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Abstract. This paper is concerned with a parabolic variational obstacle problem (V I)
for a semimonotone operator coupled with a semi-linear heat equation (H). Denoting the
solutions of (V I) and (H) by u and θ, respectively, we suppose that the heat source term
of (H) depends on u and an interior obstacle of the form

|u| ≤ γ(θ)

is imposed. In case the obstacle function γ(θ) is continuous, but degenerate, namely
γ(θ) = 0 may happen somewhere, the continuity of u in time has not proved yet for a
general class of quasi-variational inequalities, such as {(V I), (H)}. In this paper we shall
discuss it in a typical case of {(V I), (H)}.
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1. Introduction

In this paper we treat a typical class of quasi-variational systems. Let Ω be a bounded
domain in RN , 2 ≤ N < ∞, with smooth boundary Γ := ∂Ω and put

0 < T < ∞, Q := Ω× (0, T ), Σ := Γ× (0, T ),

H := L2(Ω), V := W 1,p
0 (Ω) with 2 ≤ p < ∞, V ∗ : dual space of V.

In this case, we have

V ⊂ H ⊂ V ∗ with dense and compact embeddings;

we denote by ⟨·, ·⟩ the duality between V ∗ and V , by (·, ·)H the innner product in H and
by | · |H , | · |V and | · |V ∗ the norms in H, V and V ∗, respectively.

Our problem is formulated as follows:

Definition 1.1. A pair of functions {u, θ} is called a weak solution of QV I(γ; f, u0, θ0)
if it fulfills the following statements (a),(b),(c):

(a) (Regularity) θ ∈ W 1,2(0, T ;H1(Ω)) ∩ L∞(0, T ;H2(Ω)) (⊂ C(Q)) and
u ∈ C([0, T ];H) ∩ Lp(0, T ;V ).

(b) (Heat conduction) θ is the solution of

θt − κ∆θ = h(x, t, u) in L2(Ω), a.e. t ∈ (0, T ), (1.1)

∂θ

∂n
+ n0θ = 0 a.e. on Σ, θ(·, 0) = θ0 on Ω, (1.2)

where κ, n0 are positive constants, θt := ∂θ
∂t

and ∂θ
∂n

denotes the outward normal
derivative of θ on Γ.

(c) (Quasi-variational inequality) u is a solution of

|u(x, t)| ≤ γ(θ(x, t)) a.e. x ∈ Ω, ∀t ∈ [0, T ], u(0) = u0,∫ t

s

⟨η′, u− η⟩dτ +
1

p

∫ t

s

∫
Ω

a(x, τ, u)(|∇u|p − |∇η|p)dxdτ

+
1

2
|u(t)− η(t)|2H ≤

∫ t

s

⟨f, u− η⟩dτ +
1

2
|u(s)− η(s)|2H ,

(1.3)

∀η ∈ K0(θ), ∀s, t ∈ [0, T ], s ≤ t,

where

K0(θ) :=

{
η

∣∣∣∣ η ∈ Lp(0, T ;V ) ∩ C(Q), η′ ∈ Lp′(0, T ;V ∗),
supp(η) ⊂ Q0, η(t) ∈ K(θ; t), ∀t ∈ [0, T ]

}
.

with Q0 := {(x, t) ∈ Q | γ(θ(x, t)) > 0} and

K(θ; t) := {z ∈ V | |z| ≤ γ(θ(·, t)) a.e. on Ω}, ∀t ∈ [0, T ].
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Our problem is discussed under the following assumptions:

(C1) a(x, t, u) is a function on Ω× [0, T ]×R satisfying the Carathéodory condition (i.e.
a(x, t, u) is measurable in (x, t) for each u and continuous in u for a.e. (x, t)), and

a0 ≤ a(x, t, u) ≤ a1 for a.e. (x, t) ∈ Q, ∀u ∈ R, (1.4)

where a0 and a1 are positive constants.

(C2) γ(θ) is a non-negative, continuous and bounded function of θ ∈ R; choose a positive
constant γ∗ so that

0 ≤ γ(θ) ≤ γ∗, ∀θ ∈ R. (1.5)

(C3) h(x, t, u) is a Lipschitz continuous function on Q×R with Lipschitz constant Lh;

|h(x, t, u)− h(x̄, t̄, ū)| ≤ Lh(|x− x̄|+ |t− t̄|+ |u− ū|), (1.6)

(C4) f ∈ Lp′(0, T ;V ∗), 1
p
+ 1

p′
= 1, and the initial data θ0 and u0 satisfy that

θ0 ∈ H2(Ω),
∂θ0
∂n

+ n0θ0 = 0 a.e. on Γ, u0 ∈ H, |u0| ≤ γ(θ0) a.e. on Ω.

