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1 Introduction

This paper is concerned with singular optimal control problems for doubly nonlinear
quasi-variational evolution inclusions governed by time-dependent subdifferentials.

Throughout this paper, let H be a (real) Hilbert space and V' be a uniformly convex
Banach space such that V is dense in H and the injection from V into H is compact,
supposing also that the dual space V* of V' is uniformly convex; the norms in V and V*
are denoted by |- |y and |- |y+, respectively, and the duality pairing between V' and V* is
denoted by (-, -); similarly the norm and the inner product in H are denoted by |- |z and
(+,)m, respectively. In this case, identifying H with its dual, we have

V — H — V* (with dense and compact embeddings);

note that
(u,v) = (u,v)g, fue HandvelV.

Recently, N. Kenmochi-K. Shirakawa—N. Yamazaki [25] established the abstract solv-
ability theory of the following doubly nonlinear quasi-variational evolution inclusions gov-
erned by time-dependent subdifferentials in the Banach space V*:

{ Ot (uy u' (1)) 4+ 0w (uy u(t)) + g(us t,u(t)) > f(t) in V* for a.a. t € (0,7),

u(0) =up in'V, (1.1)

where 0 < T < oo, v/ = % in V, f is a given V*-valued function, and uy € V is a given

initial datum. "

For each parameter v and t € [0, 7], ¥*(v; z) is a proper (i.e., not identically equal to
infinity), L.s.c. (i.e., lower semi-continuous), convex function in z € V, ¢'(v; 2) is a non-
negative, continuous convex function in z € V, and g(v;t, z) is a single-valued Lipschitz
operator from V' into V* (see Section 2 for their precise definitions). Note that (¢,v) is
a parameter that determines the convex functions ' (v;-), ¢'(v;-), and the perturbation
g(vit, ).

In the present paper, we discuss optimal control problems for (1.1). Note that problem
(1.1) has multiple solutions, in general (see in [25, Example 3.1] for instance). Therefore,
the optimal control problem associated with the state equation (1.1) is singular, namely,
control problems formulated for non-well-posed state system. By a similar approach as
in [24], we consider a singular optimal control problem formulated for (1.1). To this end,
let Fyr be a control space with constant M > 0, defined by:

| flw2orv+) < M, }

(1.2)
\fle2ormy < M

Fur = {f e W0, T;V*)NL*(0,T; H) ;

where | - w21y (vesp. |- |r2(0.r;m)) is the norm of WH2(0, T V*) (resp. L*(0,T; H)).
Then, we formulate a singular optimal control problem for (1.1) as follows:

Problem (OP): Find a control f* € Fj, such that

J(fY) = nf J(f);

fe€FM
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such a function f* is called an optimal control. Here, J(f) is a functional defined by

I()= inf (), (1.3)

where f € Fy is any control, and S(f) is the set of all solutions to (1.1) associated with
control f. In addition, 7s(u) is a functional of u € S(f) defined by:

1

wi) =3 [ o)~ wa@fpde+ 5 [ 150 (1.4)

where uqg € L*(0,T;V) is a given target profile.

There is a vast amount of literature on optimal control problems for (parabolic or
elliptic) variational inequalities. For instance, see [8, 15, 16, 18, 27, 28, 31, 32, 33, 38|.
In particular, P. Neittaanméki—J. Sprekels—D. Tiba [33, Section 3.1.3.1] discussed singu-
lar control problems for linear elliptic equations of second-order with the homogeneous
Dirichlet boundary condition.

The theory of nonlinear evolution inclusions is useful in any systematic study of vari-
ational inequalities. For instance, many mathematicians have studied nonlinear evolution
inclusions of the form:

u'(t) + 00" (u(t)) > f(t) in H for a.a. t € (0,T), (1.5)

where ¢' : H — RU {oo} is a time-dependent proper, l.s.c., and convex function for each
t € [0,7T]. For fundamental results on (1.5), we refer to [16, 19, 20, 34, 37]. In particular, S.
Hu-N. S. Papageorgiou [16] treated some optimal control problems for (1.5). Furthermore,
the optimal control of parameter-dependent evolution inclusions for (1.5) has previously
been considered in several previous works (cf. [16, 35]).

Doubly nonlinear evolution inclusions have been studied, for instance, by N. Kenmochi—
[. Pawlow [22], in which nonlinear evolution inclusions of the following type were discussed:

%fw(u(t)) +0¢"(u(t)) > f(t) in H for a.a. t € (0,7), (1.6)

where ¢ : H — R U {oo} is a proper, Ls.c., and convex function. The abstract results for
(1.6) can be applied to elliptic-parabolic equations. From the viewpoint of (1.6), K.-H.
Hoffmann—M. Kubo—-N. Yamazaki [15] studied optimal control problems for quasi-linear
elliptic-parabolic variational inequalities with time-dependent constraints. Additionally,
A. Kadoya—N. Kenmochi [17] touched on the optimal shape design of elliptic-parabolic
equations.

G. Akagi [2], T. Arai [3], M. Aso-M. Frémond-N. Kenmochi [4], M. Aso-N. Kenmochi
[5], P. Colli [11], P. Colli-A. Visintin [12], O. Grange-F. Mignot [14], and T. Senba [36]

investigated the following type of doubly nonlinear evolution inclusions:
oWt (u' (1)) + dp(u(t)) > f(t) in H for a.a. t € (0,7). (1.7)

As mentioned above, one interesting feature is that (1.7) is not generally well-posed;
namely, it lacks the uniqueness of solutions. In this respect, M. H. Farshbaf-Shaker—N.
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Yamazaki [13] studied the optimal control problem without the uniqueness of solutions in
the state system (1.7) with single-valued Lipschitz perturbation g by employing the idea
of Y. Murase-A. Kadoya—N. Kenmochi [31].

In the recent works of N. Kenmochi-K. Shirakawa—N. Yamazaki [23, 24], a more general
approach was proposed to treat

O (' (1) + 0u' (u; u(t)) + g(t,u(t)) > f(t) in V* for a.a. t € (0,7). (1.8)

Moreover, singular optimal control problems for (1.8) were discussed, and as applications
of abstract results, parabolic quasi-variational inequalities with gradient constraint for
the time derivatives were studied (cf. [24, Section 11]).

In this paper, we systematically investigate (OP). The novelties of this work are as
follows:

(a) We show the existence of optimal control for (OP);

(b) We propose an approximate procedure to investigate the singular optimal control
problem for (1.1) by considering parameter-dependent evolution inclusions.

The remainder of this paper is organized as follows. In Section 2, we recall the abstract
result of the existence of solutions to (1.1) for each f € L%*(0,7;V*) and ugp € V. In
Section 3, we give abstract results of existence-uniqueness and convergence of solutions to
parameter-dependent abstract evolution inclusions. In Section 4, we consider the singular
optimal control problem for (1.1), and state the main result (Theorem 4.1), corresponding
to item (a). In Section 5, we propose an approximate procedure to construct an optimal
control for (OP) and give the main results (Theorems 5.1 and 5.2), corresponding to
item (b). In the final Section 6, we apply our general results to some model problems:
quasi-variational inequalities with time-dependent gradient constraints (interior obstacle
problems and Navier-Stokes type problem).

Notation

We now list some notation and definitions of subdifferentials of convex functions. Let
¢V — RU{oo} be a proper, Ls.c., and convex function. Then, the effective domain
D(¢) is defined by

D(6) = {2 € V; 6(2) < o0},
The subdifferential 0,¢ : V. — V* of ¢ is a possibly multi-valued operator from V' into
V* and is defined by z* € 0,¢(z) if and only if

z€ D(p) and (z",y—2) < o(y) —d(z) forallyelV.

Its graph is the set G(0.¢) = {[z,2"] € V x V*; 2* € 0,¢(2)}, which is often identified
with 0,¢, namely, z* € 0,¢(z) is denoted by [z, z*] € 0,¢.

In particular, let ¢ : H — R U {oc} be proper, Ls.c., and convex. Then we denote by
0¢ the subdifferential of ¢ from H into H.

For various properties and related notions of a proper, l.s.c., convex function ¢ and
its subdifferential 0,¢, we refer to the monographs by V. Barbu [7, 9]. In particular, for
those in Hilbert spaces, we refer to the monographs by H. Brézis [10].
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We also recall a notion of convergence for convex functions, developed by U. Mosco
29, 30] and H. Attouch [6].

Let ¢, ¢n (n € N) be proper, l.s.c., and convex functions on V. Then, we say that
¢, converges to ¢ on V in the sense of U. Mosco [29] as n — oo if the following two
conditions are satisfied:

(M1) for any subsequence {¢y, }ken C {@n}nen, if 2z = 2z weakly in V' as k — oo, then

lim inf ¢, (24) > 6(2);

(M2) for any z € D(¢), there is a sequence {2, }nen in V' such that

zn > zinVasn—oo and  lim ¢,(z,) = ¢(2).

n—oo

For some important properties of the Mosco convergence of convex functions, we refer
to the monographs by H. Attouch [6] and N. Kenmochi [21]. Especially the following ones
are often used. Let ¢, ¢, (n € N) be proper, l.s.c., and convex functions on V. Assume
¢, converges to ¢ on V in the sense of Mosco as n — oco. Then:

(Fact 1) z¥ € 0.0n(2n), 2n — zweakly in V| 2 — 2* weakly in V*, and (2%, z,,) — (2%, 2)
(as n — 00), then z* € 0,¢(2).

(Fact 2) (Graph convergence) If z* € 0,¢(z), then there are sequences {2, }neny C V
and {2z} },en C V* such that

20 € 0uPn(2n), 2n = zin 'V, and 2 — 2% in V™.

2 Solvability of (1.1)

We begin with the precise formulation of our problem (1.1). For this purpose, we use a
time-dependent proper, L.s.c., and convex function ¢§(-) on V such that there are positive
constants C; and C5 satisfying

Vi(z) > Chlzfy — Coy, V2 €V, V€ [0,T], 0<T < oo, (2.1)
and ¢t — ¥f(+) is continuous on V' in the sense of Mosco.
Our doubly nonlinear evolution inclusions are formulated in terms of two functionals

P(v; 2), p'(v; 2), and a mapping g(v;t, z) together with a prescribed initial-value uy and
a forcing term f, as follows:

{ O (w; ! (1)) + 0w (wsu(t)) + glus t,u(t)) 3 f(t) in V*, aa. te(0,7),

w(0) =ug inV, (2.2)

and their solutions are constructed in the class

Dy = {v c WH2(0,T;V) ‘ /OT Y (7))dr < o0, v(0) = uo} : (2.3)
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depending on the functional ¥§ and the initial-value ug.
We suppose that Dy # () and the following assumptions are fulfilled:

(Assumption (1))

The functional ¢(v; z) is defined for each (¢,v,z) € [0,T] x Dy x V so that ¢'(v; 2) is
proper, l.s.c., and convex in z € V for any ¢ € [0,7] and any v € Dy, and

P(vy;2) = V' (vg; 2), Vz €V, if v; = vy on [0, ],
for v; € Dy, i = 1,2. Furthermore, assume:

(Y1) If t, € [0,T], v, € Dy, sup,ey fOTwé(v;(t))dt < o0, t, = t, and v, — v in
C([0,T); H) (hence v € Dy and v € WH2(0,T;V) by (2.1)) as n — oo, then

P (vy; ) = Yi(v;+) on V in the sense of Mosco as n — .

