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Department of Applied Physics, School of Science and Engineering,
Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo, 169-8555, JAPAN

(E-mail: otani@waseda.jp)
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maximal monotone term and a perturbation term, and prove the existence of the strong
solutions to the initial boundary value problem of the viscous Cahn–Hilliard equation.
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1 Introduction

The Cahn–Hilliard equation was derived in 1958 to describe the phase separation phe-
nomena in alloys by [3]. Since the 1980s, the initial boundary value problem for the
Cahn–Hilliard equation has been extensively investigated. In 1986, Elliott and Songmu
[10] considered the initial value problem with the homogeneous Neumann boundary con-
dition in one dimensional bounded domains. They adopted a third order polynomial as
the nonlinear term. At that time, the homogeneous Neumann boundary condition was
commonly imposed from the physical requirement that the sum of order parameters inside
the domain should be conserved. In 1996, Gurtin [11] proposed a model which takes into
account internal microforces, where some new viscosity term caused by internal micro-
forces appears in the Cahn–Hilliard equation, which is called the viscous Cahn-Hilliard
equation.

In this paper, we consider the existence of solutions of the initial boundary value prob-
lem (P) of the viscous Cahn–Hilliard equation with the homogeneous Dirichlet boundary
condition: 

γ∂tu = ∆ [φ(u)− α∆u+ β∂tu− h] , (t, x) ∈ (0, T )× Ω,

u = φ(u)− α∆u+ β∂tu− h = 0, (t, x) ∈ (0, T )× ∂Ω,

u|t=0 = u0, x ∈ Ω,

(P)

where 0 < T < ∞; Ω is a bounded domain in RN (N ∈ N) with sufficiently smooth
boundary ∂Ω; u : [0, T ]×Ω → R is an unknown function; φ(u) is a given nonlinear func-
tion, and h is a given external force term; and α, β, and γ are given positive parameters.
The Cahn–Hilliard equation is nothing but (P) with β = 0. In the phase separation in a
binary alloy, the unknown function u represents the order parameter, which corresponds
to the ratio of the concentrations of two metals. In physics, the derivative of the double
well potential, 1

4
(u − 1)2(u + 1)2, which causes phase separation, is often adopted as the

nonlinear term, i.e., φ(u) = u3 − u. The term φ(u)− α∆u + β∂tu− h in the right-hand
side of the equation is frequently referred as v. Then the equation can be written as:{

γ∂tu = ∆v,

v = φ(u)− α∆u+ β∂tu− h.

Initial value problems for the Cahn–Hilliard equation with Dirichlet boundary condi-
tions have been considered since the 2000s. In 2002, Efendiev, Gajewski and Zelik [8]
studied the existence of the solutions for the Dirichlet boundary value problem. They
considered the unknown function as a k-th vector valued function and assumed that
φ(u) ∈ C1(Rk;Rk), φ′(u), and φ(u)u are bounded below by a negative constant. In
2004, Efendiev, Miranville and Zelik [9] also consider the same problem with additional
assumptions on φ, i.e., the boundedness of the nonlinear term and φ(u) ∈ C2(Rk;Rk).
They proved the well-posedness of the problem and also considered the limit of the expo-
nential attractors for the viscous Cahn–Hilliard equation, to that for the Cahn–Hilliard
equation. Recently, in 2014, Bui, Smarrazzo and Tesei [13] proved the existence of a
strong solution under the condition that the nonlinear term φ(u) satisfies φ(u)u ≥ 0 for
all u ∈ R and the Sobolev subcritical growth condition. We note that there are a few
other researches for the initial value problem with the Dirichlet boundary condition [6, 7].
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In this paper, we decompose the nonlinear term φ(u) into the sum of a maximal
monotone operator f : R → R and a perturbation term g : R → R (a maximal monotone
function or a locally Lipschitz continuous function), i.e., φ = f − g, and investigate the
existence of the strong solutions of (P). Approximating the monotone function and the
locally Lipschitz perturbation by globally Lipschitz continuous functions, we show the
existence of the solutions of approximate problems by applying the abstract theory of the
evolution equation. Furthermore, we derive a priori estimates of solutions of approximate
equations independent of approximation parameters, and obtain the solution of the orig-
inal problem (P) by taking the limit of the approximation parameters. In order to obtain
a priori estimates, we impose an assumption such that g is dominated by f (see (2.1)
and (2.2)). As for the convergence of solutions of approximate equations, we rely on the
compactness argument.

By our method, we can exclude the Sobolev subcritical growth condition on φ in [13],
and do not need the boundedness of φ(u)u or the derivative of φ(u) which are assumed
in [8, 9]. Furthermore, our structure condition on φ can cover the double well potential
commonly used in physics, which does not satisfy conditions imposed in [13]. In addition,
the logarithmic potentials and the nonsmooth potentials fall within the framework of our
treatment.

In section 2, we fix some notations and state main results. Theorem 2.2 claims the
existence of the strong solutions for the initial data belonging to H1

0 (Ω) and the effective
domain of f . Theorem 2.3 is concerned with the smoothing effect. In section 3 and 4, we
give proofs for Theorem 2.2 and Theorem 2.3 respectively. In appendix, we consider the
uniqueness of the solution, and the existence of solutions for the homogeneous Neumann
boundary value problem.

2 Main results

In order to state our main results, we fix some notations. Let L2(Ω) be the Hilbert
space with inner product (u, v)2 :=

∫
Ω
u(x)v(x)dx, and norm |u|22 := (u, u)2. Let H

1
0 (Ω) =

{u ∈ L2(Ω); |∇u| ∈ L2(Ω), u|∂Ω = 0} with norm |u|H1
0 (Ω) = |∇u|(L2)N and denote its dual

space by H−1(Ω) and the duality paring by H1
0
< ·, · >H−1 . Then −∆ gives the duality

mapping from H1
0 (Ω) to H

−1(Ω).

In this paper, we assume the following structure condition (Aφ-I) or (Aφ-II) on φ(·).

(Aφ-I) φ can be decomposed into the difference between f and g, i.e., φ = f − g such that
0 ∈ f(0), 0 ∈ g(0), and followings (i) - (iii) are satisfied.

(i) There is a proper, lower semicontinuous, convex functional f̂ : R → (−∞,∞]
satisfying ∂f̂(r) = f(r) for any r ∈ R and f̂(0) = 0, where ∂f̂ denotes the
subdifferential of f̂ . Then f is a (possibly multivalued) maximal monotone
graph in R× R.

(ii) There is a proper, lower semicontinuous, convex functional ĝ : R → (−∞,∞]
satisfying ∂ĝ(r) = g(r) for any r ∈ R and ĝ(0) = 0, where ∂ĝ denotes the
subdifferential of ĝ. Then g is a (possibly multivalued) maximal monotone
graph in R× R.
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(iii) There exist k ∈ [0, 1) and K ∈ [0,∞) such that

|||g(r)||| ≤ k|f ◦(r)|+K ∀r ∈ D(f) := {r ∈ R1|f(r) ̸= ∅}. (2.1)

Here, f ◦(r) denotes the minimal section of f(r) and |||g(r)||| := sup{|b|; b ∈
g(r)}.

(Aφ-II) φ can be decomposed into the difference between f and g, i.e., φ = f − g such that
0 ∈ f(0), and followings (i) - (iii) are satisfied.

(i) (Same as (Aφ-I)-(i)) There is a proper, lower semicontinuous, convex functional
f̂ : R → (−∞,∞] satisfying ∂f̂(r) = f(r) for any r ∈ R and f̂(0) = 0, where
∂f̂ denotes the subdifferential of f̂ . Then f is a (possibly multivalued) maximal
monotone graph in R× R.

(ii) g : R → R is a locally Lipschitz continuous function satisfying g(0) = 0.

(iii) There exist k ∈ [0, 1) and K ∈ [0,∞) such that

|g(r)| ≤ k|f ◦(r)|+K ∀r ∈ D(f). (2.2)

Here we collect some fundamental properties concerning maximal monotone operators
and subdifferential operators (see Brézis [2] and Barbu [1]). Let H be a real Hilbert
space with inner product (·, ·)H = (·, ·) and norm || · ||H . Let A : H → 2H be a maximal
monotone operator. The minimal section A◦x of Ax is the unique element of Ax satisfying
||A◦x||H = inf{||y||H ; y ∈ Ax} for all x ∈ D(A) = {z;Az ̸= ∅}. The resolvent JA

λ and the
Yosida approximation Aλ of A are defined by

JA
λ := (I + λA)−1 and Aλ :=

1

λ
(I − JA

λ ) ∀λ > 0 (2.3)

respectively. Then Aλ is monotone and Lipschitz continuous and we have

JA
λ x→ x as λ→ 0 for all x ∈ H,

Aλ(x) ∈ A(JA
λ x) for all x ∈ H.

Recall that the graph of any maximal monotone operator is demiclosed, i.e., is closed in
H ×Hw, where Hw denotes H endowed with the weak topology.

