6.28)} are uniquely determined within (6.24)—(6.25). Hence, the
uniqueness of solution to {(6.26)—(6.28)} guarantees that of cluster points of the sequence
[0, xa] as A — 0. Namely:

(%) [6x, x»] originally converges to the unique solution [0, x] to {(6.26)-(6.28)} in the
senses as in (6.30)—(6.31), as A — 0, and hence the operator Xz q : U — L*(0,T; H) x
L*(0,T; H), defined by X[ﬂmﬂ(f, h,0) = DijaA°(f, h, £) for all direction [f,h, 0] €
U, is well-defined.

Now, on account of the linearity inherent in (6.26)—(6.27) and the estimate (6.32), we
observe that each operator Xy ¢ ([f, h,¢] € U) is a bounded and linear operator from U
into L*(0,T; H) x L*(0,T; H), and hence, the solution operator A° admits the Gateaux
derivative at any [f, h,f] € U. Thus, we conclude the assertion (I) of this proposition.

Next, we show (II). The Gateaux differentiability of the cost function J¢ will be a
direct consequence of the assertion (I). In fact, note from (6.13) that

lux — ulzzorx)y = AlOrlrzomx)
< ANZ (laollflzzo,rsm + laalBl 0 + lasl |l r20,r)) (6.42)
—0 as A — 0.
Then, by virtue of (6.33), (6.42), and (%), it is computed that
Dot (f, 0, 0)

. JE(f + N b+ Aoy €+ N0 — J(f, b, 0)
= A

= lim { CEO/O ((U)\ +u— 2ud)(t),9>\(t))Hdt + %/0 ((’LU)\ +w — 2wd>(t),X)\<t))Hdt

A—0

moad

/O (2F + AP, F()) mde

mya? moas

+

/T(Qh + AR) ()R (t)dt + /T(zf + NO)(t)0(t)dt }
— o [ (w00t +ex [ (=)o) ()

+moaz /T(f(t),f(t))Hdterla% /Th(t)h(t)dt—l-mga% /Tﬁ(t)é(t)dt
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for any [f, h, /] € U and any direction [f,h, 0] € U.
Clearly, we infer from (6.32) and (x) that for any [f, h, ¢] € U, the functional:

[.fa il'v é] cU — D[f,fz,g]JE(fa h7 é)

will form a bounded linear functional on /. Hence, the cost functional J¢ admits the
Gateaux derivative at any [f, h, ] € U with the directional derivative as in (6.29).
Thus, the proof of Proposition 6.1 has been completed. 0

By taking account of Proposition 6.1, we can prove Theorem 6.1 concerning the nec-
essary condition of an optimal pair [uf, ws, f€, he, (2] = [A°(f2, kS, 62), f€, he, (2] to (OP)®
with € > 0.

Proof of Theorem 6.1. By using the Schauder fixed point theorem and the general results
by Ladyzenskaja—Solonnikov—Ural’ceva [30, Chapter 3|, we can get the unique solution
[p°, ¢°] to the adjoint equations (6.1)—(6.6).

Now, let [uS,ws, f2,hS, (2] = [A°(f2, RS, 05), f, he, (2] be the optimal pair to the prob-
lem (OP)® with € > 0. Let [05, x5] be the limit of AE(f’%’\f’hi“h’g/i\%\e)*m(ff’hi’ei) as A =0
in the sense of (6.23).

Since [f¢, hS, (2] is a minimizer for J=(-,-,-), we have

* ) * 9 Vx

A—=0 A

= o [ (0~ OOt +er [ (08 w0t
+moag /OT(ff(t),f(t))Hdterla% /OThi(t)h(t)dt+m2a§ /OTéi(t)é(t)dt
= [[coro o [ wo.0.0ma i [ oo
T ey RO R
+A?%ﬁﬂmﬁ@mﬁ+42%fﬂmﬁwwt
b [ (@ @0200) + 000N+ [ (YO0
+ [ oo,
+moag /OT(ff(t),f(t))Hdterla% /OT hE () h(t)dt + myal /OTéi(t)é(t)dt

=A<@ﬂ&ﬁ@m+l<wmm@mmw+mlewnwwmw
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+ng /OT 0= (t, L)p°(t, L)dt — /OT(qa(t), 0= (t)) gdt
+ [ wera o [ oero.cou
[ (@Y (@020 + 000 )i+ [ (Y @O, )
+ [ oo o),

+moag /T(ff(t), F(£))mdt +miai /T RS ()h(t)dt + maaj /T ()t dt

0

- / (a0 (8) + mogR f2(8), F(£))mdt + / (@ (¢, 0) + maahS (O)R(0)de

+ / T(anE(t, L) + maalc(t))0(t)dt

for any [f,h,f] € U. Here, we use the equations (6.3)-(6.6) and (6.26)—(6.28) for [p®, ¢]
and [62, x¢], respectively. Since [f, h,f] € U is arbitrary, we infer from the inequality as
above that the equations in (6.7)—(6.9) hold. Thus, the proof of Theorem 6.1 has been
completed. [

7 Optimality condition for (OP)"

In previous Section 6, we proved Theorem 6.1, which is concerned with the optimality
condition to the approximate problem (OP)® with £ > 0. But, in general, it is difficult to
show the necessary condition of the optimal control to (OP)?, i.e., e = 0, since (1.2) is the
singular diffusion equation with constraint 0;_1 4j(-). Therefore, by using Theorem 6.1,
more precisely, by the limiting observation of (OP)® as € — 0, we derive the optimality
condition to (OP)°.

Now, we mention the main result in this paper, which is concerned with the necessary
condition of the optimal control to (OP)°

Theorem 7.1. Suppose that all the assumptions of Theorem 6.1 are fulfilled. Let uy € H,
wy € D(VY), and let [fux, Nax, lex] be the optimal control to (OP)Y obtained in Theorem
5.1(I1). Let [y, Wys] be the unique solution to (Piug, Wo, fuxs Mus, Cex)® on [0, T). Addition-
ally, let us set:

W:={z€ H(Q); 2(0,2) =0, a.a. z € (0,L)}.
Then, there are the functions p € W42(0,T; H) N L>(0,T;X), q € L>(0,T; H), and an
element p € W' satisfying the following:

- p, —Pzx —q = CO(U** - ud) mn Q, (71)

/0 (= (7). 2()) el + / (q(r), /() dr + (. 2w + / (6 (wan(7)(r), (7)) dr
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T
= cl/ (W — wg)(7), 2(7))gdT  for all z € W. (7.2)
0

— pe(t,0) + nop(t,0) = p.(¢t, L) + nop(t,L) =0, te€(0,T), (7.3)
p(T,xz) =0, ze(0,L). (7.4)

Moreover, p satisfies the following equations:
ao(p + moagfo) =0 in L*(0,T; H), (7.5)
ay(p(+,0) +miarh..) =0 in L*(0,T), (7.6)
as(p(-, L) + moagls,) = 0 in L*(0,T). (7.7)

Proof. Let ug € H and wy € D(V?). Then, note from (1.17) and Lemma 4.1 that we find
sequences {ug}ec(0,1] C H and {w§}eco1) C D(V*) satisfying

ug — up in X', wi — wo in H, and Ve(w§) — VO(wy) as e — 0. (7.8)

Now, let [fux, Pus, £4e] be the optimal control to (OP)° obtained in Theorem 5.1(II).
Namely, there exists a subsequence of € € (0,1] (which we also denote € for simplicity)
such that [f2, kS, (5] is the optimal control to (OP)® and

fe— fu weakly in L*(0,T; H), (7.9)

h: — h.. weakly in L*(0,7), (7.10)

(5 — 0, weakly in L*(0,T), (7.11)
and

(s, W] 18 the unique solution to (P;ug, wo, fex, fas, Ces)? on [0, T

Now, by taking the limit with respect to €, we prove Theorem 7.1. To this end, we
give a priori estimate of the solution [p®, ¢°] to the adjoint equations (6.3)—(6.6).