(¥2) D' (v;-)) € D(k) for all v € Dy and ¢ € [0, 7], and

V(v 2) > wh(z), Vte[0,T], Vv € Dy, Vz € D' (v;+)).

(13) 0,0 (v;0) 0 for all t € [0,T] and v € Dy, and there is a non-negative function
cy(+) € L*(0,T) such that

Y (v;0) < cp(t), Vtel0,T], Yv € Dy.

(Assumption (¢))

Let ¢' : [0, T] x Dy x V — R be a function such that ¢'(v; 2) is non-negative, finite,
continuous, and convex in z € V for any t € [0, 7] and any v € Dy, and

©'(v1;2) = p'(vg; 2), V2 €V, if v1 = vy on [0, 1],
for v; € Dy, i = 1,2. Besides, assume the following:

(¢1) The subdifferential 9,p'(v; 2) of ¢'(v; z) with respect to z € V is linear and bounded
from D(0.¢"(v;)) = V into V* for each ¢ € [0,T] and v € Dy, and there is a positive
constant Cy such that

10,0 (v; 2)|[v- < Cslzly, VzeV, Vte[0,T], Yo € Dy.

(¢2) If {Un}neN C DOv SUPpeN f()T d%(v;z(t))dt <00, v E D07 and Up — U n C([()?T]vH)
(as n — 00), then

" (Un; ) = ©'(v;-) on V in the sense of Mosco, Vt € [0,T].

(#3) ©°(v;0) = 0 for all v € Dy. Moreover, there is a positive constant Cy such that

O’ (v;2) > Cylzl?,, Vz €V, Yv € D.
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(¢4) There is a function o € W(0,T) such that

|0 (v; 2) — ©%(v; 2)| < |a(t) — a(s)|p®(v;2), Vz €V, Yve Dy, Vs, te€l0,T)].

(Assumption (g))

Let g := g(v;t, 2) be a single-valued operator from Dy x [0, 7] x V into V* such that
g(v;t, z) is strongly measurable in t € [0, 7] for each v € Dy and z € V, and

g(vist, z) = g(vg;t, 2), Vz eV, if vy,v9 € Dy and v = vy on [0,t], Vt € [0,T].
Moreover, assume:

(91) Let {v,}nen be a sequence in Dy such that sup,,cy fOT P (vl (t))dt < oo and v, — v
in C([0,T); H) (as n — o0), and {z,}nen be a sequence in V' such that z, — z
weakly in V. Then,

g(n;t, z,) = g(ust, z) in V¥ Vte[0,T].

(g2) g(v;-,0) € L*(0,T;V*) for any v € Dy, and g(v;t,-) is uniformly Lipschitz from V'
into V*, i.e., there is a constant L, > 0 such that

lg(vst, z1) — g(vst, z0)|ve < Lylz1 — 2]y, Yz €V (i =1,2), Yo € Dy, Vt € [0,T].

(g3) There is a non-negative function gy € L?*(0,7T) such that

lg(v;t,0)|v+ < go(t), a.a.te (0,T), Vv € Dy.

Next, we give the definition of solutions to evolution inclusion (2.2).

Definition 2.1. Given data f € L*(0,7;V*) and uy € V, a function u : [0,7] — V
is called a solution to C'P(¢*', ¢!, g; f,ug) or CP(f,ug) or simply C'P, if and only if the
following conditions are fulfilled:

(i) u e Wh2(0,T;V).
(ii) There exists a function & € L?(0,T;V*) such that
£(t) € 0 (us (1)) in V¥, aa. t e (0,7),

and
E(t) + 0,0 (u;u(t)) + glus t,u(t)) = f(t) in V* aa.te(0,T).

(iii) u(0) =ug in V.

We here recall the abstract existence result of evolution inclusion C'P(f, uy).
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Proposition 2.1 ([25, Theorem 2.1]). Assume that ug € V' and assumptions (V), (¢),
and (g) are fulfilled. Let f be any function in L*(0,T;V*). Then, CP(f,uy) admits at
least one solution u. Moreover, there exists a constant Ny > 0, independent of f and uy,
such that

T
| vtaoas s o) < 8 (jul+ s +1) @4

t€[0,T

for any solution u to CP(f, ug).

The solvability for C'P(f,ug) was performed in several steps. The first approach is
to consider an auxiliary approximate problem of the form for each fixed ¢ € (0, 1] and
NS Doi

eFyul ,(t) + 0.0 (viul (1)) + 0u0" (v; e (1) + g(vi t ucy(t) 3 f(E) in VF, >0, (2.5)

subject to initial condition u. ,(0) = ug in V', where we set Fy := 9,¢"(vg; -) for the fixed
function vy € Dy (cf. (5.17)). In the first step we proved the existence of a unique solution
Ue, to (2.5) for every ¢ € (0,1] and v € Dy by applying the general theory of ordinary
differential equations. In the second step the convergence of approximate solution wu.,
was discussed. In the third step, for each € € (0,1] and v € Dy, the solution u., of (2.5)
is denoted by S.(v), namely u., := S:(v), and then, we found a fixed point of S. in Dy,
Uey = Se(Ue ), which is denoted simply by u.. It is a solution to

eFpul(t) + 0 (uc; ul(t)) + 0w (ue; us(t)) + glue; t,us(t)) > f(t), u(0) =wug. (2.6)

In the final step we showed that the solution u. converges in C([0,T];V) as ¢ — 0 and
the limit u is a solution of C'P(f,uy). For the detailed proof of Proposition 2.1, we refer
to [25, Theorem 2.1].

As is seen from the counterexample in [25, Example 3.1], the uniqueness of solutions to
doubly nonlinear evolution inclusions is not expected, in general. However, in a restricted
class for ¥' and ' we have the uniqueness of solution.

Proposition 2.2 ([25, Proposition 3.1)). Suppose that ' and g are independent of v €
Dg, namely ' (v; 2) = '(2) and g(v;t, 2) = g(t, z) for allv € Dy and z € V; in this case
vy =t on V. In addition, assume that ' is uniformly monotone for any t € [0,T],
namely, there exists a positive constant Cs > 0 such that
(&1 — &2, 21 — 2) > Csl21 — 2t
VZZ' S D((?*wt), 62 S &wt(zl) (Z = 1, 2), Vt € [O,T]
Furthermore, suppose that ug € V' and assumptions (V), (¢), and (g) are fulfilled. Also,

assume that ' (v;-) is Lipschitz in v € Dy, more precisely, there exists a positive con-
stant Cg > 0 such that

|0up" (015 2) = Ouip! (025 2) v+ < Cigloa(t) — va(t)|v (1 + |zlv),
V/UZ‘ € DO (Z = 1,2)7 Vz € D07 YVt € [O,T]

Let f be any function in L*(0,T;V*). Then, CP(f,uy) has at most one solution.
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3 Some additional results

In this section, we recall the previous works in [25], and set up some auxiliary results. In
particular, the convergence result of solutions to parameter-dependent evolution inclusions
is key to considering (OP).

The following lemma is derived directly from assumption (¢).

Lemma 3.1 (cf. [25, Lemma 2.1)). Suppose that assumption (¢) is fulfilled. Then, the
following inequality holds: for allt € [0,T], z €V, and v € Dy,

T < @ (012) < (0 (0:2).2) < 2l (3.1)
|| 10m) + 1

For the detailed proof of Lemma 3.1, we refer to [25, Lemma 2.1].

Now we recall the convergence result of solutions to parameter-dependent evolution
inclusions established in [25, Section 2.3].

Given ug € V, v € Dy, and f € L*0,T;V*), we denote by CP,(¢*, ¢, g; f, uo)
or CP,(f,ug) the problem to find a function v € W40, 7;V) with £ € L?(0,T;V*)
satisfying that

£(t) € 00 (v /(1)) in V*, aa. t € (0,7),
) + 0,0 (v u(t)) + g(vs t,u(t)) = f(t) in V*, aa. t € (0,7T),
u(0) = ug in V.

Note that the existence of solutions to C'P,(f,ug) can be proved by applying the
abstract theory established in [23, Theorems 1].

Proposition 3.1 (cf. [23, Theorem 1]). Suppose that ug € V and assumptions (1),
(6), and (g) are fulfilled. Then, for each v € Dy and f € L*(0,T;V*), there exists at
least one solution u to C'P,(f,ug). Moreover, for any fized v € Dy, any solution u to
CP,(f,ug) satisfies the bound: there exists a constant Ny > 0, independent of v € Dy and
f e L*0,T;V*), such that

T
/ Wt (v 4/ (t))dt + S o' (v u(t)) < Ni(luoly + [f1Z20m0+) + 1), (3.2)
0 €0,

where Ny is the same constant as in (2.4) of Proposition 2.1.

As is seen from the counterexample in [25, Example 3.1], the uniqueness of solutions
to doubly nonlinear evolution inclusions C'P,( f, ug) is not expected, in general. However,
by arguments similar to [23, Theorem 2], we can show the uniqueness of solution to
CP,(f,up) in a restricted class for ¢* and ¢'.

Proposition 3.2 (cf. [23, Theorem 2|). Suppose that ug € V' and assumptions (¢), (¢),
and (g) are fulfilled. In addition, assume that ' (v;-) is uniformly monotone for any
t € [0,T] and v € Dy, namely, there exists a positive constant Cs > 0 such that

(&1 — &, 21 — 22) > Cslz1 — 2|7,

3.3
Vz; € D(0.Y), & € 0.4 (v; 2;), 1 =1,2, Yv € Dy, Vt € [0,T]. (3:3)
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Let f be any function in L*(0,T;V*). Then, problem CP,(f,uy) admits a unique solution
u on [0,T7].

Remark 3.1 (cf. [25, Remark 3.1]). Assume the following conditions:

(&1 — &9, 21 — 29) > Csl|z1 — 2%,

3.4
Vz; € D(0.WY), & € 0.0 (v;2), i = 1,2, Yv € Dy, Vt € [0,T], (3.4)

and ¢ satisfies that
lg(vit, 21) — g(vit, 22)|m < Lylz1 — 2o|m, Yz €V, i=1,2, Vo€ Dy, Vt € [0,T] (3.5)

for a positive constant L. Then, Proposition 3.2 guarantees that for any fixed v € Dy,
problem CP,(f,uy) admits a unique solution u on [0, 7.

We now recall the convergence result of solutions to parameter-dependent evolution
inclusions C'P,( f, uy) with respect to the data v and f.

Proposition 3.3 ([25, Proposition 2.2)). Let ug € V, {vn}nen and { futnen be any fami-
lies in Dy and L*(0,T; V™), respectively, such that

T
sup/ Ph(vl(t))dt < oo, v, — v in C([0,T); H),
0

neN

fo— fin L2(0,T; V*)  (as n — 00),

(3.6)

and let {un }nen be a sequence of solutions to CP,, (fn,ug) on [0,T]. Then, there exist a
subsequence {ny }reny C {n}nen and a function u € WH(0,T;V) such that u is a solution
to CP,(f,ug) on [0,T] and

Up, = u in C([0,T];V) as k — .