Let Φ(H) be the set of all lower semicontinuous convex functions φ : H → (−∞,+∞]
such that its effective domain D(φ) defined by

D(φ) := {x ∈ H;φ(x) <∞} (2.4)

is nonempty. For each φ ∈ Φ(H), the subdifferential operator ∂φ of φ is defined by

∂φ(x) := {g ∈ H;φ(w)− φ(x) ≥ (g, w − x)H ∀w ∈ H}. (2.5)

Then ∂φ becomes a (possibly multivalued) maximal monotone operator with domain

D(∂φ) := {x ∈ H; ∂φ(x) ̸= ∅} ⊂ D(φ). (2.6)
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The Moreau–Yosida regularization φλ of φ ∈ Φ(H) is given by

φλ(x) := inf{φ(y) + 1

2λ
||x− y||2H ; y ∈ H}. (2.7)

Then φλ becomes a convex Fréchet differentiable, so φλ ∈ Φ(H) and it holds that

φλ(x) =
1

2λ
||x− J∂φ

λ x||2H + φ(J∂φ
λ x)

=
λ

2
||(∂φ)λ(x)||2H + φ(J∂φ

λ x)

≤ φ(x),

∂(φλ) = (∂φ)λ.

Now we introduce realizations F̂ (·) and F̄ (·) of f̂ in L2(Ω) and H = L2(0, T ;L2(Ω))
respectively by

F̂ (u) :=


∫
Ω

f̂(u(x))dx if f̂(u(·)) ∈ L1(Ω),

+∞ otherwise,

(2.8)

F̄ (u) :=


∫ T

0

F̂ (u(s))ds if F̂ (u(·)) ∈ L1(0, T ;L2(Ω)),

+∞ otherwise.

(2.9)

Then F̂ ∈ Φ(L2(Ω)) and F̄ ∈ Φ(H), furthermore we have

∂F̂ (u)(x) = (∂f̂)(u(x)) = f(u(x)) a.e. x ∈ Ω,

∂F̄ (u)(t, x) = (∂f̂)(u(t, x)) = f(u(t, x)) a.e. (t, x) ∈ (0, T )× Ω,

F̂λ(u) =

∫
Ω

f̂λ(u(x))dx,

∂F̂λ(u)(x) = (∂f̂)λ(u(x)) = fλ(u(x)) a.e. x ∈ Ω,

F̄λ(u) =

∫ T

0

F̂λ(u(s))ds,

∂F̄λ(u)(t, x) = (∂f̂)λ(u(t, x)) = fλ(u(t, x)) a.e. (t, x) ∈ (0, T )× Ω.

For the case where g is a maximal monotone graph in R × R, the above properties hold
true with F̂ and F̄ replaced by Ĝ and Ḡ defined by (2.8) and (2.9) with f̂ and F̂ replaced
by ĝ and Ĝ respectively. If f and g satisfy (Aφ-I), then by (2.1) we easily get

0 ≤ Ĝµ(u) ≤ Ĝ(u) ≤ kF̂ (u) +K|u|L1(Ω) ∀u ∈ D(F̂ ) ∀µ > 0, (2.10)

0 ≤ (gµ(u), u)2 ≤ (g0(u), u)2 ≤ k(f0(u), u)2 +K|u|L1(Ω) ∀u ∈ D(∂F̂ ) ∀µ > 0, (2.11)

where g0(u) and f0(u) are arbitrary sections of g(u) and f(u) respectively.

In this paper, we are concerned with solutions of (P) in the following sense.
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Definition 2.1. We say u ∈ C([0, T ];L2(Ω)) is a solution of (P) if and only if there exist
sections f0(t, x) ∈ f(u(t, x)) and g0(t, x) ∈ g(u(t, x)) such that
γ∂tu(t, x) = ∆v(t, x) a.e. (t, x) ∈ (0, T )× Ω,

v(t, x) = f0(t, x)− g0(t, x)− α∆u(t, x) + β∂tu(t, x)− h(t, x) a.e. (t, x) ∈ (0, T )× Ω,

u(t, x)|t=0 = u0(x) a.e. x ∈ Ω.
(2.12)

Here for the case where g(·) is single valued such as in (Aφ-II), g0(t, x) coincides with
g(u(t, x)).

Then our first main result is stated as follows.

Theorem 2.2. (Existence) Assume that (Aφ-I) or (Aφ-II) is satisfied. Let u0 ∈ H1
0 (Ω)∩

D(F̂ ) and h ∈ L2(0, T ;L2(Ω)), then there exists a solution u of (P) satisfying

u ∈ C([0, T ];H1
0 (Ω)) ∩W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)),

f0, g0 ∈ L2(0, T ;L2(Ω)),

v ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω)),

(2.13)

where f0, g0 and v are functions appearing in (2.12).

Furthermore we can derive a result of smoothing effect, more precisely, (P) admits a

solution when u0 belongs to HF := D(F̂ )
L2(Ω)

, the closure of D(F̂ ) in L2(Ω).

Theorem 2.3. (Smoothing effect) Assume that (Aφ-I) or (Aφ-II) is satisfied. Further-
more assume that there exist possitive constants C0 and δ ∈ (0, 1) such that

|||f(r)||| ≤ C0(f̂(r)
1−δ + 1) r ∈ D(f̂). (Af)

Let u0 ∈ HF and h ∈ L2(0, T ;L2(Ω)), then there exists a solution of (P) satisfying

u ∈ C([0, T ];L2(Ω)),
√
t∆u(t),

√
t∂tu(t),

√
tf0(u(t)),

√
tg0(u(t)) ∈ L2(0, T ;L2(Ω)),

√
tv(t) ∈ L2(0, T ;H2(Ω) ∩H1

0 (Ω)).

(2.14)

where f0, g0 and v are functions appearing in (2.12).

Here we remark that HF = L2(Ω) if D(f) = R.
The uniqueness of the solution for the problem (P) holds when the perturbation term

g is globally Lipschitz continuous function. The uniqueness of the solution is discussed in
appendix A.

We give some remarks on conditions imposed on the nonlinear terms.

Remark 2.4. Specific examples for the maximal monotone functions f(u) satisfying (Aφ-
I)-(i) or (Aφ-II)-(i) are given by the followings:

• f(u) = C|u|p−2u, C ≥ 0, 2 < p <∞, which satisfies (Af);

• f(u) = eu − 1, which does not satisfy (Af);
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• Heaviside function, that is,

f(u) =


0 if u < 0,

[0, 1] if u = 0,

1 if u > 0,

(2.15)

which satisfies (Af);

• f(u) = ln(1+u
1−u

), which is the subdifferential of a logarithmic potential f̂(u).

f̂(u) =

{
(1 + u) ln(1 + u) + (1− u) ln(1− u) if u ∈ (−1, 1),

+∞ otherwise,
(2.16)

It does not satisfy (Af) and D(f) = (−1, 1) ⊊ R;

• f(u) = ∂I[−1,1](u) which is the subdifferential of the indicator function I[−1,1](u)
given by

I[−1,1](u) =

{
0 if u ∈ [−1, 1],

+∞ otherwise.
(2.17)

It does not satisfy (Af) and D(f) = [−1, 1] ⊊ R.

Remark 2.5. Specific examples of the nonlinear terms φ(u) satisfying (Aφ-I) or (Aφ-II)
are given by the following:

• φ(u) = C1|u|p−2u− C2|u|q−2u, C1, C2 ≥ 0, 2 < q < p <∞,

• φ(u) = (eu − 1)− 1
2
ue

1
2
u,

• φ(u) = ln(1+u
1−u

)− C2|u|q−2u, C2 ≥ 0, 2 ≤ q <∞.

• φ(u) = |u|p−2u(ε + sinu), p > 2, ε > 0. For this case, we can take f(u) = (1 +
ε)|u|p−2u and g(u) = |u|p−2u(sinu− 1).

3 Proof of Theorem 2.2

First we assume (Aφ-I) and prepare some Lemmas for the L2(Ω)-inner product between
u and v; and f0(u) ∈ f(u) and −∆u.

Lemma 3.1. (L2-inner product between u and v) Let t ∈ (0, T ] and assume that u(t) ∈
L2(Ω) and v(t) ∈ H1

0 (Ω) satisfy the equation γ∂tu(t) = ∆v(t) in H−1(Ω). Then we obtain

(v(t), u(t))2 = −γ
2

d

dt
|u(t)|2H−1 . (3.1)

Proof. Noting that v(t) ∈ H1
0 (Ω) and u(t) ∈ L2(Ω) ⊂ H−1(Ω), we have

(v(t), u(t))2 =H1
0
< v(t), u(t) >H−1 . (3.2)
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Recall that −∆ is a bijection and the duality mapping from H1
0 (Ω) to H−1(Ω). If Λ

denotes the inverse of −∆, v(t) = −γΛ∂tu(t) holds. Then from the definition of the
duality mapping, we get

H1
0
< v(t), u(t) >H−1 = −γH1

0
< Λ∂tu(t), u(t) >H−1

= −γ(∂tu(t), u(t))H−1

= −γ
2

d

dt
|u(t)|2H−1 . (3.3)

Lemma 3.2. (L2-inner product between f(u) and −∆u) If f satisfies (Aφ-I)-(i) or (Aφ-
II)-(i), the following relation holds for any u ∈ H2(Ω) ∩H1

0 (Ω) and f0(u) ∈ ∂F̂ (u).

