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1 Introduction

This paper is concerned with singular optimal control problems for doubly nonlinear
quasi-variational evolution inclusions governed by time-dependent subdifferentials.

Throughout this paper, let H be a (real) Hilbert space and V be a uniformly convex
Banach space such that V is dense in H and the injection from V into H is compact,
supposing also that the dual space V ∗ of V is uniformly convex; the norms in V and V ∗

are denoted by | · |V and | · |V ∗ , respectively, and the duality pairing between V and V ∗ is
denoted by ⟨·, ·⟩; similarly the norm and the inner product in H are denoted by | · |H and
(·, ·)H , respectively. In this case, identifying H with its dual, we have

V ↪→ H ↪→ V ∗ (with dense and compact embeddings);

note that
⟨u, v⟩ = (u, v)H , if u ∈ H and v ∈ V.

Recently, N. Kenmochi–K. Shirakawa–N. Yamazaki [25] established the abstract solv-
ability theory of the following doubly nonlinear quasi-variational evolution inclusions gov-
erned by time-dependent subdifferentials in the Banach space V ∗:{

∂∗ψ
t(u;u′(t)) + ∂∗φ

t(u;u(t)) + g(u; t, u(t)) ∋ f(t) in V ∗ for a.a. t ∈ (0, T ),

u(0) = u0 in V,
(1.1)

where 0 < T < ∞, u′ = du
dt

in V , f is a given V ∗-valued function, and u0 ∈ V is a given
initial datum.

For each parameter v and t ∈ [0, T ], ψt(v; z) is a proper (i.e., not identically equal to
infinity), l.s.c. (i.e., lower semi-continuous), convex function in z ∈ V , φt(v; z) is a non-
negative, continuous convex function in z ∈ V , and g(v; t, z) is a single-valued Lipschitz
operator from V into V ∗ (see Section 2 for their precise definitions). Note that (t, v) is
a parameter that determines the convex functions ψt(v; ·), φt(v; ·), and the perturbation
g(v; t, ·).

In the present paper, we discuss optimal control problems for (1.1). Note that problem
(1.1) has multiple solutions, in general (see in [25, Example 3.1] for instance). Therefore,
the optimal control problem associated with the state equation (1.1) is singular, namely,
control problems formulated for non-well-posed state system. By a similar approach as
in [24], we consider a singular optimal control problem formulated for (1.1). To this end,
let FM be a control space with constant M > 0, defined by:

FM :=

{
f ∈ W 1,2(0, T ;V ∗) ∩ L2(0, T ;H) ;

|f |W 1,2(0,T ;V ∗) ≤M,

|f |L2(0,T ;H) ≤M

}
, (1.2)

where | · |W 1,2(0,T ;V ∗) (resp. | · |L2(0,T ;H)) is the norm of W 1,2(0, T ;V ∗) (resp. L2(0, T ;H)).
Then, we formulate a singular optimal control problem for (1.1) as follows:

Problem (OP): Find a control f ∗ ∈ FM such that

J(f ∗) = inf
f∈FM

J(f);
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such a function f ∗ is called an optimal control. Here, J(f) is a functional defined by

J(f) := inf
u∈S(f)

πf (u), (1.3)

where f ∈ FM is any control, and S(f) is the set of all solutions to (1.1) associated with
control f . In addition, πf (u) is a functional of u ∈ S(f) defined by:

πf (u) :=
1

2

∫ T

0

|u(t)− uad(t)|2V dt+
1

2

∫ T

0

|f(t)|2V ∗dt, (1.4)

where uad ∈ L2(0, T ;V ) is a given target profile.
There is a vast amount of literature on optimal control problems for (parabolic or

elliptic) variational inequalities. For instance, see [8, 15, 16, 18, 27, 28, 31, 32, 33, 38].
In particular, P. Neittaanmäki–J. Sprekels–D. Tiba [33, Section 3.1.3.1] discussed singu-
lar control problems for linear elliptic equations of second-order with the homogeneous
Dirichlet boundary condition.

The theory of nonlinear evolution inclusions is useful in any systematic study of vari-
ational inequalities. For instance, many mathematicians have studied nonlinear evolution
inclusions of the form:

u′(t) + ∂φt(u(t)) ∋ f(t) in H for a.a. t ∈ (0, T ), (1.5)

where φt : H → R∪ {∞} is a time-dependent proper, l.s.c., and convex function for each
t ∈ [0, T ]. For fundamental results on (1.5), we refer to [16, 19, 20, 34, 37]. In particular, S.
Hu–N. S. Papageorgiou [16] treated some optimal control problems for (1.5). Furthermore,
the optimal control of parameter-dependent evolution inclusions for (1.5) has previously
been considered in several previous works (cf. [16, 35]).

Doubly nonlinear evolution inclusions have been studied, for instance, by N. Kenmochi–
I. Pawlow [22], in which nonlinear evolution inclusions of the following type were discussed:

d

dt
∂ψ(u(t)) + ∂φt(u(t)) ∋ f(t) in H for a.a. t ∈ (0, T ), (1.6)

where ψ : H → R ∪ {∞} is a proper, l.s.c., and convex function. The abstract results for
(1.6) can be applied to elliptic-parabolic equations. From the viewpoint of (1.6), K.-H.
Hoffmann–M. Kubo–N. Yamazaki [15] studied optimal control problems for quasi-linear
elliptic-parabolic variational inequalities with time-dependent constraints. Additionally,
A. Kadoya–N. Kenmochi [17] touched on the optimal shape design of elliptic-parabolic
equations.

G. Akagi [2], T. Arai [3], M. Aso–M. Frémond–N. Kenmochi [4], M. Aso–N. Kenmochi
[5], P. Colli [11], P. Colli–A. Visintin [12], O. Grange–F. Mignot [14], and T. Senba [36]
investigated the following type of doubly nonlinear evolution inclusions:

∂ψt(u′(t)) + ∂φ(u(t)) ∋ f(t) in H for a.a. t ∈ (0, T ). (1.7)

As mentioned above, one interesting feature is that (1.7) is not generally well-posed;
namely, it lacks the uniqueness of solutions. In this respect, M. H. Farshbaf-Shaker–N.
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Yamazaki [13] studied the optimal control problem without the uniqueness of solutions in
the state system (1.7) with single-valued Lipschitz perturbation g by employing the idea
of Y. Murase–A. Kadoya–N. Kenmochi [31].

In the recent works of N. Kenmochi–K. Shirakawa–N. Yamazaki [23, 24], a more general
approach was proposed to treat

∂∗ψ
t(u′(t)) + ∂∗φ

t(u;u(t)) + g(t, u(t)) ∋ f(t) in V ∗ for a.a. t ∈ (0, T ). (1.8)

Moreover, singular optimal control problems for (1.8) were discussed, and as applications
of abstract results, parabolic quasi-variational inequalities with gradient constraint for
the time derivatives were studied (cf. [24, Section 11]).

In this paper, we systematically investigate (OP). The novelties of this work are as
follows:

(a) We show the existence of optimal control for (OP);

(b) We propose an approximate procedure to investigate the singular optimal control
problem for (1.1) by considering parameter-dependent evolution inclusions.

The remainder of this paper is organized as follows. In Section 2, we recall the abstract
result of the existence of solutions to (1.1) for each f ∈ L2(0, T ;V ∗) and u0 ∈ V . In
Section 3, we give abstract results of existence-uniqueness and convergence of solutions to
parameter-dependent abstract evolution inclusions. In Section 4, we consider the singular
optimal control problem for (1.1), and state the main result (Theorem 4.1), corresponding
to item (a). In Section 5, we propose an approximate procedure to construct an optimal
control for (OP) and give the main results (Theorems 5.1 and 5.2), corresponding to
item (b). In the final Section 6, we apply our general results to some model problems:
quasi-variational inequalities with time-dependent gradient constraints (interior obstacle
problems and Navier-Stokes type problem).

Notation

We now list some notation and definitions of subdifferentials of convex functions. Let
ϕ : V → R ∪ {∞} be a proper, l.s.c., and convex function. Then, the effective domain
D(ϕ) is defined by

D(ϕ) := {z ∈ V ; ϕ(z) <∞}.
The subdifferential ∂∗ϕ : V → V ∗ of ϕ is a possibly multi-valued operator from V into
V ∗, and is defined by z∗ ∈ ∂∗ϕ(z) if and only if

z ∈ D(ϕ) and ⟨z∗, y − z⟩ ≤ ϕ(y)− ϕ(z) for all y ∈ V.

Its graph is the set G(∂∗ϕ) := {[z, z∗] ∈ V × V ∗ ; z∗ ∈ ∂∗ϕ(z)}, which is often identified
with ∂∗ϕ, namely, z∗ ∈ ∂∗ϕ(z) is denoted by [z, z∗] ∈ ∂∗ϕ.

In particular, let ϕ : H → R ∪ {∞} be proper, l.s.c., and convex. Then we denote by
∂ϕ the subdifferential of ϕ from H into H.

For various properties and related notions of a proper, l.s.c., convex function ϕ and
its subdifferential ∂∗ϕ, we refer to the monographs by V. Barbu [7, 9]. In particular, for
those in Hilbert spaces, we refer to the monographs by H. Brézis [10].
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We also recall a notion of convergence for convex functions, developed by U. Mosco
[29, 30] and H. Attouch [6].

Let ϕ, ϕn (n ∈ N) be proper, l.s.c., and convex functions on V . Then, we say that
ϕn converges to ϕ on V in the sense of U. Mosco [29] as n → ∞ if the following two
conditions are satisfied:

(M1) for any subsequence {ϕnk
}k∈N ⊂ {ϕn}n∈N, if zk → z weakly in V as k → ∞, then

lim inf
k→∞

ϕnk
(zk) ≥ ϕ(z);

(M2) for any z ∈ D(ϕ), there is a sequence {zn}n∈N in V such that

zn → z in V as n→ ∞ and lim
n→∞

ϕn(zn) = ϕ(z).

For some important properties of the Mosco convergence of convex functions, we refer
to the monographs by H. Attouch [6] and N. Kenmochi [21]. Especially the following ones
are often used. Let ϕ, ϕn (n ∈ N) be proper, l.s.c., and convex functions on V . Assume
ϕn converges to ϕ on V in the sense of Mosco as n→ ∞. Then:

(Fact 1) z∗n ∈ ∂∗ϕn(zn), zn → z weakly in V , z∗n → z∗ weakly in V ∗, and ⟨z∗n, zn⟩ → ⟨z∗, z⟩
(as n→ ∞), then z∗ ∈ ∂∗ϕ(z).

(Fact 2) (Graph convergence) If z∗ ∈ ∂∗ϕ(z), then there are sequences {zn}n∈N ⊂ V
and {z∗n}n∈N ⊂ V ∗ such that

z∗n ∈ ∂∗ϕn(zn), zn → z in V, and z∗n → z∗ in V ∗.

2 Solvability of (1.1)

We begin with the precise formulation of our problem (1.1). For this purpose, we use a
time-dependent proper, l.s.c., and convex function ψt0(·) on V such that there are positive
constants C1 and C2 satisfying

ψt0(z) ≥ C1|z|2V − C2, ∀z ∈ V, ∀t ∈ [0, T ], 0 < T <∞, (2.1)

and t→ ψt0(·) is continuous on V in the sense of Mosco.

Our doubly nonlinear evolution inclusions are formulated in terms of two functionals
ψt(v; z), φt(v; z), and a mapping g(v; t, z) together with a prescribed initial-value u0 and
a forcing term f , as follows:{

∂∗ψ
t(u;u′(t)) + ∂∗φ

t(u;u(t)) + g(u; t, u(t)) ∋ f(t) in V ∗, a.a. t ∈ (0, T ),

u(0) = u0 in V,
(2.2)

and their solutions are constructed in the class

D0 :=

{
v ∈ W 1,2(0, T ;V )

∣∣∣∣ ∫ T

0

ψt0(v
′(τ))dτ <∞, v(0) = u0

}
, (2.3)
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depending on the functional ψt0 and the initial-value u0.
We suppose that D0 ̸= ∅ and the following assumptions are fulfilled:

(Assumption (ψ))

The functional ψt(v; z) is defined for each (t, v, z) ∈ [0, T ]×D0 × V so that ψt(v; z) is
proper, l.s.c., and convex in z ∈ V for any t ∈ [0, T ] and any v ∈ D0, and

ψt(v1; z) = ψt(v2; z), ∀z ∈ V, if v1 = v2 on [0, t],

for vi ∈ D0, i = 1, 2. Furthermore, assume:

(ψ1) If tn ∈ [0, T ], vn ∈ D0, supn∈N
∫ T
0
ψt0(v

′
n(t))dt < ∞, tn → t, and vn → v in

C([0, T ];H) (hence v ∈ D0 and v ∈ W 1,2(0, T ;V ) by (2.1)) as n→ ∞, then

ψtn(vn; ·) → ψt(v; ·) on V in the sense of Mosco as n→ ∞.

(ψ2) D(ψt(v; ·)) ⊂ D(ψt0) for all v ∈ D0 and t ∈ [0, T ], and

ψt(v; z) ≥ ψt0(z), ∀t ∈ [0, T ], ∀v ∈ D0, ∀z ∈ D(ψt(v; ·)).