In the non-degenerate case of γ, namely

ε0 ≤ γ(θ) ≤ γ∗, ∀θ ∈ R,

for a positive constant ε0, the existence of a weak solution {u, θ} in the sense of Definition
1.1 is already known (see [6; Theorem 5.1]). However, in the degenerate case (1.5) of
γ, namely the case of ε0 = 0, the existence of such a solution is still an open question;
especially, the continuity u : [0, T ] → H is not known, yet. The main objective of this
paper is to construct a weak solution {u, θ} in the degenerate case of γ, too.

Our main result of this paper is:

Theorem 1.1. Under assumptions (C1) ∼ (C4), there exists a weak solution {u, θ} of
QV I(γ; f, u0, θ0) in the sense of Definition 1.1.

The proof of Theorem 1.1 will be performed in several steps.

First γ is approximated by non-degenerate functions

γn(r) := γ(r) +
1

n
, ∀r ∈ R.

Now we recall the general result [6; Theorem 5.1] in the non-degenerate case, for each
n ∈ N there exists a pair of functions {un, θn} such that

(a’) (Regularity) θn ∈ W 1,2(0, T ;H1(Ω)) ∩ L∞(0, T ;H2(Ω)) (⊂ C(Q)) and
un ∈ C([0, T ];H) ∩ Lp(0, T ;V ).
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(b’) (Heat conduction) θn is the solution of

θn,t − κ∆θn = h(x, t, un) in L2(Ω), a.e. t ∈ (0, T ),

∂θn
∂n

+ n0θn = 0 a.e. on Σ, θn(·, 0) = θ0 on Ω,

(c’) (Quasi-variational inequality) un is a solution of

|un(x, t)| ≤ γn(θn(x, t)) a.e. x ∈ Ω, ∀t ∈ [0, T ], un(0) = u0, (1.7)∫ t

s

⟨η′, un − η⟩dτ +

∫ t

s

∫
Ω

a(x, τ, un)|∇un|p−2∇un · ∇(un − η)dxdτ

+
1

2
|un(t)− η(t)|2H ≤

∫ t

s

⟨f, un − η⟩dτ +
1

2
|un(s)− η(s)|2H ,

(1.8)

∀η ∈ Kn
0 (θn), ∀s, t ∈ [0, T ], s ≤ t,

where

Kn
0 (θn) :=

{
η

∣∣∣∣ η ∈ Lp(0, T ;V ), η′ ∈ Lp′(0, T ;V ∗),
η(t) ∈ Kn(θn; t), ∀t ∈ [0, T ]

}
. (1.9)

with

Kn(θn; t) := {z ∈ V | |z| ≤ γn(θn(·, t)) a.e. on Ω}, ∀t ∈ [0, T ]. (1.10)

Remark 1.1. Since |∇un|p−2∇un · ∇(un − η) ≥ 1
p
(|∇un|p − |∇η|p), (1.8) implies that∫ t

s

⟨η′, un − η⟩dτ +
1

p

∫ t

s

∫
Ω

a(x, τ, un)(|∇un|p − |∇η|p)dxdτ

+
1

2
|un(t)− η(t)|2H ≤

∫ t

s

⟨f, un − η⟩dτ +
1

2
|un(s)− η(s)|2H ,

(1.11)

Let us give some uniform estimates for {un, θn} which are easily derived from (1.7)∼(1.10).
Since η ≡ 0 is a trivial test function, it follows from (1.8) with (1.4) that∫

Ω×(0,t)

a0|∇un|pdxdτ +
1

2
|un(t)|2H ≤

∫ t

0

⟨f, un⟩dτ +
1

2
|u0|2H , ∀t ∈ [0, T ],

which yields a uniform estimate of the form:

|un|pLp(0,T ;V ) + |un|2C([0,T ];H) ≤ N0(1 + |f |p
′

Lp′ (0,T ;V ∗)
+ |u0|2H), ∀n, (1.12)

for some positive constant N0. Moreover, by a uniform estimate for semilinear heat
equations (cf. [2; Appendix]) we have that

|θn|W 1,2(0,T ;H1(Ω)) + |θn|L∞(0,T ;H2(Ω)) ≤ N1(1 + |h|L2(0,T ;H1(Ω)) + |θ0|H2(Ω)), (1.13)

for some positive constants N1. Here, by (1.6),

|h(·, ·, un(t))|H1(Ω) ≤ L′
h(1 + |un(t)|V ), a.e. t ∈ (0, T )
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for a positive constant L′
h. Therefore, taking account of this estimate, we get from (1.12)

and (1.13) that

|θn|W 1,2(0,T ;H1(Ω))+ |θn|L∞(0,T ;H2(Ω)) ≤ N ′
1(1+ |f |Lp′ (0,T ;V ∗)+ |u0|H + |θ0|H2(Ω)), ∀n, (1.14)

By virtue of (1.12) and (1.14) we may assume by extracting a subsequence from
{un, θn} if necessary, that

θn → θ in C(Q), weakly in W 1,2(0, T ;H1(Ω)) and weakly∗ in L∞(0, T ;H2(Ω)) (1.15)

and
un → u in weakly in Lp(0, T ;V ) and weakly∗ in L∞(0, T ;H), (1.16)