(f0(u),−∆u)2 ≥ 0. (3.4)

Proof. From Proposition 2.17 and Theorem 4.4 in [2], −∆ + ∂F̂ becomes a maximal
monotone operator and if we define

ϕ̂(u) :=


1

2
|∇u|2(L2(Ω))N + F̂ (u) if u ∈ H1

0 (Ω) ∩D(F̂ ),

+∞ otherwise,
(3.5)

then ϕ̂ ∈ Φ(L2(Ω)) and−∆+∂F̂ = ∂ϕ̂. For any f0 := f0(u) ∈ ∂F̂ (u), put z := −∆u+f0 ∈
∂ϕ̂(u). Then we get

|z|22 = | −∆u|22 + |f0|22 + 2(−∆u, f0)2. (3.6)

Since u 7→ −∆u + ∂F̂λ(u) is maximal monotone in L2(Ω), there exists uλ ∈ D(−∆)
satisfying the following equation:

uλ −∆uλ + ∂F̂λ(uλ) = u+ z. (3.7)

Here F̂λ is the Yosida regularization of F̂ with λ > 0. Multiplying (3.7) by uλ and using
the Schwarz inequality and the Young inequality, we obtain

|uλ|22 + |∇uλ|22 + (∂F̂λ(uλ), uλ)2 ≤ |uλ|2|u+ z|2

≤ |u|22 + |z|22 +
1

2
|uλ|22, (3.8)

which gives
1

2
|uλ|22 + |∇uλ|22 + (∂F̂λ(uλ), uλ)2 ≤ |u|22 + |z|22. (3.9)

From (3.7), we also obtain

|u+ z − uλ|22 = (−∆uλ + ∂F̂λ(uλ),−∆uλ + ∂F̂λ(uλ))2

= | −∆uλ|22 + |∂F̂λ(uλ)|22 + 2(−∆uλ, ∂F̂λ(uλ))2

= | −∆uλ|22 + |∂F̂λ(uλ)|22 + 2

∫
Ω

(∂F̂λ)
′(uλ)|∇uλ|2dx. (3.10)
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Since ∂F̂λ is monotone and Lipschitz continuous, the last term of the right-hand side of
(3.10) is non-negative. Hence, using Schwarz’s and Young’s inequalities and (3.9), we
obtain

| −∆uλ|22 + |∂F̂λ(uλ)|22 ≤ |u+ z − uλ|22 ≤ 8(|u|22 + |z|22). (3.11)

Next taking the difference between (3.7) with λ > 0 and (3.7) with λ = µ > 0, and
multiplying uλ − uµ, we have

0 = ((uλ − uµ)−∆(uλ − uµ) + (∂F̂λ(uλ)− ∂F̂µ(uµ)), uλ − uµ)2

= |uλ − uµ|22 + |∇(uλ − uµ)|22 + (∂F̂λ(uλ)− ∂F̂µ(uµ), uλ − uµ)2. (3.12)

Using Kōmura’s trick, we get

|uλ − uµ|22 + |∇(uλ − uµ)|22 = −(∂F̂λ(uλ)− ∂F̂µ(uµ), uλ − uµ)2

≤ 2(λ+ µ)(|∂F̂λ(uλ)|22 + |∂F̂µ(uµ)|22). (3.13)

Therefore by (3.11), (uλ)λ forms a Cauchy sequence in H1
0 (Ω) and there exists a subse-

quence (uλk
)k satisfying

uλk
→ ũ strongly in H1

0 (Ω),

∆uλk
⇀ ∆ũ weakly in L2(Ω),

∂F̂λk
(uλk

)⇀ f̃ ∈ ∂F̂ (ũ) weakly in L2(Ω),

as λk → 0. From (3.7), we derive

ũ−∆ũ+ f̃ = u+ z

= u−∆u+ f0. (3.14)

Then multiplying the difference between the left-hand side and the right-hand side of
(3.14) by u− ũ, we have

|u− ũ|22 + |∇(u− ũ)|22 + (f0 − f̃ , u− ũ)2 = 0, (3.15)

whence follows u = ũ and (3.14) implies f0 = f̃ . Hence, letting λ = λk → 0 in (3.11), we
obtain

| −∆u|22 + |f0|22 ≤ |z|22. (3.16)

Then (3.6) and (3.16) imply (3.4).

3.1 Approximation of the problem

In this subsection, we introduce the following approximate problems (P)λ,µ for (P).
γ∂tu(t) = ∆v(t), (∗)λ,µ
v(t) = fλ(u(t))− gµ(u(t))− α∆u(t) + β∂tu(t)− h(t), (∗∗)λ,µ
u|t=0 = u0,

(P)λ,µ
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where fλ(·) and gµ(·) are Yosida approximations of f(·) and g(·) with λ, µ > 0 respectively.
In order to show the solvability of (P)λ,µ, we reduce (P)λ,µ to an abstract evolution
equation in H = L2(Ω). To this end, we put

ψ(u) =


α

2γ

∫
Ω

(
|Aβ′u|2 + β′|∇Aβ′u|2

)
dx if u ∈ D(ψ) = H1

0 (Ω),

+∞ if u ∈ L2(Ω)\H1
0 (Ω),

(3.17)

Here β′ = β/γ and Aβ′ denotes the Yosida approximation of A = −∆ with domain
D(A) = H2(Ω) ∩ H1

0 (Ω), i.e., Aβ′ = (I − JA
β′)/β′ = A(JA

β′), JA
β′ = (I + β′A)−1. Then we

easily find that

ψ(u+ ϕ)− ψ(u) =
α

γ
{(Aβ′u,Aβ′ϕ)2 + β′(AAβ′u,Aβ′ϕ)2}+O(||ϕ||2H1)

=
α

γ

{
(Aβ′u,Aβ′ϕ)2 + (AAβ′u, ϕ)2 − (AAβ′u, JA

β′ϕ)2
}
+O(||ϕ||2H1)

=
α

γ
(AAβ′u, ϕ)2 +O(||ϕ||2H1) ∀ϕ ∈ H1

0 (Ω). (3.18)

Hence we conclude that

∂ψ(u) =
α

γ
AAβ′u =

α

γ
Aβ′Au ∀u ∈ D(∂ψ) = D(A). (3.19)

On the other hand, by (∗)λ,µ and (∗∗)λ,µ, we get

γ∂tu = −A(fλ(u)− gµ(u) + αAu+ β∂tu− h),

γ

(
I +

β

γ
A

)
∂tu = −A(fλ(u)− gµ(u) + αAu− h),

Hence we have

∂tu =
1

γ
JA
β′

[
−A(fλ(u)− gµ(u))− αA2u+ Ah

]
= −α

γ
Aβ′Au− 1

γ
Aβ′(fλ(u)− gµ(u)) +

1

γ
Aβ′h. (3.20)

Here we put

B(u) =
1

γ
Aβ′(∂F̂λ(u)− ∂Ĝµ(u)) and H(t) =

1

γ
Aβ′h(t). (3.21)

Then (P)λ,µ is reduced to the following abstract evolution equation (E) in H = L2(Ω).
d

dt
u(t) + ∂ψ(u(t)) +B(u(t)) = H(t),

u(0) = u0.
(E)

Therefore, sinceB is Lipschitz continuous from L2(Ω) into L2(Ω) andH(t) ∈ L2(0, T ;L2(Ω))
for any h ∈ L2(0, T ;L2(Ω)), the standard result (see, e.g., Brézis [2]) assures that for any
u0 ∈ D(ψ) = H1

0 (Ω), (E) admits a unique global solution u(t) ∈ C([0, T ];H1
0 (Ω)) satisfy-

ing

d

dt
u(t), ∂ψ(u(t)) ∈ L2(0, T ;L2(Ω)). (3.22)
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3.2 A priori estimates independent of the parameter λ

For the time being, we fix µ > 0 and denote u and v in (∗)λ,µ and (∗∗)λ,µ by uλ and
vλ respectively. In what follows, C denotes a general constant independent of λ.

Lemma 3.3. There exists a constant C independent of λ such that

|uλ(t)|22 +
∫ t

0

|gµ(uλ(s))|22ds ≤ C

for any t ∈ (0, T ].

Proof. Multiplying (∗∗)λ,µ by uλ(s) (s ∈ (0, T )), we get

(vλ(s), uλ(s))2 = (fλ(uλ(s)), uλ(s))2 − (gµ(uλ(s)), uλ(s))2

+ α|∇uλ(s)|22 +
β

2

d

ds
|uλ(s)|22 − (h(s), uλ(s))2. (3.23)

From Lemma 3.1, it follows that

(fλ(uλ(s)), uλ(s))2 + α|∇uλ(s)|22 +
β

2

d

ds
|uλ(s)|22 +

γ

2

d

ds
|uλ(s)|2H−1

= (gµ(uλ(s)), uλ(s))2 + (h(s), uλ(s))2. (3.24)

Since gµ is Lipschitz continuous with Lipschitz constant Lµ, from Schwarz’s and Young’s
inequalities, we have

(fλ(uλ(s)), uλ(s))2 + α|∇uλ(s)|22 +
β

2

d

ds
|uλ(s)|22 +

γ

2

d

ds
|uλ(s)|2H−1

≤ 1

2
|h(s)|22 +

(
Lµ +

1

2

)
|uλ(s)|22. (3.25)

Then integrating this with respect to s over (0, t) (t ∈ (0, T ]), we obtain∫ t

0

(fλ(uλ(s)), uλ(s))2ds+ α

∫ t

0

|∇uλ(s)|22ds+
β

2
|uλ(t)|22 +

γ

2
|uλ(t)|2H−1

≤ β

2
|u0|22 +

γ

2
|u0|2H−1 +

1

2

∫ t

0

|h(s)|22ds+
(
Lµ +

1

2

)∫ t

0

|uλ(s)|22ds

≤ C +

(
Lµ +

1

2

)∫ t

0

|uλ(s)|22ds. (3.26)

From Gronwall’s lemma, we obtain the following estimates:∫ t

0

(fλ(uλ(s)), uλ(s))2ds+ α

∫ t

0

|∇uλ(s)|22ds+
β

2
|uλ(t)|22 +

γ

2
|uλ(t)|2H−1 ≤ C. (3.27)

Therefore we also get ∫ t

0

|gµ(uλ(s))|22ds ≤ L2
µ

∫ t

0

|uλ(s)|22ds

≤ C. (3.28)
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Lemma 3.4. There exists a constant C independent of λ such that

|∇uλ(t)|22 +
∫ t

0

|∂suλ(s)|22ds+
∫ t

0

|∇vλ(s)|22ds+
∫ t

0

|vλ(s)|22ds+
∫ t

0

|∆vλ(s)|22ds ≤ C.

for any t ∈ (0, T ].