(ψ3) ∂∗ψ
t(v; 0) ∋ 0 for all t ∈ [0, T ] and v ∈ D0, and there is a non-negative function

cψ(·) ∈ L1(0, T ) such that

ψt(v; 0) ≤ cψ(t), ∀t ∈ [0, T ], ∀v ∈ D0.

(Assumption (ϕ))

Let φt : [0, T ] ×D0 × V → R be a function such that φt(v; z) is non-negative, finite,
continuous, and convex in z ∈ V for any t ∈ [0, T ] and any v ∈ D0, and

φt(v1; z) = φt(v2; z), ∀z ∈ V, if v1 = v2 on [0, t],

for vi ∈ D0, i = 1, 2. Besides, assume the following:

(ϕ1) The subdifferential ∂∗φ
t(v; z) of φt(v; z) with respect to z ∈ V is linear and bounded

from D(∂∗φ
t(v; ·)) = V into V ∗ for each t ∈ [0, T ] and v ∈ D0, and there is a positive

constant C3 such that

|∂∗φt(v; z)|V ∗ ≤ C3|z|V , ∀z ∈ V, ∀t ∈ [0, T ], ∀v ∈ D0.

(ϕ2) If {vn}n∈N ⊂ D0, supn∈N
∫ T
0
ψt0(v

′
n(t))dt < ∞, v ∈ D0, and vn → v in C([0, T ];H)

(as n→ ∞), then

φt(vn; ·) → φt(v; ·) on V in the sense of Mosco, ∀t ∈ [0, T ].

(ϕ3) φ0(v; 0) = 0 for all v ∈ D0. Moreover, there is a positive constant C4 such that

φ0(v; z) ≥ C4|z|2V , ∀z ∈ V, ∀v ∈ D0.
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(ϕ4) There is a function α ∈ W 1,1(0, T ) such that

|φt(v; z)− φs(v; z)| ≤ |α(t)− α(s)|φs(v; z), ∀z ∈ V, ∀v ∈ D0, ∀s, t ∈ [0, T ].

(Assumption (g))

Let g := g(v; t, z) be a single-valued operator from D0 × [0, T ]× V into V ∗ such that
g(v; t, z) is strongly measurable in t ∈ [0, T ] for each v ∈ D0 and z ∈ V , and

g(v1; t, z) = g(v2; t, z), ∀z ∈ V, if v1, v2 ∈ D0 and v1 = v2 on [0, t], ∀t ∈ [0, T ].

Moreover, assume:

(g1) Let {vn}n∈N be a sequence in D0 such that supn∈N
∫ T
0
ψt0(v

′
n(t))dt <∞ and vn → v

in C([0, T ];H) (as n → ∞), and {zn}n∈N be a sequence in V such that zn → z
weakly in V . Then,

g(vn; t, zn) → g(v; t, z) in V ∗, ∀t ∈ [0, T ].

(g2) g(v; ·, 0) ∈ L2(0, T ;V ∗) for any v ∈ D0, and g(v; t, ·) is uniformly Lipschitz from V
into V ∗, i.e., there is a constant Lg > 0 such that

|g(v; t, z1)− g(v; t, z2)|V ∗ ≤ Lg|z1 − z2|V , ∀zi ∈ V (i = 1, 2), ∀v ∈ D0, ∀t ∈ [0, T ].

(g3) There is a non-negative function g0 ∈ L2(0, T ) such that

|g(v; t, 0)|V ∗ ≤ g0(t), a.a. t ∈ (0, T ), ∀v ∈ D0.

Next, we give the definition of solutions to evolution inclusion (2.2).

Definition 2.1. Given data f ∈ L2(0, T ;V ∗) and u0 ∈ V , a function u : [0, T ] → V
is called a solution to CP (ψt, φt, g; f, u0) or CP (f, u0) or simply CP , if and only if the
following conditions are fulfilled:

(i) u ∈ W 1,2(0, T ;V ).

(ii) There exists a function ξ ∈ L2(0, T ;V ∗) such that

ξ(t) ∈ ∂∗ψ
t(u;u′(t)) in V ∗, a.a. t ∈ (0, T ),

and

ξ(t) + ∂∗φ
t(u;u(t)) + g(u; t, u(t)) = f(t) in V ∗, a.a. t ∈ (0, T ).

(iii) u(0) = u0 in V .

We here recall the abstract existence result of evolution inclusion CP (f, u0).
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Proposition 2.1 ([25, Theorem 2.1]). Assume that u0 ∈ V and assumptions (ψ), (ϕ),
and (g) are fulfilled. Let f be any function in L2(0, T ;V ∗). Then, CP (f, u0) admits at
least one solution u. Moreover, there exists a constant N1 > 0, independent of f and u0,
such that ∫ T

0

ψt(u;u′(t))dt+ sup
t∈[0,T ]

φt(u;u(t)) ≤ N1

(
|u0|2V + |f |2L2(0,T ;V ∗) + 1

)
(2.4)

for any solution u to CP (f, u0).

The solvability for CP (f, u0) was performed in several steps. The first approach is
to consider an auxiliary approximate problem of the form for each fixed ε ∈ (0, 1] and
v ∈ D0:

εF0u
′
ε,v(t) + ∂∗ψ

t(v;u′ε,v(t)) + ∂∗φ
t(v;uε,v(t)) + g(v; t, uε,v(t)) ∋ f(t) in V ∗, t > 0, (2.5)

subject to initial condition uε,v(0) = u0 in V , where we set F0 := ∂∗φ
0(v0; ·) for the fixed

function v0 ∈ D0 (cf. (5.17)). In the first step we proved the existence of a unique solution
uε,v to (2.5) for every ε ∈ (0, 1] and v ∈ D0 by applying the general theory of ordinary
differential equations. In the second step the convergence of approximate solution uε,v
was discussed. In the third step, for each ε ∈ (0, 1] and v ∈ D0, the solution uε,v of (2.5)
is denoted by Sε(v), namely uε,v := Sε(v), and then, we found a fixed point of Sε in D0,
uε,v = Sε(uε,v), which is denoted simply by uε. It is a solution to

εF0u
′
ε(t) + ∂∗ψ

t(uε;u
′
ε(t)) + ∂∗φ

t(uε;uε(t)) + g(uε; t, uε(t)) ∋ f(t), uε(0) = u0. (2.6)

In the final step we showed that the solution uε converges in C([0, T ];V ) as ε → 0 and
the limit u is a solution of CP (f, u0). For the detailed proof of Proposition 2.1, we refer
to [25, Theorem 2.1].

As is seen from the counterexample in [25, Example 3.1], the uniqueness of solutions to
doubly nonlinear evolution inclusions is not expected, in general. However, in a restricted
class for ψt and φt we have the uniqueness of solution.

Proposition 2.2 ([25, Proposition 3.1]). Suppose that ψt and g are independent of v ∈
D0, namely ψt(v; z) = ψt(z) and g(v; t, z) = g(t, z) for all v ∈ D0 and z ∈ V ; in this case
ψt0 := ψt on V . In addition, assume that ψt is uniformly monotone for any t ∈ [0, T ],
namely, there exists a positive constant C5 > 0 such that

⟨ξ1 − ξ2, z1 − z2⟩ ≥ C5|z1 − z2|2V ,
∀zi ∈ D(∂∗ψ

t), ξi ∈ ∂∗ψ
t(zi) (i = 1, 2), ∀t ∈ [0, T ].

Furthermore, suppose that u0 ∈ V and assumptions (ψ), (ϕ), and (g) are fulfilled. Also,
assume that ∂∗φ

t(v; ·) is Lipschitz in v ∈ D0, more precisely, there exists a positive con-
stant C6 > 0 such that

|∂∗φt(v1; z)− ∂∗φ
t(v2; z)|V ∗ ≤ C6|v1(t)− v2(t)|V (1 + |z|V ) ,

∀vi ∈ D0 (i = 1, 2), ∀z ∈ D0, ∀t ∈ [0, T ].

Let f be any function in L2(0, T ;V ∗). Then, CP (f, u0) has at most one solution.
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3 Some additional results

In this section, we recall the previous works in [25], and set up some auxiliary results. In
particular, the convergence result of solutions to parameter-dependent evolution inclusions
is key to considering (OP).

The following lemma is derived directly from assumption (ϕ).

Lemma 3.1 (cf. [25, Lemma 2.1]). Suppose that assumption (ϕ) is fulfilled. Then, the
following inequality holds: for all t ∈ [0, T ], z ∈ V , and v ∈ D0,

C4

|α′|L1(0,T ) + 1
|z|2V ≤ φt(v; z) ≤ ⟨∂∗φt(v; z), z⟩ ≤ C3|z|2V . (3.1)

For the detailed proof of Lemma 3.1, we refer to [25, Lemma 2.1].
Now we recall the convergence result of solutions to parameter-dependent evolution

inclusions established in [25, Section 2.3].
Given u0 ∈ V , v ∈ D0, and f ∈ L2(0, T ;V ∗), we denote by CPv(ψ

t, φt, g; f, u0)
or CPv(f, u0) the problem to find a function u ∈ W 1,2(0, T ;V ) with ξ ∈ L2(0, T ;V ∗)
satisfying that

ξ(t) ∈ ∂∗ψ
t(v;u′(t)) in V ∗, a.a. t ∈ (0, T ),

ξ(t) + ∂∗φ
t(v;u(t)) + g(v; t, u(t)) = f(t) in V ∗, a.a. t ∈ (0, T ),

u(0) = u0 in V.

Note that the existence of solutions to CPv(f, u0) can be proved by applying the
abstract theory established in [23, Theorems 1].

Proposition 3.1 (cf. [23, Theorem 1]). Suppose that u0 ∈ V and assumptions (ψ),
(ϕ), and (g) are fulfilled. Then, for each v ∈ D0 and f ∈ L2(0, T ;V ∗), there exists at
least one solution u to CPv(f, u0). Moreover, for any fixed v ∈ D0, any solution u to
CPv(f, u0) satisfies the bound: there exists a constant N1 > 0, independent of v ∈ D0 and
f ∈ L2(0, T ;V ∗), such that∫ T

0

ψt(v;u′(t))dt+ sup
t∈[0,T ]

φt(v;u(t)) ≤ N1(|u0|2V + |f |2L2(0,T ;V ∗) + 1), (3.2)

where N1 is the same constant as in (2.4) of Proposition 2.1.

As is seen from the counterexample in [25, Example 3.1], the uniqueness of solutions
to doubly nonlinear evolution inclusions CPv(f, u0) is not expected, in general. However,
by arguments similar to [23, Theorem 2], we can show the uniqueness of solution to
CPv(f, u0) in a restricted class for ψt and φt.

Proposition 3.2 (cf. [23, Theorem 2]). Suppose that u0 ∈ V and assumptions (ψ), (ϕ),
and (g) are fulfilled. In addition, assume that ψt(v; ·) is uniformly monotone for any
t ∈ [0, T ] and v ∈ D0, namely, there exists a positive constant C5 > 0 such that

⟨ξ1 − ξ2, z1 − z2⟩ ≥ C5|z1 − z2|2V ,
∀zi ∈ D(∂∗ψ

t), ξi ∈ ∂∗ψ
t(v; zi), i = 1, 2, ∀v ∈ D0, ∀t ∈ [0, T ].

(3.3)



428

Let f be any function in L2(0, T ;V ∗). Then, problem CPv(f, u0) admits a unique solution
u on [0, T ].

Remark 3.1 (cf. [25, Remark 3.1]). Assume the following conditions:

⟨ξ1 − ξ2, z1 − z2⟩ ≥ C5|z1 − z2|2H ,
∀zi ∈ D(∂∗ψ

t), ξi ∈ ∂∗ψ
t(v; zi), i = 1, 2, ∀v ∈ D0, ∀t ∈ [0, T ],

(3.4)

and g satisfies that

|g(v; t, z1)− g(v; t, z2)|H ≤ L′
g|z1 − z2|H , ∀zi ∈ V, i = 1, 2, ∀v ∈ D0, ∀t ∈ [0, T ] (3.5)

for a positive constant L′
g. Then, Proposition 3.2 guarantees that for any fixed v ∈ D0,

problem CPv(f, u0) admits a unique solution u on [0, T ].

We now recall the convergence result of solutions to parameter-dependent evolution
inclusions CPv(f, u0) with respect to the data v and f .

Proposition 3.3 ([25, Proposition 2.2]). Let u0 ∈ V , {vn}n∈N and {fn}n∈N be any fami-
lies in D0 and L2(0, T ;V ∗), respectively, such that sup

n∈N

∫ T

0

ψt0(v
′
n(t))dt <∞, vn → v in C([0, T ];H),

fn → f in L2(0, T ;V ∗) (as n→ ∞),

(3.6)

and let {un}n∈N be a sequence of solutions to CPvn(fn, u0) on [0, T ]. Then, there exist a
subsequence {nk}k∈N ⊂ {n}n∈N and a function u ∈ W 1,2(0, T ;V ) such that u is a solution
to CPv(f, u0) on [0, T ] and

unk
→ u in C([0, T ];V ) as k → ∞.

For the detailed proofs of Propositions 3.1–3.3, we refer to [23, Theorems 1 and 2] and
[25, Sections 2 and 3].

4 Singular optimal control problem for (QP)

Regarding the state system CP (f, u0), the existence of a solution was proved in [25,
Theorem 2.1], but its uniqueness is not expected. Therefore, in this section, we propose
a singular optimal control problem for non-well-posed state systems CP (f, u0).