(as n → ∞) for some function θ ∈ W 1,2(0, T ;H1(Ω))∩L∞(0, T ;H2(Ω)) and u ∈ L2(0, T ;V ).
Furthermore, since γn(θn) → γ(θ) in C(Q), we see that

|u(x, t)| ≤ γ(θ(x, t)) a.e. x ∈ Ω, ∀t ∈ [0, T ]. (1.17)

2. The relative compactness of {un} in Lp(Q)

This section is the key step for the proof of Theorem 1.1. Let {un, θn} be a sequence
of solutions to QV I(γn; f, u0, θ0) := {(a′), (b′), (c′)} as we recalled in the previous section,
and let {u, θ} be the limit of {un, θn} satisfying (1.12)∼(1.17).

(Step 1) Now, let δ be any positive number and t0 be any time in [0, T ) and fix them for
a moment. Also, let Ωδ(t0) be a subdomain of Ω such that

γ(θ(x, t0)) > 2δ, ∀x ∈ Ωδ(t0).

Then, by the continuity of γ, there is a time interval [T1, T
′
1] such that 0 ≤ T1 ≤ t0 <

T ′
1 ≤ T such that

γ(θ(x, t)) > δ, ∀(x, t) ∈ Ωδ(t0)× [T1, T
′
1]. (2.1)

Also, given any number ε > 0, by (1.15) there is a positive integer nε such that

|γ(θ)− γn(θn)|C(Q) < ε, ∀n ≥ nε, (2.2)

so that
γn(θn) ≥ δ − ε on Qδ(t0) := Ωδ(t0)× (T1, T

′
1), ∀n ≥ nε. (2.3)

We are going to apply the compactness result for variational inequalities mentioned
in the appendix to show the relative compactness of {un} in Lp(Qδ(t0)). To do so, put:

H1 := L2(Ωδ(t0)), V1 := W 1,p(Ωδ(t0)), W1 := W 1,q
0 (Ωδ(t0)), N + 2 < q < ∞.
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We denote by W ∗
1 the dual space of W1, and by ⟨·, ·⟩ the duality between W ∗

1 and W1,
too. Then, V1 ⊂ H1 ⊂ W ∗

1 with dense and compact embeddings, and the restriction of
each function un onto Qδ(t0) satisfies that

|un(x, t)| ≤ γn(θn(x, t)) a.e. x ∈ Ωδ(t0), ∀t ∈ [T1, T
′
1], (2.4)

Lemma 2.1. Let ε > 0 be as above and ε1 > 0 be any small number. If 0 < ε < ε1δ,
then for any η ∈ K0(θ),

(1− ε1)|η(x, t)| ≤ γn(θn(x, t)), ∀x ∈ Ωδ(t0), ∀t ∈ [T1, T
′
1]. (2.5)

Proof. We see by (2.2) and (2.3) that for all x ∈ Ωδ(t0) and all t ∈ [T1, T
′
1]

(1− ε1)|η(x, t)| ≤ (1− ε1)γ(θ(x, t))

≤ (1− ε1)(γn(θn(x, t)) + ε)

≤ γn(θn(x, t))− ε1γn(θn(x, t)) + ε(1− ε1)

≤ γn(θn(x, t))− ε1(δ − ε) + ε(1− ε1)

= γn(θn(x, t))− ε1δ + ε < γn(θn(x, t)), ∀n ≥ nε,

if ε > 0 is chosen so as to be ε < ε1δ. Thus (2.5) holds. □

From (2.1) and W1 ⊂ C(Ωδ(t0)) with compact embedding it follows that for a positive
constant ν > 0 small enough

νBW1(0) ⊂
{
z ∈ C(Ωδ(t0))

∣∣∣∣ |z| ≤ δ

2
on Ωδ(t0)

}
,

where BW1(0) is the closed unit ball of W1 around the origin. Hence, for any ε with
0 < ε ≤ δ

2
and for all n ≥ nε, it follows from (2.3) that

νBW1(0) ⊂ Kn(θn; t), ∀t ∈ [T1, T
′
1]; (2.6)

here note that η ∈ W1 can be considered as a function in V by extending it by 0 outside
of Ωδ(t0).

Lemma 2.2. There exists a positive number C∗ such that∫ T ′
1

T1

⟨η′, un⟩dτ ≤ C∗, ∀η ∈ C1
0(T1, T

′
1;W1) with η(t) ∈ νBW1(0), ∀t ∈ [T1, T

′
1]. (2.7)

Proof. Since {un, θn} is a weak solution to the non-degenerate problemQV I(γn; f, u0, θ0),
we see that∫ T ′

1

T1

⟨η′, un − η⟩dτ +
1

p

∫ T ′
1

T1

∫
Ω

a(x, τ, un)(|∇un|p − |∇η|p)dxdτ

+
1

2
|un(T

′
1)− η(T ′

1)|2H ≤
∫ T ′

1

T1

⟨f, un − η⟩dτ +
1

2
|un(T1)− η(T1)|2H ,

(2.8)
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∀η ∈ Kn
0 (θn).