Now, we multiply (6.3) by p°. Then, by applying the Schwarz inequality, we have

as ¢ — 0, where [uf,wZ] is the unique solution to (P;ug,w§, f,h%, %)% on [0,7], and

1d
—5 =P (D)5 + 105D + nolp® (7, 0)* + molp* (7, L)
£ ]' £ 62 £ .
< PO+ Sl @Ol + 1 —uw) (), aa 7€ (0,7),

By integrating (7.13) in 7 over [T —t,T] (¢t € [0,T]), we have

T

1
4ﬁ@—w&+/“uﬂﬂ@m
2 T—t
T T
+no/ 1p°(7,0) |2 dr —I—no/ |p° (7, L) |dr (7.14)
T-t T—t

’ 2 e 2 a " 2
< [ @b [ ek 2 [ - @l
T—t 2 )1 2 Jr
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for all t € [0,T7.
Next, multiply (6.3) by

(7
S0 () %
< |q<>|H+cor<i

By integrating (7.15) in 7 over [T —¢,T] (t € [0,T]), we have

. Then, by applying the Schwarz inequality, we get

{1p5 (7 + nolp™ (7, 0) > + nolp(r, L) *}
ug)(7)|3, aa. 7€ (0,T).

(7.15)

17 . 1
3 /T |(p°) (7)|FpdT + 3 {Ip5(T — V)3 + nolp* (T — t,0)* + no|p* (T — ¢, L)|*}
—t
T T
§/ |q’5(7)|?{d7 + cg/ [(ug — ud)(T)ﬁIdT, vVt € [0,T]. (7.16)
T—t T—t

Here, note that the pair of functions [p®, ¢°| satisfies the following variational identity

(cf. (6.4)):

/ (— () (1), C(r))mr + / (—(¢°) (), C(r))dr

+r /T_t (((@®) (wS)2(7)) + )5 (7), Ca(T)) gy dT + /T_t (K=Y (wi (7)) g5 (1), C(7)) y d
[ @)y i 7.

T
:cl/ (WS —wa)(7),¢(7))ydr forallte[0,T] and all ¢ € L*(T —t,T; X).

T—t
Therefore, let us assign ¢° to the test function ¢ as in (7.17). Then, by applying the
Schwarz inequality, we see that

T

1 € g € 1 5
-0 <@+0) [ @b [ 107 Ofdr
T—t T—t (718)
02 T
+— |(ws — wa)(7)[5dr, Yt €[0,T],
4 T—t

since a® and K*° are nondecreasing on R (cf. (6.14), (6.15)), and ¢'(w$) + Cy > 0, a.e. in
Q. Adding (7.14), (7.16), and (7.18), we have

—{Ip — )5+ 1 (T =05 + [P5(T = 0|7 + nolp™ (T — ,0)|* + nolp*(T — t, L)|*}

1 g e\/ 2 g £ 2 g G 2 r e 2
+- [ 1) (D) dr + P (T)dT + o [ |p*(7,0)[7dT + o | [p(7, L)[dr

4 T—t T—t T—t T—t

< [ ok (146) [ 6ok + 23 [0 —w)@par (19)
/ (5+a) 2

T—t T—t T—t
2 [T
+ 2 [(wE — wy)(7)|3dr, Vte[0,T).
4 Jr_y
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Thus, by (7.12) and applying the Gronwall-type inequality (e.g., [23, Proposition 0.4.1})
o0 (7.19), we have

T
/ {lp" (1 + la* @O + P25 + nolp® (¢, 0)[* + nolp(t, L)[*} dt

<Ny (/ |(Usr — 1g) ()| 3,dt + /OT [(War — w3a) (1) |3;dt + 1) (7.20)

for some constant Nyj; > 0, independent of ¢ € (0, 1] and dependent on T. Hence, it
follows from (7.19) and (7.20) that

sp {0+ IO+ WSO + nolp* (1 O + ol L)}
T T T T
+ / () (0) 2yt + / P2 ()12,dt + o / 97,0 2t + ng / b7 (2, L)|2dt
0 0 0
T
<Niy (/ | (Uy — g |Hdt+/ y(w**—wd)(t)|§,dt+1) (7.21)
0

for some constant N1 > 0, independent of ¢ € (0, 1] and dependent on 7.
Now, for any € € (0, 1], let us define a bounded and linear functional p* € W’ on W,
by putting, for all { € W,

NQIATEES /{ Do) +2)az (1), G(t) g + () (wi())a™ (2), C(t))m } dt.
Here, note from (3.5) and (7.8) that (cf. (4.18), (6.17)):
{w?} is bounded in L*(Q) uniformly in ¢ € (0, 1]. (7.22)
In addition, we infer from (A6) snd (7.22) that (cf. (4.19), (6.18)):
{g(w%)} is bounded in L¥(Q) uniformly in & € (0, 1]. (7.23)

Then, on account of (6.6), (7.12), (7.17), and (7.21)—(7.23), there exists a positive constant
N3, independent of £ € (0, 1], such that

[l | firoona

/OT(g’(wi(t))qE(t), C() g dt‘ + cl/OT((wi —wa)(t),C(1) dt‘

[ @rarconyd]+| [ re.con

T T
/0 (g'(wi($)a*(£), () dt‘ + cl/o ((ws = wa)(t),C(1)) dt‘
< Ni3 (|U** - Ud|L2(o,T;H) + |w** - wd|L2(o,T;H) + 1) |C|W

forany ( € W:={z € HY(Q); 2(0,x) =0, a.a. z € (0,L)}.

|<:u€7 C)W’,Wl S

+

+
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Therefore, we get

|1*[wr < Nig (’U** - Ud|L2(O,T;H) + [War — wd|L2(0,T;H) + 1) (7.24)

for all € € (0,1].
By the boundedness estimates (7.21) and (7.24), there are the functions p € W2(0,T; H)N
L>(0,T;X), g € L*(0,T; H) and an element u € W’ such that

p"—p inC([0,T]; H),
weakly in W12(0,T; H), (7.25)
weakly-* in L>°(0,7T; X),

¢ — q weakly-x in L>(0,T; H), (7.26)
ps — - weakly in W’ (7.27)

as € — 0, by taking a subsequence if necessary.

Taking account of the convergence (7.9)—(7.12) and (7.25)—(7.27), we observe that the
equations (7.1)—(7.7) hold. In fact, the system {(6.3)—(6.6)} is equivalent to the following
variational identities:

/0 (— () (1), C(1)) mdt + / (BE(1). Co)) it + g / PF(£,0)C (1, 0)dt
o / p<(t L)C(t, L)dt — / (1), C(t)) ndt (7.28)

= /OT co((ug —ug)(t), () pdt for all ¢ € L*(0,T; X)

and

/0 (— () (1), 2(8)) st + / (@), 2/ ()t + (1, 2}y
n / (¢ (W) (1), 2(0))  dt (7.29)

- /T<<w§ —w)(t),2(8)dt forall z € W,

Thus, we easily see from (7.9)—(7.12), (A6) with (7.23) (cf. (6.39)), and (7.25)—(7.29) that
the equations (7.1)—(7.4) hold. Moreover, we easily see from (6.7)—(6.9), (7.9)—(7.11), and
(7.25) that (7.5)—(7.7) hold. Thus, the proof of Theorem 7.1 has been completed. O

Remark 7.1. Theorem 7.1 is to be proved through the limiting observation of the ap-
proximate situations shown in Theorem 6.1. In addition, the identities (6.4) and (7.2)
can be regarded as some variational forms of the equations:

—p; — ¢; — 5(((a%)' (w5)2) +€)q5), + (K°) (wi)g" + ¢'(wi)q” = er(w — wa)
and
—DPt — ¢ + % + gl(w**>q = Cl(w** - wd)

in the distribution sense, respectively.
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Remark 7.2. In Remark 5.2 we mentioned that any optimal control of (OP)° can be
approximated by the control problem (OP)¢ with o > 0. Then, by arguments similar to
those in Theorem 7.1 and [45, Theorem 3.5], we can show the necessary conditions for
any optimal control of (OP)?, which are the same ones (7.5)-(7.7) as in Theorem 7.1.

Remark 7.3. In Remark 5.2 we mentioned that for each optimal control [fi, h,¢.] of
(OP)?, we can find the sequence of optimal controls of (OP)¢ which converges to [ fs, A, (]
strongly in U. However, it is very difficult to give the numerical experiments of (OP)Z,
since the cost function J¢ defined by (5.12) depends on the unknown optimal control
[fs, B, €] of (OP)Y. Therefore, in the numerical analysis, we are forced to adopt (OP)®
with ¢ > 0 as the approximate problem of (OP)?, since the cost function J¢ defined
by (1.16) is independent of optimal controls of (OP)Y. Thus, from the viewpoint of
applications, the main results for (OP)® would be more useful than those for (OP)g with
a> 0.