Using arguments similar to those in [24, Sections 4 and 8], we study the singular opti-
mal control problem for doubly quasi-variational evolution inclusions CP (f, u0). Indeed,
the following result on the convergence of solutions to CP (f, u0) is the key to proving the
existence of an optimal control for (OP).
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Proposition 4.1. Assume that u0 ∈ V and assumptions (ψ), (ϕ), and (g) are fulfilled.
Let {fn}n∈N ⊂ L2(0, T ;V ∗) and f ∈ L2(0, T ;V ∗) such that

fn → f in L2(0, T ;V ∗) as n→ ∞, (4.1)

and let un be a solution to CP(fn, u0) on [0, T ]. Then, there exist a subsequence {nk}k∈N ⊂
{n}n∈N and a function u ∈ W 1,2(0, T ;V ) such that u is a solution to CP(f, u0) on [0, T ]
and

unk
→ u in C([0, T ];V ) as k → ∞. (4.2)

Proof. This proposition follows from Proposition 3.3. Indeed, note from (4.1) that {fn}n∈N
is bounded in L2(0, T ;V ∗). Therefore, from the uniform estimate (2.4) with (2.1), (ψ2),
Lemma 3.1, and the Ascoli–Arzelà theorem, we can find a subsequence {nk}k∈N ⊂ {n}n∈N
and a function u ∈ W 1,2(0, T ;V ) such that

sup
n∈N

∫ T

0

ψt0(u
′
nk
(t))dt <∞,

unk
→ u in C([0, T ];H) and weakly in W 1,2(0, T ;V ),

unk
(t) → u(t) weakly in V for all t ∈ [0, T ]

as k → ∞.
Note that CP (fnk

, u0) can be regarded as the parameter-dependent evolution inclu-
sions CPunk

(fnk
, u0). Therefore, by applying Proposition 3.3 that unk

→ u in C([0, T ];V )
(as k → ∞) and the limit u is a solution of CPu(f, u0), namely u is a solution to CP (f, u0)
on [0, T ]. Thus, the proof of Proposition 4.1 is complete.

We now state the main result of this paper, which is directed to the existence of an
optimal control for (OP) without the uniqueness of solutions to CP (f, u0).

Theorem 4.1. Assume that u0 ∈ V and assumptions (ψ), (ϕ), and (g) are fulfilled. Let
uad be a given target function in L2(0, T ;V ). Then, (OP) has at least one optimal control
f ∗ ∈ FM , namely,

J(f ∗) = inf
f∈FM

J(f),

where J(·) is the cost functional of (OP), which is defined by (1.3) and (1.4).

Taking account of Proposition 4.1, we can prove Theorem 4.1. Indeed, as the proof is
quite similar to that of [24, Theorem 4.1] (or Theorem 5.1(I) below), we omit the detailed
proof.

5 Approximations for CP(f, u0) and (OP)

In [24, Sections 5 and 9], we established an approximate procedure to investigate the
singular optimal control problems for (1.8). In such arguments, we needed the uniqueness
of solutions to approximate state systems. However, in doubly quasi-variational evolu-
tion inclusions CP (f, u0), the approximate problem (2.6) is generally a non-well-posed



430

state system (cf. Proposition 2.2 and [25, Example 3.1]). Therefore, we here consider
the approximate procedure for CP (f, u0) and (OP) by parameter-dependent evolution
inclusions CPv(f, u0).

Now, for each u0 ∈ V , w ∈ D0, and f ∈ L2(0, T ;V ∗), the parameter-dependent state
problem is of the form:

CPw(f, u0)


ξ(t) ∈ ∂∗ψ

t(w;u′(t)) in V ∗, a.a. t ∈ (0, T ),

ξ(t) + ∂∗φ
t(w;u(t)) + g(w; t, u(t)) = f(t) in V ∗, a.a. t ∈ (0, T ),

u(0) = u0 in V.

Note from Proposition 3.1 that CPw(f, u0) has at least one solution satisfying the uni-
form estimate (3.2). However, the uniqueness of solutions to CPw(f, u0) is not expected,
in general (cf. Proposition 3.2 and Remark 3.1). Therefore, we now consider the singular
optimal control problem for CPw(f, u0). To this end, for each δ ∈ (0, 1], let Eδ be the
cost functional defined by

Eδ(w, f) := inf
u∈S(w,f)

πδ[w,f ](u), (5.1)

where S(w, f) is the set of all solutions to CPw(f, u0) on [0, T ], and for any u ∈ S(w, f),
the value of functional πδ[w,f ](u) is defined by:

πδ[w,f ](u) :=
1

2

∫ T

0

|u(t)− uad(t)|2V dt+
1

2

∫ T

0

|f(t)|2V ∗dt+
1

2δ

∫ T

0

|u(t)− w(t)|2V dt. (5.2)

Additionally, for a given positive number M , let FM be the control space given by (1.2).
Setting M ′ := N1(|u0|2V +M2 + 1), the set WM ′ is defined by

WM ′ :=

{
w ∈ W 1,2(0, T ;V )

∣∣∣∣ ∫ T

0

ψt0(w
′(t))dt ≤M ′

}
,

where N1 is the same constant as in (3.2) (cf. (2.4) of Proposition 2.1).
We now choose the set WM ′(u0)×FM as the control space, where

WM ′(u0) := {w ∈ WM ′ | w(0) = u0 in V } . (5.3)

Note that WM ′(u0) ⊂ D0. Then, for each w ∈ D0 and f ∈ FM , (3.2) with (ψ2) implies
that

u ∈ WM ′(u0) for any solution u to CPw(f, u0) on [0, T ]. (5.4)

Now, for each δ ∈ (0, 1], we consider the following singular optimal control problem,
denoted by (OP)δ, with the state problem CPw(f, u0) for w ∈ D0 and f ∈ L2(0, T ;V ∗).

Problem (OP)δ: Find a control [w∗
δ , f

∗
δ ] ∈ WM ′(u0) × FM , called an optimal control,

such that
Eδ(w

∗
δ , f

∗
δ ) = inf

[w,f ]∈WM′ (u0)×FM

Eδ(w, f).

Now we mention the following second main result, which is concerned with the exis-
tence of an optimal control for (OP)δ and the relationship between (OP) and (OP)δ with
respect to δ ∈ (0, 1].
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Theorem 5.1 (cf. [24, Section 10]). Suppose that u0 ∈ V and assumptions (ψ), (ϕ), and
(g) are fulfilled. Let uad be a given target function in L2(0, T ;V ). Then, the following two
statements hold.
(I) For each δ ∈ (0, 1], (OP)δ has at least one optimal control [w∗

δ , f
∗
δ ] ∈ WM ′(u0)× FM ,

namely,
Eδ(w

∗
δ , f

∗
δ ) = inf

[w,f ]∈WM′ (u0)×FM

Eδ(w, f).

(II) Let [w∗
δ , f

∗
δ ] be an optimal control of (OP)δ for any δ ∈ (0, 1], and let [w∗, f ∗] be any

weak limit of {[w∗
δ , f

∗
δ ])} as δ ↓ 0, namely, there is a sequence {δn}n∈N with δn ↓ 0 (as

n→ ∞) such that

w∗
δn → w∗ weakly in L2(0, T ;V ), f ∗

δn → f ∗ weakly in L2(0, T ;V ∗). (5.5)

Then, f ∗ is an optimal control of (OP), w∗ is a solution of CP(f ∗, u0), and

J(f ∗) (= inf
f∈FM

J(f)) = lim
δ↓0

Eδ(w
∗
δ , f

∗
δ ), (5.6)

where J is the functional on FM given by (1.3) and (1.4).

Proof. Taking account of Proposition 3.3, we can prove (I) of Theorem 5.1. Indeed, note
from (5.1) and (5.2) that Eδ(w, f) ≥ 0 for all [w, f ] ∈ WM ′(u0)×FM . Let {[wn, fn]}n∈N ⊂
WM ′(u0)×FM be a minimizing sequence of the functional Eδ on WM ′(u0)×FM , namely,

d∗δ := inf
[w,f ]∈WM′ (u0)×FM

Eδ(w, f) = lim
n→∞

Eδ(wn, fn).

By the definition in (5.1) of Eδ(wn, fn), for each n, there is a solution un ∈ S(wn, fn) such
that

πδ[wn,fn](un) < Eδ(wn, fn) +
1

n
. (5.7)

Here, we observe from {wn}n∈N ⊂ WM ′(u0) and (5.3) that

sup
n∈N

∫ T

0

ψt0(w
′
n(t))dt ≤M ′, (5.8)

hence, by (2.1)
{wn}n∈N is bounded in W 1,2(0, T ;V ).

Similarly, by {fn}n∈N ⊂ FM and (1.2), we have that

{fn}n∈N is bounded in W 1,2(0, T ;V ∗) ∩ L2(0, T ;H).

Thus, by the Ascoli–Arzelà theorem and the Aubin compactness theorem (cf. [26, Chapter
1, Section 5]), there is a subsequence {nk}k∈N ⊂ {n}n∈N and a pair of functions [w∗, f ∗] ∈
WM ′(u0)×FM such that

wnk
→ w∗ weakly in W 1,2(0, T ;V ),

in C([0, T ];H)

}
(5.9)
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fnk
→ f ∗ weakly in W 1,2(0, T ;V ∗),

weakly in L2(0, T ;H),

in L2(0, T ;V ∗)

 (5.10)

as k → ∞.
Taking a subsequence if necessary, we infer from Proposition 3.3 with (5.8)–(5.10) that

there is a solution u∗ to CPw∗(f ∗, u0) on [0, T ] satisfying

unk
→ u∗ in C([0, T ];V ) as k → ∞. (5.11)

Therefore, it follows from (5.7)–(5.11) and u∗ ∈ S(w∗, f ∗) that

d∗δ = inf
[w,f ]∈WM′ (u0)×FM

Eδ(w, f)

≤ Eδ(w
∗, f ∗) = inf

u∈S(w∗,f∗)
πδ[w∗,f∗](u)

≤ πδ[w∗,f∗](u
∗)

=
1

2

∫ T

0

|u∗(t)− uad(t)|2V dt+
1

2

∫ T

0

|f ∗(t)|2V ∗dt

+
1

2δ

∫ T

0

|u∗(t)− w∗(t)|2V dt

≤ lim inf
k→∞

πδ[wnk
,fnk

](unk
)

≤ lim inf
k→∞

{
Eδ(wnk

, fnk
) +

1

nk

}
= lim

k→∞
Eδ(wnk

, fnk
) = d∗δ .

Hence, we have d∗δ = inf [w,f ]∈WM′ (u0)×FM
Eδ(w, f) = Eδ(w

∗, f ∗), which implies that [w∗, f ∗] ∈
WM ′(u0)×FM is an optimal control for (OP)δ. Thus, the proof of (I) is complete.

Note that assertion (II) provides another method of construction of solutions to the
state system CP (f ∗, u0). This is a very important and interesting result. Therefore,
we give the detailed proof of (II), although this is a similar manner to the proof of [24,
Theorem 10.3].

Let f be any element in FM , and let πf (·) be the functional defined by (1.4). Addition-
ally, let S(f) be the set of all solutions to CP (f, u0) on [0, T ]. Then, note that u ∈ S(f)
is also a solution to CPu(f, u0) on [0, T ]. Therefore, since [w∗

δ , f
∗
δ ] ∈ WM ′(u0)×FM is an

optimal control of (OP)δ, we observe that

Eδ(w
∗
δ , f

∗
δ ) ≤ πδ[u,f ](u) = πf (u), ∀u ∈ S(f), ∀f ∈ FM ,

whence
Eδ(w

∗
δ , f

∗
δ ) ≤ inf

f∈FM

J(f) =: d̃∗. (5.12)

Now, let u∗δ be any optimal state corresponding to Eδ(w
∗
δ , f

∗
δ ), namely u∗δ ∈ S(w∗

δ , f
∗
δ )

and

Eδ(w
∗
δ , f

∗
δ ) =

1

2

∫ T

0

|u∗δ(t)− uad(t)|2V dt+
1

2

∫ T

0

|f ∗
δ (t)|2V ∗dt+

1

2δ

∫ T

0

|u∗δ(t)− w∗
δ(t)|2V dt

≤ d̃∗. (5.13)
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As w∗
δ ∈ WM ′(u0), u

∗
δ ∈ WM ′(u0) (cf. (5.4)), and f ∗

δ ∈ FM , according to the Ascoli–
Arzelà theorem and the Aubin compactness theorem, there exist a subsequence {δn}n∈N ⊂
{δ}δ∈(0,1], a pair of functions [w∗, f ∗] ∈ WM ′(u0)×FM , and a function u∗ ∈ WM ′(u0) such
that δn → 0 as n→ ∞,

w∗
δn → w∗ weakly in W 1,2(0, T ;V ) and in C([0, T ];H),

w∗
δn(t) → w∗(t) weakly in V, ∀t ∈ [0, T ],

u∗δn → u∗ weakly in W 1,2(0, T ;V ) and in C([0, T ];H),

u∗δn(t) → u∗(t) weakly in V, ∀t ∈ [0, T ],

and
f ∗
δn → f ∗ in L2(0, T ;V ∗) (5.14)

as n→ ∞.
Therefore, we infer from (5.13) that u∗δn − w∗

δn
→ 0 in L2(0, T ;V ) as n → ∞, which

implies that
u∗ = w∗ in L2(0, T ;V ). (5.15)

Moreover, by Proposition 3.3, we observe that u∗δn converges in C([0, T ];V ) to a solution
to CPw∗(f ∗, u0) on [0, T ], that is equal to u∗, as n → ∞. By (5.15), u∗ is a solution to
CPu∗(f

∗, u0), hence CP (f
∗, u0), on [0, T ].