Proof. Multiplying (∗∗)λ,µ by ∂suλ(s) (s ∈ (0, T )), we get

(vλ(s), ∂suλ(s))2 = (fλ(uλ(s)), ∂suλ(s))2 − (gµ(uλ(s)), ∂suλ(s))2

+
α

2

d

ds
|∇uλ(s)|22 + β|∂suλ(s)|22 − (h(s), ∂suλ(s))2

=
d

ds
F̂λ(uλ(s))− (gµ(uλ(s)), ∂suλ(s))2

+
α

2

d

ds
|∇uλ(s)|22 + β|∂suλ(s)|22 − (h(s), ∂suλ(s))2. (3.29)

From (∗)λ,µ, we have

(vλ(s), ∂suλ(s))2 = (vλ(s),
1

γ
∆vλ(s))2

= −1

γ
|∇vλ(s)|22.

Then we obtain

d

ds
F̂λ(uλ(s)) +

α

2

d

ds
|∇uλ(s)|22 + β|∂suλ(s)|22 +

1

γ
|∇vλ(s)|22

= (gµ(uλ(s)), ∂suλ(s))2 + (h(s), ∂suλ(s))2. (3.30)

Integrating (3.30) on [0, t] (t ∈ (0, T ]), from Schwarz’s and Young’s inequalities, we get

F̂λ(uλ(t)) +
α

2
|∇uλ(t)|22 + β

∫ t

0

|∂suλ(s)|22ds+
1

γ

∫ t

0

|∇vλ(s)|22ds

= F̂λ(u0) +
α

2
|∇u0|22 +

∫ t

0

(gµ(uλ(s)), ∂suλ(s))2ds+

∫ t

0

(h(s), ∂suλ(s))2ds

≤ F̂ (u0) +
α

2
|∇u0|22 +

1

β

∫ t

0

|gµ(uλ(s))|22ds+
1

β

∫ t

0

|h(s)|22ds+
β

2

∫ t

0

|∂suλ(s)|22ds.

(3.31)

Since we already obtain the estimate of gµ(uλ(·)) in Lemma 3.3, we get

F̂λ(uλ(t)) +
α

2
|∇uλ(t)|22 +

β

2

∫ t

0

|∂suλ(s)|22ds+
1

γ

∫ t

0

|∇vλ(s)|22ds ≤ C. (3.32)

Hence, we derive the following a priori estimates from the Poincaré inequality and (∗)λ,µ:∫ t

0

|vλ(s)|22ds ≤ C

∫ t

0

|∇vλ(s)|22ds

≤ C, (3.33)
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∫ t

0

|∆vλ(s)|22ds ≤ γ2
∫ t

0

|∂suλ(s)|22ds

≤ C. (3.34)

Lemma 3.5. There exists a constant C independent of λ such that∫ t

0

|fλ(uλ(s))|22ds+
∫ t

0

|∆uλ(s)|22ds ≤ C

for any t ∈ (0, T ].

Proof. From (∗∗)λ,µ, we have fλ(uλ(s))− α∆uλ(s) = vλ(s) + gµ(uλ(s))− β∂suλ(s)− h(s)
for s ∈ (0, T ). By virtue of Lemmas 3.3 and 3.4, the right-hand side of the above equation
is bounded in L2(0, t;L2(Ω)). Hence we get∫ t

0

|fλ(uλ(s))− α∆uλ(s)|22ds

=

∫ t

0

|fλ(uλ(s))|22ds− 2α

∫ t

0

(fλ(uλ(s)),∆uλ(s))2ds+ α2

∫ t

0

|∆uλ(s)|22ds

≤ C. (3.35)

Here noting that∫ t

0

(fλ(uλ(s)),∆uλ(s))2ds = −
∫ t

0

∫
Ω

f ′
λ(uλ(s))|∇uλ(s)|2dxds ≤ 0, (3.36)

we obtain ∫ t

0

|fλ(uλ(s))|22ds+ α2

∫ t

0

|∆uλ(s)|22ds ≤ C. (3.37)

3.3 Passage to the limit as λ→ 0

In this subsection, by letting λ→ 0 in (P)λ,µ, we show that (P) with g(·) replaced by
gµ(·) admits a solution uµ in the following sense.

Lemma 3.6. For u0 ∈ H1
0 (Ω) ∩D(F̂ ) and h ∈ L2(0, T ;L2(Ω)), there exists uµ satisfying

the following:

1. There is a section f0,µ(uµ) ∈ ∂F̄ (uµ) and uµ satisfying the following regularities:

uµ ∈ C([0, T ];L2(Ω)) ∩H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω) ∩H1
0 (Ω)),

f0,µ(uµ), gµ(uµ) ∈ L2(0, T ;L2(Ω)),

vµ ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω)).
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2. uµ satisfies the equations in the following sense:{
γ∂tuµ = ∆vµ in L2(0, T ;L2(Ω)), (∗)µ
vµ = f0,µ(uµ)− gµ(uµ)− α∆uµ + β∂tuµ − h in L2(0, T ;L2(Ω)). (∗∗)µ

Proof. Since |uλ(t)|H1
0 (Ω) ≤ C for any t ∈ (0, T ] by Lemma 3.4, and the embedding

H1
0 (Ω) ↪→ L2(Ω) is compact, the sequence (uλ(t))λ is relatively compact in L2(Ω). More-

over, since we have

|uλ(t)− uλ(s)|2 ≤
∣∣∣∣∫ t

s

|∂τuλ(τ)|2dτ
∣∣∣∣

≤ |t− s|
1
2

(∫ T

0

|∂τuλ(τ)|22 dτ
) 1

2

(3.38)

for any t, s ∈ [0, T ] and Lemma 3.4 assures that ∂τuλ(τ) is bounded in L2(0, T ;L2(Ω)),
the sequence (uλ(t))λ is equicontinuous in L2(Ω). Hence by Ascoli’s theorem, there exists
a subsequence (uλk

)k which strongly converges to uµ in C([0, T ];L2(Ω)), that is,

uλk
→ uµ strongly in C([0, T ];L2(Ω)) as k → ∞ (λk → 0). (3.39)

Let J∂F̄
λ = (I + λ∂F̄ )−1 be the resolvent of ∂F̄ , then we have

|J∂F̄
λk
uλk

− uµ|L2(0,T ;L2(Ω)) ≤ |J∂F̄
λk
uλk

− uλk
|L2(0,T ;L2(Ω)) + |uλk

− uµ|L2(0,T ;L2(Ω))

≤ λk|fλk
(uλk

)|L2(0,T ;L2(Ω)) + |uλk
− uµ|L2(0,T ;L2(Ω)).

Then by Lemma 3.5, we get

J∂F̄
λk
uλk

→ uµ strongly in L2(0, T ;L2(Ω)) as k → ∞, (3.40)

fλk
(uλk

)⇀ f0 weakly in L2(0, T ;L2(Ω)) as k → ∞. (3.41)

Since fλk
(uλk

) ∈ ∂F̄ (J∂F̄
λk
uλk

), the demiclosedness of ∂F̄ assures

f0 =: f0,µ(uµ) ∈ ∂F̄ (uµ). (3.42)

Since ∂t and ∆ are weakly closed, from a priori estimates of ∂tuλ, ∆uλ, vλ and ∆vλ in
Lemma 3.4 and 3.5, we easily see

∆uλk
⇀ ∆uµ weakly in L2(0, T ;L2(Ω)), (3.43)

∂tuλk
⇀ ∂tuµ weakly in L2(0, T ;L2(Ω)), (3.44)

vλk
⇀ vµ weakly in L2(0, T ;L2(Ω)), (3.45)

∆vλk
⇀ ∆vµ weakly in L2(0, T ;L2(Ω)), (3.46)

as k → ∞. Since gµ is Lipschitz continuous, from a priori estimate of gµ(uλ) in Lemma
3.5, we get

gµ(uλk
) → gµ(uµ) strongly in L2(0, T ;L2(Ω)) as k → ∞. (3.47)

Thus it is shown that (uµ, vµ) satisfies (∗)µ and (∗∗)µ.
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Since
∫ T

0
|∇uµ(t)|22dt,

∫ T

0
|∆uµ(t)|22dt and

∫ T

0
|∂tuµ(t)|22dt are bounded because of the

lower semicontinuity of norm with respect to the weak convergence, we get∫ T

0

∣∣∣∣ ddt |∇uµ(t)|22
∣∣∣∣ dt = 2

∫ T

0

|(∂tuµ(t),∆uµ(t))2| dt

≤ 2

∫ T

0

|∂tuµ(t)|22dt
∫ T

0

|∆uµ(t)|22dt

≤ C. (3.48)

Hence |∇uµ(t)|22 is absolutely continuous on [0, T ] and we get

|∇uµ(0)|22 = |∇u0|22. (3.49)

Also, since
∫ T

0
F̂ (uµ(t))dt,

∫ T

0
|f0,µ(uµ(t))|22dt and

∫ T

0
|∂tuµ(t)|22dt are bounded,∫ T

0

∣∣∣∣ ddtF̂ (uµ(t))
∣∣∣∣ dt = ∫ T

0

|(∂tuµ(t), f0,µ(uµ(t)))2| dt

≤ C. (3.50)

That is, F̂ (uµ(t)) is absolutely continuous on [0, T ]. Then we obtain

F̂ (uµ(0)) = F̂ (u0). (3.51)

3.4 A priori estimates independent of the parameter µ

In this subsection, we establish some a priori estimates for uµ and vµ independent of
µ. In what follows, C ′ denotes a general constant independent of µ.