8 Numerical Scheme for (OP)°

Note from the singularity and nonlinearity in (1.2) that the numerical consideration of
(OP)? is very difficult (cf. Theorem 7.1 and Remark 7.1). In Section 5, we proved the
relationship between the limits (w-limit points) of sequences of approximate optimal pairs
of (OP) as € — 0 and the optimal pairs of the limiting problem (OP)° (cf. Theorem
5.1(II)). Therefore, it is worth considering the approximate optimal control problem (OP)¢
with € > 0 from the viewpoint of numerical analysis.

In this section, we propose the numerical scheme to find the stationary point of the
cost functional J¢ to (OP)® with ¢ > 0, and show the convergence of our numerical
algorithm. To this end, we fix the small parameter ¢ € (0, 1] and the pair of initial data
[u§, w§] € H x D(V®). Then, we define the solution operator AS, of the adjoint system

{(6.3)-(6.6)}:

Definition 8.1. We denote by AS, : U — L*(0,T; H) x L*(0,T; H) the solution operator
that assigns to any control [f, h,¢] € U the unique solution [p°, ¢°] := AS,(f, h,{) to the
adjoint system {(6.3)-(6.6)} on [0, 7.

For a moment, we often omit the superscript ¢ € (0, 1].

Now, by the similar idea used in [1, 34, 37, 38, 39, 46], namely, by using the necessary
conditions (6.7), (6.8), and (6.9) of (OP)° obtained in Theorem 6.1, we propose the
following numerical algorithm, denoted by (NA), to find the stationary point of the cost
functional J¢ with € > 0.

Numerical Algorithm (NA) of (OP)® with ¢ >0

(Step 0) Give the stop parameter p;

(Step 1) Choose the triplet of initial functions [f,h,¢] € U, and put [f,, hp,ly] =
L/ hs 4];
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(Step 2) Solve the approximate state system (P;ug, w§, f, hn, £,)¢ for n, and let [u,, w,] =
A (fr, B, L), where A® is the solution operator to (P;ug, w§, fu, hn, £,)° defined in
Definition 6.1(I);

(Step 3) Solve the adjoint system {(6.3)—(6.6)} for n, and let [p,, ¢a] := AS,(fn, hn, €n);
(Step 4) Put
don == ao(pn+moaofn), dip = a1(pn(',0)+m1&1hn), and dy, := a2(pn('7L)+m2a2€n)-

Test: If
|[d0n7 dln; d2n] ‘u < lu7

then, STOP; Otherwise, go to (Step 5); note here that U is the product Hilbert
space endowed with the usual norm

\Lf, h,f]@ = ’f’%2(O,T;H) + ’hﬁ'ﬂ(o,T) + M’%Q(O,TV VIf hl] € U; (8.1)
(Step 5) Put

fn+1 = fn - pndOna thrl = hn - pnd1n7 and £n+1 = gn - pndQn;

where p,, is some appropriate constant found by using a line search. More precisely,
let 8 € (0,1). Then, find the minimal constant ¢, € NU {0} such that

JE (fn - Bgnd0n7 hn - 6gnd1n7 En - BgndQn) - Js(fny hna En)
S _,uﬁ% |[d0n> dlna dZn] |u 3

and put the constant p,, := °;

(Step 6) Set n =n+ 1, and go to (Step 2).

Remark 8.1. In (Step 5), we need to find the constant p,, (cf. the so-called "the learning
rate” in neural networks) for each step n, because of the nonlinear term (a®(ws)), in (1.11)
(cf. Remark 3.1). If the main diffusion term in (1.11) is just only linear (i.e., wS,), we can
take the constant p = p,, independent of n. Indeed, Aiki et al. [1] considered the optimal
control problem for phase-field equations of a regular Fix—Caginalp type with dynamic
boundary conditions, and proved the existence of a constant p, independent of n, in the
descend method. For the detailed statement, we refer to [1, Section 4].

Now, we mention our final theoretical result in this paper, which is concerned with
the convergence of the numerical algorithm (NA).

Theorem 8.1. Suppose that all the assumptions of Theorem 6.1 are fulfilled. Lete € (0,1]
and [u§, w§] € HxD(V®). Let {[fn, hn, ln|}nen be a sequence inU defined by the numerical
algorithm (NA). In addition, let [pn, qn] = ASy(fn, bn, €n). Then:

(I) lm J°(fn, hn,l,) exists.
n—oo
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(1T)

lim ag(p, +moaof,) =0 in L*(0,T; H), (8.2)
n—oo

lim a1(pn(-,0) + miarh,) =0 in L*(0,T), (8.3)
n—oo

lim as(p,(-, L) + maagl,) =0 in L*(0,T). (8.4)
n—oo

(III) There are the triplet of functions [f<,, hS,, (5] € U, the pair of functions [ps,, ¢, €

L0, T;H) x L*(0,T; H), and a subsequence {ny}ren C {n}nen such that ps, €
W20, T; H)NL>(0,T; X), ¢5, € WH2(0,T; X' )NL*(0,T; X)NL>(0,T; H), [ps,, ¢ ,]

is a unique solution of the adjoint system {(6.3)—(6.6)} for (P;u§, w§, f5,, hS,, (5,)°,
ie, [Phe @o] = ALa(fin 15, 1),

for — fo, in L*(0,T; H), (8.5)

B, — hZ, in L*(0,T), (8.6)

ln, — €2, in L*(0,T), (8.7)

Pr — #h. i C(0,T]; H), } (8.5)

in L*(0,T; X),
Gn, — ¢, in L*(0,T; H) (8.9)
as k — oo, and

ao(ps. +moaofi,) =0 in L*(0, T3 H), (8.10)

ar(po(+,0) +myahs,) =0 in L*(0,T), (8.11)

as(pS, (-, L) + maasls,) =0 in L*(0,T). (8.12)

Hence,

Dijrad*(fee Mo, €50
JE( f*—f—Af‘,hi*—i—Ail e —|—)\g)_(]5( e hE pe )

o llnl Y Kk k3k ) L kK
' A—0 A

for all direction [f,h, 0] € U;

—0 (8.13)

thus, [fz,, hS,, (5,] € U is the stationary point of the cost functional J¢ with e € (0, 1].

To prove Theorem 8.1, we need some lemmas.

Note from Corollary 4.2 that we have the result of continuous dependence of solutions
to the approximate state system (P;uf,w§, f, h,¢)*. In addition, note from Proposition
6.1(I) that the solution operator A® admits the Gateaux derivative at any [f, h,[] € U.

Now we show the continuity of Gateaux derivative of A%, which is the key to proving
Theorem 8.1.
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Lemma 8.1. Assume the same conditions as in Theorem 8.1. Let e € (0,1], £ € [-1,1]\
{0}, and fix the pair of initial data [uf,w§] € H x D(V®). Then, the Gateaur derivative
of the control-to-state mapping A® is continuous in the following sense:
[9&,){5] = D[fﬁj]A€<f+§wl,h+€’(TJ2,€+§’W3)
— [67X] = D[f,fz,@Aa(fa h,f) in LZ(()?T’ H) X L2(0 T H) (814)
for all [f, h, €] €U, [wy, s, @3] €U, and all direction [f,h,l] €

as & — 0.

Proof. For any [f,h,(] € U, [w1, w2, 3] € U, and € € [—1,1] \ {0}, we put [ug, we] :=
A(f + &y, h + Ewg, £+ Ewg) and [u, w] := A°(f, h,£). Then, we observe from Corollary
4.2 that

[ug, we] — [u,w] in L*(0,T; H) x C([0,T); H) as & — 0. (8.15)
In addition, we have:

we — w in L*(0,T; X) as € — 0. (8.16)

Indeed, subtract (1.11) for (P;uf, w§, f+&w, h+Ews, (+Ews) from the one for (P;uf, w§, f, h, ()%,
and multiply it by we —w. Then, from the monotonicity of a®(w3), K¢(w®), and g(w®) +
Cyw® (cf. (A1), (1.9), and (A2)), and the Schwarz inequality, we observe that

£ =)0 2wl —0). (1) < (% +cg) (g —w)(0) 5 (v —u) ()3 (8.17)

for a.a. t € (0,7). Hence, applying the Gronwall inequality to (8.17), we conclude that

1 1
5 sup_|(we —w)(t)[} + en / [(we = w)a ()t < 5" fug — uffa gy (8.18)
t€[0,T]

Thus, we infer from (8.15) and (8.18) that the convergence (8.16) holds.

