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Abstract. The problem of the compartmentalized knapsack is classified as NP-Hard
and has several models, both for linear and non-linear cases. The development of new
heuristics for a resolution in a runtime useful for applications becomes necessary. In this
work, three new heuristics are proposed, using the particularity of the linear model pro-
posed by Inarejos (2017), which are considered only pk compartments available for each
class, being pkX, pkGREEDY and pkMTComp, the latter is based on the algorithm of
Martello and Totti (1991). The heuristic pkMTComp presents solutions close to opti-
mum value, being a promising method in solving the problem of the compartmentalized
knapsack, when compared with other heuristics recognized in the literature.
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1 Introduction
The problem of the compartmentalized knapsack consists in selecting a subset of items,

in order to obtain the maximum utility, obeying the restrictions, as for example, the sum
of the selected items dimension, must be inferior or equal the physical capacity of the
knapsack [1, 2].

In this work will be considered only the compartmentalized knapsacks (CKP), a vari-
ation of the classical knapsack problem [3]. The CKP consists on the filling of limited
capacity compartments, internal to a knapsack. The solution for the CKP maximizes
the total utility of the knapsack [3, 4, 5, 6], considering the separation of the items in
the internal compartments according to determined characteristics and limitations of the
compartments/knapsack as for example the width or weigh of the items must meet the
limits of the compartments/knapsack.

Several industrial processes that use one-dimensional cutting, such as coils or cutting
bars (paper, clothes, plastics, steel, films, etc.), can be modeled as a compartmentalized
knapsack (CKP). Resulting in the reduction of production costs, either by decreasing
losses of raw material or by optimizing the production process [3, 5, 7, 8, 9, 10, 11, 12,
13, 14]. The steel coil cutting process, with two cutting steps, is illustrated in figure 1,
with the following phases:

• First Phase: final items of the same characteristic (as an example of blade thick-
ness) will be grouped into a category, or will be, are arranged in the same internal
compartment as the knapsack. The categories and the unused material (loss or
surplus) are demarcated and cut in this phase;

• Second Phase: processing execution, such as reducing the thickness of the blade. It
can occur for categories and at different levels;

• Third Phase: marking the final items on the reel segment corresponding to its
category, ocurring the cut in the final items.

In the figure 1 is observed that categories go through different phases, that is, category
B needs processing prior to phase 3, while category A does not require such processing.
Other examples of the application of the CKP can be accessed at [3, 15, 16].

Some of the heuristics presented in the literature proposed by [15] and [17] use solutions
of the black box type to solve the subproblems generated in the development of the
heuristics. Using this type of solution, it is not possible to access the methodology used
for the determination of the solution. The pkStrong Capacities heuristic presented in [15]
is from the black box type, its goal is to create a variable number of compartments for
each class, however, its use is limited to problems of reduced dimensions, that is, dozens
of classes and items.

Other heuristics that do not use black box solutions in their development, such as Z-
best compartments and W−capacities presented in [6] are the main works of literature for
CKP resolution. In the heuristic Z-best compartments, the Z compartments with the best
utility associated to each class of items are considered, while in the heuristic w−capacity,
for each class of items the w best capacities are calculated for each compartment.
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Figure 1: Steel Coil Cutting Process.

The Compartmented Knapsack Problem has non-linear approaches [6, 10, 12, 18, 19]
and linear [4, 15, 17], we present below some of them.

Cruz in [17] suggests a linear heuristic approach to the CKP nonlinear model. Lin-
ear modeling presents results close to the optimum value with reduced execution time.
Arenales et. al presents in [19] a new linear model for the same problem based on non-
linear systems, the heuristics offered as a solution are evaluated by the difference with the
optimal value for the problem, obtained through proprietary software, the heuristic has
limitations in relation to the number of items to be processed, dozens of items per class
are simulated only.

