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Abstract. This paper is concerned with a parabolic variational obstacle problem (V1)
for a semimonotone operator coupled with a semi-linear heat equation (H). Denoting the
solutions of (VI) and (H) by u and 6, respectively, we suppose that the heat source term
of (H) depends on u and an interior obstacle of the form

Jul < ()

is imposed. In case the obstacle function () is continuous, but degenerate, namely
v(0) = 0 may happen somewhere, the continuity of u in time has not proved yet for a
general class of quasi-variational inequalities, such as {(V'I), (H)}. In this paper we shall
discuss it in a typical case of {(VI),(H)}.
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1. Introduction

In this paper we treat a typical class of quasi-variational systems. Let €2 be a bounded
domain in RY, 2 < N < 0o, with smooth boundary I' := 9 and put

0<T <00, Q:=0x(0,T), X:=Tx(0,T),
H:=L*Q), V := W,”(Q) with 2 < p < 0o, V*: dual space of V.
In this case, we have

V C HCV*® with dense and compact embeddings;

we denote by (-, -) the duality between V* and V, by (-, )y the innner product in H and
by |- |u, |- |v and | - |y« the norms in H, V and V*, respectively.
Our problem is formulated as follows:

Definition 1.1. A pair of functions {u, 8} is called a weak solution of QV'I(~; f,ug, 0o)
if it fulfills the following statements (a),(b),(c):

(a) (Regularity) § € W2(0,T; H*(Q)) N L>=(0,T; H*(Q)) (C C(Q)) and
uwe C([0,T); H)NLP(0,T; V).

(b) (Heat conduction) 6 is the solution of

0, — kAO = h(z,t,u) in L*(Q), ae. t € (0,T), (1.1)
00
a—+n09—0ae on X, 6(-,0) =6, on €, (1.2)
where K, ng are positive constants, 6; := 5 and 89 denotes the outward normal

derivative of @ on I'.

(¢) (Quasi-variational inequality) u is a solution of

lu(z,t)] < vy(0(z,t)) ae. x € Q, YVt €[0,T], u(0) = up,

/(77 u—n)dr + — / / a(x, 7, u)(|Vul? — |Vn|P)dxdr
lutt) - <>|H_/<f,u— dr -+ lu(s) = n(s)
Vn € Ko(0), Vs, t €[0,T], s <t,

where

_ [ | merr0,T;vINC@). of € L7 (0,T; V),
/Co(9)-—{77 supp(n) C Qo ()eK( t), vt € [0,T] }

with Qo = {(z,t) € Q | v(0(x,t)) > 0} and
K(0;t) :={2z€ V| |2 <~(0(-,t)) a.e. on Q}, Vt e [0,T].
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Our problem is discussed under the following assumptions:

(C1) a(x,t,u) is a function on Q x [0, T] x R satisfying the Carathéodory condition (i.e.
a(x,t,u) is measurable in (x,t) for each u and continuous in u for a.e. (z,t)), and

ag < a(z,t,u) < ap forae. (x,t) € Q, Yu € R, (1.4)
where ay and a; are positive constants.

(C2) v(0) is a non-negative, continuous and bounded function of § € R; choose a positive
constant v* so that
0<~(0) <~*, VoeR. (1.5)

(C3) h(x,t,u) is a Lipschitz continuous function on @ x R with Lipschitz constant Ly;

|h(x,t,u) — h(z,t,0)| < Lp(lz — Z| + |t — t] + |u — @), (1.6)

(C4) f € LP(0,T;V*), % + ]% =1, and the initial data 6y and ug satisfy that

0o € H*(Q), ? +noby=0ae onl', uy€ H, |ug| <(bp) a.e. on Q.
n

In the non-degenerate case of v, namely
g0 <y(0) <~*, VO eR,

for a positive constant €, the existence of a weak solution {u, 8} in the sense of Definition
1.1 is already known (see [6; Theorem 5.1]). However, in the degenerate case (1.5) of
v, namely the case of eg = 0, the existence of such a solution is still an open question;
especially, the continuity « : [0,7] — H is not known, yet. The main objective of this
paper is to construct a weak solution {u,#} in the degenerate case of v, too.

Our main result of this paper is:

Theorem 1.1. Under assumptions (C1) ~ (C4), there exists a weak solution {u,0} of
QVI(v; f,ug,6p) in the sense of Definition 1.1.