Now, we show (8.14) by using the convergences (8.15) and (8.16). Note from Propo-
sition 6.1(I) that [0, xe] = DyjpgA°(f + @1, h + {2, £ + w3) satisfies the following
variational identities:

(0c(1), 2) + (Xe (1), 2) + ((0)2(t), 22) ;g + 10 (0e(t,0)2(0) + Oe(t, L)z(L))
= (aof (1) 2)m + arh(t)z(0) + asl(t)=(L), (8.19)
a.a. t € (0,7), forall z € X;

(Xe (1), 2) + () ((we)2 (1) + €)(Xe)2 (1), 22) y + ((K) (we(t))xe(t), 2)
+(9' (we(t)xe(t), 2)u = (O¢(t), 2) m, (8.20)
a.a. t € (0,7), forall z € X;

0¢(0,2) = xe(0,2) =0, a.a. x€(0,L). (8.21)
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Then, by arguments similar to Lemma 6.1, we can obtain the uniform estimate of functions
f¢ and x with respect to & € [—1,1] \ {0}. Indeed, taking z = 6¢ in (8.19), using the
Schwarz inequality, and integrating in time, we obtain:

300+ [ (o) teleas + [ 1809

n t n !
_0/ |65(s,0)|2d5—|——0/ 0c(s, L)[*ds (8.22)

for all t € | O T
Next, we note from (A1) and (A5) that (@°)'(-) = a°(-) € C*(R) and
e\ 53
0< (a%)(r) < - for any r € R. (8.23)
In addition, note from (1.9) that K°(-) € C*(R) and

0< (K (r) < for any r € R. (8.24)

o | =

Furthermore, note from (A2) and (A6) that g(-) € C'(R) and
g(r)+Cy >0 for any r € R. (8.25)

Then, taking z = x¢ in (8.20), using (8.23)-(8.25) and the Schwarz inequality, and
integrating in time, we obtain:

1 2 ¢ 2 1 ! 2 1 ! 2
sl o [ 0ea(oias < (5+6,) [ e@as s g [ eods g 00
for all ¢ € [0, 7.

Similarly, taking z = 6, in (8.20), using (8.23), (8.24), and the Hoder inequality, and
integrating in time, we obtain:

/0 (X4(5), Oc(s))ds

s(5—+) [ 1002030l 00) s
|X§( )| 10¢(s)|mrdls (8.27)

/ 19 (we($))xe(5) 11106 () s + / 10c(5) 2y ds
for all t € [0, 7.

Note from (3.5) that we get the the following uniform estimate of solutions [ug, we] :=
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A(f + &, h + Ewog, £+ Ewoz) with respect to £ € [—1,1] \ {0}:

‘Ulg|i2(o,T;X/) + |u€|%°°(O,T;H) + ’u5|%2(0,T;X) + |wé|%2(0,T;H)

L
+|w§]%w(07T;H) + 1 sup VE(we(t)) + sup / g(we(t,x)) dx
0<t<T 0<t<T Jo

L (8.28)
< 0 (Il + bl + () + [ i) do + T + €@l
0

+af|h + £W2|L2(0T +azlt + §w3|%2(0,T) + 07 + b%) )

where N; is the same positive constant in (3.5).
Taking account of (8.28), ¢ € [—1,1]\{0}, and the continuous embedding BV (0, L) <
L>(0, L) (cf. Proposition 2.3), we see that

L
sup |we(t)|r=,r) < N (IUEI% + [wilfy + KV (w§) +/0 9(ws()) dx

t€[0,T
20 £12 21 |2
+ag| f 720, + 0l@1l20 7. (8.29)
+a%|h’%2(o,n + a?’wﬂ%z(om .
+ag|£|i2(0,T) + a%|w3|i2(0,T) + 07 + b%) ;
hence, we observe from (A6) that
sup |g'(we(t))|zeo,0) < N, (8.30)

te[0,7)

where Ny4 and Nyy . are positive constants independent of £ € [—1,1]\ {0}. Therefore, it
follows from (8.27), (8.30), and the Schwarz inequality that

/0t<X’§(3),0§(3)>d3 < %/Ot |(0¢)z () 3rds + l’fQ (% + 5)2 /t Oxe)o(5) s

(8.31)
# (ot 8 [ cteruas +2 [ oo

for all t € [O T).
Hence, we infer from (8.22) and (8.31) that

1 2 1 [ 2 ny [ 2 ny [* 2
S0+ 5 [ 10 ds + 2 [ 10c(s,0)Pds + 2 [ 16c(s 1) Pds
0 0 0

1 ) 53 2 t ) 5 t )
< gk —+e |(X§)g;(3)|HdS+— i |0¢(s)|7ds
(8.32)
+ 282 /‘Xﬁ )ds
+%/de+%/mw%+@/Ww%
2 /. s)|3ds om0 s)|“ds om0 s)|“ds

for all ¢ € [0, T7.
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Now, by adding (8.32) and (8.26)x (53+5) we have
1 K (03 2 1/
106l + 50 (2 42) B+ 5 [ 60.(0) s
1 .,/0 2t
r3e (24e) [10ntotyes
€ 0
no [* 2 no [ 2
2 [ el 0P ds+ [ oets. D
5 (8.33)
< z
-~ <2+28( >>/ |95 |Hd8
1 Ny, k(1 0. 2 t
+<22+ 5 +;(5+Og) (—3+e) )/ Ixe(s) s
/u Hd+—/\h s+ 2 /w )[2ds

for all t € [0, T].

Thus, by applying the Gronwall inequality to (8.33) and the standard calculations, we
have

t t
60, + CulE)xe () + / (6)2() Byds + Ca(e) / (x6)a(5) [y ds
t t
+n0/ |0(5,0)|%ds + no/ |0(s, L)|ds (8.34)
Z 712 a% y 20 a% 712
< Nise <a0|f’L2(0,T;H) + n_olh‘LZ(O,T) + n_0|€|L2(O,T)> for all t € [0, T,

where C(e), C2(e), and Ny;,. are positive constants dependent on € and are independent
of £ € [-1,1]\ {0}. In addition, by (8.20), (8.23), and (8.24), we have (cf. (8.27)):

d3
< (e ) 1(xe)sl |22l

1
+g|X§|L2(0,T;H)|Z|L2(0,T;H) (8.35)
+ ’g/(wf)xg‘LQ(QT;H) 2] L2(0,;m)
+10¢ | 20,750 | 2] 220,13 1) Vz e L*0,T; X).

Hence, we infer from (8.30), (8.34), and (8.35) that

§ a; - as -
IXelr20.75x7) < Nige (ao\ﬂm(o,T;H) + \/_:L—O|h|L2(O,T) + \/_;L—OM|L2(O,T)> , (8.36)

where Ny is a positive constant dependent on ¢ and is independent of £ € [—1, 1]\ {0}.
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Similarly, we observe from (8.19), (8.34), and (8.36) that

|92|L2(0,T;X’) < Nige <a0|f|L2(O,T;H) + \;L_;L—O|h|L2(O,T) + j—;_0|f|L2(o,T)> ) (8.37)
where Ny, is a positive constant dependent on e and is independent of & € [—1,1]\ {0}.
By the uniform estimates (8.34), (8.36), and (8.37) of [0, x¢], there is a subsequence
{& nen C {€}ecr-1.17\(oy and the functions 6, x € W2(0,T; X")NL*(0, T; X)NL>(0,T; H)
such that &, — 0,
Oe, — 0 in C([0,T]; X"),
in L2(0,T; H),
weakly in W12(0, T; X'), (8.38)
weakly in L?(0,T; X),
weakly-* in L>°(0,7T; H),
A(-,0) weakly in L?(0,T), (8.39)
0(-,L) weakly in L*(0,T), (8.40)
and
Xe, =X in C([0,T]; X),
in L?(0,T; H),
weakly in W12(0, T; X'), (8.41)
weakly in L?(0,T; X),
weakly-* in L>(0,7; H),
as n — o0o.
Here, from (8.16), (8.23), (8.24), (8.30), continuity of functions (a®)’, (K¢)’, and ¢/,
and the Lebesgue dominated convergence theorem, we note that:

(aE) ((wgn)m) —_— (a5> (wa:)7 in LQ(O,T§ H)7

(K®) (we,) — (K°) (w), weakly—x in L(0) as n — 00. (8.42)
9 (we,) — ¢'(w), 7

Thus, taking a subsequence if necessary, we observe from (8.23), (8.24), (8.30), and (8.38)—
(8.42) that:

(a%)' ((we, )a) (Xen )e = (a%)' (W)X
(K®) (we, ) xe, — (K°)'(w)X, weakly in L2(0,T; H), as n — oo. (8.43)

9 (we, )xe, = g'(w)X,
Note from Proposition 6.1(I) that [0, , X¢,| = D5 g A°(f + §n1, b+ §uw2, £+ §,m03)
satisfies the following variational identities:

JRCACEO / 6 (0,200t + [ (6)el0), (00t
+ng T@{ﬂ )dt—i—n() /T egn(t, L)Z t,L)dt
/(t)2(t, L)dt

0 (8.44)

(
/( f(t), 2(t)) pdt + a; h(t)z(t,o)dt+a2/T£

for all z € L?(0,T; X) and all direction [f,h, (] €
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/O (e, (£), 2(6))dt + 5 / (e, )alt)) + ) (X )a (£), 2a(£))
T / (Y (e, (1)) Xen (6), 2(8)) it + / (¢ (we, (D)xe, (0. ()t (8.45)
_/ (6e. (), 2())wdt  for all = € L2(0, T; X);

O¢, (0,2) = x¢,(0,2) =0 (¢ H) in X'. (8.46)

By (8.38)—(8.43), and by taking the limits in (8.44)~(8.46) as n — oo, we observe that
[0, Y] satisfies the following system:

/ @ 0).2(0)de + / (). (0 / (Balt), 2 (0)

T T

o z(t,0)dt + ng z(t, L)dt
0 0 (8.47)
= / (aof(t), 2(t ))Hdt+a1/0 h(t)z(t,())dt—i—ag/o ((t)z(t, L)dt

for all z € L?(0,T; X) and all direction [f, h, (] € U;

/0 (X (0), 2(B))dt + / () (w2 (1)) + )X 1), 20 (8))

+ / ((K) (w(t))x (), 2(t)) mdt + /0 (¢'(w(®)X(2), 2(t)) mdt (8.48)

- /T@(t),z(t))Hdt for all z € L*(0,T; X);

9(0,2) = %(0,2) = 0 (€ H) in X'. (8.49)

Since the solutions of the Cauchy problem {(8.47)—(8.49)} are uniquely determined,
we observe that [0,%] = [0, x| and the convergence (8.14) holds without extracting any
subsequence from {{}eci—1,1)\{0}, i-€-,

[0{, Xﬁ] = D[f*ﬁ,lf]AE(f + fwl, h + €WQ, f + fw;),)
— [0, =Dy (f k) in L2(0,T; H) x L2(0,T; H)

for all [f,h,0] € U, [wy, ws, ws] € U, and all direction [f, h, (] €

as & — 0.
Thus, the proof of this lemma has been completed. ]

Note from Proposition 6.1(II) that the cost functional J° admits the Gateaux deriva-
tive at any [f, h,[] € U. Moreover, by Lemma 8.1 we can prove the continuity of Gateaux
derivative of J¢ as follows:
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Corollary 8.1. Assume the same conditions as in Theorem 8.1. Let ¢ € (0,1] and
¢ €[-1,1]\ {0}. Then, the Gateaux derivative of the cost functional J is continuous in
the following sense:

Dot (f +8&mi, h+ Ewa, L+ Ewz) — Dijpgd°(f, byl

S 8.50
for all [f,h, 0] € U, [wy, w2, ws] €U, and all direction [f, h,{] €U (8:50)

~—

as & — 0.

Proof. Note from (6.29) that
D[f“,hj]Je(f + &y, h 4 Ewy, L+ Ewy)

_— / (ot — ) (£), 0c(0)) e + / (e — wa) (1), Xe(t)) mdt
mga? / ((F + E@)(t), (1)) et
+myal /T(h + Eooa) () h(t)dt + moyad /T(£ + Eoo) (1) 4(t)dt

for any [f,h,f] € U, [o1, @2, @3] € U, and any direction [f, h, (] € U, where [ug,we] =
N(f + &, h+ £+ Eoos) and [0g, Xe] = Dyjj gA°(f + E1, b+ {z, £ + Eoo3). Thus,
taking account of (8.14) and (8.15), we easily observe that the convergence (8.50) holds.

O

Lemma 8.2. Suppose the same conditions as in Theorem 8.1. Fix e € (0,1] and the pair
of initial data [uf,w§] € H x D(V®). In addition, for any & € [—1,1]\ {0}, [f, h,{] € U,
and [wy,wq, ws] € U, let [pe,qe] = A (f + Ewr, h + Ewa, £+ Ews). Then, [pe,qe| =
A J(f+Ew@r, h+Ewmy, £+Ews) converges to [p,q] = AS,(f, h,£) in L?(0,T; H) x L*(0,T; H)
as & — 0. Furthermore,

pe —p in L*(0,T; X) as&— 0. (8.51)

Proof. For any & € [—1,1] \ {0}, [f,h,f] € U, and [y, w2, ws] € U, let [ug, we] =
A(f + &y, h + Ewa, £ + €ws). Then, note from Theorem 6.1 that [pe, ¢e] = AS,(f +
Ewy, h + Ewy, U+ Ews) satisfies the following:

— Pt — (Pe)ae — @e = co(ug — ug) in Q; (8.52)
/ () G + / ), )b
b [ (@ (@) + 2 ae)ar) ol
[ O et N+ [ (@ erar) e e

T
= [ (we = wa)r). ()
for all t € [0,T] and ¢ € L*(0,T; X);

(8.53)
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— (pe)a(t,0) + nope(t,0) = (pe)a(t, L) +nope(t,L) =0, t <€ (0,T), (8.54)
pe(T,x) = qe(T,2) =0, x¢€(0,L). (8.55)

Now, we give the uniform estimate of functions pe and g with respect to £ € [—1, 1] \

{0}.

Multiplying (8.52) by pe and using the Schwarz inequality, we obtain:

1d
—§£|Pa(t)!% + 1(Pe)x (1) 5 + nolpe(t, 0) + nolpe (t, L) (8.56)
1 c2 :
< o)l + Slac® + Dlue —u) O aa. e 0.1,

Then, by (8.56) and the standard calculation (e.g., Gronwall inequality), we have

T

T T
P + / ((pe)a(s) s + g / 1pe(s, 0)[2ds + o / Ipe(s, D)[*ds
t t t

. . (8.57)
< Ny; (/ \qg(s)ﬁ[ds + cg/ |(ue — ud)(s)\lzqu) for all ¢ € [0, 7],
t t

where Nj7 is a positive constant independent of £ € [—1,1] \ {0}.
Next, multiplying (8.52) by —pi, using the Schwarz inequality, and integrating in time,
we obtain:

1 T , 2 1 2 Un Un)
5 | [pe(s)lmds + 51(pe)a ()i + 5o lpe(t, O)] + - lpe (8, L))
! (8.58)

T T
< / |ge(s)|3,ds + cg/ |(ug — uq)(s)|}ds  for all t € [0,T].
t ¢

In addition, taking ( = g¢ in (8.53), using (8.23)-(8.25), (8.58), and the Schwarz
inequality, and integrating in time, we obtain:

1 T
S+ e [ 1 (o) s
t

T

T
< @40 [ laelolds + [ (e - ua)(s) s (8.50)
t t
02 T
—i—El/ |(we — wy)(s)|5;ds  for all t € [0,7].
t

On account of (8.15), (8.59), and the Gronwall inequality, we can get the following esti-
mate:

G (D) + en / (g6 () s

(8.60)
< ng <C(2)|U - ud|%2(07T;H) + c%|w — wd|%2(0’T;H) + 1) for all ¢ € [07T],
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where Nig is a positive constant independent of £ € [—1, 1]\ {0}. Consequently, we infer
from (8.57), (8.58), and (8.60) that