By virtue of Lemma 2.1 and (2.6), for any η ∈ C1
0(T1, T

′
1;W1) with η(t) ∈ νBW1(0) for all

t ∈ [T1, T
′
1] we observe that (1 − ε1)η ∈ Kn

0 (θn) for all small ε1 > 0. Taking (1 − ε1)η as
the test function of (2.8), we get∫ T ′

1

T1

(1− ε1)⟨η′, un⟩dτ ≤ a1
p
(1− ε1)

p

∫ T ′
1

T1

∫
Ωδ(t0)

|∇η|pdxdτ

+

∫ T ′
1

T1

|f |V ∗(|un|V + (1− ε1)|η|V )dτ +
1

2
|un(T1)|2H ,

whence for any ε1 with 0 < ε1 ≤ 1
2∫ T ′

1

T1

⟨η′, un⟩dτ ≤ a1

∫ T ′
1

T1

|∇η|pdxdτ +

∫ T ′
1

T1

|f |V ∗(2|un|V + |η|V )dτ + |un(T1)|2H .

The right hand side of the above inequality is dominated by a positive constant C∗

independent of η ∈ C1
0(T1, T

′
1;W1) with η(t) ∈ νBW1(0) for all t ∈ [T1, T

′
1] as well as

independent of |un(T1)|H by estimate (2.4). Thus (2.7) is obtained. □

By Lemma 2.3 together with (1.12) our compactness result (see the appendix) shows
that there exists a subsequence {unk

} of {un} such that

unk
(t) → u(t) weakly in H1 as k → ∞, ∀t ∈ [T1, T

′
1],

and
unk

→ u in Lp(Qδ(t0)) as k → ∞.

(Step 2) We put

Ω∗(t) := {x ∈ Ω | γ(θ(x, t)) = 0}, ∀t ∈ [0, T ], Q∗ := ∪t∈[0,T ]Ω∗(t)× {t}

and for each δ > 0

Ωδ(t) := {x ∈ Ω | γ(θ(x, t)) > 2δ}, ∀t ∈ [0, T ], Q̂δ := ∪t∈[0,T ]Ωδ(t)× {t}.

With similar notation, given δ > 0, it is easy to check that for δ′ := δ
2
there exists a finite

number of cylindrical domains of the form

Q̂i := Ωδ′(ti)× [Ti, T
′
i ], 0 ≤ Ti ≤ ti < T ′

i ≤ T, i = 1, 2, · · · , ℓ,

such that
Q̂δ ⊂ ∪ℓ

i=1Q̂i.

As was proved in the first step, for every i = 1, 2, · · · , ℓ, it is possible to extract a
subsequence {unk

} from {un} so that

unk
(t) → u(t) weakly in L2(Ωδ′(ti)), ∀t ∈ [Ti, T

′
i ], ∀i = 1, 2, · · · , ℓ,
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unk
→ u in Lp(Q̂i), ∀i = 1, 2, · · · , ℓ,

(as k → ∞) and additionally

unk
(t) → u(t) in Lp(Ωδ′(ti)), a.e. t ∈ (Ti, T

′
i ), ∀i = 1, 2, · · · , ℓ.

Therefore we have

unk
(t) → u(t) weakly in L2(Ωδ(t)), ∀t ∈ [0, T ],

and
unk

→ u in Lp(Q̂δ), unk
(t) → u(t) in Lp(Ωδ(t)), a.e. t ∈ (0, T ).

Since γ(θ) ≤ 2δ on Q− Q̂δ, we see by (2.2) that

|unk
− u| ≤ 4δ +

1

nk

a.e. on Q− Q̂δ.

Hence ∫
Q−Q̂δ

|unk
− u|pdxdτ → 0 as k → ∞ and δ → 0.

As a consequence we have:

Lemma 2.4. There exists a subsequence {unk
} of {un} such that

unk
(t) → u(t) weakly in H, ∀t ∈ [0, T ], (2.9)

and
unk

→ u in Lp(Q), unk
(t) → u(t) in H, a.e. t ∈ (0, T ). (2.10)

3. Verification of (b) and (c) in Definition 1.1

For simplicity we use the following notation:

Φt
s(w; v) :=

1

p

∫ t

s

a(x, t, w)|∇v|pdxdτ, ∀w ∈ Lp(Q), ∀v ∈ Lp(0, T ;V ),

∀s, t ∈ [0, T ], s ≤ t.