Now, taking the limit of (5.13) as δ := δn ↓ 0, we obtain

d̃∗ ≤ J(f ∗) = inf
u∈S(f∗)

πf∗(u)

≤ 1

2

∫ T

0

|u∗(t)− uad(t)|2V dt+
1

2

∫ T

0

|f ∗(t)|2V ∗dt

= lim
n→∞

{
1

2

∫ T

0

|u∗δn(t)− uad(t)|2V dt+
1

2

∫ T

0

|f ∗
δn(t)|

2
V ∗dt

}
≤ lim inf

n→∞

{
1

2

∫ T

0

|u∗δn(t)− uad(t)|2V dt+
1

2

∫ T

0

|f ∗
δn(t)|

2
V ∗dt

+
1

2δn

∫ T

0

|u∗δn(t)− w∗
δn(t)|

2
V dt

}
= lim inf

n→∞
Eδn(w

∗
δn , f

∗
δn) ≤ lim sup

n→∞
Eδn(w

∗
δn , f

∗
δn) ≤ d̃∗,

and hence d̃∗ = J(f ∗) with

lim
n→∞

1

2δn

∫ T

0

|u∗δn(t)− w∗
δn(t)|

2
V dt = 0. (5.16)

Hence, we conclude from (5.16) that (5.6) holds. Thus, the proof of (II) is complete.

Remark 5.1. On account of (5.14)–(5.16), we further observe that the weak limit [w∗, f ∗]
as in (5.5) is actually the strong limit of the same sequence {[w∗

δn
, f ∗
δn
]}n∈N in (5.5), in the

topology of L2(0, T ;V )× L2(0, T ;V ∗).
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Note that Theorem 5.1 can be proved without using the result on (OP) in Section 4

(cf. Theorem 4.1). In addition, we observe that Theorem 5.1 provides the approximate
procedure for CP (f, u0) and (OP) based on the theory of CPw(f, u0) and (OP)δ via
parameter δ ∈ (0, 1]. Moreover, note that (OP)δ is also the singular optimal control
problem.

In the rest of this section, we investigate (OP)δ, hence (OP), from the viewpoint of
numerical analysis. To this end, we here use the approximate procedures proposed in [24,
Section 5].

Now we choose and fix a function v0 ∈ D0, and consider the continuous convex function
φ0(v0; ·) on V . For simplicity, we denote by F0 the subdifferential of φ0(v0; ·):

F0 := ∂∗φ
0(v0; ·). (5.17)

Then, on account of (3.1) of Lemma 3.1, we observe that F0 : D(F0) = V → V ∗ satisfies

c0|z|2V ≤ ⟨F0z, z⟩ ≤ c′0|z|2V , ∀z ∈ V, (5.18)

with c0 :=
C4

|α′|L1(0,T )+1
and c′0 = C3, so that F0 is linear, coercive, continuous, and single-

valued maximal monotone from V into V ∗.
For each u0 ∈ V , ε ∈ (0, 1], w ∈ D0, f ∈ L2(0, T ;V ∗), and h ∈ L2(0, T ;V ), we now

consider the following problem, denoted by CP ε
w(f + εF0h, u0) (cf. (2.5)):

εF0u
′
ε(t) + ξε(t) + ∂∗φ

t(w;uε(t)) + g(w; t, uε(t)) ∋ f(t) + εF0h(t) in V ∗,

a.a. t ∈ (0, T ),
(5.19a)

ξε(t) ∈ ∂∗ψ
t(w;u′ε(t)) in V

∗, a.a. t ∈ (0, T ), (5.19b)

uε(0) = u0 in V. (5.19c)

Proposition 5.1 (cf. [24, Section 5]). Suppose that u0 ∈ V and assumptions (ψ), (ϕ),
and (g) are fulfilled. Then, the following two statements hold.
(I) Let f be any function in L2(0, T ;V ∗), and let h be any function in L2(0, T ;V ). Then,
for every ε ∈ (0, 1] and w ∈ D0, there is a unique function uε ∈ W 1,2(0, T ;V ) with
ξε ∈ L2(0, T ;V ) such that (5.19):= {(5.19a), (5.19b), (5.19c)} holds. Such a function uε is
called a solution to CP ε

w(f + εF0h, u0). In addition, the solution uε to CP
ε
w(f + εF0h, u0)

satisfies the bound: there exists a constant N1 > 0, independent of ε > 0, w ∈ D0,
f ∈ L2(0, T ;V ∗), and h ∈ L2(0, T ;V ) such that

εC4|u′ε|2L2(0,T ;V ) +

∫ T

0

ψt(w;u′ε(t))dt+ sup
t∈[0,T ]

φt(w;uε(t))

≤ N1(|u0|2V + |f + εF0h|2L2(0,T ;V ∗) + 1),

(5.20)

where C4 is the same constant as in (ϕ3) as well as N1 in (3.2) of Proposition 3.1.
(II) Let {wn}n∈N ⊂ D0 such that

sup
n∈N

∫ T

0

ψt0(w
′
n(t))dt <∞, wn → w in C([0, T ];H) (as n→ ∞).
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Let {fn}n∈N ⊂ L2(0, T ;V ∗), f ∈ L2(0, T ;V ∗), {hn}n∈N ⊂ L2(0, T ;V ), and h ∈ L2(0, T ;V )
such that

fn → f in L2(0, T ;V ∗) and hn → h in L2(0, T ;V ) as n→ ∞. (5.21)

For a fixed parameter ε ∈ (0, 1], let un be a unique solution to CP ε
wn
(fn + εF0hn, u0) on

[0, T ]. Then, there is a function u ∈ W 1,2(0, T ;V ) such that u is a unique solution to
CP ε

w(f + εF0h, u0) on [0, T ] and

un → u in C([0, T ];V ) as n→ ∞.

Proof. For each ε > 0 we put

ψtε(w; z) := εφ0(v0; z) + ψt(w; z), ∀z ∈ V. (5.22)

As easily checked, the family {ψtε} satisfies assumption (ψ) with ψt replaced by ψtε. In addi-
tion, from (5.22) and the general theory of maximal monotone operators of the subdifferen-
tial type, we observe that CP ε

w(f + εF0h, u0) can be regarded as CPw(ψ
t
ε, φ

t, g; f + εF0h, u0).
Note that f + εF0h ∈ L2(0, T ;V ∗). Therefore, applying Proposition 3.1 and Proposition
3.2, we observe that there is a unique solution uε ∈ W 1,2(0, T ;V ) to CPw(ψ

t
ε, φ

t, g; f + εF0h, u0),
i.e., CP ε

w(f + εF0h, u0), satisfying∫ T

0

ψtε(w;u
′
ε(t))dt+ sup

t∈[0,T ]
φt(w;uε(t)) ≤ N1(|u0|2V + |f + εF0h|2L2(0,T ;V ∗) + 1).

Since φ0(v0; z) ≥ C4|z|2V for all z ∈ V by (ϕ3), estimate (5.20) is immediately obtained
from the above inequality. Thus, the proof of (I) is complete.

We show (II). To this end, note from the continuity of F0 with (5.21) (cf. (5.18)) that

fn + εF0hn → f + εF0h in L2(0, T ;V ∗) as n→ ∞.

Since CP ε
wn
(fn + εF0hn, u0) can be regarded as CPwn(ψ

t
ε, φ

t, g; fn + εF0hn, u0), by apply-
ing Proposition 3.3 and the uniqueness of solution to CP ε

w(f + εF0h, u0) (cf. Proposition
3.2), the assertion (II) holds.

By similar arguments as in [24, Theorem 5.1], we can show the following result on
the relationship between CPw(f, u0) and CP

ε
w(f + εF0h, u0) with respect to w ∈ D0 and

ε ↓ 0.

Proposition 5.2 (cf. [24, Section 5]). Suppose that u0 ∈ V and assumptions (ψ), (ϕ),
and (g) are fulfilled. Then, the following two statements hold.
(I) Let ε ∈ (0, 1], {wε}ε∈(0,1] and {fε}ε∈(0,1] be any families in D0 and L

2(0, T ;V ∗), respec-
tively, such that sup

ε∈(0,1]

∫ T

0

ψt0(w
′
ε(t))dt <∞, wε → w in C([0, T ];H),

fε → f in L2(0, T ;V ∗) as ε ↓ 0.
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Let {hε}ε∈(0,1] be a bounded set in L2(0, T ;V ). Additionally, let uε be a unique solution
to CP ε

wε
(fε + εF0hε, u0) on [0, T ]. Then, there exist a sequence {εn}n∈N ⊂ {ε}ε∈(0,1] with

εn → 0 (as n → ∞) and a function u ∈ W 1,2(0, T ;V ) such that u is a solution to
CPw(f, u0) on [0, T ] and

uεn → u in C([0, T ];V ) as n→ ∞.

(II) Let u be any solution to CPw(f, u0) on [0, T ]. Then, there exist sequences {εn}n∈N ⊂
(0, 1] with εn → 0 (as n → ∞), {wn}n∈N ⊂ D0, {fn}n∈N ⊂ L2(0, T ;V ∗), {hn}n∈N ⊂
L2(0, T ;V ), and {uεn}n∈N ⊂ W 1,2(0, T ;V ) such that uεn is a unique solution to CP εn

wn
(fn + εnF0hn, u0)

on [0, T ],
sup
n∈N

|hn|L2(0,T ;V ) ≤ |u′|L2(0,T ;V ),

sup
n∈N

∫ T

0

ψt0(w
′
n(t))dt <∞, wn → w in L2(0, T ;V ),

uεn → u in C([0, T ];V ), fn → f in L2(0, T ;V ∗) as n→ ∞.

Proof. Now, we show (I). Note from Proposition 5.1 that the uniform estimate (5.20)
holds and uε satisfies that

εF0u
′
ε(t) + ξε(t) + ∂∗φ

t(wε;uε(t)) + g(wε; t, uε(t)) = fε(t) + εF0hε in V ∗, a.a. t ∈ (0, T ),

namely

ξε(t) + ∂∗φ
t(wε;uε(t)) + g(wε; t, uε(t)) = fε(t) + εF0hε − εF0u

′
ε(t) in V ∗,

a.a. t ∈ (0, T ),
(5.23)

with

ξε ∈ L2(0, T ;V ∗), ξε(t) ∈ ∂∗ψ
t(wε;u

′
ε(t)) in V

∗, a.a. t ∈ (0, T ), uε(0) = u0 in V,

namely, uε can be regarded as a solution to CPwε(fε + εF0hε − εF0u
′
ε, u0).

From (5.18) and the uniform estimate (5.20), we observe that

εC4|u′ε|2L2(0,T ;V ) +

∫ T

0

ψt(wε;u
′
ε(t))dt+ sup

t∈[0,T ]
φt(wε;uε(t))

≤ Ñ1(|u0|2V + |fε|2L2(0,T :V ∗) + ε2|hε|2L2(0,T ;V ) + 1),

(5.24)

where Ñ1 is a positive constant dependent on N1 and c′0 = C3. Therefore, it follows from
(ψ2) with (2.1), (3.1), (5.24), and the Ascoli–Arzelà theorem, we can find a sequence
{εn}ε∈N with εn ↓ 0 (as n→ ∞) and a function u ∈ W 1,2(0, T ;V ) such that

uεn → u in C([0, T ];H) and weakly in W 1,2(0, T ;V ),

uεn(t) → u(t) weakly in V, ∀t ∈ [0, T ],

as n→ ∞. Since fεn + εnF0hεn − εnF0u
′
εn → f in L2(0, T ;V ∗) (as n→ ∞) (cf. (5.18)), it

follows from Proposition 3.3 that the limit u is a solution of CPw(f, u0). Thus, the proof
of (I) is complete.
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Next, we show (II). To this end, let {εn}n∈N ⊂ (0, 1] be a sequence with εn → 0
as n → ∞. Additionally, let u be any solution to CPw(f, u0) on [0, T ]. Note that
u ∈ W 1,2(0, T ;V ) and the following evolution inclusion holds:

∂∗ψ
t(w;u′(t)) + ∂∗φ

t(w;u(t)) + g(w; t, u(t)) ∋ f(t) in V ∗ for a.a. t ∈ (0, T ). (5.25)

Adding εnF0u
′(t) to both sides in (5.25), we observe that the function u is also a solution to

CP εn
w (f + εnF0u

′, u0) on [0, T ]. Hence, we conclude that assertion (II) holds for uεn := u,
wn := w, fn := f , and hn := u′.

Thus, Proposition 5.2 has been proved.