Lemma 3.7. There exists a constant C ′ independent of µ such that

|uµ(t)|22 ≤ C ′

for any t ∈ (0, T ].

Proof. Multiplying (∗∗)µ by uµ(s), we get by the same argument in the proof of Lemma
3.3 (see (3.24)),

(f0,µ(uµ(s)), uµ(s))2 − (gµ(uµ(s)), uµ(s))2

+ α|∇uµ(s)|22 +
β

2

d

ds
|uµ(s)|22 +

γ

2

d

ds
|uµ(s)|2H−1 = (h(s), uµ(s))2. (3.52)

From (2.11), Schwarz’s and Young’s inequalities, we get

(1− k)(f0,µ(uµ(s)), uµ(s))2 + α|∇uµ(s)|22 +
β

2

d

ds
|uµ(s)|22 +

γ

2

d

ds
|uµ(s)|2H−1

≤ 1

2
|h(s)|22 +

1

2
|uµ(s)|22 +K|uµ(s)|L1(Ω)

≤ 1

2
|h(s)|22 +

K2|Ω|
2

+ |uµ(s)|22. (3.53)
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Then integrating this over s ∈ [0, t] (t ∈ (0, T ]), we have

(1− k)

∫ t

0

(f0,µ(uµ(s)), uµ(s))2ds+ α

∫ t

0

|∇uµ(s)|22ds+
β

2
|uµ(t)|22 +

γ

2
|uµ(t)|2H−1

≤ β

2
|u0|22 +

γ

2
|u0|2H−1 +

1

2

∫ T

0

|h(s)|22ds+
K2|Ω|T

2
+

∫ t

0

|uµ(s)|22ds

≤ C ′ +

∫ t

0

|uµ(s)|22ds. (3.54)

From Gronwall’s lemma, we obtain

(1− k)

∫ t

0

(f0,µ(uµ(s)), uµ(s))2ds+ α

∫ t

0

|∇uµ(s)|22ds

+
β

2
|uµ(t)|22 +

γ

2
|uµ(t)|2H−1 ≤ C ′. (3.55)

Lemma 3.8. There exists a constant C ′ independent of µ such that

|∇uµ(t)|22 +
∫ t

0

|∂suµ(s)|22ds+
∫ t

0

|∇vµ(s)|22ds+
∫ t

0

|vµ(s)|22ds+
∫ t

0

|∆vµ(s)|22ds ≤ C ′.

for any t ∈ (0, T ].

Proof. Multiplying (∗∗)µ by ∂suµ(s) (s ∈ (0, T )), we get (see (3.29))

(vµ(s), ∂suµ(s))2 =
d

ds
F̂ (uµ(s))−

d

ds
Ĝµ(uµ(s)) +

α

2

d

ds
|∇uµ(s)|22

+ β|∂suµ(s)|22 − (h(s), ∂suµ(s))2. (3.56)

From (∗)µ, we obtain

d

ds
F̂ (uµ(s))−

d

ds
Ĝµ(uµ(s)) +

α

2

d

ds
|∇uµ(s)|22 + β|∂suµ(s)|22 +

1

γ
|∇vµ(s)|22

= (h(s), ∂suµ(s))2. (3.57)

Then integrating this on (0, t) (t ∈ (0, T ]), using Schwarz’s and Young’s inequalities, we
get

F̂ (uµ(t))− Ĝµ(uµ(t)) +
α

2
|∇uµ(t)|22 + β

∫ t

0

|∂suµ(s)|22ds+
1

γ

∫ t

0

|∇vµ(s)|22ds

≤ F̂ (u0)− Ĝµ(u0) +
α

2
|∇u0|22 +

1

2β

∫ t

0

|h(s)|22ds+
β

2

∫ t

0

|∂suµ(s)|22ds. (3.58)

From (2.10) and Ĝµ(uµ(t)) ≥ 0, we have

(1− k)F̂ (uµ(t)) +
α

2
|∇uµ(t)|22 +

β

2

∫ t

0

|∂suµ(s)|22ds+
1

γ

∫ t

0

|∇vµ(s)|22ds

≤ F̂ (u0) +
α

2
|∇u0|22 +

1

2β

∫ t

0

|h(s)|22ds+K|uµ(t)|L1(Ω). (3.59)
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Noting that we can also obtain the L1-estimate of uµ(t) from Lemma 3.7, we get

(1− k)F̂ (uµ(t)) +
α

2
|∇uµ(t)|22 +

β

2

∫ t

0

|∂suµ(s)|22ds+
1

γ

∫ t

0

|∇vµ(s)|22ds ≤ C ′. (3.60)

Hence from the Poincaré inequality and (∗)µ, we also obtain the following estimates:∫ t

0

|vµ(s)|22ds ≤ C ′, (3.61)∫ t

0

|∆vµ(s)|22ds ≤ C ′. (3.62)

Lemma 3.9. There exists a constant C ′ independent of µ such that∫ t

0

|f0,µ(uµ(s))|22ds+
∫ t

0

|gµ(uµ(s))|22ds+
∫ t

0

|∆uµ(s)|22ds ≤ C ′.

for any t ∈ (0, T ].

Proof. Let k̄ := 1−k
2
. From (∗∗)µ, we have

k̄f0,µ(uµ(s)) + (1− k̄)f0,µ(uµ(s))− gµ(uµ(s))− α∆uµ(s) = vµ(s)− β∂suµ(s) + h(s)

for s ∈ (0, T ). Since Lemma 3.8 assures the L2(0, t;L2(Ω))-boundedness of the right-hand
side of this identity, the left-hand side of this identity is bounded in L2(0, t;L2(Ω)), i.e.,
we have

k̄2
∫ t

0

|f0,µ(uµ(s))|22ds

+ 2k̄

∫ t

0

(f0,µ(uµ(s)), (1− k̄)f0,µ(uµ(s))− gµ(uµ(s))− α∆uµ(s))2ds

+

∫ t

0

|(1− k̄)f0,µ(uµ(s))− gµ(uµ(s))− α∆uµ(s)|22ds ≤ C ′. (3.63)

In order to estimate the cross-term, we apply Lemma 3.2 to get

(f0,µ(uµ), (1− k̄)f0,µ(uµ)− gµ(uµ)− α∆uµ(s))2

≥ (1− k̄)|f0,µ(uµ)|22 − (f0,µ(uµ), gµ(uµ))2. (3.64)

Applying condition (Aφ-I)-(iii) to the second term of the right-hand side, we have

−(f0,µ(uµ), gµ(uµ))2 ≥ −
∫
Ω

|f0,µ(uµ)||gµ(uµ)|dx

≥ −
∫
Ω

k|f0,µ(uµ)|2 +K|f0,µ(uµ)|dx

≥ −k|f0,µ(uµ)|22 −
1− k − k̄

2
|f0,µ(uµ)|22 −

K2|Ω|
2(1− k − k̄)

. (3.65)
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Then we obtain

(f0,µ(uµ), (1− k̄)f0,µ(uµ)− gµ(uµ)− α∆uµ(s))2

≥ 1− k − k̄

2
|f0,µ(uµ(s))|22 −

K2|Ω|
2(1− k − k̄)

=
1− k

4
|f0,µ(uµ(s))|22 −

K2|Ω|
1− k

(3.66)

Hence (3.63) with k̄ = 1−k
2

gives

(1− k)2

2

∫ t

0

|f0,µ(uµ(s))|22ds ≤ C ′. (3.67)

Furthermore by (Aφ-I)-(iii), we get∫ t

0

|gµ(uµ(s))|22ds ≤ C ′
∫ t

0

|f0,µ(uµ(s))|22ds+ C ′

≤ C ′. (3.68)

Thus in view of Lemma 3.8, (3.67) and (3.68), we can derive the following estimate for
∆uµ from (∗∗)µ:

α2

∫ t

0

|∆uµ(s)|22ds ≤ C ′. (3.69)

3.5 Passage to the limit as µ→ 0

In this subsection, we discuss the convergence of (uµ)µ as µ → 0. In subsection 3.4,
we obtained the same estimates as those given in subsection 3.2. So by virtue of these a
priori estimates, we can extract a subsequence {µk} of {µ} such that

uµk
→ u strongly in C([0, T ];L2(Ω)), (3.70)

