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Abstract. This paper discusses finite time extinction for a perturbed fast diffusion
equation with dynamic boundary conditions. The fast diffusion equation has the char-
acteristic property of decay, such as the solution decays to zero in a finite amount of
time depending upon the initial data. In the target problem, some p-th or ¢-th order
perturbation term may work to blow up within this period. The problem arises from the
conflict between the diffusion and the blow up, in the bulk and on the boundary. Firstly,
the local existence and uniqueness of the solution are obtained. Finally, a result of finite
time extinction for some small initial data is presented.
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1 Introduction

In general, when discussing the well-posedness for some parabolic partial differential equa-
tions in a smooth bounded domain, the initial and boundary values are taken as auxiliary
conditions. Settings with Dirichlet, Neumann, or Robin boundary conditions are common.
Recently, dynamic boundary conditions have also been treated in several studies. Here,
the boundary condition includes the time derivative. Moreover, the dynamic boundary
condition with surface diffusion, which is the generalized Wentzell (Ventcel’) boundary
condition [52], is of great interest. The presence of a dynamic boundary condition in
evolution problems creates a transmission problem between the dynamics in the bulk and
on the boundary.

In this paper, we consider the fast diffusion equation with a dynamic boundary con-
dition of the following form:

ou—Au™ +au™ = P inQ, t>0,
ou+ dpu™ — Aru™ +bu™ = pu? onl, t>0,

where 2 C R? is a bounded domain with smooth boundary I" := 9. We set up parameters
0<m <1, pq>1,and (a,b),(\p) € {(1,0),(0,1)}. The symbols 9;, A, 9,, and
Ar denote the time derivative, the Laplacian, the normal derivative with respect to the
outward unit normal vector v on I'; and the Laplace-Beltrami operator (see, e.g., [33]),
respectively. It is worth noting that Ar plays an important role in this paper. The second
equation (1.2) is called the dynamic boundary condition. It describes the dynamics on
the boundary through the appearance of the time derivative.

In general, if a = A = 0, then we can categorize the nonlinear parabolic equation
(1.1) as a fast diffusion equation, as compared with a heat equation (m = 1) and a
porous medium equation (m > 1) (see, e.g., [51]). The fast diffusion equation has the
characteristic property of decay [45]. More precisely, the solution decays to zero in a
finite time that depends upon the initial data. This is called finite time extinction. In
this paper, we consider the finite time extinction for the perturbed fast diffusion equation
(1.1)-(1.2) with some initial condition. The p-th or ¢-th order perturbation term may
work to the blow up with in this time. Several studies have been conducted on the
perturbed fast diffusion equation with the homogeneous Dirichlet boundary condition,

ou—Au™ =v? inQ, t>0,
u=0 onl, t>0,
u(0) =up in 2,

for example, [5, 27] for m = 1. For 0 < m < 1, we refer to (2, 13, 14, 15, 22, 23, 39, 53]
and references therein. The behaviour of the solution differs from the case of Q = R3
(see [37, 41], for example). On the other hand, some studies related to (1.1) considered
the nonlinear boundary condition [10, 12, 20, 24, 38, 46, 55|, and the dynamic boundary
condition [16, 17, 18, 19, 21, 31, 32, 54]. The case of m > 1 is also interesting (see [25]
for example, that considers equations similar to (1.1)—(1.2)), and has been the subject of
several studies. Many of which are related to the pioneering blow up results of [26, 35].
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To clarify the setting of our problem, we present the corresponding problems with
parameter settings as follows:

Ou — Au™ m =P in

(a,b,\, 1) = (1,0,1,0), T AU U= RS (1)
o + Opu™ — Apu™ = 0 on I
Ou — Au™ = uP in

(a,b,\, 1) = (0,1,1,0), T au = S (1.4)
ou + Opu™ — Aru™ +u™ =0 on I';
ou — Au™ m =) in

(a,b,\, 1) = (1,0,0,1), t— AUt u S (1.5)
o + dpu™ — Aru™ = u4 on I';
ou — Au™ =0 in

(a,b, A, 1) = (0,1,0,1), o MRS (1)
ou + Opu™ — Aru™ + u™ = ul on I,

where the initial condition is omitted for simplicity. As a remark, we could also mention
the case (a,b) = (1,1). However, we do not consider it in the present paper since it is
trivial.

In this paper, applying the method of Filo [22], we discuss the local existence and
uniqueness of the non-negative solution of (1.1)—(1.2) for some suitable non-negative initial
data. Following results by Fila and Filo [14, 15], we obtain a result of finite time extinction
for some small initial data.

We present a brief outline of the paper along with a short description of the various
items.

In Section 2, we state the main theorems, which are related to the finite time extinction
after establishing our notation. Let (A, ) = (0, 1); for some small initial data, the unique
solution of (1.5) or (1.6) decays to zero in a finite time when 1/5 < m < 1. This means
that we can take any ¢ > 1. On the other hand, if (A, x) = (1,0), we can obtain the same
result to (1.3) or (1.4) under the additional assumption 1 < p < 5m.

In Section 3, we consider an auxiliary problem. We discuss the well-posedness of some
globally Lipschitz perturbation based on Filo [22]. Firstly, we set up a time discretization
scheme. Thus, we obtain a solution for an elliptic problem applying the maximal mono-
tone theory. Secondly, correcting the suitable uniform estimates, we prove that a pair
of piecewise linear functions converges to a candidate solution to the auxiliary problem.
Using fundamental inequalities, we also obtain estimates for time derivatives since the
initial data belongs to H! N L*. This is a point of emphasis, because the suitable regu-
larity of the time derivative is a special property for the fast diffusion equation (see [23,
Theorem 2| and Remark 3.1). Moreover, to obtain a regular solution, we use the boot-
strap argument for the dynamic boundary condition. Thanks to surface diffusion, this
argument works well. This is another point of emphasis because the equation is treated
as a weak or very weak formulation of the porous media equation in general. The solution
satisfies the equation in almost everywhere sense. It is a benefit of surface diffusion.

In Section 4, we prove the main theorems step by step. Firstly, we obtain the local
existence of the solution to the original problem under a general setting, that is, 0 <
m <1, p,g > 1. We use a standard method of the cut off function. The solution also
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satisfies an energy inequality and equality of conservation with respect to the L(*m)/m.
norm. The proof of the main theorems is based on the effective use of this inequality and
equality. Next, under the assumption 1/5 < m < 1, we prove the property of the finite
time extinction for (A, u) = (0,1), namely (1.5) or (1.6). FIGURE 1 shows the strategy
of the proof of the theorem. To complete the proof of finite time extinction, we need to
discuss the invariance of some stable set. The essence of the proof is based upon Fila and
Filo [14]. If (A, ) = (1,0), we need additional assumption 1 < p < bm.