For the detailed proofs of Propositions 3.1-3.3, we refer to [23, Theorems 1 and 2] and
25, Sections 2 and 3].

4 Singular optimal control problem for (QP)

Regarding the state system CP(f,ug), the existence of a solution was proved in [25,
Theorem 2.1], but its uniqueness is not expected. Therefore, in this section, we propose
a singular optimal control problem for non-well-posed state systems C'P(f, ug).

Using arguments similar to those in [24, Sections 4 and 8|, we study the singular opti-
mal control problem for doubly quasi-variational evolution inclusions C'P(f, ug). Indeed,
the following result on the convergence of solutions to C'P(f, ug) is the key to proving the
existence of an optimal control for (OP).
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Proposition 4.1. Assume that uy € V' and assumptions (), (¢), and (g) are fulfilled.
Let { fu}nen C L2(0,T;V*) and f € L?(0,T;V*) such that

fn— fin L*(0,T;V*) asn — oo, (4.1)

and let u,, be a solution to CP(f,,up) on [0,T]. Then, there exist a subsequence {ny}ren C
{n}nen and a function v € WH2(0,T; V) such that u is a solution to CP(f,ug) on [0,T]
and

Up,, — w in C([0,T]; V) as k — . (4.2)

Proof. This proposition follows from Proposition 3.3. Indeed, note from (4.1) that { f,, }nen
is bounded in L*(0,7;V*). Therefore, from the uniform estimate (2.4) with (2.1), (¢2),
Lemma 3.1, and the Ascoli-Arzela theorem, we can find a subsequence {ngren C {n}nen
and a function v € W2(0,T; V') such that

T
Sup/0 @Dé(u;k(t))dt < 00,

neN
Uy, — uin C([0,T]; H) and weakly in W'2(0,T;V),
Up, (t) — u(t) weakly in V for all ¢t € [0,T]]

as k — oo.

Note that C'P(f,,,uo) can be regarded as the parameter-dependent evolution inclu-
sions CP,, (fn,, ). Therefore, by applying Proposition 3.3 that u,, — u in C([0,T]; V)
(as k — oo) and the limit wu is a solution of C'P,(f, ug), namely u is a solution to C'P(f, uo)
on [0,7]. Thus, the proof of Proposition 4.1 is complete. [

We now state the main result of this paper, which is directed to the existence of an
optimal control for (OP) without the uniqueness of solutions to C'P(f, ug).

Theorem 4.1. Assume that ug € V' and assumptions (V), (¢), and (g) are fulfilled. Let
Uqq be a given target function in L*(0,T;V). Then, (OP) has at least one optimal control
f* € Fur, namely,

J(fY) = nf J(f),

Je€Fm
where J(-) is the cost functional of (OP), which is defined by (1.3) and (1.4).

Taking account of Proposition 4.1, we can prove Theorem 4.1. Indeed, as the proof is
quite similar to that of [24, Theorem 4.1] (or Theorem 5.1(I) below), we omit the detailed
proof.

5 Approximations for CP(f,uy) and (OP)

In [24, Sections 5 and 9], we established an approximate procedure to investigate the
singular optimal control problems for (1.8). In such arguments, we needed the uniqueness
of solutions to approximate state systems. However, in doubly quasi-variational evolu-
tion inclusions C'P(f,ug), the approximate problem (2.6) is generally a non-well-posed
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state system (cf. Proposition 2.2 and [25, Example 3.1]). Therefore, we here consider
the approximate procedure for C'P(f,uy) and (OP) by parameter-dependent evolution
inclusions C'P,(f, ug).

Now, for each ug € V, w € Dy, and f € L?(0,T;V*), the parameter-dependent state
problem is of the form:
(t) € 0 (w; ' (t)) in V*, a.a. t € (0,T),
(t) + 0.0 (wiu(t)) + g(w; t,u(t)) = f(t) in V*, a.a. t € (0,7T),
u(0) = up in V.

3
pr(fv U’O) 5

Note from Proposition 3.1 that C'P,(f, ug) has at least one solution satisfying the uni-
form estimate (3.2). However, the uniqueness of solutions to C'P,(f,ug) is not expected,
in general (cf. Proposition 3.2 and Remark 3.1). Therefore, we now consider the singular
optimal control problem for C'P,(f,ug). To this end, for each § € (0,1], let Es be the
cost functional defined by

Es(w, f):= inf 7, (u), 5.1
s )= int o) 6.1
where S(w, f) is the set of all solutions to C'P,(f,uy) on [0,7], and for any u € S(w, f),
the value of functional 7wa7 s(w) is defined by:
1 [T

2 dt+— [ Jult) —w(®)Pdt. (5.2)
2 J,

@ i=3 [ 100~ waafide+ 5 [ 1700

Additionally, for a given positive number M, let Fj; be the control space given by (1.2).
Setting M’ := Ny (Jug|} + M? + 1), the set Wy is defined by

T
Wi = {w c WH2(0,T;V) ‘ / Yh(w'(t))dt < M’} :
0

where N; is the same constant as in (3.2) (cf. (2.4) of Proposition 2.1).
We now choose the set Wy (ug) x Fps as the control space, where

Wi (ug) :=={w € Wy | w(0) =g in V}. (5.3)

Note that Wy (ug) C Dy. Then, for each w € Dy and f € Fyy, (3.2) with (¢/2) implies
that
u € Wiy (ug) for any solution u to C'P,(f,ug) on [0, 7. (5.4)

Now, for each § € (0, 1], we consider the following singular optimal control problem,
denoted by (OP);, with the state problem C'P,(f,ug) for w € Dy and f € L*(0,T;V*).

Problem (OP);: Find a control [w}, fi] € Wi (ug) X Fur, called an optimal control,
such that

Es(ws, f5) = inf Es(w, f).
o3, fi) [0, F]€Wnr (o) X Far s(w, f)
Now we mention the following second main result, which is concerned with the exis-
tence of an optimal control for (OP)s and the relationship between (OP) and (OP)s with
respect to 6 € (0,1].
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Theorem 5.1 (cf. [24, Section 10]). Suppose that ug € V' and assumptions (V), (¢), and
(q) are fulfilled. Let uuq be a given target function in L*(0,T; V). Then, the following two
statements hold.
(I) For each 6 € (0,1], (OP)s has at least one optimal control [w§, f¥] € Whar(ug) X Fur,
namely,

Es(wg, f5) = inf Es(w, f).

[’w,f]EWM/ (uo) X Fnr

(IT) Let [w}, f5] be an optimal control of (OP)s for any 6 € (0,1], and let [w*, f*] be any
weak limit of {[w%, fi])} as 6 1 0, namely, there is a sequence {0, }nen with 6, L 0 (as
n — oo) such that

w; — w* weakly in L*(0,T;V), f5 — [* weakly in L*(0,T;V*). (5.5)
Then, f* is an optimal control of (OP), w* is a solution of CP(f*,ug), and

J(F7) (= inf J(f) =lim Es(ws, f5), (5.6)

where J is the functional on Fy given by (1.3) and (1.4).

Proof. Taking account of Proposition 3.3, we can prove (I) of Theorem 5.1. Indeed, note
from (5.1) and (5.2) that Es(w, f) > 0 for all [w, f] € War(ug) X Far. Let {[wn, fu] bnen C
Wi (ug) X Fpr be a minimizing sequence of the functional Es on Wy (ug) X Fay, namely,

drs = inf E w, = lim E Wn, n)-
6 [w7f]eijl(u())><]:]% 5( f> n—oo 5( f)

By the definition in (5.1) of Es(wy, f,), for each n, there is a solution u,, € S(w,, f,) such

that
1

ﬂ—fwn,fn](un> < E(S(wn’ fn) + ﬁ (57)
Here, we observe from {wy, }neny C War(uo) and (5.3) that

Sup/0 Yo (w! (t))dt < M, (5.8)

neN

hence, by (2.1)
{wy, }nen is bounded in W2(0, T; V).

Similarly, by {fn}neN C Fu and (1.2), we have that
{futnen is bounded in Wh2(0, T;V*) N L*(0,T; H).

Thus, by the Ascoli-Arzela theorem and the Aubin compactness theorem (cf. [26, Chapter
1, Section 5)), there is a subsequence {ny}ren C {n}nen and a pair of functions [w*, f*| €
Wi (ug) x Fpr such that

wy, — w*  weakly in W2(0,T;V), } (5.9)

in C([0,T]; H)
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fo, = [F weakly in WH2(0,T; V™),
weakly in L?(0,T; H), (5.10)
in L2(0,T;V*)
as k — o0.

Taking a subsequence if necessary, we infer from Proposition 3.3 with (5.8)—(5.10) that
there is a solution u* to C'Py,-(f*, up) on [0, 7] satisfying

Up, = v in C([0,T];V) as k — oo. (5.11)
Therefore, it follows from (5.7)—(5.11) and u* € S(w*, f*) that

ds = inf Es(w,
O [, f1EWgr (o) x Far s(w, 1)

< Bs(uw', f1) = nf | T, o1 (1)

S ﬂ-[dw*Vf*] (u*)

e 1T
5 [ WO - w5 [ 1Ot
2 0 2 0
I )
tog | WO —w @
< li;giogf wank’f"k} (tn,)

1
< lim inf {E(;(wnk, fry) + —}

k—o0 N

= lim Es(wy,, fn,) = d;.

—00
Hence, we have dj = inf(, flew, , (o)< Es(w, ) = Es(w*, f*), which implies that [w*, f*] €
W (ug) X Far is an optimal control for (OP)s. Thus, the proof of (I) is complete.

Note that assertion (II) provides another method of construction of solutions to the
state system C'P(f*, up). This is a very important and interesting result. Therefore,
we give the detailed proof of (IT), although this is a similar manner to the proof of [24,
Theorem 10.3].