∆uµk
⇀ ∆u weakly in L2(0, T ;L2(Ω)), (3.71)

∂tuµk
⇀ ∂tu weakly in L2(0, T ;L2(Ω)), (3.72)

∂F̄ (uµk
) ∋ f0,µk

(uµk
)⇀ f0(u) ∈ ∂F̄ (u) weakly in L2(0, T ;L2(Ω)), (3.73)

∂Ḡ(J∂Ḡ
µk
uµk

) ∋ gµk
(uµk

)⇀ g0(u) ∈ ∂Ḡ(u) weakly in L2(0, T ;L2(Ω)), (3.74)

vµk
⇀ v weakly in L2(0, T ;L2(Ω)), (3.75)

∆vµk
⇀ ∆v weakly in L2(0, T ;L2(Ω)), (3.76)

as k → ∞ (µk → 0), where v = f0(u)− g0(u)− α∆u+ β∂tu− h.
Therefore we can easily see that the limit u gives a solution of (P), i.e., u satisfies the

following:
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1. There exist f0(u) ∈ f(u) and g0(u) ∈ g(u), and u satisfying the following regularities:

u ∈ C([0, T ];L2(Ω)) ∩H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω) ∩H1
0 (Ω));

f0(u), g0(u) ∈ L2(0, T ;L2(Ω));

v ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω)).

(3.77)

2. u satisfies the equations in the following sense:
γ∂tu = ∆v, in L2(0, T ;L2(Ω)), (∗)
v = f0(u)− g0(u)− α∆u+ β∂tu− h, in L2(0, T ;L2(Ω)), (∗∗)
u|t=0 = u0, in L2(Ω).

(3.78)

Since it is shown that F̂ (u(t)) and |∇u(t)|22 are absolutely continuous on [0, T ] by the
same argument in subsection 3.3, the followings hold:

|∇u(0)|22 = |∇u0|22, (3.79)

F̂ (u(0)) = F̂ (u0). (3.80)

Therefore u ∈ C([0, T ];H1
0 (Ω)) and the initial condition holds in H1

0 (Ω) ∩D(F̂ ).

3.6 In the case of (Aφ-II)

Proof. Here we give a proof of Theorem 2.2, when we assume (Aφ-II), We prove Theorem
2.2 by almost the same arguments as for the case (Aφ-I). However we need a couple of
modifications. More precisely, ĝ(u) introduced for the case of (Aφ-I) should be replaced by
the primitive function of g, i.e., ĝ(u) :=

∫ u

0
g(z)dz, and instead of Yosida approximation

gµ of g, we introduce the following cut-off function gµ defined by

gµ(u) =


g(µ−1) if u > µ−1,

g(u) if |u| ≤ µ−1,

g(−µ−1) if u < −µ−1.

(3.81)

Since g is assumed to be locally Lipschitz continuous, gµ becomes a globally Lipschitz

continuous function with Lipschitz constant Lµ. We again define Ĝ(u) =
∫
Ω

∫ u

0
g(z)dzdx

and Ĝµ(u) =
∫
Ω

∫ u

0
gµ(z)dzdx, then relations (2.10) and (2.11) also hold.

we can repeat exactly the same arguments as before except the verification for the
convergence of gµ(uµ) to g(u). In order to discuss the convergence of gµ(uµ), we introduce
the following cut-off function χµ:

χµ(u) :=


µ−1 if u > µ−1,

u if |u| ≤ µ−1,

− µ−1 if u < −µ−1.

(3.82)

Then, since by (3.70) uµk
(t, x) → u(t, x) a.e. (t, x) ∈ (0, T )× Ω, we can easily get

χµk
(uµk

(t, x)) → u(t, x) a.e. (t, x) ∈ (0, T )× Ω as k → ∞ (µk → 0). (3.83)
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Here Egorov’s theorem assures that, for any ε > 0, there exists a closed set Aε ⊂ (0, T )×
Ω =: Q such that |Q/Aε| < ε and χµk

(uµk
(t, x)) converges to u(t, x) uniformly in Aε.

From a priori estimate for
∫ T

0
|gµ(uµ(t))|22dt in Lemma 3.9, gµ(uµ) = g(χµ(uµ)) converges

weakly to some function ḡ in L2(0, T ;L2(Ω)). Then for any test function ρ ∈ C∞
0 (Q), we

obtain ∫ T

0

(g(u)− ḡ, ρ)2dt

=

∫
Q

{g(u(t, x))− g(χµk
(uµk

(t, x)))}ρdxdt

+

∫
Q

{g(χµk
(uµk

(t, x)))− ḡ}ρdxdt

=

∫
Q/Aε

{g(u(t, x))− g(χµk
(uµk

(t, x)))}ρdxdt

+

∫
Aε

{g(u(t, x))− g(χµk
(uµk

(t, x)))}ρdxdt

+

∫
Q

{gµk
(uµk

(t, x))− ḡ}ρdxdt. (3.84)

Considering the first term of the right-hand side of (3.84), since gµ(uµ) = g(χµ(uµ)) and
g(u) are bounded in L2(Q), we obtain∫

Q/Aε

{g(u(t, x))− g(χµk
(uµk

(t, x)))}ρdxdt

≤
∫
Q/Aε

{|g(u(t, x))|+ |g(χµk
(uµk

(t, x)))|}ρdxdt

≤ |ρ|L∞(Q)

∫
Q/Aε

|g(u(t, x))|+ |g(χµk
(uµk

(t, x)))|dxdt

≤ |ρ|L∞(Q)

{∫ T

0

|g(u)|22dt+
∫ T

0

|g(χµk
(uµk

))|22dt
} 1

2

|Q/Aε|
1
2

≤ C ′ε
1
2 . (3.85)

Since |χµk
(uµk

(t, x))| ≤ C and |u(t, x)| ≤ C on Aε and g(·) is assumed to be locally
Lipschitz continuous, there exists a constant LC such that∫

Aε

{g(u(t, x))− g(χµk
(uµk

(t, x)))}ρdxdt

≤ LC

∫
Aε

|u(t, x)− χµk
(uµk

(t, x))||ρ|dxdt

→ 0 as k → ∞. (3.86)

From the weak convergence of gµk
(uµk

) = g(χµk
(uµk

)), the third term of the right-hand
side of (3.84) converges to 0. Thus we conclude ḡ = g(u) and

gµk
(uµk

) = g(χµk
(uµk

))⇀ g(u) weakly in L2(0, T ;L2(Ω)), (3.87)

which completes the proof.
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4 Proof of Theorem 2.3

For any u0 ∈ HF = D(F̂ )
L2(Ω)

, we take an approximate sequence {u0n} ⊂ H1
0 (Ω) ∩

D(F̂ ) satisfying u0n → u0 strongly in L2(Ω) and |u0n|2 ≤ 2|u0|2. Let un be the solutions
of (P) given in Theorem 2.2 for the initial data u0n, i.e., there exist sections f0,n(un) ∈
∂F̄ (un), g0,n(un) ∈ ∂Ḡ(un), and un satisfies the following equations:

γ∂tun = ∆vn, (∗)n
vn = f0,n(un)− g0,n(un)− α∆un + β∂tun − h, (∗∗)n
un|t=0 = u0n.

Then we discuss below the convergence of un.

4.1 A priori estimates independent of n

In this subsection, we establish the following a priori estimates for un independent
of n. In what follows, C ′′ denotes a general constant independent of the approximation
parameter n.

Lemma 4.1. There exists a constant C ′′ independent of n such that

|un(t)|22 +
∫ t

0

|∇un(s)|22ds+
∫ t

0

(f0,n(un(s)), un(s))2ds+

∫ t

0

F̂ (un(s))ds ≤ C ′′,

for any t ∈ [0, T ].

Proof. In parallel with (3.55), we now get

γ

2
|un(t)|2H−1+

β

2
|un(t)|22+α

∫ t

0

|∇un(s)|22ds+(1−k)
∫ t

0

(f0,n(un(s)), un(s))2ds ≤ C ′′. (4.1)

Since F̂ (0) = 0 and f0,n(un) ∈ ∂F̂ (un), the definition of subdifferential yields∫ t

0

F̂ (un(s))ds ≤
∫ t

0

(f0,n(un(s)), un(s))2ds

≤ C ′′. (4.2)

Lemma 4.2. There exists a constant C ′′ independent of n such that

t|∇un(t)|22 +
∫ t

0

s|∂sun(s)|22ds+
∫ t

0

s|∇vn(s)|22ds+
∫ t

0

s|vn(s)|22ds+
∫ t

0

s|∆vn(s)|22ds ≤ C ′′,

for any t ∈ [0, T ].