Quiroga-Orozco in [15] indicates a new model, defined as a Strong Linear Model for
the Compartmented Knapsack Problem along with a new heuristic, using this new model.
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Marques and Arenales in [6] present the heuristic called w − capacity for the non-linear
case of the CKP, applying to steel coil cutting problems with more than one cutting
step. The heuristic proposed by [15] provides an approximation similar to the heuristic
w-capacities, however with a runtime superior to the heuristic w-capacities.

The applications of the Compartmented Knapsack Problem are mostly for cutting
and packaging problems [4, 6, 10, 12, 15, 18, 19], which motivated the application of the
heuristics proposed in this work.

The proof of the linearity of the Compartmented Knapsack Problem is performed by
[4] being the model used in this article, which uses exhaustive and decomposition methods
in its construction. Exhaustive methods have a long execution time due to the realization
of all possible combinations to determine the best solution of the problem, whereas in the
decomposition methods an initial problem is decomposed into subproblems to obtain the
final solution.

The objective of this work is to present heuristics for CKP solution, with processing
time and solution precision suitable for commercial use, even if a volume of items for
processing in the order of tens of thousands is used. To evaluate the results obtained,
results from the heuristics w - capacities and the value considered to be optimal (linear
model presented by [4]) will be used.

In addition to this introduction, this article is organized as the following: section
II will present the proposed heuristics, in section III the numerical simulations will be
presented and a discussion about the simulations and in section IV the conclusions will
be presented.

2 Proposed Heuristics
The proposed heuristics present a solution to the unbounded optimization problem, de-
scribed by [4]:

Maximize: z =

q∑
k=1

∑
i∈Nk

pk∑
j=1

uia
k
ij (1)

Subject to:
q∑

k=1

∑
i∈Nk

pk∑
j=1

lia
k
ij ≤ L (2)

δkjL
k
min ≤

∑
i∈Nk

lia
k
ij ≤ δkjL

k
max with j = 1, . . . , pk k = 1, 2, . . . q (3)

q∑
k=1

pk∑
j=1

δkj ≤ F1 (4)

∑
i∈Nk

akij ≤ F2 ,j = 1, 2, . . . , pk k = 1, 2, . . . , q (5)

δkj ∈ {0, 1} e akij ≥ 0 and integers, i ∈ Nk, j = 1, 2, . . . , pk, k = 1, 2, . . . , q (6)
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The objective function 1 seeks to maximize the total utility (ui) of the items, the
constraint 2 indicates the physical capacity of the L knapsack, with li representing the
physical characteristic of the i item. The 3 constraint provides the lower and upper limits
for the compartments of each class, only non-null compartments will be included, that
is δkj = 1. The restrictions 4 and 5 are knife 01 and knife 02 of the cutting process,
respectively, which inform the number of non-null compartments that will be inserted
in the knapsack and the number of items that will be inserted in each compartment ,
respectively, finally the constraint 6 presents the domain of the variables.

For the elaboration of the proposed heuristics, it is strongly used the fact that the

number of compartments to be created in the linear model cannot exceed
q∑

k=1

pk. In addi-

tion to the use of the Inarejos [4] linear model, the development of viable compartments
based on Hoto [3, 20] is also used. The value of pk is chosen for the selection of viable
compartments.

The three heuristics proposed share the same initial stage, in which all viable com-
partments are defined and an initial utility is also associated for each compartment. A
compartment is defined as viable if there is a non-negative integer linear combination
of the weights of the associated class items, equal to the capacity of the compartment
concerned.

Property 1: Consider compartment j of class k of capacity wj > lkmin and the weights
associated with that class Nk. If there is any item r ∈ Nk such that the capacity com-
partment wj − lr is viable, then the capacity compartment wj is viable.

Proof. On the hypothesis that wj − lr is viable, it follows that wj − lr =
∑
i∈Nk

liai, of this

one has wj = lr(ar + 1) +
∑
i∈Nk
i ̸=r

liiai.