DI + / (pe)e(8)[ s + o /

T T
1pe(s, 0)[2ds + no / Ipe(s, D)*ds
t

T
.61
T / 1705 yds + |(pe)o (O + molpe(t, 0)] + molpe(, L) (8.61)
t
< Ny <C(2)|U - Ud|2L2(0,T;H) + cf|w - wd|i2(0,T;H) + 1) for all t € [0,T7,

where Nig is a positive constant independent of £ € [—1,1] \ {0}.
Additionally, we infer from (8.23), (8.24), and (8.53) that (cf. (8.27)):

/0 (—g(r), (7)) dr

03
< |p,§|L2(0,T;H)|C|L2(0,T;H) + K (; + 5) |(CZf)le?(O,T;H)|CI|L2(O,T;H)

1
+g‘QE’L%O,T;H)|C‘L2(O,T;H) + \gl(wg)%hz(oj;m Clz2 0,78
+01|w§ - wd|L2(0,T;H)|C|L2(0,T;H) for all ¢ € LZ(Oa T; X),
which implies from (8.30), (8.60), and (8.61) that

’qg‘LQ(O,T;X’) < N1975 (C?)|u - udl%Q(O,T;H) + flw — wd‘%Q(O,T;H) + 1) ) (8.62)

where Ny is a positive constant dependent on ¢ and is independent of & € [—1,1]\ {0}.

By the uniform estimates (8.60)—(8.62) of [pe, g¢|, there are a subsequence {, }nen C
{€}eei-1.11\f03, and the functions p € W'2(0,T; H) N L>*°(0,T;X), g € W(0,T; X") N
L2(0,T; X)N L>(0,T; H) such that &, — 0,

De, — D in C([0,T); H),
weakly in W12(0,T; H), (8.63)
weakly-* in L>(0,7; X),

Pe,. (+,0) = P(-,0) weakly in L*(0,7T), (8.64)
Pe, (-, L) = D(-, L) weakly in L*(0,T), (8.65)
and
@, ¢  inC([0,T]; X",
in L2(0, T; H),
weakly in W12(0, T; X), (8.66)
weakly in L?(0,T; X),
weakly-* in L>(0,T; H),
as n — 00.
Then, by (8.42), the uniqueness of the adjoint system {(6.3)—(6.6)}, and the similar
argument in Lemma 8.1, we can show that

Si(f + &, h + g, £+ Ews)

(e, qe] =
— pg) = A (f, ) in L2(0, T3 H) x L2(0,T; H) as € — 0,

— [p,q
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Finally, we show (8.51). To this end, subtract (6.3) for [pe, qe] = AS,(f + Ewr, b +
Ewsy, { + Ews) from the one for [p, ¢| = AS,(f, h, (), and multiply it by pe —p. Then, using
the Schwarz inequality, we obtain:

e = PO+ (b — P

+n0|(p£ —p)(t,0)|2 + n0|(p§ —p)(t,L)|2

| ) (8.67)
c
< e =)D + 312 — DO + 5 I(we = w) (O,
for a.a. t € (0,7).
Then, by (8.67) and the standard calculation (e.g., Gronwall inequality), we have
T
e~ PO+ [ |toe = o)lids
t
T T
o [ e = p)(s0)Pds o [ (v~ p)(s, s (5.68)
¢ t

< Ny </tT [(qe — q)(s)|3ds + ¢ /tT |(ue — u)(s)ﬁ{ds) for all ¢ € [0, 7],

where Ny is a positive constant independent of £ € [—1,1] \ {0}. Hence, we conclude
from (8.15), (8.66), and (8.68) that (8.51) holds.
Thus, the proof of this lemma has been completed. O

Definition 8.2. We define the function v : [0, 00) — [0, 00) by

tf &m+ao(pe — p)
v(t) == inf ¢ |[§@1, Ema, ]l 5 | | §@2 + ai(pe — p) (- 0) >ty , fort>0, (8.69)
§ws +az(pe —p)(- L) ||,

t[ oy
where [w, @y, w3 € U, £ € R, the symbol wy | means the transposed matrix of
ws
w1 t w1
wy |, namely, | wy | = [, w2, ws), | - [ is the norm of U defined in (8.1), [pe, ¢¢] =
w3 (%

A (f + &, h + o, £+ Ews), and [p, q] = AS,(f, h,0). Clearly, v(-) is a well-defined
increasing function with v(0) = 0, because of the continuity of A, and (8.51) (cf. Lemma
8.2).

Lemma 8.3. Assume the same conditions as in Theorem 8.1. Let n € N be a fized
number, and let {[fe, hi, Cel; & = 1,2,--- ,n} be a sequence in U defined by the numerical
algorithm (NA). Let [pn, qn) = A2y(fry hny n), B € (0,1), and p € (0,1). Put

dOn = aO(pn + mOGOfn)a dln = al(pn<'> 0) + mlalhn)a d?n = a2<pn('> L) + m2a2€n)'
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Assume that at least one of the following conditions is satisfied:
don # 0 in L*(0,T; H), dy, # 0 in L*(0,T), or da, # 0 in L*(0,T). (8.70)
Then, there is a minimal constant ¢, € NU {0} such that

JE (fn - ﬁgndOna hn - Bgnd1n7€n - ﬁgndQn) - Js(fn7 hna En)
< =3 | [don, din, dan]ly -

Proof. By assumption (8.70) and by the definition of the Gateaux derivative of J°(-, ),
there is a constant d,,,, > 0 such that

(8.71)

Je(fn - )\dOna hn - )\dlnagn - )\dZn) - Ja(fna hnagn)
A

<(1 = 10)|[don, din, don] |2, for any A € (—8,n, 6,0) \ {0}, (8.72)

- D[—dOn,—dln,—dQn] Ja(fna hn7 én)

Put [un, w,] = A°[fo, hn, ) and [0, Xn] = Di—dgn,—din,—don] A (frs Ans £n). Then, by the
proof of Theorem 6.1, we observe that

D[*d()n,*dln,*dzn]Ja(fna hn; ﬁn)
= < /0 ((un = ua)(t), 0n(t)) mdt + c1 /0 ((wn, — wg) (t), Xn(t)) mrdt

+m0a§/0 (fn(t),—dOn(t))Hdterlaf/o B (8)(—dy1,(t))dt

+mayaj Tén(t)(—dgn(t))dt
. /0 (8.73)

- / (a0pn(t) + moa2 fo(t), —don(t)

+/0T(a1pn(t,0) - maa2ho (1) (—du(1))dt
+ /OT(azpn(t, L) + moa2l, (1)) (—daon ())dt
= —|[don, din, dn] %
Therefore, we observe from (8.72) that
JZ(fr = Adon, By — Adin, o — Mdon) — J*(fas s €3) < =Mt [don, din, dan] |

for any A € (0,9,,). Therefore, we have only to take a minimal constant ¢, € NU {0}
such that
0 < B < dpun.

Thus, the proof of this lemma has been completed. O
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Lemma 8.4. Assume the same conditions as in Theorem 8.1. Let n € N be a fixed
number, and let {[fx, hi, Cel; & = 1,2,--- ,n} be a sequence in U defined by the numerical
algorithm (NA). Let [pn, qn] = Noy(fry hny n), B € (0,1), and p € (0,1). Put

don = ao(pn +moaofn), din := a1(pa(-,0) +myarhy), doy := as(pa(-, L) +moasly,). (8.74)
Assume that at least one of the following conditions is satisfied:
don # 0 in L*(0,T; H), di, # 0 in L*(0,T), or da, # 0 in L*(0,T).
Let g, be the constant obtained in Lemma 8.3, and put
Mpae = max{mga2, mia?, moal}. (8.75)
Then, we have
By (1 = p)[don, din, d2nllu) < B Minaz|[dons din, don]lu (8.76)

where y(+) is the function defined by (8.69) in Definition 8.2.