Proof. Multiplying (∗∗)n by s∂sun(s) for s ∈ (0, T ], we have

s
d

ds
F̂ (un(s))− s

d

ds
Ĝ(un(s)) +

αs

2

d

ds
|∇un(s)|22

+βs|∂sun(s)|22 +
s

γ
|∇vn(s)|22 = s(h(s), ∂sun(s))2. (4.3)
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Then integrating this on [0, t], using Schwarz’s and Young’s inequalities, we get∫ t

0

s
d

ds
F̂ (un(s))ds−

∫ t

0

s
d

ds
Ĝ(un(s))ds+

α

2

∫ t

0

s
d

ds
|∇un(s)|22ds

+ β

∫ t

0

s|∂sun(s)|22ds+
1

γ

∫ t

0

s|∇vn(s)|22ds

=

∫ t

0

s(h(s), ∂sun(s))2ds

≤ T

2β

∫ t

0

|h(s)|22ds+
β

2

∫ t

0

s|∂sun(s)|22ds. (4.4)

Now we consider the first three terms of the left-hand side. By virtue of Lemma 4.1 and
(2.10), we have∫ t

0

s
d

ds
F̂ (un(s))ds−

∫ t

0

s
d

ds
Ĝ(un(s))ds+

α

2

∫ t

0

s
d

ds
|∇un(s)|22ds

=

∫ t

0

d

ds

[
sF̂ (un(s))− sĜ(un(s)) +

αs

2
|∇un(s)|22

]
ds

−
∫ t

0

[
F̂ (un(s))− Ĝ(un(s)) +

α

2
|∇un(s)|22ds

]
ds

≥ (1− k)tF̂ (un(t))−Kt|un(t)|L1(Ω) +
αt

2
|∇un(t)|22

−
∫ t

0

F̂ (un(s))ds−
α

2

∫ t

0

|∇un(s)|22ds

≥ (1− k)tF̂ (un(t)) +
αt

2
|∇un(t)|22 − C ′′. (4.5)

Then by (4.4), we obtain

(1− k)tF̂ (un(t)) +
αt

2
|∇un(t)|22 +

β

2

∫ t

0

s|∂sun(s)|22ds+
1

γ

∫ t

0

s|∇vn(s)|22ds ≤ C ′′. (4.6)

Hence Poincaré’s inequality and (∗)n yield∫ t

0

s|vn(s)|22ds ≤ C ′′, (4.7)∫ t

0

s|∆vn(s)|22ds ≤ C ′′. (4.8)

Lemma 4.3. There exists a constant C ′′ independent of n such that∫ t

0

s|f0,n(un(s))|22ds+
∫ t

0

s|g0,n(un(s))|22ds+
∫ t

0

s|∆un(s)|22ds ≤ C ′′,

for any t ∈ [0, T ]

Proof. This estimate follows from much the same arguments as in the proof of Lemma
3.9.
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4.2 Passage to the limit as n→ ∞
We now discuss the convergence of un. We first consider the convergence in (0, T ].

Take any ε ∈ (0, T ], then Lemma 4.2 assures that un is bounded in C([ε, T ];H1
0 (Ω))

and W 1,2([ε, T ];L2(Ω)). Hence by Ascoli’s theorem, there exists a subsequence (unk
)k

converging to u strongly in C([ε, T ];L2(Ω)), i.e.,

unk
→ u strongly in C([ε, T ];L2(Ω)) as k → ∞ (nk → ∞). (4.9)

Therefore u ∈ C((0, T ];L2(Ω)). By virtue of estimates in Lemmas 4.1, 4.2 and 4.3, there
exists a subsequence of (unk

)k again denoted by (unk
)k such that

√
t∂tunk

(t)⇀
√
t∂tu(t) weakly in L2(0, T ;L2(Ω)), (4.10)

√
t∆unk

(t)⇀
√
t∆u(t) weakly in L2(0, T ;L2(Ω)), (4.11)

√
tf0,nk

(unk
(t))⇀

√
tf0(u(t)) weakly in L2(0, T ;L2(Ω)), (4.12)

√
tg0,nk

(unk
(t))⇀

√
tg0(u(t)) weakly in L2(0, T ;L2(Ω)), (4.13)

√
tvnk

(t)⇀
√
tv(t) weakly in L2(0, T ;L2(Ω)), (4.14)

√
t∆vnk

(t)⇀
√
t∆v(t) weakly in L2(0, T ;L2(Ω)), (4.15)

as k → ∞, where v = f0(u)−g0(u)−α∆u+β∂tu−h, f0(u) ∈ ∂F̄ (u), and g0(u) ∈ ∂Ḡ(u).
Hence the limit u satisfies the following equations:{

γ∂tu(t, x) = ∆v(t, x), (∗)
v(t, x) = f0(u(t, x))− g0(u(t, x))− α∆u(t, x) + β∂tu(t, x)− h(t, x), (∗∗)

(4.16)

for a.e. (t, x) ∈ (0, T )× Ω.
To complete the proof, it suffices to check u(t) → u0 strongly in L2(Ω) as t → 0. We

first check u(t) → u0 weakly in L2(Ω) as t→ 0. To this end, we test (∗∗)n by ψ ∈ C∞
0 (Ω)

to get

d

ds
{β(un(s), ψ)2 + γ(un(s), ψ)H−1}

= (−f0,n(un(s)) + g0,n(un(s)), ψ)2 + α(∆un(s), ψ)2 + (h(s), ψ)2, (4.17)

for a.e. s ∈ (0, T ). Integrating (4.17) on (0, t) with t ∈ (0, T ], we obtain

β(un(t)− u0n, ψ)2 + γ(un(t)− u0n, ψ)H−1

=

∫ t

0

(−f0,n(un) + g0,n(un), ψ)2ds+ α

∫ t

0

(∆un, ψ)2ds+

∫ t

0

(h, ψ)2ds. (4.18)

By (Aφ-I)-(iii), we obtain∣∣∣∣∫ t

0

(−f0,n(un) + g0,n(un), ψ)2ds

∣∣∣∣ ≤ ∫ t

0

∫
Ω

(|f0,n(un)||ψ|+ k|f ◦(un)||ψ|+K|ψ|) dxds

≤ (1 + k)

∫ t

0

∫
Ω

|f0,n(un)||ψ|dxds+K|ψ|L1(Ω)t. (4.19)
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Here by virtue of (Af) and Lemma 4.1, we have∫ t

0

∫
Ω

|f0,n(un(s, x))|dxds ≤
∫ t

0

∫
Ω

C0(f̂(un(s, x))
1−δ + 1)dxds

≤ C0

(∫ t

0

∫
Ω

f̂(un(s, x))dxds

)1−δ

(|Ω|t)δ + C0|Ω|t

≤ C0C
′′|Ω|δtδ + C0|Ω|t. (4.20)

As for the second term of the right-hand side of (4.18), we get by Lemma 4.1∣∣∣∣α ∫ t

0

(∆un(s), ψ)2ds

∣∣∣∣ ≤ α

(∫ t

0

|∇un(s)|22ds
) 1

2

|∇ψ|2t
1
2

≤ αC ′′ 1
2 |∇ψ|2t

1
2 . (4.21)

Furthermore we have ∣∣∣∣∫ t

0

(h(s), ψ)2ds

∣∣∣∣ ≤ |ψ|2|h|L2(0,T ;L2(Ω))t
1
2 . (4.22)

Thus, in view of (4.19), (4.20), (4.21) and (4.22), letting n → ∞ in (4.18), we find that
there exists a constant C1 depending on k, C0, C

′′, |Ω|, δ, α, |∇ψ|2, |ψ|2 and |h|L2(0,T ;L2(Ω))

such that

|β(u(t)− u0, ψ)2 + γ(u(t)− u0, ψ)H−1| = |(u(t)− u0, (β + γΛ)ψ)2|
≤ C1(t

δ + t
1
2 + t), ∀ψ ∈ C∞

0 (Ω). (4.23)

Hence u(t) → u0 in D ′(Ω) as t→ ∞. Since |u(t)|2 is bounded, we easily find that u(t) con-
verges to u0 weakly in L

2(Ω) and strongly inH−1(Ω). Therefore we have lim inft→0 |u(t)|2 ≥
|u0|2 and limt→∞ |u(t)|H−1 = |u0|H−1 . In order to show the strong continuity of u(t) in
L2(Ω) at t = +0, we have only to check |u0|2 ≥ lim supt→0 |u(t)|2. Multiplying (∗∗)n by
un(t), we get by Lemma 4.1

d

ds

{
γ

2
|un(s)|2H−1(Ω) +

β

2
|un(s)|22

}
= (−f0,n(un(s)) + g0,n(un(s)) + α∆un(s) + h(s), un(s))2

≤ −(1− k)(f0,n(un(s)), un(s))2 − α|∇un(s)|22
+ |h(s)|2|un(s)|2 +K|un(s)|L1(Ω)

≤
√
C ′′

(
|h(s)|2 +K|Ω|

1
2

)
. (4.24)

Integrating this over (0, t) and letting n→ ∞, we get

γ

2
|u(t)|2H−1(Ω) −

γ

2
|u0|2H−1(Ω) +

β

2
|u(t)|22 −

β

2
|u0|22

≤
√
C ′′

(
|h|L2(0,T ;L2(Ω))t

1
2 +K|Ω|

1
2 t
)
. (4.25)

Hence we obtain lim supt→0 |u(t)|22 ≤ |u0|22.
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Appendix

A. Uniqueness

In addition to (Aφ-I)-(i) or (Aφ-II)-(i), assume the following condition (A1), then the
uniqueness of the solution for (P) holds true.

(A1) The perturbation term g is a globally Lipschitz continuous in R with its Lipschitz
constant K1.

Theorem A.1. (Uniqueness) Let α, β and γ > 0. Assume (Aφ-I)-(i), and (A1). Let
u0 ∈ L2(Ω) and h ∈ L2(0, T ;L2(Ω)), then (P) admits a unique solution satisfying (2.14).