Let f be any element in F), and let 7;(-) be the functional defined by (1.4). Addition-
ally, let S(f) be the set of all solutions to CP(f,ug) on [0,T]. Then, note that u € S(f)
is also a solution to C'P,(f,ug) on [0,T]. Therefore, since [w3, f§] € Wi (uo) X Fas is an
optimal control of (OP)s, we observe that

Es(wj, f3) < waf](u) =ns(u), Yue S(f), Vf € Fu,

whence

Ey(ws, f5) < nf J(f) = d". (5.12)

Now, let uj be any optimal state corresponding to Es(wj, fy), namely u} € S(wy, f3)
and

* pk 1 g * 1 g * 1 ’ * *
Bifui f5) =5 [0 = waa®fpde + 5 [ 150+ 55 [ (0 - w0

< d. (5.13)
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As wi € Whyp(ug), uj € War(ug) (cf. (5.4)), and fi € Fr, according to the Ascoli-
Arzela theorem and the Aubin compactness theorem, there exist a subsequence {8, }neny C
{0}se(0,1), a pair of functions [w*, f*] € Wi (ug) x Far, and a function u* € Wy (ug) such
that 9, — 0 as n — oo,

w; — w* weakly in W"*(0,7;V) and in C([0, T]; H),

wj (t) — w*(t) weakly in V, Vt € [0, 7],
uy — u* weakly in W'?(0,7; V) and in C([0,T]; H),
uy (t) — u*(t) weakly in V, Vt € [0,77,
and
fy = f* in L*(0,T; V*) (5.14)
as n — 0.
Therefore, we infer from (5.13) that uj —w; — 0in L*(0,7;V) as n — oo, which
implies that
u* = w* in L*(0,T;V). (5.15)
Moreover, by Proposition 3.3, we observe that uj converges in C([0,T]; V') to a solution
to C'Py(f*,ug) on [0,7T], that is equal to u*, as n — oco. By (5.15), u* is a solution to
CPu(f*,up), hence CP(f*,up), on [0,7T].
Now, taking the limit of (5.13) as § := d,, | 0, we obtain

& <I(f) = inf ()

1T ST Y
§§/0 lu (t)—uad(t)\vdt+§/0 |f5(t)

(1T, N B
= lim 3 luy (1) — waa(t)]y dt + 3 | f5.(t)
0 0

2. dt

n—oo

%/*dt}

e e
< liminf{—/ lug (t) —uad(t)|2vdt+—/ |5 (t)|3dt
n—o00 2 0 " 2 0 "
1 g * * 2
b [, (00—, (1)
= liminf B, (w} , f1 ) < limsup Es, (w} , fi) < d",
n—0oo n—00
and hence d* = J(f*) with
. 1 4 * * 2
lim — luy () —wj (t)[5-dt = 0. (5.16)

n—o0 20, Jo

Hence, we conclude from (5.16) that (5.6) holds. Thus, the proof of (II) is complete. [

Remark 5.1. On account of (5.14)—(5.16), we further observe that the weak limit [w*, f*]
as in (5.5) is actually the strong limit of the same sequence {[wj , f3 |}nen in (5.5), in the
topology of L2(0,T;V) x L*(0,T;V*).
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Note that Theorem 5.1 can be proved without using the result on (OP) in Section 4
(cf. Theorem 4.1). In addition, we observe that Theorem 5.1 provides the approximate
procedure for C'P(f,uy) and (OP) based on the theory of CP,(f,up) and (OP)s via
parameter § € (0,1]. Moreover, note that (OP)s is also the singular optimal control
problem.

In the rest of this section, we investigate (OP)s, hence (OP), from the viewpoint of
numerical analysis. To this end, we here use the approximate procedures proposed in [24,
Section 5].

Now we choose and fix a function vy € Dy, and consider the continuous convex function
¢©"(vg; ) on V. For simplicity, we denote by Fy the subdifferential of ¢"(vy;-):

Fy = 0.¢°(vo; ). (5.17)
Then, on account of (3.1) of Lemma 3.1, we observe that Fy : D(Fy) =V — V* satisfies
colzly < (Foz, 2) < cylzl, Vz eV, (5.18)

Cy
o'l 10,1y +1
valued maximal monotone from V into V*.

For each ug € V, e € (0,1], w € Dy, f € L*(0,T;V*), and h € L*(0,T;V), we now
consider the following problem, denoted by C'P;(f + Foh,ug) (cf. (2.5)):

eFou(t) + & (1) + Oup' (w; ue(t)) + g(wi t, ue(t)) 3 f(t) +eFoh(t) in V7,

with ¢ := and ¢, = Cs, so that Fy is linear, coercive, continuous, and single-

aa.te (0,7T), (5.19a)
E(t) € O (wiul(t)) in V*, aa. te(0,7), (5.19b)
us(0) =y in V. (5.19¢)

Proposition 5.1 (cf. [24, Section 5]). Suppose that ug € V' and assumptions (), (¢),
and (g) are fulfilled. Then, the following two statements hold.

(I) Let f be any function in L*(0,T;V*), and let h be any function in L*(0,T;V). Then,
for every ¢ € (0,1] and w € Dy, there is a unique function u. € W40, T;V) with
& € L*(0,T;V) such that (5.19):= {(5.19a), (5.19b), (5.19¢)} holds. Such a function u. is
called a solution to CP:(f + eFoh,ug). In addition, the solution u. to CP5(f + eFoh, ug)
satisfies the bound: there exists a constant N1 > 0, independent of ¢ > 0, w € Dy,
feL*0,T;V*), and h € L*(0,T;V) such that

eCy|u! /w dt + sup ' (w;u.(t
4 ’LZ(OTV (1)) S (w; ue(t)) (5.20)

where Cy s the same constant as in (ng) as well as Ny in (3.2) of Proposition 3.1.
(IT) Let {wy, fnen C Dy such that

Sup/ i (w! (t))dt < oo, w, —w in C([0,T);H) (asn — ).

neN
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Let { fn}nen C L2(0,T; V), f € L*(0,T;V*), {hp}nen C L2(0,T;V), and h € L*(0,T;V)
such that

fo— f in L*(0,T;V*) and h, —h in L*(0,T;V) asn — oo. (5.21)

For a fized parameter € € (0,1], let u, be a unique solution to CP;, (f, + eFohn,ug) on
[0, T]. Then, there is a function v € WY2(0,T; V) such that u is a unique solution to
CP:(f + eFoh,ug) on [0,T] and

U, = u in C([0,T;V) asn — oo.
Proof. For each £ > 0 we put
Yh(w; 2) == ep®(vo; 2) + ' (w; 2), Yz € V. (5.22)

As easily checked, the family {¢!} satisfies assumption (¢0) with ¢! replaced by ¢!. In addi-

tion, from (5.22) and the general theory of maximal monotone operators of the subdifferen-

tial type, we observe that C'PS(f + eFoh, ug) can be regarded as C' P, (V%, ¢, g; f + eFoh, ug).
Note that f +eFyh € L*(0,T;V*). Therefore, applying Proposition 3.1 and Proposition

3.2, we observe that there is a unique solution u. € WH2(0,T; V) to CP,(VL, ¢', g; f + eFoh, uy),
i.e., CP:(f + cFoh,up), satistying

/ w ))dt + sup (w ue(t)) < N1<|U0|%/ + ’f—i_EFOhﬁQ(O,T;V*) +1).

t€[0,T

Since ©°(vg; z) > Cy|z|} for all z € V by (¢3), estimate (5.20) is immediately obtained
from the above inequality. Thus, the proof of (I) is complete.
We show (II). To this end, note from the continuity of Fy with (5.21) (cf. (5.18)) that

fn +eFohy, — f+eFoh in L2(0,T;V*) as n — oo.

Since C'P;, (fn + eFohy, ug) can be regarded as C'P,,, (YL, @', g; fn + €Fohn, ug), by apply-
ing Proposmlon 3.3 and the uniqueness of solution to CP6 ( f + eFyh,ug) (cf. Proposition
3.2), the assertion (II) holds. O

By similar arguments as in [24, Theorem 5.1], we can show the following result on
the relationship between C'P,(f,up) and CPS(f + eFyh, ug) with respect to w € Dy and
el 0.

Proposition 5.2 (cf. [24, Section 5]). Suppose that ug € V' and assumptions (), (¢),
and (g) are fulfilled. Then, the following two statements hold.

(I) Lete € (0,1], {we}teeo) and { fe}ee(o1] be any families in Dy and L*(0,T;V*), respec-
tively, such that

sup/ YE(wL(t))dt < oo, w. — w in C([0,T); H),

€€(0,1]

Je— f mLQ(OTV*) as € | 0.
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Let {h.}ee(o) be a bounded set in L*(0,T;V). Additionally, let u. be a unique solution
to CP;_(f: +eFohe,ug) on [0,T]. Then, there exist a sequence {e,}nen C {€}ee(0,1) with
en = 0 (asn — oo) and a function w € W'2(0,T;V) such that u is a solution to
CP,(f,uo) on [0,T] and

us, = u in C([0,T);V) asn — .

(IT) Let u be any solution to CP,(f,ug) on [0,T]. Then, there exist sequences {ep }nen C
(071] with En — 0 (CI,S n — OO): {wn}nEN - D07 {fn}nEN C L2(07T7 V*>7 {hn}nGN -
L*(0,T;V), and {u., }nen C WH2(0,T;V) such that u, is a unique solution to CPZ (fn + €, Fohy, ug)
on (0,77,
sup |hn|L2(0,T;V) < |UI|L2(O,T;V)7
neN
T
Sup/ Yh(wl (t)dt < oo, w, —w in L*(0,T;V),
neN Jo
u., —u in C(0, T V), fo— f inL*0,T;V*) asn — oo.
Proof. Now, we show (I). Note from Proposition 5.1 that the uniform estimate (5.20)
holds and wu, satisfies that

eFoul (t) + (1) + 0.0 (wos uc (b)) + glwe; t,us(t)) = fo(t) + eFph. in V¥, aa.te (0,T),
namely

§e(t) + 0w (we; ue(t)) + gwe; b, ue(t)) = fe(t) + eFohe — eFpu(t) in V7,
(5.23)
a.a. t e (0,7),
with
£ € LA0,T; V™), &(t) € 0.4 (we;ul(t) in V*, aa. t € (0,T), u(0) =g inV,

namely, u. can be regarded as a solution to C'P,_(f. + eFohe — e Foul, up).
From (5.18) and the uniform estimate (5.20), we observe that

T
Ot Boor + [ 0w O)d+ sup o (wsult
aluclzzomy) ; ( () te[0,T] ( ®)) (5.24)

< N1(|u0\%/ + ’f8|%2(0,T:V*) + 52‘h€|%2(0,T;V) + 1),

where N is a positive constant dependent on N; and ¢y, = C5. Therefore, it follows from
(¢2) with (2.1), (3.1), (5.24), and the Ascoli-Arzela theorem, we can find a sequence
{en}een With g, 1 0 (as n — o0) and a function u € WH2(0,T; V) such that

u., — u in C([0,T]; H) and weakly in W2(0,T;V),

e, (t) — u(t) weakly in V, Vt € [0,T],
as n — oo. Since f., + e, Fohe, — e Foul — fin L*(0,T;V*) (as n — oo) (cf. (5.18)), it

follows from Proposition 3.3 that the limit u is a solution of C'P,(f,ug). Thus, the proof
of (I) is complete.
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Next, we show (II). To this end, let {e,}nen C (0,1] be a sequence with &, — 0
as n — oo. Additionally, let u be any solution to C'P,(f,ug) on [0,7]. Note that
u € W0, T;V) and the following evolution inclusion holds:

O (wi ' () + Oup' (w;u(t)) + glw; t,u(t)) > f(t) in V* for a.a. t € (0,T).  (5.25)

Adding e, Fyu/(t) to both sides in (5.25), we observe that the function u is also a solution to
CPe(f + e, Fou',up) on [0, T]. Hence, we conclude that assertion (II) holds for u., := u,
wy, = w, f,:=f,and h, :=u'.