After generating viable compartments, they are ordered in decreasing order of effi-
ciency Uj

Wj

>
Uj+1

Wj+1

and are selected the most efficient pk compartments. The initial

process algorithm is given in Algorithm 1.
After generating all viable compartments, represented by the j index, a restricted

knapsack problem is formulated to obtain the best utilities associated with each built
compartment. The way to obtain these optimum values of the utilities is obtained by
solving the problem (7) - (10):

Maximize Uj =
∑
i∈Nk

uiaij (7)

Subject to:
∑
i∈Nk

liaij ≤ wj (8)∑
i∈Nk

aij ≤ F2 (9)

aij ≥ 0 and integer, i ∈ Nk (10)
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Algorithm 1 Obtaining the Viable Compartments and Initial Utilities
Require: li, ui, lmax e lmin

Ensure: W e U
1: Be CLk set of all available class widths k.
2: Initialization: For each k class do:
3: Sort the item widths in ascending order.
4: while wj ≤ lmax do
5: if wj ∈ CL then
6: wj ∈ C
7: utj = uj

8: wj = wj + 1
9: end if

10: if wj − li ∈ CL then
11: C = C ∪ wj

12: i = i+ 1
13: utj = uj + uti
14: wj = wj + 1
15: end if
16: end while
17: for all wj ∈ [lmin, lmax] do
18: Wk = ∪wj

19: Uk = ∪utj
20: end for
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Right after obtaining the best utilities associated with each of the pk viable compart-
ments of each class k, the data Uj and Wj will be the new values for solving the entire
programming problem given below, which the viable solution for the CKP will result. Wk

are the indexes associated with each viable compartment.

Maximize Z =
∑
i∈Wk

Uiyij (11)

Subject to:
∑
i∈Wk

Wiyij ≤ L (12)∑
i∈Wk

yij ≤ F1 (13)

yij ≥ 0 and integer, i ∈ Wk (14)

The next subsections present the details of the heuristics proposed in this article,
named: pkX, pkGREEDY and pkMTComp.

2.1 Heuristic pkX

To obtain a viable solution for CKP, the heuristic denominated as pkX uses the software
FICO R⃝ Xpress [21] with its FICO optimization package FICO R⃝ Xpress Optimizer.

The optimization package is of the proprietary type, that is, owned by the developer
of software, it is not possible to detail the internal procedures adopted by the maximize
function of the optimization package. The pkX heuristic uses the maximize function
to solve the subproblems: (7) - (10) and (11) - (14). The heuristic is presented by the
Algorithm 2.

Algorithm 2 Heuristic pkX

Require: li, Wj, Uj, ui, lmax, lmin, L, q, pk e n
Ensure: xj e Z

1: for all k em 1, . . . , q do
2: Sort the item widths in ascending order.
3: Create the viable compartments by executing the algorithm 1.
4: Determine the efficiency of each viable compartment.
5: Select the most efficient pk compartments.
6: Solve the problem (7) - (10) using the function maximize.
7: end for
8: Solve the problem (11) - (14) using the function maximize.

2.2 Heuristic pkGREEDY

In search for a shorter execution time, the heuristic called pkGREEDY is developed,
which does not use a proprietary package of software to solve the CKP.
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For the resolution of the CKP, the heuristic pkGREEDY , uses the greedy method
which consists of inserting the largest number of items of greater efficiency inside the
knapsack, if it is still possible to insert more items, the next item of bigger efficiency is
arranged in its interior, and so on.

Mathematically, the value of x1 =

⌊
L

l1

⌋
and from x2 are inserted


L−

j−1∑
i=1

lixi

lj


items for each xj. This way, it is performed only once, forming only one branch of the
enumeration tree.

The 3 algorithm details the pkGREEDY heuristic.