Here, let us present a detailed index of sections and subsections.

1. Introduction
2. Main theorems

2.1. Notation

2.2. Main theorems
3. Global existence for globally Lipschitz perturbations

3.1. Time discretization
3.2. Uniform estimates
3.3. Proof of Proposition 3.1

4. Proof of main theorems

4.1. Finite time extinction

4.2. Proof of invariance

Appendix

2 Main theorems

In this section, we present the main theorems. We first set up our problem in mathematical
fundamental settings.

2.1 Notation

Let T > 0 be the finite time and @ := (0,7) x Q, ¥ := (0,7) x I'. We use the following
notations: H := L*(Q), V := HY(Q), and W := H*(Q), which are Hilbert spaces with

standard norms | - |x and inner products (-,-)x, where X is the corresponding space.
Analogously, Hr := L*(T"), Vr := HY(T'), and Wt := H*(T'). For the pair of functions z
on  and zr on I', we use the bold character z := (z,zr). Also, we have the following
definitions.

H :=H x HF,

V::{zEVpr Doar = 2 a.e.onF},
W:=WxWr)nV,
L™ := L>(Q) x L>(T).
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The symbol 2|, denotes the trace of z to the boundary I'. We remark that for the function
z = (z,2r) € H, the first component z and the second component zr are completely
independent because of the lack of regularity.

Subsequently, we set o := 1/m for simplicity. We define functions sgn,~, ¢, g9r : R = R
by

if r >0, re if r >0,
sgnr:=<¢0 ifr=0, (r):=|r/%gnr=40 if r=0,
-1 ifr <0, —(=r)* ifr <o,

g(r) = |r"='r = |r|’sgur,  gr(r) := [r*""r = |r|%sgur.

Moreover, we put 3 := v~ Then, v, 3, g, and gr are monotone functions. Now, we
can set up the problem of perturbed fast diffusion equation with a dynamic boundary
condition as follows: Find v : @ — [0, 00), vr : £ — [0, 00) satisfying the following system

Oy(v) — Av+av = Ag(y(v)) ae. in @, (2.1)

v, =Ur a.e. on X, (2.2)

Oyy(vr) + Opv — Arvr + bur = ugr (”y(vp)) a.e. on %, (2.3)
v(0) =vy a.e. in €, (2.4)

vr(0) =wvpg  a.e.on T (2.5)

The third equation (2.3) is called the dynamic boundary condition since it includes the
time derivative. Therefore, we need two initial data for v and vp, or more specifically,
conditions (2.4) and (2.5) with given data vy : 2 — [0,00) and vry : I' — [0, 00),
respectively. Compared with the previous result of Filo [22], the function v := (v, vr) will
satisfy the equations in almost everywhere sense in (2.1) and (2.3), respectively, thanks
to the presence of surface diffusion. In other words, we can obtain sufficient regularity.

To discuss finite time extinction based on the previous results (see, e.g., [14, 15, 34,
40, 42, 44, 47, 50]), we introduce the stable set W with corresponding energy J as follows:
put

Px = Ap + g,

namely p, = p if (A, ) = (1,0) and p, = ¢ if (\, ) = (0, 1)

W:={zeV\{0} : 2>0, zp>0 J(z )<d2<,01( ) > (ap. + 1)pa(2)} U {0},

= pi1(z) -

/|Vz| dz 4~ /|z| do + /\szﬂ dr+ 2 /|zp\ dr,
— ap+1 aq+1
oa(2) : ap*+1< [1ersian s [ fad dr)

In the definition of W, the constant d is called the depth of the potential well, and is now
defined by

=inf{J(z) : 2 € V\{0},201(2) = (ap. + 1)ps(2)}. (2.6)
This constant is characterized by the optimal constant of some estimate between ¢;(2)
and 9(z), which will be discussed in Remark 4.2.
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2.2 Main theorems

The main theorems are related to the finite time extinction for the solution v = (v, vr)
of (2.1)—(2.5). Let (a,b) € {(1,0),(0,1)}, (A, ) = (0,1). For the cases of (1.5) or (1.6),
there are no restrictions for ¢ > 1.

Theorem 2.1. Assume that 1/5 < m < 1, ¢ > 1, and vy := (vg,vry) € W N L*™.
Then, there exists Toy € (0,00) depending on |vo|pa+m)/m(qy and |vr ol pavm)/mry such that
v(t) =0 a.e. inQ, vp(t) =0 a.e. on T for all t > Tey,. Moreover, there exists a positive
constant C(m) > 0 depending on m such that

‘U(t) |L(1+m)/m(Q) + ‘Uf(t) ‘L(ler)/m(F) S C(m) (TeXt - t)m/(l_m) (27)
for all t € [0, Tox)-

Corollary 2.1. Assume that 1/5 <m < 1, ¢ > 1, vg € H}(Q) N L>®(Q) with vy > 0,
and 0 < |vl?, < 2d, namely vy := (vo,0). Then, there exists Toy € (0,00) depending on
|vO|L(1+m>/m(Q) such that v(t) =0 a.e. in Q, vp(t) =0 a.e. on T for allt > Ti,. Moreover,
the same kind of estimate from above (2.7) holds.

Let (a,b) € {(1,0),(0,1)}, (A, ) = (1,0). For (1.3) and (1.4) under the restriction of
p > 1, we can discuss the finite time extinction.

Theorem 2.2. Assume that 1/5 <m < 1,1 <p<bm, and vo € W N L*. Then, there
exists Toxy € (0,00) depending on ]vg|L(1+m)/m(Q) and |UF,0|L(1+m>/m(F) such that v(t) = 0
a.e. in Q, vp(t) =0 a.e. on T for allt > Toxy. Moreover, the same kind of estimate from
above (2.7) holds.

As a remark, the well-posedness of the problem is discussed in Proposition 4.1.

3 Global existence for globally Lipschitz perturba-
tions

In this section, we discuss the auxiliary problem for (2.1)—(2.5). Let us replace the per-
turbations ¢, gr by globally Lipschitz continuous monotone functions f, fr with Lips-
chitz constants Lg, Ly, > 0. Furthermore, f and fr satisfy f(0) = fr(0) = 0: Find
v:Q —[0,00), vr : ¥ — [0, 00) satisfying the system

Oy(v) — Av+av = f(y(v)) ae inQ,
U, =vr a.e.on X,

Oyy(vr) + Opv — Arvr + bur = fr (’7(7)1")) a.e. on X,
v(0) =vp a.e. in Q,

N N N /N /N
T = W N =
— N N N T

vp(0) =vro a.e.onl.