Thus, Proposition 5.2 has been proved. [

Next, we consider an approximate problem for (OP)s, fixing a parameter 6 € (0, 1].
Note from (¢2), (2.1), and (3.2) that any solution u to C'P,(f,u) on [0,T] satisfies the
following estimate:

/T! "(t)3dt < N (\u0|2v 20y + 1) + Gl
u Vv < .
0

5.26
: (5.26)
Therefore, we take and fix a positive number N > 0 so that
2 2
N> Ny (Juoly, + M? +1) + CoT (5.27)

- Cl Y

where M > 0 is the same positive constant as in the control space Fy; (cf. (1.2)).
For each ¢ € (0, 1], we consider a perturbation of the control space H5, defined by

|h|r207v) < N,
HY = he W0, T;V)NL*0,T; X) | W20y <€ 'N, ¢, (5.28)
Rl r20mx) < €7'N

where X is a reflexive Banach space such that X is densely and compactly embedded into
V.

Now, for each § € (0, 1] and € € (0, 1], we study the following control problem for the
state system C'PS(f + eFoh,ug), denoted by (OP)5:

Problem (OP)j: Find a triplet of control functions [wj_, f5 ., hj.] € War(uo) X Fu x Hy,
called an optimal control, such that

Es (ws_, f5_ hi )= inf Es (w, f,h).
57€< 5,57f6,57 5,5) [, £ B Wy (o) X Far xHE, 576( 7f )

Here, Es.(w, f, h) is the cost functional defined by

2 .dt

e 1 [
Buctwof.h) = 5 [ ) = wafpat +5 [ 1700

1 T ) c T )
25 J, 2 J,

(5.29)
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where [w, f, h] is any control in Wiy (ug) X Far X Hyy, ue is a unique solution to the state
system C'P:(f + eFph,ug), and u.q € L*(0,T;V) is the given target profile.

Note that (OP)5 is the standard optimal control problem, because the state system
CP:(f + eFoh,up) has a unique solution on [0,7] (cf. Proposition 3.2). Using similar
idea as in [24, Theorem 5.2], we show the following result on the relationship between
(OP)s and (OP)5 with respect to € € (0, 1].

Theorem 5.2 (cf. [24, Theorem 5.2]). Suppose that ug € V' and assumptions (), (¢),
and (g) are fulfilled. Let uq,q € L*(0,T;V) and 6 € (0,1]. Then, we have:

(I) For each e € (0,1], (OP)5 has at least one optimal control [wy_, f5 ., b .] € War(ug) X
Fu X Hy, namely,

Es (w;., fse hs.) = inf Es (w, f,h).

s (Wser foer M) w, foREW s (o) X Fag x HE, (w, f; 1)

(IT) Let e € (0,1], and let [wy, f5., b5 .] € Wi (uo) X Fur X Hy be an optimal control of
the approzimate problem (OP)5. Additionally, assume that

(H) For any function h € L*(0,T;V) with |h|r20rv) < N, there exists a sequence
{he}ec(oy of functions h. € HY, such that

he — h in L*(0,T;V) as € — 0.

Then, there exists a sequence {€,}nen C {€}ecoa] with €, — 0 (n — 00) such that any
weak limit function [wy, f5] of {[wj., fa. I}nen in L*(0,T; V) x L*(0,T;V*) is an optimal
control for (OP);.

Remark 5.2 (cf. [24, Remark 5.1]). The main point of assumption (H) is to guarantee
the compactness of H, in L(0,T; V). In any application treated in Section 6, assumption
(H) is automatically checked by the usual smoothness argument (e.g., the regularization
method using the mollifier and the convolution [1, Sections 2.28 and 3.16]). For instance,
in the case of V. = WP(Q), 2 < p < oo, assumption (H) is easily verified by choosing
W2P(Q) as the space X.

The following convergence result for solutions is a key component in the proof of
Theorem 5.2(1II).

Proposition 5.3. Suppose that uy € V and assumptions (), (¢), (g), and (H) are
fulfilled. Let w € Wi (ug), f € Fur, and let u be any solution to C'P,(f,ug) on [0,T].
Then, there are sequences {e, }neny C (0, 1] with e, — 0 (asn — 00), {wy, fnen T War(ug),
{fotnen C Furs {hntnen C L*(0,T; V) with h, € H3}, and {ue, bnen C WH2(0,T;V) such
that ue, is a unique solution to C Py ( fn + enFohn,ug) on [0,T], and

T
sup/ Yh(wl (t))dt < co, w, —w in L*(0,T;V),
0

neN

u., —u inC(0, T V), fo—f inL*0,T;V*) asn — oo.
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Proof. Let u be any solution to C'P,(f,ug) on [0,7]. Then, note from (5.26) and (5.27)
that the solution u satisfies the following:

W | L20mv) < N, (5.30)

0.t (wi ! (1)) + Ouip! (wiu(t)) + glw; t,u(t)) > f(t) in V* for a.a. t € (0,7).  (5.31)

Let 0 € (0,1] be any constant. Adding 6 Fyu/(t) to both sides of (5.31), we observe that
the function u is also a solution to C'P?(f + dFou/, ug) on [0, T] (cf. Proposition 5.2(I)).

By (5.30) and assumption (H), there exist a sequence {ej}ren C (0,1] with e, — 0
and a sequence {h., }ren of functions h., € H3 such that

he, —u' in L*(0,T;V) as k — oo. (5.32)

Let {d¢}sen be a sequence in (0, 1] so that 6, — 0 as £ — co. Now, for a fixed number
8¢, we consider the approximate system CP%(f + §,Fyhe,,uo) on [0,T]. Then, taking a
subsequence if necessary (still denoted by {e}ren), we observe from Proposition 5.1(IT)
with (5.32) that a unique solution uf € W'2(0,T;V) to CPY(f + d¢Fohe,, up) on [0,T]
converges to the one @ to CP%(f + d;Fyu/, up) on [0,7] in the following sense:

uﬁk—mle in C([0, T]; V) as k — oc.

As u is also a solution to CP%(f + §,Fyu/, up) on [0,T], we infer from the uniqueness of
solutions to CP%(f + d,Fou’, ug) that u = @*, and hence

uﬁk —wu in C([0,T];V) as k — oc.
Note from h., € H3* that {h., }ren is bounded in L?*(0,T;V); more precisely,
|h€k‘L2(O,T;V) S N for all & 2 1.

Therefore, from the diagonal argument with respect to the parameters k£ and ¢, we verify
the validity of Proposition 5.3. Indeed, taking 9, := €,, we derive the convergence by
setting u., = v’ , w, :=w, f, := f, and h,, := h,,,. Thus, the proof of Proposition 5.3 is
complete. Il

Now, let us prove Theorem 5.2, which is concerned with the relationship between
(OP)s and (OP)5 with respect to € € (0, 1].

Proof of Theorem 5.2. We first prove (I). Using the standard argument with Proposition
5.1(II), we can show (I) concerning the existence of an optimal control for (OP)5. Indeed,
let 6 € (0,1] and ¢ € (0,1] be fixed. Then, we observe from (5.29) that Es.(w, f,h) >0
for all [w, f, h] € War(uo) X Far x HS- Let {{wn, fo, hnlbnen © War(ug) X Far X HSy be

a minimizing sequence such that

d* = ‘f E8 , ’h :1. EE s n’hn'
oe [w7f,h}€WM}2Lo)><]-'M><H§V se(w, fo 1) nl_g)lo 5. (Wn, f )
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Here, we observe from {[wy, [, b tnen C War(ug) X Far x HSy, (5.3), (1.2), and (5.28)
that

T
sup / Yl ()dt < M, (5.33)

neN
{wy, }nen is bounded in W2(0,T; V),
{futnen is bounded in W2(0, T;V*) N L2(0,T; H),
{hp }Inen is bounded in W2(0,T;V) N L2(0,T; X).
Thus, with the help of the Ascoli-Arzela theorem and the Aubin compactness theorem

(cf. [26, Chapter 1, Section 5]), there exist a subsequence {ng ey C {n}nen and a triplet
of functions [w*, f*, h*] € Wy (ug) x Fa X H such that

wy, — w*  weakly in WH2(0,T; V), }

in C([0,T); H), (5.34)

fo, = [* weakly in W12(0,T;V*),
weakly in L?(0,T; H), , (5.35)
in L?(0,T;V*),
and
hy, — h*  weakly in WH2(0,T;V),
weakly in L?(0,T; X), : (5.36)
in L?(0,T;V),

hence, by the continuity of Fy (cf. (5.18)),
Fohn, — Foh* in L*(0,T;V*), (5.37)

as k — oo.

Let up, be a unique solution to C'PL (fu, + €Fohn,,uo) on [0,7]. Then, we in-
fer from Proposition 5.1(II) with (5.33)—(5.37) that there is a unique solution u* to
CP:.(f* + eFoh*, ug), on [0, T] satisfying

Up, — u* in C([0,T]; V) as k — oc. (5.38)

Therefore, it follows from (5.34)—(5.38) and the weak lower semicontinuity of L?(0,7;V)-
norm, we observe that

E67E<W*> f*> h*) S h]?i)g.}f E(S,E(wnka fnka hnk) = kh—>I£lo E&,a(wnm fnka h’nk)

— inf Es.(w, f,h
[0, £ BlEW g1 () x Fag xHs, se(w, f,h)

= dg,ev
which implies that [w*, f*, h*] € W (ug) X Far X Hy is an optimal control for (OP)s.

Thus, the proof of (I) is complete.
Next, we prove (II) by approximating the admissible optimal pair for (OP)s.
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Define dj := infp, sew,, (wo)x7y Es(w, f) and let [0, f*] be any optimal control for
(OP)s with its optimal state @*, namely, @* € S(w*, f*) and

di = Es(w*, f*)

:%/0 |ﬁ*(t)—uad(t)|%/dt+%/o TG

Now, we approximate the admissible optimal triplet [a*, @w*, f*] by applying Proposi-
tion 5.3. Indeed, we observe from Proposition 5.3 that there exist sequences {&, },en C
(0,1] with €, — 0 (as n — 00), {Wplnen C War(uo), {futnen C Fur, {hntnen C
L*(0,T;V) with h, € HY, and {u., }ney € WH3(0,7;V) such that wu., is a unique
solution to C' Py (fy + enfohn,uo) on [0,T],

T

1 ~ % ~ %
2odt + — 5 |u (t) — @ (t)|3 dt.

sup/ Yh(w (t)dt < co,  w, — w* in L*(0,T;V), (5.39)
neN

ue, — u* in C([0,T];V), (5.40)
and .

fo— [* in L*(0,T; V"), (5.41)
as n — 0o.

Note from h,, € H3' that {hy, }nen is bounded in L?*(0,T;V); more precisely,
\hnlr2(0mv) < N for all n > 1.