The proof of Theorem 1.1 will be performed in several steps.
First ~ is approximated by non-degenerate functions
1
Yn(r) :=(r) + - vr € R.

Now we recall the general result [6; Theorem 5.1] in the non-degenerate case, for each
n € N there exists a pair of functions {u,,6,} such that

(a’) (Regularity) 6,, € W2(0,T; H'(Q)) N L>(0,T; H*(Q)) (c C(Q)) and
un € C([0,T]; H) N LP(0, T; V).
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(b’) (Heat conduction) 6,, is the solution of

Ons — KAO, = h(z,t,u,) in L*(Q), ae. t € (0,7T),

%
% +nob, =0 a.e.on ¥, 0,(-,0) =6y on Q,
n

(¢”) (Quasi-variational inequality) w,, is a solution of

|un(x,1)] < n(bn(z,t)) ace. z € Q, YVt € [0,T], u,(0) = up, (1.7)

t t
/ ', u, —n)dr + / / a(x, T, un)|Vun|p_2Vun -V (u, — n)dzdr
s s Q

] : ; 1 ) (1.8)
+ 3l =00 < [ e = i)dr + Sunls) = ()
Vn € Ky(6,), Vs, t €[0,T], s <t,

where ( | ( )

n L ne LP(0,75V), n' € LP (0, T;V™),
G50 = {1 | 06 < Kot e o | 49

with

K"(0p;t) = {2z € V| |2] <4u(0n(-,1)) a.e. on Q}, Vt € [0,T]. (1.10)

Remark 1.1. Since |Vu,[P"*Vu, - V(u, —n) > }D(|Vun|p — |Vn|P), (1.8) implies that

t 1 t
/ ' up, —n)dr + ]3/ /a(a:,T, un)(|Vug|? — |Vn|P)dzdr
s s Qt

1

(1.11)
+ glualt) = 000 < [ (o =+ Flunls) — (s

Let us give some uniform estimates for {u,, 8, } which are easily derived from (1.7)~(1.10).
Since n = 0 is a trivial test function, it follows from (1.8) with (1.4) that

1 t 1
/ ao|Vuy, [Pdrdr + —|un(t)|§{ < / (f,up)dr + —|u0|%], vt € [0, 7],
Qx(0,0) 2 0 2

which yields a uniform estimate of the form:
|un‘§,P(0,T;V) + ’un’%([O,T];H) < No(l + ‘f‘ip/(O7T;V*) + |u0‘1211>? vn, (112)

for some positive constant Ny. Moreover, by a uniform estimate for semilinear heat
equations (cf. [2; Appendix]) we have that

|Onlwr20,m:m1 (@) + Onl L0/ m2)) < Ni(1+ |hl 220,151 2)) + 100]52(0)), (1.13)
for some positive constants N;. Here, by (1.6),

(e un ()l @) < Ly(1+ |un(®)lv), ae. t € (0,7)
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for a positive constant Lj. Therefore, taking account of this estimate, we get from (1.12)
and (1.13) that

|Onlwr20.:m1 (@) + 10l oo 0.1:m2(0)) < N1(L+[fl 0.1+ + w0l i +160]m2(0), Y, (1.14)

By virtue of (1.12) and (1.14) we may assume by extracting a subsequence from
{tn, 0,} if necessary, that

0, — 0 in C(Q), weakly in W*(0,T; H'(2)) and weakly* in L>(0,T; H*(Q2)) (1.15)

and
u, — u in weakly in LP(0,7; V') and weakly™ in L>(0,7T; H), (1.16)

(asn — o0) for some function §# € W2(0,T; H'(Q))NL>®(0,T; H*(Q)) and u € L*(0,T;V).

Furthermore, since 7, (6,) — v(0) in C(Q), we see that

lu(z,t)] < v(0(x,t)) ae z€Q, Vte|0,T]. (1.17)

2. The relative compactness of {u,} in LP(Q)

This section is the key step for the proof of Theorem 1.1. Let {u,,6,} be a sequence
of solutions to QVI(7yy; f, uo, 00) := {(d’), ('), (')} as we recalled in the previous section,
and let {u, 0} be the limit of {u,,0,} satisfying (1.12)~(1.17).

(Step 1) Now, let 6 be any positive number and ¢, be any time in [0,7") and fix them for
a moment. Also, let Qs(to) be a subdomain of Q such that

v(O(z,t0)) > 20, Vx € Qs(to).