Algorithm 3 Heurística pkGREEDY

Require: li, Wj, Uj, ui, lmax, lmin, L, q, pk e n
Ensure: xj e Z

1: for all k em 1, . . . , q do
2: Sort the item widths in ascending order.
3: Create the viable compartments by executing the algorithm 1.
4: Determine the efficiency of each viable compartment.
5: Select the most efficient pk compartments.
6: Solve the problem (7) - (10) using the greedy method.
7: end for
8: Solve the problem (11) - (14) using the greedy method.

2.3 Heuristic pkMTComp

The pkMTComp heuristic is based on the exact resolution algorithm of Martello and
Toth [22]. This algorithm is modified to include the knives restriction of the linear model
proposed by Inarejos [4].

Two algorithms from Martello and Toth [1] were used, the first is a method of branch
and bound and the second uses what is called a core problem.

The first Martello and Toth [1] algorithm that was used is called MTU1, which consists
of a branch and bound method where the implicit enumeration tree has n+1 search levels.
For the construction of the enumeration tree, the items must be in decreasing order of
efficiency. As it is a branch and bound method in each visited node, an analysis is carried
out in relation to the best solution, if lower, this node is closed and the beginning of a new
branch is returned. The details of the algorithm together with its explicit visualization
can be accessed at [1].

The modification of the method, for the inclusion of the knives, occurs at the stage

when the items are inserted inside the knapsack, in the original algorithm y =

⌊
L̂

lj

⌋
items,
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with the adaptation, its inserted y = min

{⌊
L̂

lj

⌋
, F

}
, where F represents the knife in

use at the time the method is executed.
For the implementation of the MTU1 algorithm, the C programming language was

used, using the finite state machine model, in order to eliminate the so-called goto of the
original code. It was also possible to use multithreading in the implementation of the
pkMTComp heuristic, for each CKP class a thread is executed in a processor core. The
MTU1 method does not solve problems in which the number of items available is greater
than 250000 items, with the objective of eliminating this limitation, the MTU2 algorithm
will be used.

The second algorithm of Martello and Toth [1] to be used is called MTU2, it is used
for the resolution of large specimens, such as 250000 items available for the selection of
the knapsack. The MTU2 algorithm uses MTU1 internally to solve the core problem,
which uses only the most efficient items.

The detailed algorithm and examples can be accessed at [1]. Following is the 4 algo-
rithm, which details the pkMTComp heuristic.

Algorithm 4 Heuristic pkMTComp

Require: li, Wj, Uj, ui, lmax, lmin, L, q, pk e n
Ensure: xj e Z

1: for all k em 1, . . . , q do
2: Sort the item widths in ascending order.
3: Create the viable compartments by executing the algorithm 1.
4: Determine the efficiency of each viable compartment.
5: Select the most efficient pk compartments.
6: Solve the problem (7) - (10) using the MTU2 algorithm.
7: end for
8: Solve the problem (11) - (14) using the MTU2 algorithm.

The next section will present the numerical simulations and analysis of the heuristics.

3 Simulations and Discussion
For the simulations of the linear model and the pkX heuristic, the software FICO R⃝ Xpress
[21] for 64-bit architecture was used.

For the implementation, execution of the heuristics pkGREEDY and pkMTComp
and for the ordering of items and classes by efficiency, the C programming language was
used. The hardware used in all computational simulations and experiments consist of an
Intel processor R⃝ InsideTM Xeon R⃝ CPU W3520, 8 GB of RAM, Microsoft Windows
operating system R⃝ Server 2012 R2 Standard, which is in the simulation laboratory of
the Mathematics Department of the State University of Londrina (UEL).

The data to perform the simulations were organized into five classes with sizes defined
in q = 5, 10, 20, 50 and 100; with five subcategories per class, representing the number of
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items available in each class, being n = 10, 50, 100, 1000 and 10, 000. Table 1 shows the
organization of classes and items.