Therefore, from (5.1), (5.2), (5.29), and (5.39)—(5.41), it follows that

& = B, )

1 /7 1 T .
5 [ 150~ v+ [ 1 OR-a

2 0 2 0

T
|fb*(t) —w* ()]} dt
— Lt t dt L
= Jm 3 | e, (£) = waa(B)[idt + 5 |fn()
25/ |u6n - )|th}

= lim Es., (wn, fn, hn)

n—oo
> limsupdj, , (5.42)

n—oo

where d;,en = 1nf [w fh]EWM/(UQ)X]-—MXHE" E(; En ('ll) f h)
Now, let {[w} , }nen be any sequence of optimal controls [w} ,

h: | for

87 en]

(OP)5". In additlon let uZ be a unique solution to CPg: (fZ + snFohEn,uo) on [0 T].
Then, it follows from [w} , f*  hf | € Wap(uo) X Far X HY, (5.3), (1.2), and (5.28) that

sup/ o ((w )dt < M, (5.43)

neN
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{w? }nen is bounded in W'2(0,T;V),
{fZ }nen is bounded in W'2(0,T;V*) N L*(0,T; H),
{h* }nen is bounded in L*(0,T; V). (5.44)

Therefore, by the Ascoli-Arzela theorem and the Aubin compactness theorem (cf. [26,
Chapter 1, Section 5]), there exist a subsequence {ny }ren C {n}nen and a pair of functions
[w*, f*] € W (ug) X Fpr such that e,, | 0 and

w!  —w*  weakly in Wh2(0,T;V), } (5.45)

Eny
in C([0,T]; H),
f;"nk — f*  weakly in W12(0,T;V*),
weakly in L?(0,T; H), (5.46)
in L2(0,T; V™),

as k — oco. Then, taking a subsequence if necessary, we infer from Proposition 5.2(I) with
(5.43)—(5.46) that there is a solution u* to C'Py«(f*,ug) on [0,T] satisfying

u;, —u’ in C([0,T;V) as k — oo. (5.47)

En

Next, taking a subsequence if necessary, we choose a subsequence of {ny}ren (still
denoted by {ng}ren) so that

liminfd;. = lim df_ .
n—00 Sen k—o0 5’6"k

Therefore, it follows from (5.1), (5.2), (5.45)—(5.47), and u* € S(w*, f*) that

N,
liminf dj

n—00
:kh—{go d;,ank = klglolo Eé,ank (w:nka e*nka :"k)
17 e
1 . - * o 2 - * 2
“timint {3 [ b 0= vt + 5 [ 15, Ot
]' T * * 2 Enk 4 * 2
bgp [ 0= s, e+ T [, O
1 g * 2 1 4 * 2 1 4 * * 2
>0 [ 1) —waa®Bde+ 5 [ @R o [ ) w0 de
0 0 0
:wa*,f*]<u*)
>Es(w*, )
>t (5.48)

On account of (5.48) and inequality (5.42), we conclude that
dy = lim dy_ = Es(w”, f7).

n—o0

Hence, [w*, f*] € Wa(uo) x Far is an optimal control for (OP)s and u* is its optimal
state. Thus, the proof of Theorem 5.2 is complete. O
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Note that Theorem 5.1 is the result of relationship between (OP) and (OP); with
respect to 6 € (0,1]. In addition, Theorem 5.2 is the result of relationship between (OP);
and (OP)5 with respect to € € (0, 1]. Therefore, it is worth studying (OP)5 for sufficient
small d,¢ € (0, 1], instead of considering (OP), from a numerical point of view.

Remark 5.3. In this Section 5, without the assumption (3.3) in Proposition 3.2 (or (3.4)—
(3.5) in Remark 3.1), we consider the singular optimal control problem for C'P,(f, ug). If
we suppose (3.3) (or (3.4)—(3.5)), then C'P,(f,up) has a unique solution, therefore, the
corresponding optimal control problem (OP)s is of the standard type for all § € (0, 1].
Hence, problems C'P(f, ug) and (OP) can be approximated by the well-posed state system
CP,(f,up) and the standard optimal control problem (OP)s, respectively, namely, we
don’t have to consider approximate problems CP;(f + cFyh,ug) and (OP)§ (e € (0,1])
under (3.3) (or (3.4)—(3.5)), for instance.

6 Applications

In this section we give applications of general results (Theorems 4.1, 5.1, and 5.2). In-
deed, we consider doubly nonlinear quasi-variational inequalities with time-dependent
constraints, in which the quasi-variational structure appears in our class of doubly non-
linear evolution inclusions, more concretely, in the v-dependence of ¥'(v;-), ¢'(v;-), and

g(v;-, ).
6.1 Doubly nonlinear quasi-variational evolution inclusions

Let 2 be a bounded domain in RY (1 < N < oo) with a smooth boundary T' := 9, and
let Q:=Qx(0,7)and X:=T x (0,7) for 0 < T < oco. Put

Vi=HNQ), H:=L*Q), V' :=H'Q), X:=HQ);

we employ |z|y = |Vz|g as the norm of V| and (:,-) stands for the duality pairing
between VV* and V. In this subsection, we treat a quasi-variational inequality with gradient
constraint for time derivatives (cf. [25, Section 4]).

Let p be a prescribed obstacle function such that
pi=plzt,7) € C(@ X R),
0<p. <plz,t,r) <p*, V(zt,r)€eQ xR,

\p(@,t1,m1) — p(x, ta,r2)| < Ly(Jty — ta] + [r1 — 72]),
Vt; €[0,T), Vr; €R, i=1,2, Vo € Q,

where p,, p*, and L, are positive constants.
Now we consider some applications of Theorems 4.1, 5.1, and 5.2.

(Application 1)
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For each t € [0,T] and v € C([0,T]; H), we define a convex constraint set K (v;t) in
V' by

K(vit) :={z €V ; |Vz(2)| < p(z,t,v(z,t)), aa. z € Q}, Vte|0,T], (6.2)
and a convex subset Ky of V by
Koy:={z€V; |Vz(z)] <p*, aa. zeQ}. (6.3)

Now, consider the following quasi-variational inequality with time-dependent gradient
constraint:

u'(t) = € K(u;t), a.a. t € (0,7), u(-,0) =upinV, (6.4a)
To/u’(:c,t)( (a,1) — 2(2))da
+ [ a(z,t,u(z,t))Vu(z, t) - V(' (z,t) — 2(z))dx

+/g:vtua:t Y(u'(z,t) — z(x))dx

/fx,t)( (2,8) — 2(2))dz, V2 € K(uit), aa. t € (0,T),

{O

(6.4D)

o)

where 79 > 0 is a constant, g(-, -, -) is a Lipschitz continuous function on Q x R, i.e.,
9(@1,t1,71) = (@2, 12, 72)| < Ly(|z1 — za| + [t1 — tof + [r1 — r2]),

_ (6.5)
V(Zﬂz,tl) c Q, \V/'T’Z' € R, 1= 1,2,

with a positive constant Ly, f is a function given in £2(O, T; H), up is an initial datum
given in V, and a(-, -, -) is a prescribed function in C'(Q) x R) such that
a, < a(z,t,r) <a*, V(x,t)€Q, Vr € R,
|G(I,t1,7“1> - G(I,t27T2>| < Lll(|t1 - t2| + |T1 - T2|)7 (66)
Vt; €[0,T), Vr; €R, i=1,2, Vo € Q,
where a,, a*, and L, are positive constants.

A function u : [0,7] — V is called a solution to (6.4):= {(6.4a),(6.4b)}, if u €
W12(0,T; V) and all of the properties required in (6.4) are fulfilled. In order to reformulate
problem (6.4) as the form CP (¢!, ¢', g; f,up), the functionals 5(-), ¥ (v;-), ¢'(v;-) are
set up as follows:

Vi(2) = I, (), VzeV, Vte|0,T), (6.7)

and we define

Dy = {ve WH(0,T;V) | v'(t) € Ky, a.a. t € (0,T), v(0) = ug in V}, (6.8)

(v 2) == %/ 12(2)]Pdx + I (2), Vz €V, Vte[0,T], Vv € Dy, (6.9)
0
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1
o'(v;2) == 5/a(x,t,v(x,t))|Vz(m)|2dx, VzeV, Vt €[0,T], Yv € Dy, (6.10)
Q
where I (yy)(+) is the indicator function of K'(v;t), namely,

0, if z € K(v;t),
400, otherwise.

Iy (2) = {

It is easy to see from the definition of subdifferential that

(i) Let v € Dg and t € [0,T]. Then z* € 0,¢'(v; 2) if and only if 2* € V* 2 € K(v;t),
and

To/ﬂz(x)(z(x) —w(z))dr + (—2",z —w) <0, Yw e K(uv;t).

(ii) Let v € Dy and t € [0,T]. Then 9.¢'(v;-) is singlevalued, linear, and bounded from
V into V* and

(D" (v; 2), w) = /Qa(a:,t,v(a:,t))v,z(x) -Vw(x)dz, Yw e V.

In addition, for each v € Dy and t € [0,T], we define g(v;t, ) : V — V* by

(g(v;t, 2),w) = /Qg(x,t,z(x))w(a:)da:, Vz,we V. (6.11)

Then, from the above characterizations (i) and (ii) of subdifferentials ¥*(v;-) and ¢*(v;-),
it follows that problem (6.4) is reformulated as C'P (¢t ¢*, g; f, uo).
Note that the next lemma was shown in [25], therefore, we omit its detailed proof.

Lemma 6.1 (cf. [25, Lemma 4.2]). Let ¢' and @' be the functionals defined by (6.9) and
(6.10), respectively. Then, assumptions (¢) and (¢) are fulfilled.

The following solvability result for (6.4) was proved in [25, Proposition 4.1].

Proposition 6.1 (cf. [25, Proposition 4.1]). Assume that (6.1), (6.5), and (6.6) are
fulfilled by functions p(z,t,r), g(x,t,r), and a(x,t,r). Let ¢ > 0, f € L*(0,T;H), and
ug € V. Then, problem (6.4) admits at least one solution v in WH2(0,T; V).

Proof. On account of Lemma 6.1, {¢)*(v;-)} and {¢'(v;-)} given by (6.2), (6.9), and (6.10)
fulfill assumptions (¢)) and (¢), and (g) is trivially verified. Hence, all the assumptions of
Proposition 2.1 are fulfilled. Therefore,

0" (us /(1)) + 0w (ws u(t)) + g(us t,u(t)) > f(t) in V7, u(0) =uo inV,

admits a solution u in W'2(0,T; V). By the characterization (i) and (ii) of d,¢'(u;-) and
D" (u; ), and the definition of g(u;t,-), u is a solution to (6.4) on [0, 7. O
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Note that 0,1 (v; -) does not satisfy the assumption in Proposition 2.2, since 9,9 (v; )
is dependent on v € Dy. Therefore, problem (6.4) generally has multiple solutions, and
the corresponding optimal control problem is of the singular type. We now discuss the
singular optimal control problem for (6.4). On account of Proposition 6.1, problem (6.4)
can be reformulated as the form CP(¢y*, ', g; f,ug). Therefore, by applying Theorem 4.1
with V = H}(Q), H = L*(Q), and V* = H~ (), we have the following result concerning
the existence of an optimal control of (OP) for (6.4).