Then, by the continuity of ~, there is a time interval [T}, T]] such that 0 < 77 < ¢y <
T} < T such that
Y(0(x,t)) >0, Y(x,t) € Qs(to) x [T1, T7]. (2.1)

Also, given any number € > 0, by (1.15) there is a positive integer n. such that
[7(0) = 1 (On)lc) <& Yn = ne, (2.2)

so that
Yn(0n) > 6 — e on Qs(to) == Qs(to) x (11, T7), Vn > n.. (2.3)

We are going to apply the compactness result for variational inequalities mentioned
in the appendix to show the relative compactness of {u,} in L?(Qs(t)). To do so, put:

Hy o= LA(Qs(to)), Vi = WP(5(t0)), Wi = Wo"(Qulty)), N +2 < q < .
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We denote by Wi the dual space of Wy, and by (-, ) the duality between W} and W7,
too. Then, Vi C H; C W} with dense and compact embeddings, and the restriction of
each function u, onto Qs(to) satisfies that

|t (2, 8)| < Y (On(2,1)) ace. z € Qs(to), Vt € [T1,T]], (2.4)

Lemma 2.1. Let € > 0 be as above and €, > 0 be any small number. If 0 < & < €19,
then for any n € Ko(0),

(1 —e)|n(x, t)] < ym(Onl(,t)), Vo € Qs(ty), Vt € [T1,T]]. (2.5)

Proof. We see by (2.2) and (2.3) that for all x € Qs(ty) and all ¢ € [T}, T]]

(I —en(z, )] < (1—e)y(0(z,1))
< (T=e)(m(Onlz, 1)) +€)
< Yalbn(z,1) — €17 (On (2, 1)) + £(1 — &1)
< Yu(On(,t)) —e1(0 — &) + (1 — &)
= Y(ln(z,1)) — €10 + € < 1 (0n(2, 1)), Vn > n.,
if € > 0 is chosen so as to be ¢ < €10. Thus (2.5) holds. O

From (2.1) and W, C C(Qs(tp)) with compact embedding it follows that for a positive
constant v > 0 small enough

J

2] < 2 on Q(;(to)}

I/BV[/1 (O) - {Z € C(Qé(t0)> 2

where By, (0) is the closed unit ball of W) around the origin. Hence, for any ¢ with
0<e< g and for all n > n., it follows from (2.3) that

vBy, (0) C K™(0,;t), Vte [Ty, T}]; (2.6)

here note that n € W; can be considered as a function in V' by extending it by 0 outside
of Q(g (to).

Lemma 2.2. There exists a positive number C* such that

Ty
/ (', un)dr < C*, Vn € CH(Ty, T{; Wh) with n(t) € vBw,(0), Vt € [Ty, T]].  (2.7)
T

Proof. Since {uy,,0,} is a weak solution to the non-degenerate problem QV'I(~,; f, uo, 6o),
we see that

Ty
/ ' up, —n)dr + = / / (x, 7, u) (| Vun [P — |Vn|P)dxdr
T

T

(2.8)
S lunlT0) — (Tl < / (F = M)+ 5 (T2) = (T
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Vn € K¢ (6,).

By virtue of Lemma 2.1 and (2.6), for any n € C}(Ty,T}; Wy) with n(t) € vBy (0) for all
t € [T1,T]] we observe that (1 —e1)n € Kj(6,,) for all small ey > 0. Taking (1 — &) as
the test function of (2.8), we get

T a T
/ (1= )0 u)dr < —(1—51)1’/ / IVl dudr
p T1 Qs(to)

Th

T/
1 1
+/ |flv=(Junlv + (1 = e1)[nlv)dr + §!un(T1)|?q,
T

whence for any e; with 0 < g; < %
I Ty T
/ (', up)dr < a1/ |Vn|Pdzdr +/ | flvelunly + [nlv)dT + [u, (T1) 3.
Ty T i

The right hand side of the above inequality is dominated by a positive constant C*
independent of n € C3(T1,T]; W) with n(t) € vBy,(0) for all t € [T1,T]] as well as
independent of |u,(7})|g by estimate (2.4). Thus (2.7) is obtained. d

By Lemma 2.3 together with (1.12) our compactness result (see the appendix) shows
that there exists a subsequence {u,, } of {u,} such that

Up, (t) = u(t) weakly in Hy as k — oo, Vt € [T}, TY],

and
Up, — win LP(Qs(to)) as k — oo.