Next, we consider an approximate problem for (OP)δ, fixing a parameter δ ∈ (0, 1].
Note from (ψ2), (2.1), and (3.2) that any solution u to CPw(f, u0) on [0, T ] satisfies the
following estimate:

∫ T

0

|u′(t)|2V dt ≤
N1

(
|u0|2V + |f |2L2(0,T ;V ∗) + 1

)
+ C2T

C1

. (5.26)

Therefore, we take and fix a positive number N > 0 so that

N2 ≥ N1 (|u0|2V +M2 + 1) + C2T

C1

, (5.27)

where M > 0 is the same positive constant as in the control space FM (cf. (1.2)).
For each ε ∈ (0, 1], we consider a perturbation of the control space Hε

N defined by

Hε
N :=

h ∈ W 1,2(0, T ;V ) ∩ L2(0, T ;X)

∣∣∣∣∣∣∣
|h|L2(0,T ;V ) ≤ N,

|h′|L2(0,T ;V ) ≤ ε−1N,

|h|L2(0,T ;X) ≤ ε−1N

 , (5.28)

where X is a reflexive Banach space such that X is densely and compactly embedded into
V .

Now, for each δ ∈ (0, 1] and ε ∈ (0, 1], we study the following control problem for the
state system CP ε

w(f + εF0h, u0), denoted by (OP)εδ:

Problem (OP)εδ: Find a triplet of control functions [w∗
δ,ε, f

∗
δ,ε, h

∗
δ,ε] ∈ WM ′(u0)×FM×Hε

N ,
called an optimal control, such that

Eδ,ε(w
∗
δ,ε, f

∗
δ,ε, h

∗
δ,ε) = inf

[w,f,h]∈WM′ (u0)×FM×Hε
N

Eδ,ε(w, f, h).

Here, Eδ,ε(w, f, h) is the cost functional defined by

Eδ,ε(w, f, h) :=
1

2

∫ T

0

|uε(t)− uad(t)|2V dt+
1

2

∫ T

0

|f(t)|2V ∗dt

+
1

2δ

∫ T

0

|uε(t)− w(t)|2V dt+
ε

2

∫ T

0

|h(t)|2V dt,
(5.29)
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where [w, f, h] is any control in WM ′(u0)×FM ×Hε
N , uε is a unique solution to the state

system CP ε
w(f + εF0h, u0), and uad ∈ L2(0, T ;V ) is the given target profile.

Note that (OP)εδ is the standard optimal control problem, because the state system
CP ε

w(f + εF0h, u0) has a unique solution on [0, T ] (cf. Proposition 3.2). Using similar
idea as in [24, Theorem 5.2], we show the following result on the relationship between
(OP)δ and (OP)εδ with respect to ε ∈ (0, 1].

Theorem 5.2 (cf. [24, Theorem 5.2]). Suppose that u0 ∈ V and assumptions (ψ), (ϕ),
and (g) are fulfilled. Let uad ∈ L2(0, T ;V ) and δ ∈ (0, 1]. Then, we have:
(I) For each ε ∈ (0, 1], (OP)εδ has at least one optimal control [w∗

δ,ε, f
∗
δ,ε, h

∗
δ,ε] ∈ WM ′(u0)×

FM ×Hε
N , namely,

Eδ,ε(w
∗
δ,ε, f

∗
δ,ε, h

∗
δ,ε) = inf

[w,f,h]∈WM′ (u0)×FM×Hε
N

Eδ,ε(w, f, h).

(II) Let ε ∈ (0, 1], and let [w∗
δ,ε, f

∗
δ,ε, h

∗
δ,ε] ∈ WM ′(u0)×FM ×Hε

N be an optimal control of
the approximate problem (OP)εδ. Additionally, assume that

(H) For any function h ∈ L2(0, T ;V ) with |h|L2(0,T ;V ) ≤ N , there exists a sequence
{hε}ε∈(0,1] of functions hε ∈ Hε

N such that

hε → h in L2(0, T ;V ) as ε→ 0.

Then, there exists a sequence {εn}n∈N ⊂ {ε}ε∈(0,1] with εn → 0 (n → ∞) such that any
weak limit function [w∗

δ , f
∗
δ ] of {[w∗

δ,εn
, f ∗
δ,εn

]}n∈N in L2(0, T ;V )×L2(0, T ;V ∗) is an optimal
control for (OP)δ.

Remark 5.2 (cf. [24, Remark 5.1]). The main point of assumption (H) is to guarantee
the compactness ofHε

N in L2(0, T ;V ). In any application treated in Section 6, assumption
(H) is automatically checked by the usual smoothness argument (e.g., the regularization
method using the mollifier and the convolution [1, Sections 2.28 and 3.16]). For instance,
in the case of V = W 1,p(Ω), 2 ≤ p < ∞, assumption (H) is easily verified by choosing
W 2,p(Ω) as the space X.

The following convergence result for solutions is a key component in the proof of
Theorem 5.2(II).

Proposition 5.3. Suppose that u0 ∈ V and assumptions (ψ), (ϕ), (g), and (H) are
fulfilled. Let w ∈ WM ′(u0), f ∈ FM , and let u be any solution to CPw(f, u0) on [0, T ].
Then, there are sequences {εn}n∈N ⊂ (0, 1] with εn → 0 (as n→ ∞), {wn}n∈N ⊂ WM ′(u0),
{fn}n∈N ⊂ FM , {hn}n∈N ⊂ L2(0, T ;V ) with hn ∈ Hεn

N , and {uεn}n∈N ⊂ W 1,2(0, T ;V ) such
that uεn is a unique solution to CP εn

wn
(fn + εnF0hn, u0) on [0, T ], and

sup
n∈N

∫ T

0

ψt0(w
′
n(t))dt <∞, wn → w in L2(0, T ;V ),

uεn → u in C([0, T ];V ), fn → f in L2(0, T ;V ∗) as n→ ∞.
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Proof. Let u be any solution to CPw(f, u0) on [0, T ]. Then, note from (5.26) and (5.27)
that the solution u satisfies the following:

|u′|L2(0,T ;V ) ≤ N, (5.30)

∂∗ψ
t(w;u′(t)) + ∂∗φ

t(w;u(t)) + g(w; t, u(t)) ∋ f(t) in V ∗ for a.a. t ∈ (0, T ). (5.31)

Let δ ∈ (0, 1] be any constant. Adding δF0u
′(t) to both sides of (5.31), we observe that

the function u is also a solution to CP δ
w(f + δF0u

′, u0) on [0, T ] (cf. Proposition 5.2(II)).
By (5.30) and assumption (H), there exist a sequence {εk}k∈N ⊂ (0, 1] with εk → 0

and a sequence {hεk}k∈N of functions hεk ∈ Hεk
N such that

hεk → u′ in L2(0, T ;V ) as k → ∞. (5.32)

Let {δℓ}ℓ∈N be a sequence in (0, 1] so that δℓ → 0 as ℓ→ ∞. Now, for a fixed number
δℓ, we consider the approximate system CP δℓ

w (f + δℓF0hεk , u0) on [0, T ]. Then, taking a
subsequence if necessary (still denoted by {εk}k∈N), we observe from Proposition 5.1(II)
with (5.32) that a unique solution uℓεk ∈ W 1,2(0, T ;V ) to CP δℓ

w (f + δℓF0hεk , u0) on [0, T ]
converges to the one ũℓ to CP δℓ

w (f + δℓF0u
′, u0) on [0, T ] in the following sense:

uℓεk → ũℓ in C([0, T ];V ) as k → ∞.

As u is also a solution to CP δℓ
w (f + δℓF0u

′, u0) on [0, T ], we infer from the uniqueness of
solutions to CP δℓ

w (f + δℓF0u
′, u0) that u = ũℓ, and hence

uℓεk → u in C([0, T ];V ) as k → ∞.

Note from hεk ∈ Hεk
N that {hεk}k∈N is bounded in L2(0, T ;V ); more precisely,

|hεk |L2(0,T ;V ) ≤ N for all k ≥ 1.

Therefore, from the diagonal argument with respect to the parameters k and ℓ, we verify
the validity of Proposition 5.3. Indeed, taking δn := εn, we derive the convergence by
setting uεn := unεn , wn := w, fn := f , and hn := hεn . Thus, the proof of Proposition 5.3 is
complete.

Now, let us prove Theorem 5.2, which is concerned with the relationship between
(OP)δ and (OP)εδ with respect to ε ∈ (0, 1].

Proof of Theorem 5.2. We first prove (I). Using the standard argument with Proposition
5.1(II), we can show (I) concerning the existence of an optimal control for (OP)εδ. Indeed,
let δ ∈ (0, 1] and ε ∈ (0, 1] be fixed. Then, we observe from (5.29) that Eδ,ε(w, f, h) ≥ 0
for all [w, f, h] ∈ WM ′(u0)× FM ×Hε

N . Let {[wn, fn, hn]}n∈N ⊂ WM ′(u0)× FM ×Hε
N be

a minimizing sequence such that

d∗δ,ε := inf
[w,f,h]∈WM′ (u0)×FM×Hε

N

Eδ,ε(w, f, h) = lim
n→∞

Eδ,ε(wn, fn, hn).
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Here, we observe from {[wn, fn, hn]}n∈N ⊂ WM ′(u0) × FM ×Hε
N , (5.3), (1.2), and (5.28)

that

sup
n∈N

∫ T

0

ψt0(w
′
n(t))dt ≤M ′, (5.33)

{wn}n∈N is bounded in W 1,2(0, T ;V ),

{fn}n∈N is bounded in W 1,2(0, T ;V ∗) ∩ L2(0, T ;H),

{hn}n∈N is bounded in W 1,2(0, T ;V ) ∩ L2(0, T ;X).

Thus, with the help of the Ascoli–Arzelà theorem and the Aubin compactness theorem
(cf. [26, Chapter 1, Section 5]), there exist a subsequence {nk}k∈N ⊂ {n}n∈N and a triplet
of functions [w∗, f ∗, h∗] ∈ WM ′(u0)×FM ×Hε

N such that

wnk
→ w∗ weakly in W 1,2(0, T ;V ),

in C([0, T ];H),

}
, (5.34)

fnk
→ f ∗ weakly in W 1,2(0, T ;V ∗),

weakly in L2(0, T ;H),

in L2(0, T ;V ∗),

 , (5.35)

and
hnk

→ h∗ weakly in W 1,2(0, T ;V ),

weakly in L2(0, T ;X),

in L2(0, T ;V ),

 , (5.36)

hence, by the continuity of F0 (cf. (5.18)),

F0hnk
→ F0h

∗ in L2(0, T ;V ∗), (5.37)

as k → ∞.
Let unk

be a unique solution to CP ε
wnk

(fnk
+ εF0hnk

, u0) on [0, T ]. Then, we in-

fer from Proposition 5.1(II) with (5.33)–(5.37) that there is a unique solution u∗ to
CP ε

w∗(f ∗ + εF0h
∗, u0), on [0, T ] satisfying

unk
→ u∗ in C([0, T ];V ) as k → ∞. (5.38)

Therefore, it follows from (5.34)–(5.38) and the weak lower semicontinuity of L2(0, T ;V )-
norm, we observe that

Eδ,ε(w
∗, f ∗, h∗) ≤ lim inf

k→∞
Eδ,ε(wnk

, fnk
, hnk

) = lim
k→∞

Eδ,ε(wnk
, fnk

, hnk
)

= inf
[w,f,h]∈WM′ (u0)×FM×Hε

N

Eδ,ε(w, f, h)

= d∗δ,ε,

which implies that [w∗, f ∗, h∗] ∈ WM ′(u0) × FM × Hε
N is an optimal control for (OP)εδ.

Thus, the proof of (I) is complete.
Next, we prove (II) by approximating the admissible optimal pair for (OP)δ.
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Define d∗δ := inf [w,f ]∈WM′ (u0)×FM
Eδ(w, f) and let [w̃∗, f̃ ∗] be any optimal control for

(OP)δ with its optimal state ũ∗, namely, ũ∗ ∈ S(w̃∗, f̃ ∗) and

d∗δ = Eδ(w̃
∗, f̃ ∗)

=
1

2

∫ T

0

|ũ∗(t)− uad(t)|2V dt+
1

2

∫ T

0

|f̃ ∗(t)|2V ∗dt+
1

2δ

∫ T

0

|ũ∗(t)− w̃∗(t)|2V dt.

Now, we approximate the admissible optimal triplet [ũ∗, w̃∗, f̃ ∗] by applying Proposi-
tion 5.3. Indeed, we observe from Proposition 5.3 that there exist sequences {εn}n∈N ⊂
(0, 1] with εn → 0 (as n → ∞), {wn}n∈N ⊂ WM ′(u0), {fn}n∈N ⊂ FM , {hn}n∈N ⊂
L2(0, T ;V ) with hn ∈ Hεn

N , and {uεn}n∈N ⊂ W 1,2(0, T ;V ) such that uεn is a unique
solution to CP εn

wn
(fn + εnF0hn, u0) on [0, T ],

sup
n∈N

∫ T

0

ψt0(w
′
n(t))dt <∞, wn → w̃∗ in L2(0, T ;V ), (5.39)

uεn → ũ∗ in C([0, T ];V ), (5.40)

and
fn → f̃ ∗ in L2(0, T ;V ∗), (5.41)

as n→ ∞.
Note from hn ∈ Hεn

N that {hn}n∈N is bounded in L2(0, T ;V ); more precisely,

|hn|L2(0,T ;V ) ≤ N for all n ≥ 1.