Proposition 6.2. Let u.y be a given target function in L*(0,T;V), ug € V, and let
M > 0 and 19 > 0 be given constants. Then, problem (OP), corresponding to the state
system (6.4), has at least one optimal control f* € Fyr, namely,

J(f) (nf J(f),
where Fyr is the control space defined by (1.2) with V* = H-Y(Q) and H = L*(Q), and
J(+) is the cost functional for (OP), which is defined by (1.3) and (1.4).

Next, we discuss the approximate system for (6.4). Let Dy be the set defined by
(6.8). Then, for each w € Dy, we consider the following parameter-dependent variational
inequality with time-dependent gradient constraint K (w;t):

u'(t) € K(w;t), a.a. t € (0,T), u(-,0) =uginV, (6.12a)
m [ e ) @,t) = () da

+/ a(z,t,w(z,t))Vu(x,t) - V(u'(z,t) — z(z))dz

3 (6.12b)
+/ngtuxt Y(u'(z,t) — z(x))dx
/f z,t) (W (z,t) — 2(x))dx, Vze K(w;t), a.a. t € (0,T),

where 79 > 0, K(+;+), a(-,-,+), g(-,+,+), f, and ug are the same as in (6.4).

On account of Proposition 3.1 and Remark 3.1, we have the following existence—
uniqueness result for problem (6.12):={(6.12a), (6.12b)}.

Proposition 6.3. Let 79 > 0 be a constant. Then, for each ug € V, w € Dy, and f €
L*(0,T; H), problem (6.12) admits at least one solution uw in W2(0,T; V). In addition,
if 7o > 0, then the solution to (6.12) is unique.

Proof. For each t € [0,7] and w € Dy, the (t,w)-dependent functionals ¢*(w;z) and
¢'(w; z) are defined by (6.9) and (6.10) with v = w, respectively. In addition, for each
t € [0,7] and w € Dy, the (t, w)-dependent operator g(w;t, z) is defined by (6.11) with
v = w. Then, it follows from Lemma 6.1 that assumptions (¢), (¢), and (g) are verified.
Therefore, by arguments similar to Proposition 6.1, we easily observe that (6.12) can be
reformulated in the abstract form CP,(f,ug). Furthermore, if 75 > 0, we observe from
the characterization (i) of 9,¢*(v;-) that (3.4) holds. Therefore, by Proposition 3.1 and
Remark 3.1, we have shown that problem (6.12) has a solution on [0,77], and if 75 > 0,
then it is unique. O
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In the case 19 = 0, problem (6.12) generally has multiple solutions, therefore, the cor-
responding optimal control problem is of the singular type. Hence, by applying Theorem
5.1(1) with V' = Hj(Q2) and H = L?*(Q), we can show the following existence result of
optimal controls of (OP)s (0 € (0, 1]) for (6.12) and the control space Wiy (ug) X Far (see
Section 5 for the detailed formulation).

Proposition 6.4. Let uuy be a given target function in L*(0,T;V), ug € V, and let
M >0, M’ > 0 be given constants. Assume 19 = 0. Then, for each 6 € (0,1], problem
(OP)s, corresponding to the state system (6.12), has at least one optimal control [wy, f¥] €
W (uo) X Far, namely,

Es(ws, f5) = inf Es(w, f),
55, 15) [w, F]EW, 41 (10) X Fas s(w, f)

where Wiy (ug) is the control space defined by (5.3) with V.= H}(Q), and Es(-,-) is the
cost functional defined by (5.1) and (5.2).

Hence, by applying Theorem 5.1(I1), namely, by considering (6.12) and the corre-
sponding approximate optimal control problem (OP)s (6 € (0,1]), we can approximate
(6.4) and its singular optimal control problem (OP) in the case when 75 = 0.

We now employ the approximate system to (6.12), as proposed in Section 5, in the
case when 79 = 0. Indeed, for each ¢ € (0, 1] and the fixed function vy € Dy, we consider
the following parameter-dependent variational inequality with time-dependent gradient
constraint K (w;t):

W) € K(w;t), aa te (0,T), u(-0)=uinV, (6.13a)
5/9a(x,O,vo(x,t))Vu’(x,t)(u’(:p,t) — 2(x))dz
+ /Q a(z, t, w(z, 1) Vu(z,t) - V! (z, 1) — 2(z))dx
+/Qg(:c,t,u(x,t))(u’(:c,t) — z(x))dx
< [ 10t - @)

+€/Qa(x, 0,v9(x,t))Vh(z,t) - V(u'(z,t) — z(x))dx
Vz € K(w;t), a.a. t € (0,T),

(6.13b)

where K(+;+), a(+,-,-), g(+,+,-), f, and ug are the same as in (6.4), and h is a given function
in L2(0,T; V).

By the characterization (ii) of subdifferential of ©'(v;-) defined by (6.10), we observe
that the subdifferential Fyy := 0,¢°%(vo; ) is given by

(Foz, @) = /Qa(a:,O,vg($,t))Vz(x) -Vow(z)dz, Yw e V. (6.14)
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Thus, by (6.6) we easily check that Fj is linear, coercive, continuous, and single-valued
maximal monotone from V into V* satisfying (5.18) with V = H}(Q) and V* = H~1(Q).

From (6.14) and the facts identified in the proof of Proposition 6.3, problem (6.13) can
be reformulated in the abstract form CP;(f + eFoh,ug). Therefore, Proposition 5.1(I)
implies the existence—uniqueness of solutions to (6.13) on [0, 7. In addition, by applying
Proposition 5.2, we get the result on the relationship between (6.12) and (6.13), more
precisely, we observe that (6.13) is an approximate problem for (6.12).

Moreover, using the standard smoothness arguments (e.g., regularization by the mol-
lifier and the convolution [1, Sections 2.28 and 3.16]), we can check assumption (H) with
X = H?*(Q). Therefore, for each e € (0, 1], Theorem 5.2(T) implies that the approximate
optimal control problem (OP)5, corresponding to (6.13), has at least one optimal control
[Wios fo Ps] € War(uo) X Far X Hyy (cf. (5.3), (1.2), and (5.28)). Additionally, by
Theorem 5.2(II) on the relationship between (OP)s and (OP)5, we see that (OP); is ap-
proximated by (OP)5 as € | 0; more precisely, there exists a sequence {&, }nen C {€}ec(0,1]
with &, — 0 (n — o0) such that any weak limit function [wj, f§] of {[w}_ , f5. J}nen in
L0, T;V) x L*(0,T;V*) is an optimal control for (OP)j.

Thus, it is worth studying (6.13) and its control problem (OP)5 for sufficient small
d,e € (0,1], instead of considering (6.4) with 7 = 0 and its singular control problem
(OP), from a numerical point of view.

Remark 6.1. In the case 79 > 0, note from Proposition 6.3 that the solution to (6.12)
is unique, hence, the corresponding optimal control problem (OP)s (6 € (0,1]) is of the
standard type. Thus, as mentioned in Remark 5.3, the non-well-posed state system (6.4)
and its singular optimal control problem (OP) are approximated by the well-posed state
system (6.12) and its standard optimal control problem (OP)s, respectively, in the case
when 75 > 0.

(Application 2)

Next, we are going to consider a doubly nonlinear quasi-variational inequality with
non-local obstacle function.

We here define an operator £ : L?(0,T; H) — L*(0,T; H) by

t
L(v;x,t) = / /E(a:,t,y,7,v(y,7))dyd¢~l— o, Y(x,t) € Q, Vv € L*(0,T; H),
0o Ja

with a given positive constant d; and a given function £ € C(Q x Q x R) satisfying the
following conditions for positive constants ¢* and Ly:
0<{l(z,t,y,rr) <, Y(xtyT7r)eQxQxR,
W% 11,9, T, Tl) - E(:Eu lo,y, T, T2)| < Ly (|t1 - t2| + |T1 - T2|) )
Vt; €[0,T), Vr; €R, i=1,2, V(2,y,7) €A x Q,
With the functional £(v;z,t), we define a constraint set K (v;t) by

K(v;t) :={z €V | |Vz(z)| < L(v;z,t), a.a. z € Q}, Vte[0,T]. (6.15)



449

Now, we consider the following quasi-variational inequality with time-dependent gra-
dient non-local constraint:

u'(t) € K(ust), a.a. t € (0,7), u(-,0) =wupin V, (6.16a)

o /Q o (2, ) (0 (2,1) — 2(2))da

—1—/ a(z,t,u(z,t))Vu(z,t) - V(u'(z,t) — z(x))dx
o (6.16b)
—|—/Qg(at,t,u(x,t))(u'(x,t) — 2(z))dx

< /Qf(x,t)(u’(x,t) — z(z))dz, Vze K(ut), a.a. t € (0,7),

where 79 > 0, a(-, -, ), g(-,+, ), f, and ug are the same as in problem (6.4). Similarly define
functionals ¢f(v;-) and ¢'(v;-) by (6.9) and (6.10) with (6.8). In addition, define the
(t,v)-dependent operator g(v;t,z) by (6.11). Then, we observe that all the assumptions
of Proposition 2.1 are fulfilled, and hence, problem (6.16):={(6.16a), (6.16b)} has at least
one solution u in W'2(0, T; V). Furthermore, by applying Theorem 4.1 with V' = HJ (1),
H = L*(Q), and V* = H~(Q), we can prove the existence of an optimal control of (OP),
corresponding to (6.16).

Using an approach similar to that employed in Application 1, the state problem (6.16)
and its optimal control problem can be approximated by a parameter-dependent vari-
ational inequalities similar to (6.12) and (6.13), and their corresponding approximate
optimal control problems, respectively.

6.2 Doubly nonlinear evolution inclusions of Navier-Stokes type

In this subsection, we investigate doubly nonlinear evolution inclusions of Navier-Stokes
type, which was treated in [25, Section 4.2].