(Step 2) We put

Qu(t) == {x € Q[ (0(x,t)) = 0}, Vt € [0,T], Qs := Upeporh(t) x {t}
and for cach § > 0

Qs(t) := {x € Q| y(O(x, 1)) > 26}, Yt € [0,T], Qs := Useppr1Qs(t) x {t}.

With similar notation, given § > 0, it is easy to check that for §’ := g there exists a finite
number of cylindrical domains of the form

~

Qi = Qs(t;)) x [T;,T]], 0S<T; <t; <T/ <T, i=1,2,--- ¢,

such that ) X

Qs C U, Q.
As was proved in the first step, for every ¢ = 1,2,--- £, it is possible to extract a
subsequence {uy, } from {u,} so that

Uy, (t) = u(t) weakly in L*(Qp(t;)), Vt € [T}, T)], Vi =1,2,--- ¢,
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Up, —> U in Lp(Qi), Vi=1,2,--- 4,
(as k — 00) and additionally
Up,, (£) = u(t) in LP(Qs(t)), ae. t € (T;,T)), Vi=1,2,--- L.
Therefore we have
Up, (t) = u(t) weakly in L*(Qs(t)), Vt € [0,T],

and
Up, — u in LP(Qs), tn, (t) — u(t) in LP(Q(t)), a.e. t € (0,T).

Since ¥(6) < 26 on Q — Qs, we see by (2.2) that
1 .
|tp,, —u|l <46+ — a.e. on Q — Qs.
N

Hence

/ |tp, — ulPdedr — 0 as k — oo and § — 0.
Q—Qs

As a consequence we have:

Lemma 2.4. There ezists a subsequence {un, } of {u,} such that
Up,, (t) = u(t) weakly in H, Vt € [0,T], (2.9)

and
Up, = u in LP(Q), up, (t) = u(t) in H, a.e. t e (0,T). (2.10)

3. Verification of (b) and (c) in Definition 1.1

For simplicity we use the following notation:
1 t
P! (w;v) = —/ a(z,t,w)|VoulPdedr, Yw € LP(Q), Yv € LP(0,T;V),
D Js

Vs, t€[0,T], s <t.

Let {un,,0,,} be a subsequence of {u,,0,} satisfying (2.9) and (2.10) of Lemma 2.4
together with (1.15) and (1.16). Then, for each n; we see from (c¢’) and (1.11), it holds
that

Up, (1) € K" (0,,;t), Yt € [0,T], up,(0) = up,

t
1
[0t =y @) + G () = 0O

t 2 (3.1)
< [ Ut =)y @y im) + 5l 5) = ()



Vn e Kgt(6,,), Vs, t €10,T], s <t.
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Now, put Ey :={s € [0,T] | un,(s) = u(s) in H as k — oo}. Then, by our construction
of {u,, }, 0 € Ey because u,, (0) = ug, and moreover, by Lemma 2.4, [0,7] — Ey is of

linear measure zero.

Lemma 3.1. The pair of function {u, 8} satisfies

[ w4 ) + Slulo) ~ n(o)y

< [ U= mr+ @) + Slul) ~ ()l

Vi € Ko(6), supp(n) C Qo := {(z,t) € Q [ v(0(x,1)) > 0}, Vs € Ey, Vi > s.

Proof. Let § be any positive number and 1 be any function in Ky(#) such that
supp(n) C Qs :={(z,1) € Q [ (0(x,1)) > d}.
Then, given € > 0, by (1.15) there is a positive integer k. such that
V(Ony) =)l <& on Q, Vk =k,

whence

f)/nk<enk) > d —¢con Q§7 vk > k€7

Next, let 1 be a small positive number. Then,

(I —e)lnl < (1 =e)y(0) < (1 =) (On,) +€)
< 7nk(6nk) —e10+¢
<

'Vnk(enk) on Qé? \V/k 2 k67

as long as 0 < € < &1d. Therefore, taking (1 —£1)n as a test function in (3.1), we observe

that

t
1

(1 - 51)/ <77,7unk - (1 - 51)77>d7- + d%(”mw unk) + Eyunk(t) - (1 - 51)77(t) %I

¢ S
1
< [ ot = (= ) + 0,3 (1= )+ i (5) = (1= 205
Vs, t€[0,T], s <t, Vk > k..
Fixing 6 > 0, pass to the limit k¥ — oo in (3.3) and use Lemma 2.4 to see that