Let {unk
, θnk

} be a subsequence of {un, θn} satisfying (2.9) and (2.10) of Lemma 2.4
together with (1.15) and (1.16). Then, for each nk we see from (c’) and (1.11), it holds
that

unk
(t) ∈ Knk(θnk

; t), ∀t ∈ [0, T ], unk
(0) = u0,∫ t

s

⟨η′, unk
− η⟩dτ + Φt

s(unk
;unk

) +
1

2
|unk

(t)− η(t)|2H

≤
∫ t

s

⟨f, unk
− η⟩dτ + Φt

s(unk
; η) +

1

2
|unk

(s)− η(s)|2H ,
(3.1)
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∀η ∈ Knk
0 (θnk

), ∀s, t ∈ [0, T ], s ≤ t.

Now, put E0 := {s ∈ [0, T ] | unk
(s) → u(s) in H as k → ∞}. Then, by our construction

of {unk
}, 0 ∈ E0 because unk

(0) = u0, and moreover, by Lemma 2.4, [0, T ] − E0 is of
linear measure zero.

Lemma 3.1. The pair of function {u, θ} satisfies∫ t

s

⟨η′, u− η⟩dτ + Φt
s(u;u) +

1

2
|u(t)− η(t)|2H

≤
∫ t

s

⟨f, u− η⟩dτ + Φt
s(u; η) +

1

2
|u(s)− η(s)|2H ,

(3.2)

∀η ∈ K0(θ), supp(η) ⊂ Q0 := {(x, t) ∈ Q | γ(θ(x, t)) > 0}, ∀s ∈ E0, ∀t ≥ s.

Proof. Let δ be any positive number and η be any function in K0(θ) such that

supp(η) ⊂ Qδ := {(x, t) ∈ Q | γ(θ(x, t)) > δ}.

Then, given ε > 0, by (1.15) there is a positive integer kε such that

|γ(θnk
)− γ(θ)| < ε on Q, ∀k ≥ kε,

whence
γnk

(θnk
) ≥ δ − ε on Qδ, ∀k ≥ kε,

Next, let ε1 be a small positive number. Then,

(1− ε1)|η| ≤ (1− ε1)γ(θ) ≤ (1− ε1)(γnk
(θnk

) + ε)

≤ γnk
(θnk

)− ε1δ + ε

≤ γnk
(θnk

) on Qδ, ∀k ≥ kε,

as long as 0 < ε ≤ ε1δ. Therefore, taking (1− ε1)η as a test function in (3.1), we observe
that

(1− ε1)

∫ t

s

⟨η′, unk
− (1− ε1)η⟩dτ + Φt

s(unk
;unk

) +
1

2
|unk

(t)− (1− ε1)η(t)|2H

≤
∫ t

s

⟨f, unk
− (1− ε1)η⟩dτ + Φt

s(unk
; (1− ε)η) +

1

2
|unk

(s)− (1− ε1)η(s)|2H ,
(3.3)

∀s, t ∈ [0, T ], s ≤ t, ∀k ≥ kε.

Fixing δ > 0, pass to the limit k → ∞ in (3.3) and use Lemma 2.4 to see that

Φt
s(u;u) ≤ lim inf

k→∞
Φt
s(unk

;unk
), Φt

s(u; (1− ε1)η) = lim
k→∞

Φt
s(unk

; (1− ε1)η),

|u(t)− (1− ε1)η(t)|2H ≤ lim inf
k→∞

|unk
(t)− (1− ε1)η(t)|2H , ∀t ∈ [0, T ],
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and
|u(s)− (1− ε1)η(s)|2H = lim

k→∞
|unk

(s)− (1− ε1)η(s)|2H , ∀s ∈ E0.

By virtue of these facts, finally letting ε1 → 0 yields (3.2) for all η ∈ K0 satisfying
supp(η) ⊂ Q0, since δ > 0 is arbitrary. □

Lemma 3.2. The pair of functions {u, θ} satisfies (1.1) and (1.2).

Proof. For each k, the function θnk
satisfies that

∂θnk

∂t
− κ∆θnk

= h(x, t, unk
) a.e. in Q,

with
∂θnk

∂n
+ n0θnk

= 0 a.e. on Σ, θnk
(0) = θ0.

Since h(x, t, unk
) → h(x, t, u) in L2(Q) by (2.10) of Lemma 2.4 and θnk

→ θ in C(Q),
weakly in W 1,2(0, T ;H1(Ω)) and weakly∗ in L∞(0, T ;H2(Ω)) as k → ∞, it follows that θ
is a unique solution of (1.1) and (1.2), and θ ∈ W 1,2(0, T ;H1(Ω)) ∩ L∞(0, T ;H2(Ω)). □

Next, in order to prove the continuity of u(t) in H with respect to time, we make use
of the following family of test functions

ηs,ε,ε1,δ(x, t) with parameters s ∈ [0, T ], ε > 0, ε1 > 0, δ > 0,

which is defined as follows:

• Given ε > 0, take a positive number tε such that

|γ(θ(·, t))− γ(θ(·, s))|C(Ω) < ε, ∀s, t ∈ [0, T ] with |s− t| ≤ tε, (3.4)

and let σε := σε(t) be a smooth non-negative function on R such that

σε(0) = 1, σε(t) = σε(−t), ∀t ≥ 0, 0 ≤ σε ≤ 1 on R, supp(σε) ⊂ (−tε, tε), (3.5)

σ′
ε(t) :=

dσε(t)

dt
≤ 0, ∀t ≥ 0; hence σ′

ε(0) = 0.