Let © be a smooth bounded domain in R?, with usual notation @ := Q x (0,7), 0 <
T < oo, [':=00,and ¥ :=T x (0,7);

Vi=Hy(Q), H:=L*Q), [V’ =VxVxV, [H?:=HxH x H.
Now, we define the solenoidal function space as follows:
D, = {z=(zW, 2 ) ¢ [CZQ)] | divz = 0 in Q},
where [C5°(Q)]? := C5°(Q) x Cg°(Q) x C5°(2), and put
H, := the closure of D, in [H]?, V, := the closure of D, in [V]?,

with usual norms

3
e, = {z \z%}
k=1

[NIES
NG

3
|zl = {Z\V»Z(“\%}

k=1
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In addition, we denote the dual space of V, by V.. For simplicity we denote the inner
product in H, by (-, ), and the duality pairing between V7 and V, by (-, ),
Let p be a prescribed obstacle function in C(Q x R?) such that

0<ps <plz,t,r)<p*, V(ztr)eQ xR (6.17)
Here p,. and p* are positive constants, and K is a closed convex subset of V, given by
Ky:={zeV,||Vz(z)| <p*, ae. onQ},
and put
Dy :={vecW"0,T;V,) | V'(t) € Ky, a.a. t € (0,T), v(0) =ugin V,}, (6.18)

where ug is a given initial datum in V, (cf. (6.23a)).
Also, for each v € Dy and t € [0,T], define

K(v;t):={ze V, | |Vz(z)| < p(z,t,v(z,t)), a.e. on Q}, Vt € [0,T]. (6.19)

Now, for each v € Dy and t € [0, T], we define functionals ¢} (-), ¥'(v;-), and ¢'(v;-)
on V, by
Vo(2) = Ik, (2), V2 V,, Vte0,T],

PH(v; z) = %/ |z(2)Pdx + Ik (wa)(2), Yz €V, Vte[0,T], (6.20)
Q

1
o'(v; 2) = 3 / a(z,t,v(x,t))|Vz(2)|*dr, Vz€V,, Vtel0,T], (6.21)
0

and g(v;t,-) : V, — V. by

(g(v:t, w), 2}y = /Q('U(x,t) V)w(z) - 2(z)dz

, o) ‘
— Z/v(’)(:c,t)w—(x)z@(x)da;, (6.22)
Q
Vw — (w(l)’ w(2)’ w(3))7 z = (z(l)’ 2(2), 2(3)) E VO"

Now we propose the following quasi-variational inequality of Navier—Stokes type with
gradient constraint for time-derivative:

u'(t) == —augz’ 2

TO/Qu'(:L‘,t) (W (@, 1) — 2(2))da

+/ a(z,t,u(x,t))Vu(x,t) - V(u'(z,t) — z(z))dx
0

€ K(u;t), aa.te(0,7), u(-,0)=wuqin V,, (6.23a)

(6.23b)
+g(uit, u(?), u'(t) — z),

g/Qf(:c,t)-(u’(:c,t)—z(m))dm, vz e K(u:t), aa te(0,7T),
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where 79 > 0 is a constant, f is a function given in L?(0,T; H,), uo is an initial datum
given in V,, and a(-,-,) is a function in C(Q x R?) such that

a. <a(z,t,r) <d, Y(x,t)eqQ, VreR
|a(x,t1,r1) — a(x,tg,rg)] < La(|t1 — t2| + |r1 — T2|), (624)
Vt; €[0,T), Vr; € R3, i =1,2, Vo € Q,

where a,, a*, and L, are positive constants.

In [25, Proposition 4.2] the following result on the solvability of (6.23) := {(6.23a), (6.23b)}

was shown.

Proposition 6.5 (cf. [25, Proposition 4.2]). Let p := p(z,t,r) and a := a(z,t,r) be
functions for which (6.17) and (6.24) hold, and let f € L*(0,T; H,) and wy € V,. Then,
problem (6.23) := {(6.23a), (6.23b)} admits at least one solution w in WH2(0,T; V).

Proof. From (6.20) and (6.21) of the definitions of " and ' we see the following charac-
terizations of their subdifferentials:

(i) Let v € Dy and t € [0,T]. Then z* € 9,4 (v; z) if and only if 2* € V, z € K(v;t),
and

TO/Qz(x) (z(z) —w(z))dr + (—2z",z —w), <0, Yw € K(v;t).

(i) Let v € Dy and t € [0,T]. Then d,¢"(v; ) is singlevalued, linear, and bounded from
V, into V' and

(0,0"(v; 2), W)y = / a(z,t,v(z,t))Vz(z) - Vw(z)dz, Vz,weV,.
Q
These characterizations show that the quasi-variational inequality (6.23) is described as

{ 0.4/ (s w(0) + 0up!(w w(0) + gl () 2 F0) W V3, na € OT), o

u(0) =uy in V,.

In [25, Lemma 4.3] we checked that assumptions (¢), (¢), and (g) are fulfilled by functions
Pt o', and g given by (6.20)~(6.22). Therefore, on account of Proposition 2.1, we obtain
Proposition 6.5. O

Note that 0,1 (v; -) and g do not satisfy the assumptions in Proposition 2.2. Therefore,
problem (6.23) generally has multiple solutions, and the corresponding optimal control
problem is of the singular type. On account of Proposition 6.5, problem (6.23) can be
reformulated as the form (6.25), i.e., CP (¢!, ¢*, g; f, ug). Therefore, by applying Theorem
41 withV =V,, H= H,, and V* := V| we have the following result concerning the
existence of an optimal control of (OP) for (6.23).
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Proposition 6.6. Let u.q be a given target function in L*(0,T;V,), wy € V,, and let
M > 0 and 19 > 0 be given constants. Then, problem (OP), corresponding to the state
system (6.23), has at least one optimal control f* € Fyr, namely,

J(f7) = inf J(f),

feFu

where Fyy is the control space defined by (1.2) with H = H, and V* :=V,

»,and J(-) is
the cost functional for (OP), which is similarly defined by (1.3) and (1.4).

Now, using an approach similar to that employed in Subsection 6.1, we approximate
(6.23) and its singular optimal control problem (OP). Indeed, let Dy be the set defined by
(6.18). Then, for each w € Dy, we consider the following parameter-dependent variational
inequality with gradient constraint:

u'(t) € K(w;t), a.a. t € (0,T), u(-,0) =wupin V,, (6.26a)

- /Q W (1) - (w(x, ) — 2(x))dz

—1—/ a(z,t,w(z,t))Vu(z,t) - V(u'(z,t) — z(z))dz
Q (6.26b)
+g(w;t,u(t)), w'(t) - z),

g/f(x,t) (W(@,8) — 2(2))de, Yz e K(w:t), aa.te (0,T),
Q
where 79 > 0, K(-;-), a(+,+,*), g(*;-,+), f, and ug are the same as in (6.23).

On account of Proposition 3.1, we have the following existence result for problem
(6.26):={(6.26a), (6.26b)}.

Proposition 6.7. Let 9 > 0 be a constant. Then, for each uy € V,, w € Dy, and
f € L*(0,T; H,), problem (6.26) admits at least one solution uw in W2(0,T;V,).

Proof. From arguments similar to those in Proposition 6.5, we observe that problem (6.26)
is described as

{ Ot (w; u! (1)) + 0w (w; u(t)) + g(w; t,u(t)) > f(t) in VI, aa.te(0,7),
u(0) =up in V,.

In [25, Lemma 4.3] we checked that assumptions (1), (¢), and (g) are fulfilled for ¢*, ¢,
and g given by (6.20)~(6.22). Therefore, by Proposition 3.1, we have shown that problem
(6.26) admits at least one solution w in W2(0,T;V,). O

Note that 0,¢'(w;-) does not satisfy (3.3). In addition, g does not satisfy (3.5).
Indeed, we observe from [25, Lemma 4.3] that

lg(w;t, z1) — g(w;t, z2)|v: < kalzy — 22lv,, Yw e Dy, z €V, (i=1,2),
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where k4 is a positive constant, dependent on the constant of the embedding V' < L*().
Therefore, problem (6.26) generally has multiple solutions (cf. Proposition 3.2 and Re-
mark 3.1), and the corresponding optimal control problem is of the singular type. By
applying Theorem 5.1(I) with V = V,, H = H,, and V* := V. we can show the

o)

following existence result of optimal controls of (OP)s (6 € (0,1]) for (6.26).

Proposition 6.8. Let uyg be a given target function in L?(0,T;V,), ug € V,, and
let M >0, M' >0, and 19 > 0 be given constants. Then, for each § € (0,1], problem
(OP)s, corresponding to the state system (6.26), has at least one optimal control [w}, f5] €
W (ug) X Far, namely,

Es(w;, f5) = inf Es(w, f),

[w, F1eEW) 7 (wo) X Fas

where Wy (ug) is the control space defined by (5.3) with V- =V, and Es(-,-) is the cost
functional for (OP)s, which is similarly defined by (5.1) and (5.2).

Taking an approach similar to that employed in Section 5, namely, by applying Theo-
rem 5.1(IT) with V =V ,, H = H,, and V* := V| the singular optimal control problem
(OP) for (6.23) can be approximated by (OP)s (0 € (0, 1]).

Finally, we approximate (6.26) by the well-posed state system. To this end, let vg € Dy
be a fixed element. Then, for each w € Dy and £ € (0,1], we consider the following
parameter-dependent variational inequality with gradient constraint:

W(t) € K(w;t), aa te(0,T), ul-0)=muinV,, (6.27a)
- /Q o, 0, vz, )Vt (1, 1) - V(! (2, £) — 2(a))
10 /Q W (2.t) - (W (2, 1) — 2(2))da
+/Qa(a:,t,w(x,t))Vu(x,t)-V(u’(x,t) — 2(2))dx
+g(w:t, u(t)), w'(t) — 2), (6.27D)
< [ #at) @) - 2o
te /Q a(,0, vz, 1)) Vh(z,1) - V(e (2, 1) — 2(2))da
Vz € K(w;t), a.a. t € (0,7T),
where h is a given function in L2(0,T; V).

By the characterization (ii) of subdifferential of ¢'(v;-) defined by (6.21) (c¢f. Propo-
sition 6.5), we observe that the subdifferential Fy := 9,¢°(vo; ) is given by

(Foz, o) — /Q a(2,0, vo(x, 1))V 2(z) - Voo (2)dz, Voo € V. (6.28)

Thus, by (6.24) we easily check that Fjy is linear, coercive, continuous, and single-valued
maximal monotone from V, into V7, satistying (5.18) with V =V, and V* := V.
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From (6.28) and the facts identified in the proof of Proposition 6.7, problem (6.27)
can be reformulated in the abstract form C'PS(f + eFoh, uo):

eFyu/(t) + 0.0 (w; u/ (1)) + 0.0 (w; u(t)) + g(w; t,u(t)) o f(t) + cFyh(t) in VI,
a.a. t € (0,7),
u(0) =up in V,.

Therefore, Proposition 5.1(I) implies the existence—uniqueness of solutions to (6.27) on
[0, T]. In addition, by Proposition 5.2, we get the result on the relationship between (6.26)
and (6.27). Namely, we observe that (6.26) is approximated by (6.27) as € | 0.

Moreover, using the standard smoothness arguments (e.g., regularization by the mol-
lifier and the convolution [1, Sections 2.28 and 3.16]), we can check assumption (H) with
V:=V,and X := [H*(Q)?NV,, where [H*(Q)]* := H*(Q) x H*(Q) x H*(2). Therefore,
Theorem 5.2(I) implies that the approximate optimal control problem (OP)j5, correspond-
ing to (6.27), has at least one optimal control [wj _, f;_, hj.] € War(u) x Far x Hiy (cf.
(5.3), (1.2), and (5.28)). Additionally, by Theorem 5.2(II) on the relationship between
(OP)s and (OP)5, we see that (OP)s is approximated by (OP)5 as € | 0; more precisely,
there exists a sequence {€, }nen C {€}ec(01) With &, — 0 (n — 00) such that any weak
limit function [w}, f3] of {[w;. , f5. [}nen in L?(0,T;V,) x L*(0,T; V) is an optimal
control for (OP)s.

Consequently, it is worth studying (6.27) and its control problem (OP);5 for sufficient
small 6, € (0,1], instead of considering quasi-variational inequality (6.23) of Navier-
Stokes type and its singular control problem (OP), from a numerical point of view.
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