D (u;u) < liminf @ (w5 un, ), Ph(u; (1 —e1)n) = lim @ (u,,; (1 —e1)n),

k—o0 k—o0

u(t) = (1= )i < lminf [u, (1) — (1 - en(O)f, ¥ € 0, 7],

(3.3)
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and
u(s) — (1 = ex)n(s)f3y = Jim un, (5) — (1 = 0)n(s)f, Vs € Bo

By virtue of these facts, finally letting e; — 0 yields (3.2) for all n € Ky satisfying
supp(n) C Qo, since § > 0 is arbitrary. O

Lemma 3.2. The pair of functions {u,0} satisfies (1.1) and (1.2).

Proof. For each k, the function 6, satisfies that

0,
ot

— kA, = h(z,t,u,,) ae. in Q,

with
00y,

on
Since h(z,t,u,,) — h(z,t,u) in L?(Q) by (2.10) of Lemma 2.4 and 6,, — 6 in C(Q),
weakly in W2(0,T; H'(Q)) and weakly* in L>(0,T; H*(2)) as k — oo, it follows that 6
is a unique solution of (1.1) and (1.2), and § € W2(0,T; H*(Q)) N L>=(0,T; H*(Q2)). O

+ngby, =0 a.e.on X, 6, (0) = 0.

Next, in order to prove the continuity of w(¢) in H with respect to time, we make use
of the following family of test functions

Nseer0(T,t) with parameters s € [0,T], € >0, ¢, >0, 0 >0,
which is defined as follows:
e Given ¢ > 0, take a positive number t. such that
O, 1) =70 Dl <& Vs, t€[0.T] with [s—t] <., (3.4)
and let 0. := 0.(t) be a smooth non-negative function on R such that
0:(0) =1, o.(t) = 0.(—t), Vt >0, 0 <o0. <1onR, supp(o.) C (—t.,t.), (3.5)

do(t
ol(t) == Udt( ) <0, Vt > 0; hence o.(0) = 0.
e Given ¢ > 0 and ty € [0, 7], denote by Us(to) the d-neighborhood of Q.(to) := {x €

Q| v(6(x,ty)) = 0} . Choose a smooth function as := as(z, o) so that

0, Vr € Ug(to),
0< 045(.7t0) <lon Q7 Oég(:[',to) = (36>
1, Ve e Q) — Ug(g(to).

e Given ¢ > 0, choose a smooth function z.(-, s) in V for every s € [0,T] so that
uls) = z(s)[w <&, [2(8)] <7(0(5)) on Q, [V, 8)| < Cle) on Q, (3.7)

where C'(¢) is a positive constant depending on &, but not on s.
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We note that for any ¢y € [0,7] and any § > 0 there is a positive constant Cs > 0 such
that
’7(‘9($7t0)) Z 05, Vo € Q) — Ug(t()) (38)

Hence, by (3.4),
v(0(x,t) > Cs — e, if |t —to| < t. and x € Q — Us(ty). (3.9)

Lemma 3.3. Let ty € (0,7), €1 € (0,1), 0., as and z. be as above. Then,

Nseers(@t) = (1 —e1)o-(t — to)as(x, ty)z:(z, s)
belongs to Ko(0), ifer € (0,1), 0 <e <e1- S, |s—to| <t and |t —to] < t..

Proof. If e, € (0,1), 0 <e <e1- %L, 2 € Q—Us(ty), |s — to| <t and |t — to| < t., then
we observe by (3.5)~

(3.9) that
el )] = (1 20)0(t — to)as o, to)lzo(z,5)
< (L= e)o(t — to)as(a, to) (02, 5))
< (1= en)ou(t — to)as(z, fo) (1 (Oz, 1)) + 22)
< (T —ey)o(t —to)as(x, to)y(0(x,t)) + 2e(1 — e1)o(t — to)as(z, to)
< Y(0(x,t)) — o(t — to)as(x, tg)(e1 - Cs — 2¢)
< (0(x,1)).
Since s e, 5(x,t) = 0 for x € Us(to) or |t —to| > t., it follows from the above inequalities
that 1.0, 5 € Ko(6). O

We hereafter denote by |S| the N-dimensional Lebesgue measure of any measurable
set S.