Proof. From the definition of ¢, obtained in Lemma 8.3, we observe that
Sn Sn Sn
5 (= Sonst = St by = B = 5
B 2
H [dOTw d1n7 d2n] ‘Z/{ .
p
Here, by (8.73), the mean-valued theorem, and the continuity of Dj_q,, —d,, —ds] /" (fn+
Ewy, hy, + €, £, + Ewg) with respect to £, there is a constant ¥ € (0, 1) satisfying

(8.77)

e (f indon,hn ﬁ;czln,e —%dzn)—f(fmhn,m

/‘3? d .
= —J (fn_£d0n>hn_gdlnygn_£d2n)d£

) de
_ ; Dicior s J° (fn— 5; don,hn—ﬁﬁg dln,en—ﬁﬁ;d%)

g T g (8.78)
- 2 [ /0 (aopn,ﬁ<t>+moa3(fn<) 07 o), ~dnt >) it

/6§n

T
+ / <a1pnﬂg(t,0) 4 maa2(ha(t) — dm ) —dun()
0
T
+/ (@]%,19(75, L) + mQCL%(En(t) dQn > d2n ] )
0
5
005 ).

where [pn,q% Qn,ﬁ] = AZd <fn - 195%d0m hn - ﬁﬁ%dlm n
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It follows from (8.77) and (8.78) that

(1 — 1) |[dons din, don] |2

T 6%
|[don, din, d2n”i{ + / (aopn,ﬁ(t) + moag (fn( ) — 9 —don(t )), _dOn(t)> dt
0 g H

IA

T /Bgn
+/ (alpn,ﬁ (t7 O) =+ mla’%(hn(t) —
0

5 (1)) (=l (1))

+/0 <a2pn,ﬂ(tv L) + m2a%(£n(t) - 19—d2n(t>)> (_dZn(t))dt

= /0 (aopn,ﬁ(t) + moag (fu(t) — 0%%@)) — don (1), —dOn(t)> ; dt

[ (0ammo(t.0) + madha0) = 9% 0,0 - a0 a0
)

T ) [on
[ (0t 1)+ maa) = 070 (0) () (= 0) .

Hence, we infer from the Holder inequality and (8.74) that

t B 9 /Bgn
AoPn,9 + Moy (f 5 dOn) don,

Sn
(1= 12)|[dons dur ol < | | axpuo(-0) + maa? (hy — 19%
69”

B

dln) - dln

a2pn,19('7 L) + m2ag (en —J—

d2n) d2n

t B _ﬁﬁgn

g
= —ﬁ%mla%dln +a1(pn,19('70) _pn(vO))

P raa2dan + as(puo(s L) — (-, 1))
3 1l

By the definition of the function -y, we observe from (8.79) and 6 € (0,1) that

Sn
9 B
B
/Bgn
S _Mmacc | [d0n7 dlna dQn] |Z/la

B
which implies that the inequality (8.76) holds. ]

(8.79)
mOa(z)dOH + Qo (pn,ﬂ - pn)

2 2 2
| [moaodOna miaydin, m2a2d2n] ‘u )

7 (1= w)|don, din, dnl],,) <

Now, we show our main Theorem 8.1 in this paper, which is concerned with the
convergence for numerical algorithm (NA).
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Proof of Theorem 8.1. We show (I). By (Step 5) in the numerical algorithm (NA) (cf.
(8.71) or (8.82) below), we easily observe that J(f,, hn, £,) is the non-increasing sequence
with respect to n. Thus, from the non-negativity of J¢(-,-,-) (cf. (1.16)), we infer that
nlgr()lo J=(fn, hn, 0y exists.

We next show (II). Indeed, we first prove (8.2) by contradiction. To this end, we
assume that (8.2) does not hold. Then, there exist a constant 6 > 0 and a sequence
{k}ren such that

lao(pr + moao fi)| 20,y > 6 for any k. (8.80)

Since 7(+) is the increasing function (cf. Definition 8.2), it follows from (8.74) and
(8.80) that

(1 =)o) < (1 — ) ldok, dix, daxl],,) ~ for any k. (8.81)
Then, we observe from (8.71), (8.76), (8.80), and (Step 5) that

JE(frt1s Pty Cer) — T (S, Py )
Je (fr — B*dok, hi — B dag, b, — B%*dak) — J*( fi, I, Ck)

< —ppt | [dok, d1k, dog] ’Z

< _]\56 ¥ ((1 — /vb)|[d0k;d1k7d2k”u) Hdﬁk7d1kad2k”u (8.82)
I

< — 1—

B Mmax’y (( M)(S) 0

<0 for any k € N.

By repeating this procedure, we observe from (8.82) that
15

JE(fk+17hk+17£k+1> S Js(f’mh]mgk) - M 7((1_,u)6)5
2
< J(fr1s 1, o) — M,uﬁ v (1 —p)d)d
<
k
< F(fuh ) — P (1= 106)5  for any k € N,
Therefore, the above inequality implies that
I (fea1, hyr, bey1) — —00  as k — oo. (8.83)

This contradicts the non-negativity of J=(-,-,-) (cf. (1.16)). Hence, (8.2) holds.

Similarly, we can show (8.3) and (8.4), thus, (II) holds.

Now, we show (III). By Theorem 8.1(I) and the definition of Je(-,-,-) (cf. (1.16)),
we observe that {[f,, hn, {n] tnen is bounded in U. Therefore, there exist a subsequence
{ni}ren of {n}nen and a triplet of functions [fZ,, hS,, (5,] € U such that n; — oo and

fo, — f5. weakly in L?*(0,T; H),
By, — hS, weakly in L?(0,7T), (8.84)
ln, —> €2, weakly in L*(0,7)
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as k — o0o. Then, from Corollary 4.2 concerning the convergence result of solutions to
(Pyuf, w§, fu,, Pnys Cn, )e, we observe that

[unkawnk] = AE(fnkahnkagnk> — ['U,i*,'IUi*] = Aa( :*7hi*7£i*)

(8.85)
in L?(0,T; H) x C([0,T); H) as k — oo.

In addition, by (8.85) and the slight modification of the proof of Lemma 8.2, there
are functions ps, € WhH2(0,T; H) N L>=(0,T; X), ¢, € W2(0,T; X") N L?(0,T; X) N
L>(0,T; H), and a subsequence of {ny}ren (which we also denote {ny}ren for simplicity)
such that [puy: o] = ASy(fuy: hnys ) converges to [p2.. g = ASy(fo,,he., €5,) in the
following sense:

P = Pi i C([0,T]; H),
weakly in W12(0,T; H), (8.86)
weakly-* in L>(0,7T; X),

pnk('a O) — pi*(? 0) Weakly in L2(07 T)) (887)
P (5, L) — p5,. (-, L) weakly in L*(0,7T), (8.88)
and
in LZ(O,T; H),
weakly in W12(0,T; X'), (8.89)

weakly in L?(0,T; X),
weakly-* in L>°(0,7T; H),

as k — oo. In addition, from arguments similar to (8.51), we observe that
Pn, — P50 L2(0,T;X) as k — oo, (8.90)
hence, in particular,
Py (+,0) = p5,(+,0) in L*(0,T),  pu,(-, L) = p.(-,L) in L*(0,T) as k — oo. (8.91)
Therefore, we infer from (8.2), (8.3), (8.4), (8.84), (8.86), (8.90), and (8.91) that the

assertions (8.5)—(8.12) hold. In addition, we conclude from Theorem 6.1 and (8.10)—
(8.12) (cf. (8.73)) that (8.13) holds, hence, [fz,, hS,, (5] € U is the stationary point of the

k3% ) k)

cost functional J¢ with € > 0. Thus, the proof of Theorem 8.1 has been completed. [

9 Numerical experiments

In this section, by similar approach as in [35, 37, 38] we perform the simple numerical
experiments to (OP)¢ with some small € > 0.
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9.1 State system and its optimal control problem

For the stability of numerics and the propagation speed of the interfaces, we now rescale
(t,x) by the small parameter ¢ > 0. Indeed, we change the pair of variables (¢, z) into
(s,y) := (ot,ox). Then, from the formal calculations we observe that (1.1) and (1.2) are
reformulated as follows, respectively:

[u+ w]s — ouy, = M in (s,y) € Q, :=(0,0T) x (0,0L), (9.1)
ws — K (%)y + {H“O’_” W), g(;”) 5= Q. (9.2)

where we put f(s,y) := f(s/o,y/o) for (s,y) € Q,, for simplicity.
Ohtsuka [35] and Ohtsuka—Shirakawa—Yamazaki [37, 38] gave numerical experiments
of optimal control problem for the approximate Allen—Cahn type equation associated with

total variation energy, in which the singular diffusion term <|Z—Z|> was approximated by
’ )

— %) fore>0
<m>y -

In this section, by similar approach as in [35, 37, 38] we perform the simple numerical
experiments to (OP)® with some small € > 0. Indeed, we consider a distributed control
problem with the heat source as control, more precisely, (OP)¢ in the case when a°(r) =
\/‘r;?,g(r)zr‘q’—r, and a; = ay = b; = by = ¢y = 0.