• Given δ > 0 and t0 ∈ [0, T ], denote by Uδ(t0) the δ-neighborhood of Ω∗(t0) := {x ∈
Ω | γ(θ(x, t0)) = 0} . Choose a smooth function αδ := αδ(x, t0) so that

0 ≤ αδ(·, t0) ≤ 1 on Ω, αδ(x, t0) =

{
0, ∀x ∈ Uδ(t0),

1, ∀x ∈ Ω− U2δ(t0).
(3.6)

• Given ε > 0, choose a smooth function zε(·, s) in V for every s ∈ [0, T ] so that

|u(s)− zε(s)|H < ε, |zε(·, s)| ≤ γ(θ(·, s)) on Ω, |∇zε(·, s)| ≤ C(ε) on Ω, (3.7)

where C(ε) is a positive constant depending on ε, but not on s.
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We note that for any t0 ∈ [0, T ] and any δ > 0 there is a positive constant Cδ > 0 such
that

γ(θ(x, t0)) ≥ Cδ, ∀x ∈ Ω− Uδ(t0). (3.8)

Hence, by (3.4),

γ(θ(x, t)) ≥ Cδ − ε, if |t− t0| < tε and x ∈ Ω− Uδ(t0). (3.9)

Lemma 3.3. Let t0 ∈ (0, T ), ε1 ∈ (0, 1), σε, αδ and zε be as above. Then,

ηs,ε,ε1,δ(x, t) := (1− ε1)σε(t− t0)αδ(x, t0)zε(x, s)

belongs to K0(θ), if ε1 ∈ (0, 1), 0 < ε < ε1 · Cδ

2
, |s− t0| ≤ tε and |t− t0| ≤ tε.

Proof. If ε1 ∈ (0, 1), 0 < ε < ε1 · Cδ

2
, x ∈ Ω− Uδ(t0), |s− t0| ≤ tε and |t− t0| ≤ tε, then

we observe by (3.5)∼(3.9) that

|ηs,ε,ε1,δ(x, t)| := (1− ε1)σε(t− t0)αδ(x, t0)|zε(x, s)|
≤ (1− ε1)σε(t− t0)αδ(x, t0)γ(θ(x, s))

≤ (1− ε1)σε(t− t0)αδ(x, t0)(γ(θ(x, t)) + 2ε)

≤ (1− ε1)σε(t− t0)αδ(x, t0)γ(θ(x, t)) + 2ε(1− ε1)σε(t− t0)αδ(x, t0)

≤ γ(θ(x, t))− σε(t− t0)αδ(x, t0)(ε1 · Cδ − 2ε)

≤ γ(θ(x, t)).

Since ηs,ε,ε1,δ(x, t) = 0 for x ∈ Uδ(t0) or |t− t0| ≥ tε, it follows from the above inequalities
that ηs,ε,ε1,δ ∈ K0(θ). □

We hereafter denote by |S| the N -dimensional Lebesgue measure of any measurable
set S.

Lemma 3.4. Let t0 ∈ (0, T ] and s ∈ [0, T ] with |s− t0| < tε. Then,

|u(t0)− ηs,ε,ε1,δ(t0)|H ≥ |u(t0)− u(s)|H − ε(1 + |Ω|
1
2 )− ε1γ

∗|Ω|
1
2

−γ∗|U2δ(t0)− Ω∗(t0)|
1
2

(3.10)

and

|u(s)− ηs,ε,ε1,δ(s)|H ≤ ε(1 + |Ω|
1
2 ) + γ∗|U2δ(t0)− Ω∗(t0)|

1
2

+(1− σε(s− t0))γ
∗|Ω|

1
2 + ε1γ

∗|Ω|
1
2 .

(3.11)

Proof. We have

|u(t0)− ηs,ε,ε1,δ(t0)|H
= |u(t0)− (1− ε1)αδ(t0)zε(s)|H
≥ |u(t0)− zε(s)|H − |zε(s)− (1− ε1)αδ(t0)zε(s)|H
≥ |u(t0)− u(s)|H − ε− |(1− αδ(t0))zε(s)|H − ε1|αδ(t0)zε(s)|H
≥ |u(t0)− u(s)|H − ε− |(1− αδ(t0))γ(θ(s))|H − ε1|γ(θ(s))|H .
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Since ε1|γ(θ(s))|H ≤ ε1γ
∗|Ω| 12 and

|(1− αδ(t0))γ(θ(s))|H ≤ |(1− αδ(t0))(γ(θ(t0)) + ε)|H ≤ γ∗|U2δ(t0)− Ω∗(t0)|
1
2 + ε|Ω|