Remark A.2. If we assume (Aφ-II) and D(f) ⊂ [a, b] (−∞ < a < b < ∞), then the
solution of (P) is unique.

Proof of Theorem A.1. Let ui (i = 1, 2) be solutions of (P) for initial values u0i ∈ L2(Ω)
and hi ∈ L2(0, T ;L2(Ω)) (i = 1, 2) satisfying (2.14). That is, ui (i = 1, 2) satisfy the
following equations:

γ∂tui = ∆vi in L2(0, T ;L2(Ω)), (∗)i
vi = f0,i(ui)− g(ui)− α∆ui + β∂tui − hi in L2(0, T ;L2(Ω)), (∗∗)i
ui|t=0 = u0i, in L2(Ω).

Multiplying (∗∗)1−(∗∗)2 by w(s) := u1(s)− u2(s), we get, by Lemma 3.1,

γ

2

d

ds
|w(s)|2H−1 +

β

2

d

ds
|w(s)|22 + α|∇w(s)|22 + (f0,1(u1(s))− f0,2(u2(s)), w(s))2

= (g(u1(s))− g(u2(s)), w(s))2 + (h1(s)− h2(s), w(s))2. (a.1)

Then by using (A1) and the monotonicity of f , we obtain

γ

2

d

ds
|w(s)|2H−1 +

β

2

d

ds
|w(s)|22 + α|∇w(s)|22 ≤

(
K1 +

1

2

)
|w(s)|22 +

1

2
|h1(s)− h2(s)|22.

(a.2)

The integration of this over [0, t] (t ∈ (0, T ]) yields

γ

2
|w(t)|2H−1 +

β

2
|w(t)|22

≤ γ

2
|w0|2H−1 +

β

2
|w0|22 +

(
K1 +

1

2

)∫ t

0

|w(s)|22ds+
1

2

∫ t

0

|h1 − h2|22ds, (a.3)

where w0 := u01 − u02. Hence by Gronwall’s lemma, we have

γ

2
|w(t)|2H−1 +

β

2
|w(t)|22 ≤

{
γ

2
|w0|2H−1 +

β

2
|w0|22 +

1

2

∫ T

0

|h1(s)− h2(s)|22ds
}
e

2
β
(K1+

1
2
)t.

(a.4)

Then u01 = u02 and h1 = h2 imply u1(t) = u2(t) in L
2(Ω).
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As for the existence of solution u satisfying (2.14), we can repeat the proof of Theorem
2.3 up to (4.16). The verification for the fact that u(t) → u0 strongly in L2(Ω) as t→ 0,
can be done much easier than in the proof of Theorem 2.3. In fact, applying the above
arguments with u1 and u2 replaced by un and um, we obtain

γ

2
|un(t)− um(t)|2H−1 +

β

2
|un(t)− um(t)|22

≤
{
γ

2
|u0n − u0m|H−1 +

β

2
|u0n − u0m|22

}
e

2
β
(K1+

1
2
)t ∀t ∈ [0, T ]. (a.5)

Hence {un(t)}n forms a Cauchy sequence and we find that supt∈[0,T ] |un(t) − u(t)|2 → 0
as n→ ∞. Therefore for any η > 0, there exists N ∈ N such that

sup
t∈[0,T ]

|un(t)− u(t)|2 + |u0n − u0|2 < η ∀n ≥ N. (a.6)

Hence we obtain

|u(t)− u0|2 ≤ |u(t)− uN(t)|2 + |uN(t)− u0N |2 + |u0N − u0|2
≤ η + |uN(t)− u0N |2. (a.7)

Then letting t→ 0 in (a.7), we get

lim sup
t→0

|u(t)− u0|2 ≤ η, (a.8)

whence follows limt→0 |u(t)− u0|2 = 0.

B. Neumann boundary value problem

We can prove the existence of the solutions to the following Neumann boundary value
problem by arguments similar to those for the Dirichlet boundary value problem.

γ∂tu = ∆v, (t, x) ∈ (0, T )× Ω, (∗)
v = f0(u)− g0(u)− α∆u+ β∂tu− h, (t, x) ∈ (0, T )× Ω, (∗∗)
f0(u) ∈ f(u), g0(u) ∈ g(u), (t, x) ∈ (0, T )× Ω,

∂νu = ∂νv = 0, (t, x) ∈ (0, T )× ∂Ω,

u|t=0 = u0, x ∈ Ω,

(NBVP)

where ∂ν represents the outward normal derivative on ∂Ω.

Theorem B.1. We assume condition (Aφ-I) or (Aφ-II), and the following (A2).

(A2) There exists K2 ∈ (0,∞) satisfying,

|||f(u)|||1 ≤ K2(F̂ (u) + 1) ∀u ∈ D(F̂ ),

where |||f(u)|||1 := sup{|b|L1(Ω); b ∈ ∂F̂ (u)}.
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Let u0 ∈ H1(Ω)∩D(F̂ ) and h ∈ L2(0, T ;L2(Ω)), then there exists a solution u of (NBVP)
satisfying

u ∈ C([0, T ];H1(Ω)) ∩W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H2
N(Ω)),

f0, g0 ∈ L2(0, T ;L2(Ω)),

v ∈ L2(0, T ;H2
N(Ω)),

where H2
N(Ω) := {z ∈ H2(Ω); ∂νz = 0 on ∂Ω}.

Remark B.2. Under the Neumann boundary condition, the following conservation law
holds. ∫

Ω

u(t)dx =

∫
Ω

u0dx. (b.1)

This law can be shown by integrating (∗) on Ω.

We can carry out the proof almost the same way as in the proof of Theorem 2.2,
except the usage of Poincaré’s inequality such as in (3.61) and (4.7). Instead of it, we rely
on the Poincaré–Wirtinger inequality. From the second energy estimates, we obtain the
following estimates (cf. Lemma 3.8).

|∇u(t)|22 + F̂ (u(t)) +

∫ t

0

|∂su(s)|22ds+
∫ t

0

|∇v(s)|22ds+
∫ t

0

|∆v(s)|22ds ≤ C. (b.2)

Then from the conservation law (b.1), we also get the estimate of |u(t)|2 for any t ∈ (0, T ).
Furthermore from assumption (A2), we can derive an a priori bound for

∫
Ω
|f0(u(t))|dx.

Integrating (∗∗), from (∗) and the boundary conditions, we obtain by (b.1)∫
Ω

v(t)dx =

∫
Ω

f0(u(t))dx−
∫
Ω

g0(u(t))dx+ β

∫
Ω

∂tu(t)dx−
∫
Ω

h(t)dx

=

∫
Ω

f0(u(t))dx−
∫
Ω

g0(u(t))dx−
∫
Ω

h(t)dx. (b.3)

Hence by (b.2), we can get the estimate for
∫ t

0

∫
Ω
v(s)dxds. By virtue of the Poincaré–

Wirtinger inequality and the estimates of
∫ t

0
|∇v(s)|22ds and

∫ t

0

∫
Ω
v(s)dxds, we obtain the

estimate of
∫ t

0
|v(s)|22ds. Then from the same arguments as in the proof of Lemma 3.9, we

can derive the following estimates.∫ t

0

|f0(u(s))|22ds+
∫ t

0

|g0(u(s))|22ds+
∫ t

0

|∆u(s)|22ds ≤ C. (b.4)

Thus the rest of the proof can be done as in the proof of Theorem 2.2.
Furthermore we can derive a result of smoothing effect under the Neumann boundary

condition, i.e., (NBVP) admits a solution when u0 belongs to HF := D(F̂ )
L2(Ω)

.

Theorem B.3. Assume (Aφ-I) or (Aφ-II), (A2), and (Af). Let u0 ∈ HF and h ∈
L2(0, T ;L2(Ω)), then there exists a solution of (NBVP) satisfying

u ∈ C([0, T ];L2(Ω)),
√
t∆u(t),

√
t∂tu(t),

√
tf0(u(t)),

√
tg0(u(t)) ∈ L2(0, T ;L2(Ω)),

√
tv(t) ∈ L2(0, T ;H2

N(Ω)),

where f0, g0 and v are functions appearing in (NBVP).
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We can prove the existence of the solutions of the following auxiliary problem with
relaxation term ηv for u0 ∈ H1(Ω) ∩ D(F̂ ) and h ∈ L2(0, T ;L2(Ω)), by modifying the
proof of Theorem B.1 slightly:

γ∂tu = ∆v − ηv, (t, x) ∈ (0, T )× Ω,

v = f0(u)− g0(u)− α∆u+ β∂tu− h, (t, x) ∈ (0, T )× Ω,

f0(u) ∈ f(u), g0(u) ∈ g(u), (t, x) ∈ (0, T )× Ω,

∂νu = ∂νv = 0 (t, x) ∈ (0, T )× ∂Ω,

u|t=0 = u0 x ∈ Ω.

(ANBVP)

Noting that (−∆+ηI)−1 is a bijection and the duality mapping from (H1(Ω))∗ to H1(Ω),
we get the following relation same as in Lemma 3.1:

(v(t), u(t))2 = −γ
2

d

dt
|u(t)|2(H1(Ω))∗ . (b.5)

Then we can establish a priori estimates independent of η by using the Poincaré–Wirtinger
inequality instead of the Poincaré inequality. The rest of the proof can be carried out
almost the same way as in the proof of Theorem 2.3.
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