In this section, we set (a,b) € {(1,0),(0,1)}, and the function v is the same as it was in
the previous section.

We obtain the global existence and uniqueness result for globally Lipschitz perturba-
tions as follows.



371

Proposition 3.1. Let 0 < m < 1,0 < T < oo. Let us assume that vy := (vg,vrp) €
V N L* with vg > 0 and vppy > 0. Then, there exists a unique pair of non-negative
functions v := (v,vr) such that

ve C([0,T); H) N L®(0,T;V N L=(Q)) N L*0,T; W),
ple /2 — (im)/2m o HY0,T; H),

y(v) € HY(0,T; H) N L>(0,T; V),

or € C([0,T]; Hr) N L>(0,T; Ve N L=(T)) N L*(0,T; Wr),
U§a+1)/2 = vl(ﬂHm)/Zm € H'(0,T; Hy),

y(vr) € HY(0,T; Hp) N L0, T; Vi)

and (3.1)~(3.5) hold. Moreover, they satisfy the energy inequality

a+1 /(/|a (a+D)/2 (4 \dm+/}a ()72 )\dP)
+<p1 /f7 dﬂf—/rfrﬁ vp(t) dT

S%@d—/ﬁ@ww—/ﬁwwmﬂ (3.6)
Q r
and the L*®-boundednesses
|U(t)‘Loo(Q) < "% (Jvo| oo () + |vrolzee(r))s (3.7)
}Ur(t)‘po(p) < " (Jvo| ooy + |vrol oo (r)) (3.8)

for allt € [0,T], where L := max{Ly, Ly.}. Furthermore, there exists a positive constant
My such that
[0(t) = v(s)]; + [or() = ve(s)], < Moft — s|/+Y (3.9)

for all s,t € [0,T].

We present the proof of the proposition in Subsection 3.3. In estimate (3.6), the
function f, is defined as the primitive of f o, namely

fy(r) = /Or(f oy)(s)ds = /07" f(v(s))ds for all r € R.

The primitive f/}‘ﬁ of fr o~ is also defined analogously.

To discuss the existence of solutions to the above problem, we employ the argument of
Filo [22]. Indeed, the well-posedness for the nonlinear diffusion equation with the dynamic
boundary condition without the perturbation, can be solved using idea from [28, 29, 30,
48]. To this problem, see also the abstract approach of evolution equations governed by
the difference between two subdifferentials [1, 3, 34, 36, 43]. Also we consider [31] and
that author’s series of papers on various problems with dynamic boundary conditions.
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3.1 Time discretization

The essential idea of Filo [22] was to apply time discretization and suitable fundamental
inequalities. Let n € N, and set h := T'/n: for each i = 1,2,...,n, find v; and vr;
satisfying

v(vi) — v(vic1)

h — Al)i “+ av; = fi—l a.e. in Q, (310)
(vi)[r =vr; a.e.onl, (3.11)
’Y(Uni) — V(Ur’i_l) -+ (9,,1)1' — AFUFJ‘ + bvm = fF,ifl a.e. on F, (312)

h

where f;_1 = f(v(vi—1)) and fr;—1 := fr(y(vr;-1)). Then, we see that there exists a
unique pair (v;, vr;) € W of non-negative functions such that (3.10)-(3.12) holds for all
i=1,2,...,n. Indeed, we define an operator A : D(A) — H by Az := (v(z),v(2r)) with
D(A) = L**(Q) x L**(T'). Then, A" is monotone and hemi-continuous. Therefore, A is
maximal monotone same as A~ (see, e.g., [6, p.36, Theorem 2.4, p.29, Proposition 2.1]).
Moreover, we define a proper, lower semi-continuous, and convex functional pg : H —

[0, 00] by
o p1(z) ifzeV,
pr(z) = {oo itzcH\V.

Then, we see that the subdifferential Opgr is a maximal monotone operator, characterized
by Ovm(z) = (—Az +az,0,z — Arzr + bzr) with domain D(Jpg) = W (see, e.g., [6, 7,
11]). Thanks to the standard maximal monotone theory (see, e.g., [6, p.44, Theorem 2.7]),
A + Opg is also maximal monotone. Moreover, there exists a positive constant Cc > 0
such that

(Az +0vu(2),2), Z/]VdeaH—a/ |z]2dx+/lvpzp]2dl“—|—b/\zﬂQdF
0 0 r r
( = 2¢1(2) )
> Colzly (3.13)

for all z € W. Indeed, if (a,b) = (0, 1), the Poincaré inequality ensures that there exists
a positive constant Cp > 0 such that

2|3 < Cp (/ IV z|?dx + b/ |z|F|2dF) for all z € V.
Q r

If (a,b) = (1,0), the trace theory between V and Hr ensures that there exists a positive
constant C't > 0 such that

|Z|r|%rF <Cr (/ |V 2|2dz + a/ |z|2da7> for all z € V.
Q Q

Therefore, A + Jpg is coercive. Thus, the range R(A + 0pp) of A + Opg is the whole
space H (see, e.g., [6, p.36, Corollary 2.2]). Next, multiplying (3.10) by min{0,v;} € V
and (3.12) by min{0, vr;} € Vr, respectively, we obtain the non-negativity of the functions
v; and vr ;.
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3.2 Uniform estimates

According to [22, Lemma 1.14], we obtain the L*>°-boundedness as follows:
Lemma 3.1. The functions v; and vr; satisfy
Vil < (1+ LAY (Jvol 1@y + [vrolz=)).
|or,i| peery < (1 + LR)7* (Jvg| o) + |vro| ooy ) -
forallt=1,2,...,n.