1
2 ,

it follows from the above inequalities that (3.10) is obtained.
Also, we observe that

|u(s)− ηs,ε,ε1,δ(s)|H
= |u(s)− (1− ε1)σε(s− t0)αδ(t0)zε(s)|H
≤ |u(s)− σε(s− t0)αδ(t0)zε(s)|H + ε1|σε(s− t0)αδ(t0)zε(s)|H
≤ |u(s)− zε(s)|H + |(1− σε(s− t0)αδ(t0))zε(s)|H + ε1|σε(s− t0)αδ(t0)zε(s)|H
≤ |u(s)− zε(s)|H + |(1− αδ(t0))zε(s)|H + (1− σε(s− t0))|αδ(t0)zε(s)|H

+ε1|σε(s− t0)αδ(t0)zε(s)|H
≤ ε+ γ∗|U2δ(t0)− Ω∗(t0)|

1
2 + ε|Ω|

1
2 + (1− σε(s− t0))γ

∗|Ω|
1
2 + ε1γ

∗|Ω|
1
2 .

Thus (3.11) is obtained. □

4. Proof of Theorem 1.1

We show first that the variational inequality (3.2) holds for all s, t ∈ [0, T ] with s < t.
To do so, we recall from Lemma 3.1 that for any t0 ∈ (0, T ] and any s ∈ [0, t0] ∩ E0∫ t0

s

⟨η′s,ε,ε1,δ, u− ηs,ε,ε1,δ⟩dτ + Φt0
s (u;u) +

1

2
|u(t0)− ηs,ε,ε1,δ(t0)|2H

≤
∫ t0

s

⟨f, u− ηs,ε,ε1,δ⟩dτ + Φt0
s (u; ηs,ε,ε1,δ) +

1

2
|u(s)− ηs,ε,ε1,δ(s)|2H .

(4.1)

We note from (3.5)∼(3.7) that ηs,ε,ε1,δ is bounded in C1(Q) uniformly in s ∈ [0, t0] for
fixed ε, ε1 and δ, so that

lim
s↑t0

∫ t0

s

⟨η′s,ε,ε1,δ, u− ηs,ε,ε1,δ⟩dτ = 0, lim
s↑t0

Φt0
s (u;u) = 0,

lim
s↑t0

∫ t0

s

⟨f, u− ηs,ε,ε1,δ⟩dτ = 0, lim
s↑t0

Φt0
s (u; ηs,ε,ε1,δ) = 0.

Therefore, letting s ↑ t0, s ∈ E0 in (4.1), we see that

lim sup
s∈E0, s↑t0

|u(t0)− ηs,ε,ε1,δ(t0)|H ≤ lim sup
s∈E0, s↑t0

|u(s)− ηs,ε,ε1,δ(s)|H , (4.2)

Moreover, using (3.10) and (3.11) of Lemma 3.4, we derive from (4.2) that

lim sup
s∈E0, s↑t0

|u(t0)− u(s)|H ≤ 2ε(1 + |Ω|
1
2 ) + 2ε1γ

∗|Ω|
1
2 + 2γ∗|U2δ(t0)− Ω∗(t0)|

1
2 , (4.3)
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whence
lim

s∈E0,s↑t0
|u(t0)− u(s)|H = 0, (4.4)

since ε, ε1 and δ are arbitrary as long as ε1 ∈ (0, 1), 0 < ε < ε1Cδ

2
, and |U2δ(t0)−Ω∗(t0)| →

0 as δ ↓ 0.
Since t0 arbitrary in (0, T ], the above observation proves:

Lemma 4.1. For each s′ ∈ (0, T ] there exists a sequence {sn} in E0 such that

sn ↑ s′, u(sn) → u(s′) in H (as n → ∞.) (4.5)

and the variational inequality (1.3) in Definition 1.1 is fulfilled.

Proof. The convergence (4.5) is immediately seen by taking s′ as t0 in the above obser-
vation (4.4), and we have by Lemma 3.1 that∫ t

sn

⟨η′, u− η⟩dτ + Φt
sn(u;u) +

1

2
|u(t)− η(t)|2H

≤
∫ t

sn

⟨f, u− η⟩dτ + Φt
sn(u; η) +

1

2
|u(sn)− η(sn)|2H .

(4.6)

for all η ∈ K0(θ). Now, passing to the limit in (4.6) as n → ∞ and using (4.5), we see
that the variational inequality (1.3) holds for any s = s′, t ∈ (0, T ] with s′ ≤ t; (1.3) for
s′ = 0 and t > 0 automatically holds, since 0 ∈ E0. □

Corollary 4.1. u(t) is continuous in H from the left with respect to time t.

Proof. In Lemma 4.1 we showed that the variational inequality (1.3) holds for every
s, t = t0 ∈ [0, T ], s < t0. Hence, by repeating the same argument as above to get
lims↑t0 |u(t0)−u(s)|H = 0 without the restriction s ∈ E0. Thus u is continuous in H from
the the left in time. □

Lemma 4.2. u(t) is continuous in H from the right with respect to time t.