Lemma 3.4. Let ty € (0,7] and s € [0,T] with |s —to| < t.. Then,
[u(to) = N eers(to)lmr > Julto) — u(s)|m — (1 +|Q]2) — e1v*|Q]2

1 (3.10)
=" |Uss(to) — Qu(to)]?

and
(5) oz (5) 1 < (1 +1015) " [U0) = . (10) (511
+(1 = 0(s — to))Y* QU2 + ey Q2. '
Proof. We have

(to) = Mseers(to)n

(to) — (1 —e1)as(to) 2 (s)|m

u(to) = ze(s)|u — |z(s) — (1 — e1)as(to)ze(s)|u
(to)
(to)

(AVAR VARV
=



Since &1]y(0(s))|g < e17*|Q2 and
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(1= as(to))1(8()) [ < (1 = as(to)) (V(8(t0)) + )l < 7" |Uss(to) — ulto)|> + e[,

it follows from the above inequalities that (3.10) is obtained.
Also, we observe that

’u S)— 775,6,81,5(3)’5(

(s)

[u(s) = (1 = e1)o=(s — to)as(to) 2(s)|u
()
(s)

< u(s) — oo(s —to)as(to)ze(s) | + €1]oe(s — to)as(to)ze(S)| 1

< Juls) = ze(8)]ar + (1 — 02(s — to)as(to))z(s) s + €1low(s — to)as(to) ze(5)

< Juls) = ze(8)]a + (1= as(to))z=(s)]a + (1 — 02(s — to))|as(to) 2 (s) &
+ep|oe(s — to)as(to)z-(s)| i

< e+ |Us(to) — Qulto)|2 +€lQU2 + (1 — 0c(s — o))y IQI2 + 17|02

Thus (3.11) is obtained.

4. Proof of Theorem 1.1

We show first that the variational inequality (3.2) holds for all s, ¢ € [0,T] with s < ¢.

To do so, we recall from Lemma 3.1 that for any ¢y, € (0,7] and any s € [0, ty] N Ey

to 1
/ <77;,s,51,6’ U = 775,5751,5>d7' + 9520 (u;u) + §|u(t0) - 778,6,61,6(t0)|%{

to 1
< [ U s + O ) + 510(5) e ()

(4.1)

We note from (3.5)~(3.7) that 7,..,s is bounded in C*(Q) uniformly in s € [0, ] for

fixed €, €; and 9, so that

to

lim <77; £,61,07 U — 775,5751,5>d7— = 07 lim gpzo (ua u) = Oa
sTto s [ sTto

to
lim (fiu —Mseers)dr =0, lim DY (u; Nseers) = 0.
sTto s sTto

Therefore, letting s 1 tg, s € Ey in (4.1), we see that

lim sup |u(t0) - 775,5,51,5(150)|H < lim sup |u(8) - ns,5,€1,6(5)|H7
s€Ep, stTto seFEp, sTto

Moreover, using (3.10) and (3.11) of Lemma 3.4, we derive from (4.2) that

limsup |u(to) — u(s)|g < 2e(1+ |Q|%) + 2517*@\% + 29| Uss(to) — Q*(to)ﬁ
seEyp, stTto

(4.2)

(4.3)
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whence
lim |u(to) — u(s)|g =0, (4.4)

s€Fp,sTto

since e, €1 and J are arbitrary as long as g1 € (0,1), 0 < & < 28 and |Uss(to) —Qu(to)| —
0asd 0.

Since ty arbitrary in (0, 7], the above observation proves:

Lemma 4.1. For each s' € (0,T] there exists a sequence {s,} in Ey such that
sp s, u(sy) —u(s) in H (as n — 00.) (4.5)

and the variational inequality (1.8) in Definition 1.1 is fulfilled.

Proof. The convergence (4.5) is immediately seen by taking s’ as ty in the above obser-
vation (4.4), and we have by Lemma 3.1 that

[ty + @, (us) + 5Ju®) - (o)
o 1 (4.6)
< [ (o= mdr 2% )+ Ghu(s) = (sl

S

for all n € Ky(0). Now, passing to the limit in (4.6) as n — oo and using (4.5), we see
that the variational inequality (1.3) holds for any s = ', ¢t € (0,7] with s < ¢; (1.3) for
s' =0 and t > 0 automatically holds, since 0 € Ej. O

Corollary 4.1. u(t) is continuous in H from the left with respect to time t.