Proof. Let x> 1. Multiplying (3.10) by vf* and (3.12) by vf ;, using (3.11), and summing
the results, we deduce that

/vf‘*“dx—l—/vl‘i‘f{“df‘—i- <h/€/vf1\Vvi\2dx—|—h/<;/vﬁil\vpvniﬁdlﬂ
Q r 0 r

+ha/ vf“da:—l—hb/v’ﬁfdf)
Q r

§/v?_lvfd$+/v%i_lvﬁidf‘+h/fiwfdx—i-h/fp,ilvﬁidf‘
9] r ' Q r '

< Lgh) [ o oo+ (14 Lh) [ ofof T
Q T

.otk

/Q.O‘J'"‘ o 9ts
<~ /”Ui ~dy + — (1+Lh)(a+”)/“/vi1°‘ dr
a+ K Jo a—+ K Q

H.a+n a‘a-ﬁ—n
t / v dT 4 —— (14 L)@/ / vpy® dT
T

a+ K a—+ K T

for all e = 1,2,...,n, where we used the Young inequality. Now, the second terms of the
left hand side are non-negative. Therefore, we use the above estimate recurrently:

/ v dr / v iRdD < (14 Lh)itetm/le ( / Ve dr + / vg;*ﬂdr> :
Q T Q r

This implies that
V| ety < (14 L)Y (Jvo| pasr(ay + |Vl pasn(ry)
|or,i| ety < (1+ LR)7* (Jvo| posr(ay + [vr,0] potn(ry)
for all e = 1,2,...,n. Thus, letting K — co we find the conclusion. O]
Using Lemma 3.1, we obtain the following estimates:

Lemma 3.2. There exist positive constants My, My, and M3 > 0 independent of n € N

such that
(a+1)/2 (a+1)/2 |2
Ur; —Upi1

h

U(a+1)/2 B Ui(g—li—l)/Q

h

2 n
h< M, (3.14)

h+)
H i=1 Hr

lvily + |orilve. < My foralli=1,2,....n, (3.15)

2 n
ht )
H i=

Y(vi) = y(vi-1)
h

V(Ur,z‘) —V(Ur,z‘—l) ? h< M
- < Mg (3.16)

Hr

n
=1

for alln € N.
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Proof. Multiplying (3.10) by v;—v;—1 and (3.12) by vr;—vr;—1, using (3.11), and summing
these results, we deduce that

[2 ) =) (vi —vi—1)dx + /F il (vr; — vpi-1)dl’

h h
+ (;01 vz 1
/fvvz /f'yvzldx‘i‘/fl“'yvl‘zdr /fF'yUle
forall7 =1,2,...,n. Now, recall the fundamental inequality
4
T s < =)

for all r,s > 0 (see e.g., [23, Proposition 2| and Appendix). We obtain

2 N N 2
o U§a+1)/2 B vﬁl“)/? - U§7i+1)/2 B Ulg,itlil)/z ,
(a+1)2 h h
H Hr
i) = [ R [ Foolordr
Q r
< 1(vie1) — / ﬁy(vifﬁdx - / J?F,w(vr,z‘fl)dr (3.17)
Q r

for all : = 1,2,...,n. Summing (3.17) from i = 1 to i = j < n, we obtain

(a+1)/2 _ (a+1)/2]|2 i |pletD/z _ (atD)/2|?
i—1

4o ZJ: (2 v h+2 T T,i—1 h
(v +1)2 h : h
=1 H i=1 Hr
i) = [ s = [ Foofordr
<¢i(wo) = [ F(wo)dz — | frn(vro)dl. (3.18)
Q r
Here, using the Lipschitz continuities of f and fr, we have
N " (03 L (03 N L (63
| f+(7) /‘f |ds<Lf/s ds:a+1r+1, |fr(7“)|§a+17’+1

for all » > 0. Therefore, applying Lemma 3.1, we obtain that there exists a positive
constant My > 0 depending on o, T [vg|r~ (), |vro|r=m), and L, independent of n such

that
/f7 v; dx—i—/fpﬁ, urj)d

o a a+1
1(]. + Lh)( 13/ (|U0|Loo + |'UF,0|L°°(F)) i (|Q| + |F|)

_a+
L
a—+1

IN

LT/ (g ey + [vrolzeqmy ) (19] + 1) =: M. (3.19)
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Thus, we deduce that

2

2 (0% (0%
- UEQH)/Q - Uﬁil)/g h+ En U%,iﬂw - 1)%7;111)/2 h
; h ; h
=1 H =1 HF
a+1)?2 .
Lot 17 (¢1(v0) + M1> — M,

4o

for all n € N; that is, we obtain equation (3.14). Next, using equations (3.13), (3.18), and
(3.19), we obtain (3.15). To obtain (3.16), we apply the fundamental inequality

2
Ir® — s < 1 —(:1 max{r, s}(*~1/2|plotD)/2 _ glath/2) (3.20)
for all r,s > 0 since a > 1 (see, for example, [22, Lemma 1.20], a similar method in [40,

p.477], and the Appendix). From (3.20) and Lemma 3.1 we have

J
2
a—1 2
< max{|U¢|Loo(Q)a|Ui—1|L°°(Q)} (a+1> /Q

2
N ) a-1 [ 2«
< elTDETTE (Jug| oo () + vr ol 2oe(r)) (a + 1)

2

¥(vi) = y(vi1) de

h

2

pOFD/2 _ (at1)/2
dx

i i—1

h
U7;(a+1)/2 . U(a+1)/2

h

2

i—1

H

for all i = 1,2,...,n. Thus, we obtain the same estimate for v(vr;), multiplying h, and
summing up them. Moreover, summing these results from ¢ = 1 to n, then we apply
(3.14) to deduce (3.16). O

Remark 3.1. The last estimate (3.16) can be obtained only in the cases of the fast
diffusion equation for 0 < m < 1 or the heat equation for m = 1. Indeed, the inequality
(3.20) is true for o > 1. However, it is the advantage from the L -bounded initial data.
For this reason, the time derivative is treated in the dual space of V or Vi in the case
of the porous media equation for m > 1. In the case of the fast diffusion equation with
Dirichlet boundary condition and HE N L -bounded initial data, Akagi-Kajikiya obtained
crucial results in [2].

3.3 Proof of Proposition 3.1

In the standard manner, we define the following piecewise linear functions and step func-
tions:

On(t) = viit + %(t —ih) for t € [(i — 1)h, ik,
Up(t) == v for t € ((i — 1)h, ih],
BE() = y(vii1) + () = 1(vit) (t —ih) for t € [(i — 1)h, ih],

h
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oy (t) == v(vy) for t € ((i — 1)h,ih],
vy (t) == vy(vi—1) for t € [(i — 1)h,ih),
@D/ (at1)/2
0r% (1) i= v (T2 4 T e (t — ih) for t € [(i — 1)h,ih],
05 (t) o= 0T/ for t € ((i — 1)h,ih],
fori =1,2,...,n, and analogously for Or j, Ur n, Of 4, UF j,, UF s O, U According (3.10)—

(3.12), these functions satisfy the following equations:

0,0p — A, + avy, = f(vy) a.e. in Q, (3.21)
(vp)[r =vr, ae. onl, (3.22)
Oor p, + Opvp, — Arvr, + bur, = fr(vry,) ae onT, (3.23)
0p(0) = vy a.e. in €, (3.24)
Urp(0) =vrp a.e.onl. (3.25)
Here, we have the following useful properties:
h
|07 L2(0,15x) = 2‘ (%o ’X‘th’m (0,T:X) (3.26)
|04 Loe(0.1:x) = max{|v(vo)| ., [T L 0.1:3) } (3.27)
. . h*
|05, — v, L2 0,T:X) = = |0}, yh|%2(0,T;X) = §|3tvh|%2(o,T;X)a (3.28)

for some suitable function space X.