Now, for the fixed rescale parameter o € (0,1], we take T' = T/o and L = L/o for
some positive constants 7" and L. Then, we give numerical experiments of the optimal
control problem for the following state system that is the approximate problem of (9.1)
and (9.2):

Problem (P;f,0,0)c.

[uf +wf, — oy, = M in (s,9) € Q= (0,7) x (0,L), (9.3)

wi — K w—f} +ew | + K (w) + (w?)” —wf = v in Q,, (9.4)
V] we|? + €2 ! o g g

—uS(s,0) +u(s,0) = u5(s, L) +u(s,L) =0, s€(0,T), (9.5)

wi(s,0) = wi(s,L) =0, s€(0,7T), (9.6)

u(0,y) = ui(y), w(0,y) = wi(y), ye (L) (9.7)

In addition, for simplicity, we consider the following distributed control problem with the
heat source as control:
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Problem (OP)®: Find a control function ]75 € LQ(O,T; H), call optimal control, such
that _ _
JE(f)=_ inf  J(f). (9.8)
feL?(0,T;H)

Here, J°(f) is the cost functional defined by

P =5 [ = wa@lds+ 5 [ 1fods 9.9

where c;, mg are nonnegative constants, wy is the given desired target profile in L?(0, T H),
and a couple of functions [u®, w?] is a unique solution to the initial-boundary value state
problem (P;f, 0,0)¢ for the control parameter ]76 L*(0, T H).

Note that the rescale parameter o appears in (9.3) and (9.4). However, o is a fixed
positive constant. Hence, by the slight modification of the proof of Theorems 3.1, 4.1,
5.1, 6.1, 7.1, and 8.1, we can prove the solvability of state systems {(9.3)—(9.7)} for any
e € (0, 1], the existence of optimal controls to (9.8), and so on.

9.2 Discretization

We perform the numerical experiments of (P;f,0,0)¢ and (OP)¢ via the standard explicit
finite difference scheme. Indeed, let At and Ah be the mesh size of time and space,
respectively, and set w, ; 1= w®(nAt, jAh) and D;‘Eww = £(wWp j+1 — Wy,;)/Ah. Then,
the diffusion term in (9.4) is discretized by the following:

Pw. - — 1 B D;rwn,j B D;wn,j
n?] T
Ah \/|D§fwn7j|2+52 \/|Dy_wn,j|2+52

+ e(Dy wn,; — Dy wn,;)

Other terms are discretized by the standard forms. For instance, we refer to the explicit
finite difference scheme used in [35].

9.3 Numerical experiments

In this subsection, we give three numerical experiments of (OP)® with sufficient small
parameter £ under the following numerical data:

Numerical data

« o =0.001, the domain Q, = (O,f) x (0, Z) with 7' = 0.0025 and L = 1.0, the space
mesh size Ah = 0.005, the time mesh size At = 0.1 x Ah? = 0.0000025, x = 0.001,
c1 = 10.0, mg = 1.0, ¢ = 0.001, the stop parameter p = 0.0001 for (NA), and the
given initial data [u§,w§] = [0.0,0.0]. In addition, we take fo = 0.0 as the initial
control function for (NA).



952

(Numerical experiment 1)
In the first experiment, we consider a simple target desired profile wy such that

1, ify e [0.30,0.70],

Vs € [0, 7], 9.10
—1, otherwise, s€(0.7] ( )

wa(s,y) = {

whose graph is the dotted line in Figure 1.

Figure 1: Target profile wy(T,y) and solution w®(T,y) at T = 0.0025 and the iteration
number n = 7.

We perform a numerical experiment of (OP)® by using the numerical algorithm (NA)
proposed in Section 8. Then, (NA) is finished when the iteration number is n = 7 as in
Figure 2.

Figure 2: The value of the cost functional J¢ for (OP)e.

Figure 3 is the graph of the control function }V found by (NA) in the case of the
iteration number n = 7.
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Figure 3: The graph of the control function f found by (NA) at the iteration number
n=".

Figure 4 is the picture of the solutions v® and w® for (P;f, 0,0)° with initial data
[u§, w§] = [0.0,0.0] in the case of the iteration number n = 7.

Figure 4: The graph of solution [u®, w®] to (P;fv, 0,0)° at the iteration number n = 7:
(left) u(s,y); (right) we(s,y).

In addition, the real line in Figure 1 means the graph of ws(’f, y) at T = 0.0025 and
the iteration number n = 7. We observe from Figures 1-4 that the solution w*(7T',y) to

(P;f, 0,0)¢ has the similar profile to the desired one wd(f ,y) and the data sequence of
cost functional J¢ almost reaches a stationary point.
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(Numerical experiment 2)
In the second experiment, we consider a target desired profile wy such that

1, ify e [0.00,0.35),
wqa(s,y) =4 0, ifye(0.350.70], vsel0,T] (9.11)
1, ify e (0.70,1.00],

whose graph is the dotted line in Figure 5.

Figure 5: Target profile wy(T,y) and solution w®(T’,y) at T = 0.0025 and the iteration
number n = 15.

We perform a numerical experiment of (OP)® by using the numerical algorithm (NA)
proposed in Section 8. Then, (NA) is finished when the iteration number is n = 15 as in
Figure 6.

Figure 6: The value of the cost functional J¢ for (OP)=.



955

Figure 7 is the graph of the control function f found by (NA) in the case of the
iteration number n = 15.

Figure 7: The graph of the control function f found by (NA) at the iteration number
n = 15.

Figure 8 is the picture of the solutions u® and w® for (P;]?, 0,0)¢ with initial data
[ug, w§] = [0.0,0.0] in the case of the iteration number n = 15.

Figure 8: The graph of solution [uf, w] to (P;f,0,0)¢ at the iteration number n = 15:
(left) u(s,y); (right) we(s,y).

In addition, the real line in Figure 5 means the graph of wa(f ,y) at T = 0.0025 and
the iteration number n = 15. We observe from Figures 5-8 that the solution w*(T,y) to

(P;f, 0,0)¢ has the similar profile to the desired one wd(f, y) and the data sequence of
cost functional J¢ almost reaches a stationary point.
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(Numerical experiment 3)
In the final experiment, we consider a target desired profile wy such that

wq(s,y) = cos(2my), y € Q=10.0,1.0], Vs € [0,T], (9.12)

whose graph is the dotted line in Figure 9.

Figure 9: Target profile wy(T,y) and solution w®(T,y) at T = 0.0025 and the iteration
number n = 17.

Here we take the stop parameter p = 0.00025 for (NA). Then, we perform a numerical

experiment of (OP) by using the numerical algorithm (NA) proposed in Section 8. Then,
(NA) is finished when the iteration number is n = 17 as in Figure 10.

Figure 10: The value of the cost functional J¢ for (OP)e.

Figure 11 is the graph of the control function f found by (NA) in the case of the
iteration number n = 17.
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Figure 11: The graph of the control function ffound by (NA) at the iteration number
n=17.

Figure 12 is the picture of the solutions u® and w* for (P;f, 0,0)¢ with initial data
[u§, w§] = [0.0,0.0] in the case of the iteration number n = 17.

Figure 12: The graph of solution [u®, w®] to (P;f, 0,0)¢ at the iteration number n = 17:
(left) us(s,y); (right) w*(s,y).

In addition, the real line in Figure 9 means the graph of wa(f, y) at T = 0.0025 and
the iteration number n = 17. We observe from Figures 9-12 that the data sequence
of cost functional J° almost reaches a stationary point, however, there is the slight gap
between the solution w*(7,y) to (P;f,0,0)° and the desired profile wq(T,y) (see Figure
9). We guess the reason is that the target profile wd(Tv, y) defined by (9.12) is not the

stable equilibria for (P;f, 0,0)¢, and there is no desired profile u4 of the temperature in
(OP)= (cf. (9.9)).
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In the forthcoming paper we will perform numerical experiments for (P;f, h, ()¢ and

(OP)¢ under various situations (cf. Remark 3.1).
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