Therefore, from (5.1), (5.2), (5.29), and (5.39)–(5.41), it follows that

d∗δ = Eδ(w̃
∗, f̃ ∗)

=
1

2

∫ T

0

|ũ∗(t)− uad(t)|2V dt+
1

2

∫ T

0

|f̃ ∗(t)|2V ∗dt

+
1

2δ

∫ T

0

|ũ∗(t)− w̃∗(t)|2V dt

= lim
n→∞

{
1

2

∫ T

0

|uεn(t)− uad(t)|2V dt+
1

2

∫ T

0

|fn(t)|2V ∗dt

+
1

2δ

∫ T

0

|uεn(t)− wn(t)|2V dt
}

= lim
n→∞

Eδ,εn(wn, fn, hn)

≥ lim sup
n→∞

d∗δ,εn , (5.42)

where d∗δ,εn := inf [w,f,h]∈WM′ (u0)×FM×Hεn
N
Eδ,εn(w, f, h).

Now, let {[w∗
εn , f

∗
εn , h

∗
εn ]}n∈N be any sequence of optimal controls [w∗

εn , f
∗
εn , h

∗
εn ] for

(OP)εnδ . In addition, let u∗εn be a unique solution to CP εn
w∗

εn
(f ∗
εn + εnF0h

∗
εn , u0) on [0, T ].

Then, it follows from [w∗
εn , f

∗
εn , h

∗
εn ] ∈ WM ′(u0)×FM ×Hεn

N , (5.3), (1.2), and (5.28) that

sup
n∈N

∫ T

0

ψt0((w
∗
εn)

′(t))dt ≤M ′, (5.43)
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{w∗
εn}n∈N is bounded in W 1,2(0, T ;V ),

{f ∗
εn}n∈N is bounded in W 1,2(0, T ;V ∗) ∩ L2(0, T ;H),

{h∗εn}n∈N is bounded in L2(0, T ;V ). (5.44)

Therefore, by the Ascoli–Arzelà theorem and the Aubin compactness theorem (cf. [26,
Chapter 1, Section 5]), there exist a subsequence {nk}k∈N ⊂ {n}n∈N and a pair of functions
[w∗, f ∗] ∈ WM ′(u0)×FM such that εnk

↓ 0 and

w∗
εnk

→ w∗ weakly in W 1,2(0, T ;V ),

in C([0, T ];H),

}
(5.45)

f ∗
εnk

→ f ∗ weakly in W 1,2(0, T ;V ∗),

weakly in L2(0, T ;H),

in L2(0, T ;V ∗),

 (5.46)

as k → ∞. Then, taking a subsequence if necessary, we infer from Proposition 5.2(I) with
(5.43)–(5.46) that there is a solution u∗ to CPw∗(f ∗, u0) on [0, T ] satisfying

u∗εnk
→ u∗ in C([0, T ];V ) as k → ∞. (5.47)

Next, taking a subsequence if necessary, we choose a subsequence of {nk}k∈N (still
denoted by {nk}k∈N) so that

lim inf
n→∞

d∗δ,εn = lim
k→∞

d∗δ,εnk
.

Therefore, it follows from (5.1), (5.2), (5.45)–(5.47), and u∗ ∈ S(w∗, f ∗) that

lim inf
n→∞

d∗δ,εn

= lim
k→∞

d∗δ,εnk
= lim

k→∞
Eδ,εnk

(w∗
εnk
, f ∗
εnk
, h∗εnk

)

= lim inf
k→∞

{
1

2

∫ T

0

|u∗εnk
(t)− uad(t)|2V dt+

1

2

∫ T

0

|f ∗
εnk

(t)|2V ∗dt

+
1

2δ

∫ T

0

|u∗εnk
(t)− w∗

εnk
(t)|2V dt+

εnk

2

∫ T

0

|h∗εnk
(t)|2V dt

}
≥1

2

∫ T

0

|u∗(t)− uad(t)|2V dt+
1

2

∫ T

0

|f ∗(t)|2V ∗dt+
1

2δ

∫ T

0

|u∗(t)− w∗(t)|2V dt

=πδ[w∗,f∗](u
∗)

≥Eδ(w∗, f ∗)

≥d∗δ . (5.48)

On account of (5.48) and inequality (5.42), we conclude that

d∗δ = lim
n→∞

d∗δ,εn = Eδ(w
∗, f ∗).

Hence, [w∗, f ∗] ∈ WM ′(u0) × FM is an optimal control for (OP)δ and u∗ is its optimal
state. Thus, the proof of Theorem 5.2 is complete.
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Note that Theorem 5.1 is the result of relationship between (OP) and (OP)δ with
respect to δ ∈ (0, 1]. In addition, Theorem 5.2 is the result of relationship between (OP)δ
and (OP)εδ with respect to ε ∈ (0, 1]. Therefore, it is worth studying (OP)εδ for sufficient
small δ, ε ∈ (0, 1], instead of considering (OP), from a numerical point of view.

Remark 5.3. In this Section 5, without the assumption (3.3) in Proposition 3.2 (or (3.4)–
(3.5) in Remark 3.1), we consider the singular optimal control problem for CPw(f, u0). If
we suppose (3.3) (or (3.4)–(3.5)), then CPw(f, u0) has a unique solution, therefore, the
corresponding optimal control problem (OP)δ is of the standard type for all δ ∈ (0, 1].
Hence, problems CP (f, u0) and (OP) can be approximated by the well-posed state system
CPw(f, u0) and the standard optimal control problem (OP)δ, respectively, namely, we
don’t have to consider approximate problems CP ε

w(f + εF0h, u0) and (OP)εδ (ε ∈ (0, 1])
under (3.3) (or (3.4)–(3.5)), for instance.

6 Applications

In this section we give applications of general results (Theorems 4.1, 5.1, and 5.2). In-
deed, we consider doubly nonlinear quasi-variational inequalities with time-dependent
constraints, in which the quasi-variational structure appears in our class of doubly non-
linear evolution inclusions, more concretely, in the v-dependence of ψt(v; ·), φt(v; ·), and
g(v; ·, ·).

6.1 Doubly nonlinear quasi-variational evolution inclusions

Let Ω be a bounded domain in RN (1 ≤ N <∞) with a smooth boundary Γ := ∂Ω, and
let Q := Ω× (0, T ) and Σ := Γ× (0, T ) for 0 < T <∞. Put

V := H1
0 (Ω), H := L2(Ω), V ∗ := H−1(Ω), X := H2(Ω);

we employ |z|V := |∇z|H as the norm of V , and ⟨·, ·⟩ stands for the duality pairing
between V ∗ and V . In this subsection, we treat a quasi-variational inequality with gradient
constraint for time derivatives (cf. [25, Section 4]).

Let ρ be a prescribed obstacle function such that

ρ := ρ(x, t, r) ∈ C(Q× R),

0 < ρ∗ ≤ ρ(x, t, r) ≤ ρ∗, ∀(x, t, r) ∈ Q× R,

|ρ(x, t1, r1)− ρ(x, t2, r2)| ≤ Lρ(|t1 − t2|+ |r1 − r2|),
∀ti ∈ [0, T ], ∀ri ∈ R, i = 1, 2, ∀x ∈ Ω,

(6.1)

where ρ∗, ρ
∗, and Lρ are positive constants.

Now we consider some applications of Theorems 4.1, 5.1, and 5.2.

(Application 1)
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For each t ∈ [0, T ] and v ∈ C([0, T ];H), we define a convex constraint set K(v; t) in
V by

K(v; t) := {z ∈ V ; |∇z(x)| ≤ ρ(x, t, v(x, t)), a.a. x ∈ Ω} , ∀t ∈ [0, T ], (6.2)

and a convex subset K0 of V by

K0 := {z ∈ V ; |∇z(x)| ≤ ρ∗, a.a. x ∈ Ω} . (6.3)

Now, consider the following quasi-variational inequality with time-dependent gradient
constraint:

u′(t) :=
∂u(x, t)

∂t
∈ K(u; t), a.a. t ∈ (0, T ), u(·, 0) = u0 in V, (6.4a)

τ0

∫
Ω

u′(x, t)(u′(x, t)− z(x))dx

+

∫
Ω

a(x, t, u(x, t))∇u(x, t) · ∇(u′(x, t)− z(x))dx

+

∫
Ω

g(x, t, u(x, t))(u′(x, t)− z(x))dx

≤
∫
Ω

f(x, t)(u′(x, t)− z(x))dx, ∀z ∈ K(u; t), a.a. t ∈ (0, T ),

(6.4b)

where τ0 ≥ 0 is a constant, g(·, ·, ·) is a Lipschitz continuous function on Q× R, i.e.,

|g(x1, t1, r1)− g(x2, t2, r2)| ≤ Lg(|x1 − x2|+ |t1 − t2|+ |r1 − r2|),

∀(xi, ti) ∈ Q, ∀ri ∈ R, i = 1, 2,
(6.5)

with a positive constant Lg, f is a function given in L2(0, T ;H), u0 is an initial datum
given in V , and a(·, ·, ·) is a prescribed function in C(Q× R) such that

a∗ ≤ a(x, t, r) ≤ a∗, ∀(x, t) ∈ Q, ∀r ∈ R,

|a(x, t1, r1)− a(x, t2, r2)| ≤ La(|t1 − t2|+ |r1 − r2|),
∀ti ∈ [0, T ], ∀ri ∈ R, i = 1, 2, ∀x ∈ Ω,

(6.6)

where a∗, a
∗, and La are positive constants.

A function u : [0, T ] → V is called a solution to (6.4):= {(6.4a), (6.4b)}, if u ∈
W 1,2(0, T ;V ) and all of the properties required in (6.4) are fulfilled. In order to reformulate
problem (6.4) as the form CP (ψt, φt, g; f, u0), the functionals ψt0(·), ψt(v; ·), φt(v; ·) are
set up as follows:

ψt0(z) := IK0(z), ∀z ∈ V, ∀t ∈ [0, T ], (6.7)

and we define

D0 = {v ∈ W 1,2(0, T ;V ) | v′(t) ∈ K0, a.a. t ∈ (0, T ), v(0) = u0 in V }, (6.8)

ψt(v; z) :=
τ0
2

∫
Ω

|z(x)|2dx+ IK(v;t)(z), ∀z ∈ V, ∀t ∈ [0, T ], ∀v ∈ D0, (6.9)
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φt(v; z) :=
1

2

∫
Ω

a(x, t, v(x, t))|∇z(x)|2dx, ∀z ∈ V, ∀t ∈ [0, T ], ∀v ∈ D0, (6.10)

where IK(v;t)(·) is the indicator function of K(v; t), namely,

IK(v;t)(z) :=

{
0, if z ∈ K(v; t),

+∞, otherwise.

It is easy to see from the definition of subdifferential that

(i) Let v ∈ D0 and t ∈ [0, T ]. Then z∗ ∈ ∂∗ψ
t(v; z) if and only if z∗ ∈ V ∗, z ∈ K(v; t),

and

τ0

∫
Ω

z(x)(z(x)− w(x))dx+ ⟨−z∗, z − w⟩ ≤ 0, ∀w ∈ K(v; t).

(ii) Let v ∈ D0 and t ∈ [0, T ]. Then ∂∗φ
t(v; ·) is singlevalued, linear, and bounded from

V into V ∗ and

⟨∂∗φt(v; z), w⟩ =
∫
Ω

a(x, t, v(x, t))∇z(x) · ∇w(x)dx, ∀w ∈ V.

In addition, for each v ∈ D0 and t ∈ [0, T ], we define g(v; t, ·) : V → V ∗ by

⟨g(v; t, z), w⟩ :=
∫
Ω

g(x, t, z(x))w(x)dx, ∀z, w ∈ V. (6.11)

Then, from the above characterizations (i) and (ii) of subdifferentials ψt(v; ·) and φt(v; ·),
it follows that problem (6.4) is reformulated as CP (ψt, φt, g; f, u0).

Note that the next lemma was shown in [25], therefore, we omit its detailed proof.

Lemma 6.1 (cf. [25, Lemma 4.2]). Let ψt and φt be the functionals defined by (6.9) and
(6.10), respectively. Then, assumptions (ψ) and (ϕ) are fulfilled.

The following solvability result for (6.4) was proved in [25, Proposition 4.1].

Proposition 6.1 (cf. [25, Proposition 4.1]). Assume that (6.1), (6.5), and (6.6) are
fulfilled by functions ρ(x, t, r), g(x, t, r), and a(x, t, r). Let τ0 ≥ 0, f ∈ L2(0, T ;H), and
u0 ∈ V . Then, problem (6.4) admits at least one solution u in W 1,2(0, T ;V ).

Proof. On account of Lemma 6.1, {ψt(v; ·)} and {φt(v; ·)} given by (6.2), (6.9), and (6.10)
fulfill assumptions (ψ) and (ϕ), and (g) is trivially verified. Hence, all the assumptions of
Proposition 2.1 are fulfilled. Therefore,

∂∗ψ
t(u;u′(t)) + ∂∗φ

t(u;u(t)) + g(u; t, u(t)) ∋ f(t) in V ∗, u(0) = u0 in V,

admits a solution u in W 1,2(0, T ;V ). By the characterization (i) and (ii) of ∂∗ψ
t(u; ·) and

∂∗φ
t(u; ·), and the definition of g(u; t, ·), u is a solution to (6.4) on [0, T ].
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Note that ∂∗ψ
t(v; ·) does not satisfy the assumption in Proposition 2.2, since ∂∗ψ

t(v; ·)
is dependent on v ∈ D0. Therefore, problem (6.4) generally has multiple solutions, and
the corresponding optimal control problem is of the singular type. We now discuss the
singular optimal control problem for (6.4). On account of Proposition 6.1, problem (6.4)
can be reformulated as the form CP (ψt, φt, g; f, u0). Therefore, by applying Theorem 4.1
with V = H1

0 (Ω), H = L2(Ω), and V ∗ = H−1(Ω), we have the following result concerning
the existence of an optimal control of (OP) for (6.4).