Table 1: Subcategories (Sets) for Simulations
Categories (q)

5 10 20 50 100

Items
by

Category
(n)

10 5/10 10/10 20/10 50/10 100/10
50 5/50 10/50 20/50 50/50 100/50
100 5/100 10/100 20/100 50/100 100/100
1000 5/1000 10/1000 20/1000 50/1000 100/1000
10000 5/10000 10/10000 20/10000 50/10000 100/10000

For the creation of the specimens, data were used based on real problems of cutting
steel coils in two stages [3], with the following elements: total capacity of the knapsack
L = 1100mm, capacity of the compartments of each class are limited between the values
Lmin=154mm and Lmax=456mm, item widths will be generated with values evenly dis-
tributed between 53mm and 230mm, utility items will be values between 1 and 100. For
each q/n category, 100 copies were produced using a random generator, based on Gau
and Washer [23], resulting in 2500 copies.

Each of the 2500 copies were ordered through the efficiency of its items. After the
initial organization of the copies, simulations were performed for the linear model and the
heuristics pkX, pkGREEDY and pkMTComp, after this were elaborated the Tables 3, 4
and 5 where the results obtained are detailed, the maximum execution time for each copy
was fixed at 86400 seconds.

All simulations took place on the same equipment, within the same specifications, with
no changes occurring during the execution of all copies, the equipment was dedicated to
the execution of the simulations.

The representation through letters occurs as follows the category each row of the
tables 2, 3, 4 and 5 represent one of the subcategories presented in the table 1, that is,
A represents the results of the processing of the subcategory 5/10, the B refers to 5/50
and so on. The following information is presented in these tables: average execution
time in seconds (T ), standard deviation of the execution time in seconds (σ(T )) and the
percentage refers to the difference between the heuristic linear (zlinear) and the heuristic
under analysis (zheuristic) in the respective table (gap). The gap is given by:

gap =
zlinear − zheuristic

zlinear

In the tables, the average values are analyzed (gap), minimum (gapmin) and maximum
(gapmax), obtained among the samples performed in the heuristic analysis.

Table 2 presents the results obtained by solving the specimens using the linear model.
Table 3 presents the statistics related to the pkX heuristic compared to the linear model.
For copies of classes 50/10000 (T ), 100/1000 (X) and 100/10000 (Y ), the execution time
is longer than the maximum time of 86400 seconds, these results are being represented
by ∗. Table 4 details the results obtained through the pkGREEDY heuristic and Table 5
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presents the statistics related to the pkMTComp heuristic compared to the linear model
proposed by Inarejos [4].

Table 2: Linear Model Statistics
Set Subcategory Linear

T σ(T )
A 5/10 217,6535 658,0430
B 5/50 43,7511 420,2747
C 5/100 0,0601 0,0321
D 5/1000 0,1930 0,0443
E 5/10000 3,2295 0,1215
F 10/10 1,5687 9,5373
G 10/50 1,5936 15,3062
H 10/100 0,1157 0,0493
I 10/1000 0,4233 0,0464
J 10/10000 12,1816 0,2539
K 20/10 29,9757 181,3964
L 20/50 0,1521 0,2808
M 20/100 18,9978 187,6012
N 20/1000 1,0560 0,0962
O 20/10000 100,902 0,8131
P 50/10 0,1070 0,2117
Q 50/50 0,4731 1,1416
R 50/100 26,4013 257,8968
S 50/1000 4,8865 0,3422
T 50/10000 1058,958 14,3281
U 100/10 23,7795 235,5939
V 100/50 26,6162 257,8439
X 100/100 26,6663 252,8972
W 100/1000 30,9031 1,3370
Y 100/10000 5226,72 64,4448

The pictures 2 and 3 present the behavior of the heuristics related to the gap and to
the T .

In order to evaluate the behavior of the pkMTComp heuristic in relation to other
heuristics recognized in the literature, comparisons were made with the w − capacities
heuristic, proposed by Marques [6].