Proof. Let t0 be any time in [0, T ). We make use again the test functions ηt0,ε,ε1,δ(x, t) :=
(1− ε1)σε(t− t0)αδ(x, t0)zε(x, t0) for our proof. By Lemma 4.1, we have∫ t

t0

⟨η′t0,ε,ε1,δ, u− ηt0,ε,ε1,δ⟩dτ + Φt
t0
(u;u) +

1

2
|u(t)− ηt0,ε,ε1,δ(t)|2H

≤
∫ t

t0

⟨f, u− ηt0,ε,ε1,δ⟩dτ + Φt
t0
(u; ηt0,ε,ε1,δ) +

1

2
|u(t0)− ηt0,ε,ε1,δ(t0)|2H .

(4.7)

By Lemma 3.4,

|u(t)− ηt0,ε,ε1,δ(t)|H ≥ |u(t)− u(t0)|H − ε(1 + |Ω|
1
2 )− ε1σε(t− t0)γ

∗|Ω|
1
2

− γ∗|U2δ(t0)− Ω∗(t0)|
1
2
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and
|u(t0)− ηt0,ε,ε1,δ(t0)|H ≤ ε(1 + |Ω|

1
2 ) + γ∗|U2δ(t0)− Ω∗(t0)|

1
2 + ε1γ

∗|Ω|
1
2 .

Just as in the proof of (4.2) and (4.3), by using these inequalities we drive from (4.7) that

lim sup
t↓t0

|u(t)− u(t0)|H ≤ 2ε(1 + |Ω|
1
2 ) + 2γ∗|U2δ(t0)− Ω∗(t0)|

1
2 + 2ε1γ

∗|Ω|
1
2 ,

as long as 0 < ε < ε1Cδ

2
and 0 < ε1 < 1. By the arbitrariness of such ε, ε1 and δ we

conclude that u(t) → u(t0) in H as t ↓ t0. Thus u(t) is continuous in H from the right in
time. □

The proof of Theorem 1.1 is now complete. Indeed, by Corollary 4.1 and Lemma 4.2,
u is continuous in H on [0, T ] and {u, θ} possesses the other regularity properties required
in statement (a) by (1.15) and (1.16). The statement (b) was proved in Lemma 3.2, and
(c) was proved in Lemma 4.1 together with (1.17).

Remark 4.1. In this paper we proved the continuity of u(t) in H := L2(Ω) for a concrete
parabolic quasi-variational inequality under obstacle |u| ≤ γ(θ). It is expected to discuss a
similar problem under gradient constraint, |∇u| ≤ γ(θ), in the degenerate case of γ. This
is a future question. See [1,9,11,13,14,15] for some related works of obstacle or gradient
constraint problems.

Remark 4.2. There has not been a general abstract set-up of parabolic quasi-variational
inequalities, taking a class of semimonotone operators with time-derivative operators into
account. Especially, it seems quite difficult how to describe “degenerate case of con-
straints” in the abstract set-up, which is one of challenging problems. See [6,7,8,10,12]
for some abstract parabolic quasi-variational formulations.

Appendix

Let H be a general Hilbert space with inner product (·, ·)H , V and W be separable
and reflexive Banach spaces such that V and W are dense subspaces of H with compact
embeddings and W is a closed subspace of V with continuous embedding. We denote the
dual spaces of V and W by V ∗ and W ∗, respectively, and the duality between V and V ∗

or W and W ∗ by ⟨·, ·⟩. In this case we have

V ⊂ H ⊂ W ∗ with dense and compact embeddings.

Here we recall the concept of bounded variation of function w : [0, T ] → W ∗. The
total variation of w, denoted by VarW ∗(w), is defined by

VarW ∗(w) := sup
η ∈ C1

0(0, T ;W ),
|η|L∞(0,T ;W ) ≤ 1

∫ T

0

⟨w, η′⟩W ∗,Wdt.
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Our compactness theorem is based on the uniform total variation estimate for all
functions in the class Z(M0) as stated in the follwoing theorem.

Theorem (cf. [9; Theorem 3.1, Lemma 3.2]) Let M0 be any positive number and let

Z(M0) := {w | |w|Lp(0,T ;V ) ≤ M0, |w|L∞(0,T ;H), VarW ∗(w) ≤ M0},

where 2 ≤ p < ∞. Then, given any sequence {un} in Z(M0), there exists a subsequence
{unk

} of {un} with a function u ∈ Lp(0, T ;V ) ∩ L∞(0, T ;H) such that

(i) u is of bounded variation from [0, T ] into W ∗ such that

unk
(t) → u(t) weakly in W ∗, ∀t ∈ [0, T ] (as k → ∞);

hence unk
(t) → u(t) weakly in H for every t ∈ [0, T ].

(ii) {unk
} converges (strongly) to u in Lp(0, T ;H).

On account of the above theorem, the set Z(M0) is compact in Lp(0, T ;H).
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