Now, we prove Proposition 3.1.

Proof. Thanks to (3.15), (3.16), (3.26), and (3.27), we obtain uniform estimates for v, :=
(Un, Urn), 0y, = (05,01 ), and v == (v5;, 01, ) for example,

[Un| oo 0.7y < Mo,

|atvh L2(0,1H) = Ms,
@h(t)|L°°(Q) < e (Juol e (@) + [orolree(ry)  for all £ € [0, T,
< elT (|U0|L00(Q) + |U1",0|Loo(1“))a for all t € [0, T,

()] ey
[0y = max |y(v)], < M,

A%
\vh]Loo(O,T;V) i ronax ’”y V; ‘V < My,

ylyeeey Tl

h —%
|07 L20.1H) = 5 ‘W(Uo){H + |Uh|%2(O,T;H) < Ms,

where M, and M5 are positive constants independent of n € N. Here, we used Lemmas 3.1
and 3.2, as well as Vy(v;) = avia_IVvi, Then, we see that there exist a subsequence
{hi}ren and functions v = (v,vr) € L®(0,T;V N L>), v* = (v*,vf) € HY(0,T; H) N
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L*>(0,T;V N L*>) such that
vy, — v weakly star in L>(0,7; V),
Up, — v a.e. in @,
@F,hk — Ur a.e. on Z,
vy, — v"  weakly in HY(0,T; H),
weakly star in L>°(0,7; V),
v, —v" weakly star in L>(0,7;V),
op, — V" ae in Q,
Ofp, — Ur  a.e.on X
as k — 0o. Moreover, we apply the Aubin-Lions compactness theorem [49, Section 8,
Corollary 4] and (3.28) to obtain the strong convergences (not re-labelled):
by —v* strongly in C([0,T7; L"(€2)),
of . — vp strongly in C'([0,T]; L(I'))  for r € [2,00),
v}, vy — v* strongly in L*(0,T; H)
as k — 00. According Lemma 3.1, we use VN L>®(Q) —— L"(Q) C H and Vp ——

L"(T") C Hr for all r € [2,00), where “—<" stands for the compact imbedding. From
the demi-closedness of the maximal monotone operator A, we obtain

v =7(v) ae in@Q, vr=-~(r) ae onX.

Thus, from (3.21)—(3.25), letting k — oo in their weak formulation, we see that v = (v, vr)
satisfy

/Qat’y(v(t))zdx—i-A@tv(vp(t))zpdf+/52VU(t).vzdx_i_a/gv(t)zdx
T /F Vror(t) - Vozrdl + b /F or(t)zrdl = /Q £ (3 (0(0))) 2 + /F fo(y(ve(8))) z0dl

for all z = (z,2r) € V, for a.a. t € (0,7), initial conditions v(0) = vy in H, and
vp(0) = vrp in Hr. Let z € D(Q), then zp = 0 and

—Av(t) = f(y(v(t)) — av(t) — 9y (v(t)) in D'(Q).

On the other hand, f(y(v)) — dyy(v) —av € L?(0,T; H); therefore, we obtain —Av €
L*(0,T; H) and
Oy (v(t)) — Av(t) + av(t) = f(y(v(t)) in H, (3.29)

for a.a. t € (0, 7). Next, for any z € V', we see from (3.29) that
/8t7(vp(t))2pdf + <8,,v(t), Z[‘> + / VF’U[‘(t) . VFZFdF + b/ ’Up(t)ZFdF
r r r

= [ e (ur() e (3:30)
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for a.a. t € (0,7). Here, we apply the bootstrap argument for the dynamic boundary
condition with surface diffusion to gain higher regularity (see, e.g., [9, 11, 28, 29]). We
have already obtained —Av € L?(0,T; H) and vr € L*(0,T; V). Therefore, from the
elliptic regularity theorem (see, e.g., [8, Theorem 3.2, p. 1.79]), we infer

v e L*(0,T; H¥*(Q))

and consequently, from the trace theory with elliptic operator type [8, Theorem 2.27,
p. 1.64], we obtain d,v € L?*(0,T; Hr). Therefore, from (3.30), we also obtain Arvr €
L*(0,T; Hr) such that

at’}/<7j1‘(t)) —+ &,v(t) — Apvp<t) + bUp(t) = fp (’y(Ur(t))) in HF,

for a.a. t € (0,7). Moreover, the information —Arvr € L?*(0,T; Hr) implies vr €
L*(0,T;Wr) (see, e.g., [33, p. 104]). Finally, this yields vr € L%(0,T; H*?(T)). Us-
ing the elliptic regularity theorem again, we see that v € L%(0,7;W) and v = (v, vr)
satisfies (3.1)—(3.5).

Next, we obtain the estimates (3.6)—(3.9). Firstly, the estimates (3.7)—(3.8) is the
direct consequence of Lemma 3.1. Secondly, we obtain the uniform estimates for v;" :=
(05", 01%,) using(3.14) (3.26), for example

‘atA**|L2 oz < M,

< e@FDETCD) (4] ooy + [vro| oo F))(a+1)/2 for all ¢ € [0, 77,

A Kk

oy (t)

|L°°(Q)

‘A**

< h| (a+1)/2

’LQ(OTH = 5 ‘H + |v; ’%2(0,T;H) < Ms,

where Mg is a positive constant independent of n € N. Then, there exists a subsequence
(not re-labelled) and a function v** = (v**,v*) € HY(0,T; H) N L>=(0,T; V N L*) such
that

vy, —v™  weakly in HY(0,T; H),
weakly star in L>°(0,7;V),
v, — v™  strongly in C([O, T7; H)7

o, — v ae in Q,

Ufp, = U a.e.on X

as k — oo. Moreover,

v = (v(a+1)/2’ o

U(a+1)/2) .