Proposition 6.2. Let uad be a given target function in L2(0, T ;V ), u0 ∈ V , and let
M > 0 and τ0 ≥ 0 be given constants. Then, problem (OP), corresponding to the state
system (6.4), has at least one optimal control f ∗ ∈ FM , namely,

J(f ∗) = inf
f∈FM

J(f),

where FM is the control space defined by (1.2) with V ∗ = H−1(Ω) and H = L2(Ω), and
J(·) is the cost functional for (OP), which is defined by (1.3) and (1.4).

Next, we discuss the approximate system for (6.4). Let D0 be the set defined by
(6.8). Then, for each w ∈ D0, we consider the following parameter-dependent variational
inequality with time-dependent gradient constraint K(w; t):

u′(t) ∈ K(w; t), a.a. t ∈ (0, T ), u(·, 0) = u0 in V, (6.12a)

τ0

∫
Ω

u′(x, t)(u′(x, t)− z(x))dx

+

∫
Ω

a(x, t, w(x, t))∇u(x, t) · ∇(u′(x, t)− z(x))dx

+

∫
Ω

g(x, t, u(x, t))(u′(x, t)− z(x))dx

≤
∫
Ω

f(x, t)(u′(x, t)− z(x))dx, ∀z ∈ K(w; t), a.a. t ∈ (0, T ),

(6.12b)

where τ0 ≥ 0, K(·; ·), a(·, ·, ·), g(·, ·, ·), f , and u0 are the same as in (6.4).

On account of Proposition 3.1 and Remark 3.1, we have the following existence–
uniqueness result for problem (6.12):={(6.12a), (6.12b)}.
Proposition 6.3. Let τ0 ≥ 0 be a constant. Then, for each u0 ∈ V , w ∈ D0, and f ∈
L2(0, T ;H), problem (6.12) admits at least one solution u in W 1,2(0, T ;V ). In addition,
if τ0 > 0, then the solution to (6.12) is unique.

Proof. For each t ∈ [0, T ] and w ∈ D0, the (t, w)-dependent functionals ψt(w; z) and
φt(w; z) are defined by (6.9) and (6.10) with v = w, respectively. In addition, for each
t ∈ [0, T ] and w ∈ D0, the (t, w)-dependent operator g(w; t, z) is defined by (6.11) with
v = w. Then, it follows from Lemma 6.1 that assumptions (ψ), (ϕ), and (g) are verified.
Therefore, by arguments similar to Proposition 6.1, we easily observe that (6.12) can be
reformulated in the abstract form CPw(f, u0). Furthermore, if τ0 > 0, we observe from
the characterization (i) of ∂∗ψ

t(v; ·) that (3.4) holds. Therefore, by Proposition 3.1 and
Remark 3.1, we have shown that problem (6.12) has a solution on [0, T ], and if τ0 > 0,
then it is unique.
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In the case τ0 = 0, problem (6.12) generally has multiple solutions, therefore, the cor-
responding optimal control problem is of the singular type. Hence, by applying Theorem
5.1(I) with V = H1

0 (Ω) and H = L2(Ω), we can show the following existence result of
optimal controls of (OP)δ (δ ∈ (0, 1]) for (6.12) and the control space WM ′(u0)×FM (see
Section 5 for the detailed formulation).

Proposition 6.4. Let uad be a given target function in L2(0, T ;V ), u0 ∈ V , and let
M > 0, M ′ > 0 be given constants. Assume τ0 = 0. Then, for each δ ∈ (0, 1], problem
(OP)δ, corresponding to the state system (6.12), has at least one optimal control [w∗

δ , f
∗
δ ] ∈

WM ′(u0)×FM , namely,

Eδ(w
∗
δ , f

∗
δ ) = inf

[w,f ]∈WM′ (u0)×FM

Eδ(w, f),

where WM ′(u0) is the control space defined by (5.3) with V = H1
0 (Ω), and Eδ(·, ·) is the

cost functional defined by (5.1) and (5.2).

Hence, by applying Theorem 5.1(II), namely, by considering (6.12) and the corre-
sponding approximate optimal control problem (OP)δ (δ ∈ (0, 1]), we can approximate
(6.4) and its singular optimal control problem (OP) in the case when τ0 = 0.

We now employ the approximate system to (6.12), as proposed in Section 5, in the
case when τ0 = 0. Indeed, for each ε ∈ (0, 1] and the fixed function v0 ∈ D0, we consider
the following parameter-dependent variational inequality with time-dependent gradient
constraint K(w; t):

u′(t) ∈ K(w; t), a.a. t ∈ (0, T ), u(·, 0) = u0 in V, (6.13a)

ε

∫
Ω

a(x, 0, v0(x, t))∇u′(x, t)(u′(x, t)− z(x))dx

+

∫
Ω

a(x, t, w(x, t))∇u(x, t) · ∇(u′(x, t)− z(x))dx

+

∫
Ω

g(x, t, u(x, t))(u′(x, t)− z(x))dx

≤
∫
Ω

f(x, t)(u′(x, t)− z(x))dx

+ε

∫
Ω

a(x, 0, v0(x, t))∇h(x, t) · ∇(u′(x, t)− z(x))dx

∀z ∈ K(w; t), a.a. t ∈ (0, T ),

(6.13b)

where K(·; ·), a(·, ·, ·), g(·, ·, ·), f , and u0 are the same as in (6.4), and h is a given function
in L2(0, T ;V ).

By the characterization (ii) of subdifferential of φt(v; ·) defined by (6.10), we observe
that the subdifferential F0 := ∂∗φ

0(v0; ·) is given by

⟨F0z,ϖ⟩ =
∫
Ω

a(x, 0, v0(x, t))∇z(x) · ∇ϖ(x)dx, ∀ϖ ∈ V. (6.14)
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Thus, by (6.6) we easily check that F0 is linear, coercive, continuous, and single-valued
maximal monotone from V into V ∗ satisfying (5.18) with V = H1

0 (Ω) and V
∗ = H−1(Ω).

From (6.14) and the facts identified in the proof of Proposition 6.3, problem (6.13) can
be reformulated in the abstract form CP ε

w(f + εF0h, u0). Therefore, Proposition 5.1(I)
implies the existence–uniqueness of solutions to (6.13) on [0, T ]. In addition, by applying
Proposition 5.2, we get the result on the relationship between (6.12) and (6.13), more
precisely, we observe that (6.13) is an approximate problem for (6.12).

Moreover, using the standard smoothness arguments (e.g., regularization by the mol-
lifier and the convolution [1, Sections 2.28 and 3.16]), we can check assumption (H) with
X = H2(Ω). Therefore, for each ε ∈ (0, 1], Theorem 5.2(I) implies that the approximate
optimal control problem (OP)εδ, corresponding to (6.13), has at least one optimal control
[w∗

δ,ε, f
∗
δ,ε, h

∗
δ,ε] ∈ WM ′(u0) × FM × Hε

N (cf. (5.3), (1.2), and (5.28)). Additionally, by
Theorem 5.2(II) on the relationship between (OP)δ and (OP)εδ, we see that (OP)δ is ap-
proximated by (OP)εδ as ε ↓ 0; more precisely, there exists a sequence {εn}n∈N ⊂ {ε}ε∈(0,1]
with εn → 0 (n → ∞) such that any weak limit function [w∗

δ , f
∗
δ ] of {[w∗

δ,εn
, f ∗
δ,εn

]}n∈N in
L2(0, T ;V )× L2(0, T ;V ∗) is an optimal control for (OP)δ.

Thus, it is worth studying (6.13) and its control problem (OP)εδ for sufficient small
δ, ε ∈ (0, 1], instead of considering (6.4) with τ0 = 0 and its singular control problem
(OP), from a numerical point of view.

Remark 6.1. In the case τ0 > 0, note from Proposition 6.3 that the solution to (6.12)
is unique, hence, the corresponding optimal control problem (OP)δ (δ ∈ (0, 1]) is of the
standard type. Thus, as mentioned in Remark 5.3, the non-well-posed state system (6.4)
and its singular optimal control problem (OP) are approximated by the well-posed state
system (6.12) and its standard optimal control problem (OP)δ, respectively, in the case
when τ0 > 0.

(Application 2)
Next, we are going to consider a doubly nonlinear quasi-variational inequality with

non-local obstacle function.
We here define an operator L : L2(0, T ;H) → L2(0, T ;H) by

L(v;x, t) :=
∫ t

0

∫
Ω

ℓ(x, t, y, τ, v(y, τ))dydτ + δ0, ∀(x, t) ∈ Q, ∀v ∈ L2(0, T ;H),

with a given positive constant δ0 and a given function ℓ ∈ C(Q × Q × R) satisfying the
following conditions for positive constants ℓ∗ and Lℓ:

0 ≤ ℓ(x, t, y, τ, r) ≤ ℓ∗, ∀(x, t, y, τ, r) ∈ Q×Q× R,

|ℓ(x, t1, y, τ, r1)− ℓ(x, t2, y, τ, r2)| ≤ Lℓ (|t1 − t2|+ |r1 − r2|) ,

∀ti ∈ [0, T ], ∀ri ∈ R, i = 1, 2, ∀(x, y, τ) ∈ Ω×Q,

With the functional L(v;x, t), we define a constraint set K(v; t) by

K(v; t) := {z ∈ V | |∇z(x)| ≤ L(v;x, t), a.a. x ∈ Ω}, ∀t ∈ [0, T ]. (6.15)
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Now, we consider the following quasi-variational inequality with time-dependent gra-
dient non-local constraint:

u′(t) ∈ K(u; t), a.a. t ∈ (0, T ), u(·, 0) = u0 in V, (6.16a)

τ0

∫
Ω

u′(x, t)(u′(x, t)− z(x))dx

+

∫
Ω

a(x, t, u(x, t))∇u(x, t) · ∇(u′(x, t)− z(x))dx

+

∫
Ω

g(x, t, u(x, t))(u′(x, t)− z(x))dx

≤
∫
Ω

f(x, t)(u′(x, t)− z(x))dx, ∀z ∈ K(u; t), a.a. t ∈ (0, T ),

(6.16b)

where τ0 ≥ 0, a(·, ·, ·), g(·, ·, ·), f , and u0 are the same as in problem (6.4). Similarly define
functionals ψt(v; ·) and φt(v; ·) by (6.9) and (6.10) with (6.8). In addition, define the
(t, v)-dependent operator g(v; t, z) by (6.11). Then, we observe that all the assumptions
of Proposition 2.1 are fulfilled, and hence, problem (6.16):={(6.16a), (6.16b)} has at least
one solution u in W 1,2(0, T ;V ). Furthermore, by applying Theorem 4.1 with V = H1

0 (Ω),
H = L2(Ω), and V ∗ = H−1(Ω), we can prove the existence of an optimal control of (OP),
corresponding to (6.16).

Using an approach similar to that employed in Application 1, the state problem (6.16)
and its optimal control problem can be approximated by a parameter-dependent vari-
ational inequalities similar to (6.12) and (6.13), and their corresponding approximate
optimal control problems, respectively.

6.2 Doubly nonlinear evolution inclusions of Navier-Stokes type

In this subsection, we investigate doubly nonlinear evolution inclusions of Navier-Stokes
type, which was treated in [25, Section 4.2].

Let Ω be a smooth bounded domain in R3, with usual notation Q := Ω× (0, T ), 0 <
T <∞, Γ := ∂Ω, and Σ := Γ× (0, T );

V := H1
0 (Ω), H := L2(Ω), [V ]3 := V × V × V, [H]3 := H ×H ×H.

Now, we define the solenoidal function space as follows:

Dσ := {z = (z(1), z(2), z(3)) ∈ [C∞
0 (Ω)]3 | divz = 0 in Ω},

where [C∞
0 (Ω)]3 := C∞

0 (Ω)× C∞
0 (Ω)× C∞

0 (Ω), and put

Hσ := the closure of Dσ in [H]3, V σ := the closure of Dσ in [V ]3,

with usual norms

|z|Hσ :=

{
3∑

k=1

|z(k)|2H

} 1
2

, |z|V σ :=

{
3∑

k=1

|∇z(k)|2H

} 1
2

.
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In addition, we denote the dual space of V σ by V ∗
σ. For simplicity we denote the inner

product in Hσ by (·, ·)σ and the duality pairing between V ∗
σ and V σ by ⟨·, ·⟩σ.