Proof. In Lemma 4.1 we showed that the variational inequality (1.3) holds for every
s, t =1ty € [0,T], s < to. Hence, by repeating the same argument as above to get
limgyy, |u(to) — u(s)|m = 0 without the restriction s € Ey. Thus u is continuous in H from
the the left in time. g

Lemma 4.2. u(t) is continuous in H from the right with respect to time t.

Proof. Let ¢y be any time in [0,77). We make use again the test functions 1y, ., s(x,t) ==
(1 —e1)o.(t — to)as(x,to)ze(z, ty) for our proof. By Lemma 4.1, we have

t
1
/ <77£0,a,51,6» U= nto,s,el,(S)dT + Qio (U§ u) + §|u(t) - 77t076761,6(t)|%1
to (47)

t
1
< / <f7 U — 77t0,€,€1,5>d7- + @io (u; 77750,5761,5) + §|u(t0> - nt0,8751,5<t0)‘3{'
to

By Lemma 3.4,

w(t) = Nty eer (D)1 > Ju(t) = ulto)|n — (1 +|Q[Z) — e10.(t — to)7*|Q2

N

— 7" |Uss(to) — Qu(to)]
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and
[u(to) = Neg.eer.6(to)|r < e(1+[Q2) + 7" |Uss(to) — Qul(to)2 + €17 [Q2.

Just as in the proof of (4.2) and (4.3), by using these inequalities we drive from (4.7) that

limsup |u(t) — u(to)|r < 26(1 + |Q]2) + 27| Uss(to) — Qulto)|2 + 2217792,
tlto

as long as 0 < € < % and 0 < e; < 1. By the arbitrariness of such ¢, ¢; and § we
conclude that u(t) — u(ty) in H as t | to. Thus u(t) is continuous in H from the right in

time. O

The proof of Theorem 1.1 is now complete. Indeed, by Corollary 4.1 and Lemma 4.2,
u is continuous in H on [0, 7] and {u, 0} possesses the other regularity properties required
in statement (a) by (1.15) and (1.16). The statement (b) was proved in Lemma 3.2, and
(c) was proved in Lemma 4.1 together with (1.17).

Remark 4.1. In this paper we proved the continuity of u(t) in H := L?(2) for a concrete
parabolic quasi-variational inequality under obstacle |u| < v(0). Tt is expected to discuss a
similar problem under gradient constraint, |Vu| < (), in the degenerate case of . This
is a future question. See [1,9,11,13,14,15] for some related works of obstacle or gradient
constraint problems.

Remark 4.2. There has not been a general abstract set-up of parabolic quasi-variational
inequalities, taking a class of semimonotone operators with time-derivative operators into
account. Especially, it seems quite difficult how to describe “degenerate case of con-
straints” in the abstract set-up, which is one of challenging problems. See [6,7,8,10,12]
for some abstract parabolic quasi-variational formulations.

Appendix

Let H be a general Hilbert space with inner product (-,-)g, V and W be separable
and reflexive Banach spaces such that V and W are dense subspaces of H with compact
embeddings and W is a closed subspace of V' with continuous embedding. We denote the
dual spaces of V and W by V* and W*, respectively, and the duality between V and V*
or W and W* by (-,-). In this case we have

V ¢ HCW?* with dense and compact embeddings.

Here we recall the concept of bounded variation of function w : [0,7] — W*. The
total variation of w, denoted by Vary«(w), is defined by

T
Vary«(w) := sup / (w,n’>W*,Wdt.
n e Cy0,T; W), 70

11| oo 0,rwy <1
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Our compactness theorem is based on the uniform total variation estimate for all
functions in the class Z(M;) as stated in the follwoing theorem.

Theorem (cf. [9; Theorem 3.1, Lemma 3.2]) Let My be any positive number and let
Z(Mp) = A{w | [w[rrorv) < Mo, |w|pcor;m), Varw-(w) < Mo},

where 2 < p < co. Then, given any sequence {u,} in Z(My), there exists a subsequence
{un, } of {u,} with a function w € LP(0,T;V) N L>*(0,T; H) such that

(1) w is of bounded variation from [0,T] into W* such that
Un, (t) = u(t) weakly in W*, ¥Vt € [0,T] (as k — 00);
hence uy, (t) — u(t) weakly in H for every t € [0,T).
(11) {un, } converges (strongly) to w in LP(0,T; H).

On account of the above theorem, the set Z(M;) is compact in LP(0,7; H).
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