Now, for all ¢t € [0,T] and all k € N with hy, = T'/ny, there exists i, € {1,2,...,n%}
such that ¢t € [(ix — 1)hg,ixhg), if t = T then put iy = ng. Moreover, (i, — 1)hy — t,
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ixhy — t as k — oco. Therefore, we rewrite (3.18) into the following form

oz+1 / (/’at“** ’ dx+/‘at@FThk(3)‘2dF) ds

+901 U, (t /f oy, (t da?‘/fr Uf dF

< (ai—l / . (/}ay** s)| dm—l—/rmtﬁfi’fhk(sﬂ dF) ds
+oilv0) = [ Flooddo = [ Foglora)dr

and take the liminf;_ .., of both side, then, applying the lower semi-continuity and the
Lebesgue dominated convergence theorem, we obtain the energy estimate (3.6). The
L>-boundedness (3.7)—(3.8) is a direct consequence of Lemma 3.1. Finally, using the
fundamental inequality

lr—s| < ‘T(O‘H)/Q _ glat1)/22/ (1)

for all r;s > 0 (see Appendix), we obtain that

[v6) = v(s) [y + [or(®) = wr(s)]
/}U(a+1 /2 o v(a+1)/2(s>‘4/(a+1)dx + /‘Ulga+1)/2(t> o U§a+1)/2(5)‘4/(a+1)dr
r

(a—1)/(a+1) a+1)/214/(a+1) a—1)/(a+1 (o+1)/214/(a+1) 2/(a+1
< <|Q| )| Byt La(o,T;Hﬁ\F’( )/t 1)] 9y LQ&T%)) [t — s[2/(a+D)

for all s,t € [0,T]. Thus, we obtain the Holder continuity (3.9).

The proof of uniqueness is quite standard. Let w := (w,wr) be the solution starting
from the initial data wg := (wp, wro) and compare it with v. Define some approximation
or € C(R) of the signum function sgn satisfying ¢1(0) = 0, —1 < o3(r) < 1, o4(r) > 0,
and oy(r) — sgnr as k — oo, for all » € R. Taking the difference of the equations for
v = (v,ur) and w = (w, wr) we obtain

[ @) -tz +

T

(9ry(vr) — Oyy(wr)) zrdl + / V(v —w)-Vzdz

Q

—i—a/(v —w)zdr + / Vr(vr —wr) - Vyzpdl + b/(vr — wr)zpdl
Q r r

= [6@) = rGtw))sde + [ (febor) = fe(stur))erat

for all z = (z,2r) € V, for a.a. t € (0,7). Here, we omit the time variables v = v(t) and
w = w(t). We take z := op([v — w|") and zr := ox([vr — wr|T), where [r]T := max{0,r}
for all » € R. Then, we have

/QV(U —w) - Vog([v —w|")de = /Qafg([v —w]")| Vv - w]+‘2dx >0
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and the same kind of positivity for the term of a(v — w), Vr(vr — wr), and b(vr — wr),
respectively. On the other hand, considering sgn([v — w]|t) = sgn([y(v) — v(w)]") and
letting k — oo, we obtain

[ @) =)o (o = wl)da
= [ 260) = 1w)sen( - v])do
= [ a6 = 2tw)sen([r(0) = 2(w)]
= & [160) =2 Jds
and same as (97(vr) — 9y (wr))Jow([or — wrl ). Morcover,

[ 06 = £l - vl s

= [ (F6) = 7(w))sen(o - v]")do
= [ ) = r))sen(Bw) = 3(w)] Yo

<L/| |d:v,

same as (fr(v(vr)) — fr(y(wr)))og([vr — wr|"). By applying the Gronwall inequality

[ (e®) = ()] oy + [ [1(er(®) =2 (we®)] ]y

< (‘ [v(vo) — V(WO)}+|L1(Q) + HV (vrp) V(WF,O)]+|L1(F)> e

for all ¢ € [0, 7], this comparison estimate gives us the uniqueness of the solution. O]

4 Proof of main theorems

For a convenience, we define

Y(Z) — 1 /Z(H_m)/mdl‘—f— 1 /Z§1+m)/mdl—‘
1+m Jq 1+m Jr

_ @ a+1d L/ a+ld1'\
Oz+1/QZ $+Oz+1 sz .

In the case of locally Lipschitz continuous perturbations, we apply the cut off method to
prove local existence.

Proposition 4.1. Let 0 < m < 1. Let us assume that vy == (v, vrp) € V N L™ with
vg > 0 and vrg > 0. Then there exist Thax > 0 depending on the initial data, as well as
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a unique pair of non-negative functions v := (v,vr) such that they solve (2.1)~(2.5) on
[0, Thwax)- Moreover, the functions v and vr belong to

v € C([0, Thax); L*TH(Q)) N L=(0,T5V N L®(Q)) N L*(0,T; W),
p@tD/2 —  (Em)2m o Lo T H),

y(v) € HY(0,T; H) N L>=(0,T; V),
or € C([0, Tinax); L*THT)) N L®(0, T Ve N L®(T)) N L*(0, T; Wr),
WO = M ¢ 0 T ),
v(vr) € H'(0,T; Hp) N L>(0,T; Vr)

and satisfy the equality

jtY( (1)) + 21 (v(t)) :)\/

Uap-i-l T aq+1 )
; (t)d +M/ (t)dl (4.1)

r

for a.a. t € (0, Tyax). Furthermore, they satisfy the energy inequality

a+1 / (/\a (v D/2(1))| dm+/{a (02 (1)) dP) dr + J(v(t)) < J(v(s))

(4.2)
for all s,t € [0, Thax) satisfying s < t.

Proof. Let M := 2(|vg|re(q) + |vro|re(r)). Moreover, define g, grar : R — R by

—(M+ 1) ifr < —(M+ 1),
gu(r) == q |rfP~*r if |r| < (M +1)%,
(M + 1) ifr>(M+1)°,
—(M+ 1) ifr<—(M+1),
groa(r) == < |r|7tr if |r] < (M + 1),
(M+1)  ifr>(M+1)%,

where p,q > 1. Then, applying Proposition 3.1, for each T > 0 there exists a unique
vy = (vam,vr ) such that solves (3.1)-(3.5) with f := Agun, fr := pgmr. Moreover,
from the L*-boundedness (3.7)—(3.8), we have

< Mep-(MHD* P Dtfa < Mep- M e fa
f— ) -

’UM(t> ‘Loo(ﬂ) }URM(t) |L°°(F)
for all ¢ € [0, T], where we recall that p, = Ap + ug. Now, taking ¢ > 0 satisfying
M P (MAD)E6/a < M4+1, (4.3)

vy solves the original problem (2.1)—(2.5) on [0, §]. Moreover, we define

Tmax :=sup{d > 0 : the problem (2.1)-(2.5) has the unique solution on [0, ]}.
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Thus, we have proved the local existence of (2.1)-(2.5) on [0,7] for all T' € (0, Tipax)-
Additionally, from equations (2.1)-(2.5), we obtain that v satisfies (4.2). Next, from the
characterization of the Sobolev functions and the chain rule, we obtain that