Let ρ be a prescribed obstacle function in C(Q× R3) such that

0 < ρ∗ ≤ ρ(x, t, r) ≤ ρ∗, ∀(x, t, r) ∈ Q× R3. (6.17)

Here ρ∗ and ρ∗ are positive constants, and K0 is a closed convex subset of V σ given by

K0 := {z ∈ V σ | |∇z(x)| ≤ ρ∗, a.e. on Ω},

and put

D0 := {v ∈ W 1,2(0, T ;V σ) | v′(t) ∈ K0, a.a. t ∈ (0, T ), v(0) = u0 in V σ}, (6.18)

where u0 is a given initial datum in V σ (cf. (6.23a)).
Also, for each v ∈ D0 and t ∈ [0, T ], define

K(v; t) := {z ∈ V σ | |∇z(x)| ≤ ρ(x, t,v(x, t)), a.e. on Ω}, ∀t ∈ [0, T ]. (6.19)

Now, for each v ∈ D0 and t ∈ [0, T ], we define functionals ψt0(·), ψt(v; ·), and φt(v; ·)
on V σ by

ψt0(z) := IK0(z), ∀z ∈ V σ, ∀t ∈ [0, T ],

ψt(v; z) :=
τ0
2

∫
Ω

|z(x)|2dx+ IK(v;t)(z), ∀z ∈ V σ, ∀t ∈ [0, T ], (6.20)

φt(v; z) :=
1

2

∫
Ω

a(x, t,v(x, t))|∇z(x)|2dx, ∀z ∈ V σ, ∀t ∈ [0, T ], (6.21)

and g(v; t, ·) : V σ → V ∗
σ by

⟨g(v; t,w), z⟩σ :=

∫
Ω

(v(x, t) · ∇)w(x) · z(x)dx

=
3∑

i,j=1

∫
Ω

v(i)(x, t)
∂w(j)(x)

∂xi
z(j)(x)dx,

∀w = (w(1), w(2), w(3)), z = (z(1), z(2), z(3)) ∈ V σ.

(6.22)

Now we propose the following quasi-variational inequality of Navier–Stokes type with
gradient constraint for time-derivative:

u′(t) :=
∂u(x, t)

∂t
∈ K(u; t), a.a. t ∈ (0, T ), u(·, 0) = u0 in V σ, (6.23a)

τ0

∫
Ω

u′(x, t) · (u′(x, t)− z(x))dx

+

∫
Ω

a(x, t,u(x, t))∇u(x, t) · ∇(u′(x, t)− z(x))dx

+⟨g(u; t,u(t)),u′(t)− z⟩σ

≤
∫
Ω

f(x, t) · (u′(x, t)− z(x))dx, ∀z ∈ K(u; t), a.a. t ∈ (0, T ),

(6.23b)
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where τ0 ≥ 0 is a constant, f is a function given in L2(0, T ;Hσ), u0 is an initial datum
given in V σ, and a(·, ·, ·) is a function in C(Q× R3) such that

a∗ ≤ a(x, t, r) ≤ a∗, ∀(x, t) ∈ Q, ∀r ∈ R3,

|a(x, t1, r1)− a(x, t2, r2)| ≤ La(|t1 − t2|+ |r1 − r2|),

∀ti ∈ [0, T ], ∀ri ∈ R3, i = 1, 2, ∀x ∈ Ω,

(6.24)

where a∗, a
∗, and La are positive constants.

In [25, Proposition 4.2] the following result on the solvability of (6.23) := {(6.23a), (6.23b)}
was shown.

Proposition 6.5 (cf. [25, Proposition 4.2]). Let ρ := ρ(x, t, r) and a := a(x, t, r) be
functions for which (6.17) and (6.24) hold, and let f ∈ L2(0, T ;Hσ) and u0 ∈ V σ. Then,
problem (6.23) := {(6.23a), (6.23b)} admits at least one solution u in W 1,2(0, T ;V σ).

Proof. From (6.20) and (6.21) of the definitions of ψt and φt we see the following charac-
terizations of their subdifferentials:

(i) Let v ∈ D0 and t ∈ [0, T ]. Then z∗ ∈ ∂∗ψ
t(v; z) if and only if z∗ ∈ V ∗

σ, z ∈ K(v; t),
and

τ0

∫
Ω

z(x) · (z(x)−w(x))dx+ ⟨−z∗, z −w⟩σ ≤ 0, ∀w ∈ K(v; t).

(ii) Let v ∈ D0 and t ∈ [0, T ]. Then ∂∗φ
t(v; ·) is singlevalued, linear, and bounded from

V σ into V ∗
σ and

⟨∂∗φt(v; z),w⟩σ =

∫
Ω

a(x, t,v(x, t))∇z(x) · ∇w(x)dx, ∀z,w ∈ V σ.

These characterizations show that the quasi-variational inequality (6.23) is described as{
∂∗ψ

t(u;u′(t)) + ∂∗φ
t(u;u(t)) + g(u; t,u(t)) ∋ f(t) in V ∗

σ, a.a. t ∈ (0, T ),

u(0) = u0 in V σ.
(6.25)

In [25, Lemma 4.3] we checked that assumptions (ψ), (ϕ), and (g) are fulfilled by functions
ψt, φt, and g given by (6.20)∼(6.22). Therefore, on account of Proposition 2.1, we obtain
Proposition 6.5.

Note that ∂∗ψ
t(v; ·) and g do not satisfy the assumptions in Proposition 2.2. Therefore,

problem (6.23) generally has multiple solutions, and the corresponding optimal control
problem is of the singular type. On account of Proposition 6.5, problem (6.23) can be
reformulated as the form (6.25), i.e., CP (ψt, φt, g;f ,u0). Therefore, by applying Theorem
4.1 with V = V σ, H = Hσ, and V

∗ := V ∗
σ, we have the following result concerning the

existence of an optimal control of (OP) for (6.23).
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Proposition 6.6. Let uad be a given target function in L2(0, T ;V σ), u0 ∈ V σ, and let
M > 0 and τ0 ≥ 0 be given constants. Then, problem (OP), corresponding to the state
system (6.23), has at least one optimal control f ∗ ∈ FM , namely,

J(f ∗) = inf
f∈FM

J(f),

where FM is the control space defined by (1.2) with H = Hσ and V ∗ := V ∗
σ, and J(·) is

the cost functional for (OP), which is similarly defined by (1.3) and (1.4).

Now, using an approach similar to that employed in Subsection 6.1, we approximate
(6.23) and its singular optimal control problem (OP). Indeed, let D0 be the set defined by
(6.18). Then, for eachw ∈ D0, we consider the following parameter-dependent variational
inequality with gradient constraint:

u′(t) ∈ K(w; t), a.a. t ∈ (0, T ), u(·, 0) = u0 in V σ, (6.26a)

τ0

∫
Ω

u′(x, t) · (u′(x, t)− z(x))dx

+

∫
Ω

a(x, t,w(x, t))∇u(x, t) · ∇(u′(x, t)− z(x))dx

+⟨g(w; t,u(t)),u′(t)− z⟩σ

≤
∫
Ω

f(x, t) · (u′(x, t)− z(x))dx, ∀z ∈ K(w; t), a.a. t ∈ (0, T ),

(6.26b)

where τ0 ≥ 0, K(·; ·), a(·, ·, ·), g(·; ·, ·), f , and u0 are the same as in (6.23).

On account of Proposition 3.1, we have the following existence result for problem
(6.26):={(6.26a), (6.26b)}.

Proposition 6.7. Let τ0 ≥ 0 be a constant. Then, for each u0 ∈ V σ, w ∈ D0, and
f ∈ L2(0, T ;Hσ), problem (6.26) admits at least one solution u in W 1,2(0, T ;V σ).

Proof. From arguments similar to those in Proposition 6.5, we observe that problem (6.26)
is described as{

∂∗ψ
t(w;u′(t)) + ∂∗φ

t(w;u(t)) + g(w; t,u(t)) ∋ f(t) in V ∗
σ, a.a. t ∈ (0, T ),

u(0) = u0 in V σ.

In [25, Lemma 4.3] we checked that assumptions (ψ), (ϕ), and (g) are fulfilled for ψt, φt,
and g given by (6.20)∼(6.22). Therefore, by Proposition 3.1, we have shown that problem
(6.26) admits at least one solution u in W 1,2(0, T ;V σ).

Note that ∂∗ψ
t(w; ·) does not satisfy (3.3). In addition, g does not satisfy (3.5).

Indeed, we observe from [25, Lemma 4.3] that

|g(w; t, z1)− g(w; t, z2)|V ∗
σ
≤ k4|z1 − z2|V σ , ∀w ∈ D0, zi ∈ V σ, (i = 1, 2),
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where k4 is a positive constant, dependent on the constant of the embedding V ↪→ L4(Ω).
Therefore, problem (6.26) generally has multiple solutions (cf. Proposition 3.2 and Re-
mark 3.1), and the corresponding optimal control problem is of the singular type. By
applying Theorem 5.1(I) with V = V σ, H = Hσ, and V ∗ := V ∗

σ, we can show the
following existence result of optimal controls of (OP)δ (δ ∈ (0, 1]) for (6.26).

Proposition 6.8. Let uad be a given target function in L2(0, T ;V σ), u0 ∈ V σ, and
let M > 0, M ′ > 0, and τ0 ≥ 0 be given constants. Then, for each δ ∈ (0, 1], problem
(OP)δ, corresponding to the state system (6.26), has at least one optimal control [w∗

δ ,f
∗
δ ] ∈

WM ′(u0)×FM , namely,

Eδ(w
∗
δ ,f

∗
δ) = inf

[w,f ]∈WM′ (u0)×FM

Eδ(w,f),

where WM ′(u0) is the control space defined by (5.3) with V = V σ, and Eδ(·, ·) is the cost
functional for (OP)δ, which is similarly defined by (5.1) and (5.2).

Taking an approach similar to that employed in Section 5, namely, by applying Theo-
rem 5.1(II) with V = V σ, H = Hσ, and V

∗ := V ∗
σ, the singular optimal control problem

(OP) for (6.23) can be approximated by (OP)δ (δ ∈ (0, 1]).
Finally, we approximate (6.26) by the well-posed state system. To this end, let v0 ∈ D0

be a fixed element. Then, for each w ∈ D0 and ε ∈ (0, 1], we consider the following
parameter-dependent variational inequality with gradient constraint:

u′(t) ∈ K(w; t), a.a. t ∈ (0, T ), u(·, 0) = u0 in V σ, (6.27a)

ε

∫
Ω

a(x, 0,v0(x, t))∇u′(x, t) · ∇(u′(x, t)− z(x))dx

+τ0

∫
Ω

u′(x, t) · (u′(x, t)− z(x))dx

+

∫
Ω

a(x, t,w(x, t))∇u(x, t) · ∇(u′(x, t)− z(x))dx

+⟨g(w; t,u(t)),u′(t)− z⟩σ

≤
∫
Ω

f(x, t) · (u′(x, t)− z(x))dx

+ε

∫
Ω

a(x, 0,v0(x, t))∇h(x, t) · ∇(u′(x, t)− z(x))dx

∀z ∈ K(w; t), a.a. t ∈ (0, T ),

(6.27b)

where h is a given function in L2(0, T ;V σ).
By the characterization (ii) of subdifferential of φt(v; ·) defined by (6.21) (cf. Propo-

sition 6.5), we observe that the subdifferential F0 := ∂∗φ
0(v0; ·) is given by

⟨F0z,ϖ⟩ =
∫
Ω

a(x, 0,v0(x, t))∇z(x) · ∇ϖ(x)dx, ∀ϖ ∈ V σ. (6.28)

Thus, by (6.24) we easily check that F0 is linear, coercive, continuous, and single-valued
maximal monotone from V σ into V ∗

σ satisfying (5.18) with V = V σ and V ∗ := V ∗
σ.
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From (6.28) and the facts identified in the proof of Proposition 6.7, problem (6.27)
can be reformulated in the abstract form CP ε

w(f + εF0h,u0):
εF0u

′(t) + ∂∗ψ
t(w;u′(t)) + ∂∗φ

t(w;u(t)) + g(w; t,u(t)) ∋ f(t) + εF0h(t) in V ∗
σ,

a.a. t ∈ (0, T ),
u(0) = u0 in V σ.

Therefore, Proposition 5.1(I) implies the existence–uniqueness of solutions to (6.27) on
[0, T ]. In addition, by Proposition 5.2, we get the result on the relationship between (6.26)
and (6.27). Namely, we observe that (6.26) is approximated by (6.27) as ε ↓ 0.

Moreover, using the standard smoothness arguments (e.g., regularization by the mol-
lifier and the convolution [1, Sections 2.28 and 3.16]), we can check assumption (H) with
V := V σ and X := [H2(Ω)]3∩V σ, where [H

2(Ω)]3 := H2(Ω)×H2(Ω)×H2(Ω). Therefore,
Theorem 5.2(I) implies that the approximate optimal control problem (OP)εδ, correspond-
ing to (6.27), has at least one optimal control [w∗

δ,ε,f
∗
δ,ε,h

∗
δ,ε] ∈ WM ′(u0)×FM ×Hε

N (cf.
(5.3), (1.2), and (5.28)). Additionally, by Theorem 5.2(II) on the relationship between
(OP)δ and (OP)εδ, we see that (OP)δ is approximated by (OP)εδ as ε ↓ 0; more precisely,
there exists a sequence {εn}n∈N ⊂ {ε}ε∈(0,1] with εn → 0 (n → ∞) such that any weak
limit function [w∗

δ ,f
∗
δ ] of {[w∗

δ,εn
,f ∗

δ,εn ]}n∈N in L2(0, T ;V σ) × L2(0, T ;V ∗
σ) is an optimal

control for (OP)δ.
Consequently, it is worth studying (6.27) and its control problem (OP)εδ for sufficient

small δ, ε ∈ (0, 1], instead of considering quasi-variational inequality (6.23) of Navier-
Stokes type and its singular control problem (OP), from a numerical point of view.
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