2

oy(v) = O™ = 0, (U(a+1)/2)2a/(a+1) .
«

,U(afl)/2atv(a+l)/2

and also, for v¢ (see, [53, Lemma 2.3]). Therefore, from the equations (2.1)—(2.3), we
obtain that the following equality holds:

¢
/ (/ Oy (v(7))v(r)dz + / at’y(UF(T))UI‘(T)dF) dr =Y (v(t)) — Y (v(s)) (4.4)

s Q r
for all s,t € [0, Thax), that is, Y(v) is absolutely continuous on [0, Tax). This implies
(4.1) and additional continuities on [0, 7] in L*™(Q2) and L**H(T). O

Also, we obtain that J(v(t)) < J(vg) for all ¢t € [0, Thax), and J(v(t)) is monotone
decreasing as t — Ty.x. Moreover, we obtain the invariance of W as follows.

Lemma 4.1. The set WN L™ is invariant; that is, if vo € WNL™, then v(t) € WNL™
for all t € [0, Tinax)-

The proof of this lemma is given in Subsection 4.2.

4.1 Finite time extinction

Let (a,b) € {(1,0),(0,1)}, (A, ) = (0,1). The strategy for proving Theorems 2.1 and 2.2
is the same as that in [15, Theorem 2.1] and [44, Proposition 5.

Proof. Assume that vg € WN L™. Then, applying [15, Lemma 2.5] we can prove Tp.x =
oo (see, Remark 4.1). Recalling (4.1), we have the following equality:

¥ (0(t)) = 261 (4(1)) + (0 + Dipa(o(1)
= 201 (v(t)) + /F vp T (t)dl. (4.5)

for a.a. t € (0,00). From (3.13) and the Sobolev imbedding in 2-dimensions, there exists
a positive constant Cs > 0 such that

1/(ag+1)
(/ Z?quldP) = |Z1"’Lo¢q+1(1“)
r

< Cs|zr|n.
< 21/2C'SCC_1/2¢1(Z)1/2;

that is, there exists a positive constant C' > 0 such that

pa(2) < Copr(2) D2, (4.6)
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for all z € V. From the assumption, we have J(v(t)) < J(vg) := dy < d for all t € [0, 00)
and 2p;(vg) > (g + 1)pa(vg). Moreover, J(v(t)) is monotone decreasing. Hence, there
exists g1 € (0, 1) such that

(1—e1)2¢1(v(t)) > (ag+ 1)pa(v(t)) (4.7)

for all ¢ € [0,00) (see, Remark 4.2 and FIGURE 1). Now, from equations (3.13), (4.5),
and (4.7)

0= iY(v(t)) + 201 (v(t)) — (g + )2 (v(t))

dt
Y(v(t)) + 2e1¢1 (v(t))

Y (v(t)) +eiCelo(t)[;,

>

SRSV

>
T dt

that is, under the assumption 1/5 < m, from the Sobolev imbedding in 3-dimension, there
exists a positive constant C'(«) depending upon ¢, C¢, and «, such that

%y(w)) < —C(a)Y (v(t))

for a.a. t € (0,00). Recalling the fact that 0 < 2/(a + 1) < 1, we deduce

Y 4\ (a+1)/(a=1)
Y(v(t) < ({Y('vo)(a‘”/ (et — C(Oé)t] )

a+1

that is, there exists Tiyy > 0 depending upon Y (vg) such that v(t) = 0 for all ¢ > Tey.
Moreover, the estimate from above (2.7) holds. O

Remark 4.1. We know that v(t) is the function in L™ for all t € [0, Tiax) from the
construction of the solution, see Proposition 4.1. However, to obtain the time global
estimate with respect to L>-norm, we do not apply Lemma 3.1 directly to v(t) any more
since g and gr are not global Lipschitz functions. To obtain it, we need the assumptions
1 <p<bdm orq > 1. Indeed, we can apply the useful proposition with related to the
Moser technique. Originally it was obtained by Alikakos [4, Lemma 3.2], extended by
Nakao [42, Lemma 3.1] for m > 1, and Fila—Filo [15, Proposition 2.6] for 0 < m < 1.
Under the assumption 1 < p < bm or q > 1, we can obtain the L*>*-estimate independent
of t € [0,Thax) [15, Lemma 2.5] and then we obtain that Ty.x = oo. Thus, we see
that Theorem 2.2 is true also in the critical case p = bm if we additionally assume that
Tinax = 0OO.

Remark 4.2. The depth of the potential well d of (2.6) is characterized by

(ops+1)/(ap«—1)
d — ap, — 1 ( 2 ) O—Q/(ap*—l)’ (48)
2 ap, + 1
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21 = (ap. + 1)

7 J=d
D1 = 072/(ap*+1)¢§/(ap*+1)
Yo|---- -
W7
. d 1
(@2(’00), 801(’00)) / !
do |
/ 1 P2

T
J = do S

(1 —e1)2¢1 = (ap. + 1)
Figure 1: Region of W.

where C' is the best constant satisfying (4.6). Let (¢2,¢1) = (To,%0) be the cross point
between , X

P = C*2/(ap*+1)902/(04p*+ )’

21 = (aps + 1)¢a.
Then, J = d is the tangential line to the function o, = C=2/(@p-+D) 2/ (OPFD) 4y

(%, yo)

(ap«+1)/(ap.—1) (ap«+1)/(apx—1)
_ 2 c-2/ep.—n) OP- 1 [ 2 C-2/(op.—1)
ap, + 1 ) ap, + 1

Thus, we can obtain (4.8) from d = yo — xo.

4.2 Proof of invariance

It remains to prove Lemma 4.1. The proof of invariance is not difficult if we have v €
C([0, Thax); V') (see [14, Chapter 4], for example). However, in general, we do not have
such regularity from the nonlinearity of 7. Therefore, we consider an approximation and
obtain some information concerning the invariance:

Proof. From the definition of T},.y, for each 7 > 0 there exists T, € (Tiax — T, Tiax) such
that the problem (2.1)—(2.5) has a unique solution on [0, 7;]. Moreover, recalling (4.3) we
put M, > 0 satistying

Mep*(M—i-l)a(P**l)T.,-/a < M+ M,.
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For each ¢ > 0 and 0 < T < oo, let us consider the following approximate problem

Ory(ve) + €0e — Ave + av. = f(’y(vs)) a.e. in Q, (4.9)

(Vo). = vre  a.e. on X, (4.10)

Ory(vre) + €0pr e + Opve — Apvpe + bor e = fr (7(1)35)) a.e. on %, (4.11)
v(0) = vy a.e. in Q, (4.12)

vre(0) =vpy ae. onl, (4.13)

where f := Agyr+n, and f = pgrarsa, are the same as in the proof of Proposition 4.1.
Following Propositions 3.1 and 4.1 with the cut off technique, we prove that there exists
a unique pair v. = (v.,vr.) € C([0,7]; V') of functions that satisfies (4.9)—(4.13) and

(ozé—ll——al)Q /St (‘@(Uiaﬂ)/z(ﬂ) ‘Z + 8!8{05(7')‘2) dr

ou(0u0) = [ Flo)do— [ Fooforet)ar
= o1 (v.(s)) — /Q Fy (va(s)) da — /F frr(vre(s))dl (4.14)

for all s,t € [0,7] with s < t. Moreover

|U€(t)|Loo(Q) < Mep*(M+1)&(p*—1)t/a
<M+ M,
a(px—1) o
‘Ur,g(t)‘Lw(F) < Mep-(M+1 @1t
<M+ M,

for all t € [0,7;]. Therefore, we can replace gar4+ar, by g and gr ar+a, by gr on the time
interval [0, 7] in equations (4.9) and (4.11). Furthermore, from (4.14) it can be shown
that J(ve(t)) < J(vg) and v.(t) € W N L™ for all t € [0,T], since vy € W N L™.
Moreover, we obtain the same kind of uniform estimates used in proving Propositions 3.1
and 4.1, such as there exists a subsequence {ey }ren satisfying e, — 0 as k — oo such that

v, — v weakly star in L>°(0,7,; V),
Y(v.,) = v(v) weakly in H'(0,7}; H),
weakly star in L>(0,7,; V),
Y(ve,) = y(v)  strongly in C([0,7]; L"(2)),
Y(vr,,) = y(vr)  strongly in C([0,77]; L"(I')) for r € [2,00),
ex0v., — 0 strongly in L*(0,T,; H)
as k — oo, where v = (v, vr) is the unique solution obtained in Proposition 4.1. Thus,
we applied the compactness results [49, Section 8, Corollary 4] again to obtain the strong

convergences since, the compact imbeddings V N L>®(Q) —— L"(2) and Vp —— L"(I)
for r € [2,00) hold. Consequently, we deduce

2 (v, (1) = @2(v(?)) (4.15)
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for all t € [0,Thax) as k& — oo. Recall the definition of W. We already know that
J(v(t)) < J(vo) < d. Therefore, it is sufficient to prove that

201 (v(t)) > (aps + 1)ip2(v(t))

for all t € [0, Tinax). Let t € [0, Tinax). This is clear if po(v(t)) = 0, therefore we assume
wa(v(t)) > 0. Now, from dy = J(vg) < d, we obtain that dy := d — dy > 0 and

J(w(t)) <d =6y, J(v.,(t) <d—6
for all t € [0, Tiyax). Thus, from (4.8) we have

¥1 (vak (t)) — P2 ('vek (t)) S d— 50

(apx+1)/(aps—1)
_ Py — 1 2 072/(ap*71) i (50.
2 ap, + 1

Now, v, (t) € W, using (4.6) we have

p2(v2,(1) = P (0, (1)) — (02, (1)

< 1 (’Uak (t)) — 2 (vak (t))
(ape 1)/ (0pa 1)
_ap.—1 ( 2 ) C2ftept) _ 5,

ap, — 1
2

2 ap, + 1
- . 2/(ap~—1)
_ ap. — 1 < 9 )(ap*—i-l)/(ap* 1) 01 (U(t))(ap +1)/2 s
> — .

Let k — oo in the above; using (4.15) we deduce that

apx« aps— ap«+1)/2 2/(aps—1)
N R M
2 = - 05
ap, + 1 Do ('U(t)) ap, — 1
that is,
(aps + 1)pa(v(t)) < 201 (v(1))
for all t € [0, Thyax)- O

Next, we prove Theorem 2.2. Let (a,b) € {(1,0),(0,1)}, (A, 1) = (1,0).
Proof. Assume 1/5 <m < 1,1 < p < 5m. In this case, the estimate (4.5) is replaced by

iY(v(t)) = —2¢1(v(t)) + (ap + 1)pa(v(t))

dt
= —2¢1(v(t)) + / v P () d

Q



for a.a. t € (0,00). Now, there exists a positive constant Cs > 0 such that

1/(ap+1)
(/ Zap+1d.17) = |Z’Lap+1(Q)
Q

< Cslz|v
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for all z € V because ap + 1 < 6. Thus, there exists a positive constant C' > 0 such that

p2(2) < Cpn(z) P2,
Furthermore, there exists €, € (0, 1) such that

(1 —e1)2¢1(v(t) > (ap + 1) (v (1))

for all ¢ € [0, 00) replaced with (4.7). Therefore, the proof is completely identical to the
proof of Theorem 2.1. The proof of invariance of W is also the same; indeed, convergence
(4.15) holds since ap, +1 = ap+ 1 < 6 from the additional assumption 1 < p < 5m. [

Appendix

We use the same settings as in the previous sections.

Lemma A.1. Leta>1. Then

%"

eI R B G PG}
(8%

I 2a max{r,s}(a_l)ﬂ}r(aﬂ)/z . S(a+1)/2}’
a+1

r—s| < [pleth/2 5(a+1>/2|2/(a+1)

for all r;s > 0.

Proof. 1f s = 0, then we can prove that all inequalities hold. Therefore, it is sufficient to

prove that
a 4oy a 2
Fla) = (@ = Dl = 1) = g -1
2
G(l‘) = a—_flx(a_l)/Q (:La(OH'l)/Q o 1) . (xa . 1)’

H(z) := (x(a+1)/2 -1) = (z - 1)let)/2
are positive for x > 1. Firstly, from the basic calculation, we see that G(1) = 0 and

CY(OC B 1) a— e
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these imply that G(x) > 0 for all x > 1. Secondly, we put ¢ := (o + 1)/2; then

where the multiplier of F} is positive. Moreover, we can prove that Fy(x) > 0 for all z > 1
just as we could for G(z). This means that F'(z) > 0 for all x > 1. Finally, H(1) = 0 and

H'(z) =Lz =z — 1)1 >0

for all z > 1 since fz‘~! is monotone increasing for x > 1. This implies that H(z) > 0

for all x > 1. As a remark, a similar inequality for H(x) can be obtained from the Tartar
inequality. O]
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