The w − capacities heuristic was developed for the unbounded case of the compart-
mentalized knapsack, Table 6 presents the results obtained through simulations performed
with the w − capacity heuristic. For the categories with n = 1000 and n = 10000 the
w − capacities heuristic did not obtain solutions, this is due to its implementation with
the method of Gilmore and Gomory [24] for the resolution of the internal subproblems
of heuristic, which solves problems with up to hundreds of items. These categories are
represented by ∗ in Table 6.
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Table 3: Heuristic pkX Statistics

Sets pkX
T σ(T ) gap σ(gap) gapmin gapmax

A 1,065 0,042 0,03% 0,24% 0% 2,23%
B 2,691 0,096 0,51% 1,26% 0% 5%
C 3,036 0,455 3,04% 2,98% 0% 11,10%
D 13,172 0,167 0,78% 1,25% 0% 3,99%
E 8276,237 32,381 0,01% 0,02% 0% 0,11%
F 2,679 0,455 0,11% 0,26% 0% 0,98%
G 12,586 0,654 0,84% 1,00% 0% 5,56%
H 13,491 0,235 1,98% 2,11% 0% 10,53%
I 40,092 0,367 0,64% 1,18% 0% 3,20%
J 16624,740 59,062 0,01% 0,01% 0% 0,05%
K 14,949 1,953 0,04% 0,36% 0% 3,57%
L 71,314 1,649 0,36% 1,04% 0% 3,92%
M 76,112 0,739 1,19% 1,57% 0% 6,68%
N 185,208 0,969 0,46% 1,09% 0% 3,13%
O 34152,200 241,510 0% 0% 0% 0%
P 202,236 40,218 0,02% 0,08% 0% 0,38%
Q 900,150 9,321 0,19% 0,59% 0% 2,31%
R 961,270 6,144 0,35% 0,69% 0% 3,25%
S 2420,670 32,676 0,01% 0,06% 0% 0,57%
T * * * * * *
U 1560,647 267,478 0,10% 0,74% 0% 6,18%
V 6698,394 53,293 0,06% 0,37% 0% 2,22%
W 7216,887 32,286 0,14% 0,44% 0% 2,84%
X * * * * * *
Y * * * * * *

The pictures 4 and 5 present the heuristics behavior pkMTComp and w − capacity
related to the gap and to the T .

3.1 Simulation analysis
The execution of the specimens of each category provided results that allow to analyze in
detail the behavior of the three proposed heuristics.

The pkX heuristic proved to be, among the three proposed heuristics, the one with
the longest execution time, in some cases presenting average times greater than one day
of execution for each copy (Table 3 shows this). Regarding the quality of the solutions
obtained, 100% of the solutions in the categories obtained were less than 5% of the
optimum value, showing reliable solutions in relation to the optimum. Another highlight
is the reduced standard deviation of the solutions, showing that the discrepancy between
the values is low. Regarding the amplitude of the gap intervals obtained, in 91.3% of
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Table 4: Heuristic pkGREEDY Statistics.

Sets pkGREEDY
T σ(T ) gap σ(gap) gapmin gapmax

A 0,0009 0,0035 14,33% 4,34% 1,11% 26,53%
B 0,0156 0,0049 10,64% 4,31% 0% 20,33%
C 0,0241 0,0079 10,77% 6,50% 1,14% 30,59%
D 0,1011 0,0080 14,85% 9,15% 0,51% 30,93%
E 8,4886 0,0154 15,03% 7,47% 0,63% 31,15%
F 0,0036 0,0064 9,74% 5,98% 1,17% 20%
G 0,0314 0,0081 11,13% 6,05% 0% 31,53%
H 0,0506 0,0082 10,64% 6,94% 1,14% 34,33%
I 0,2023 0,0058 12,92% 8,98% 0,51% 30,51%
J 16,9356 0,0174 15,41% 6,71% 1,38% 31,18%
K 0,0058 0,0073 8,30% 8,71% 0% 27,27%
L 0,0631 0,0099 10,10% 5,26% 0% 37,86%
M 0,1021 0,0126 8,63% 6,53% 0% 24,36%
N 0,4021 0,0081 12,97% 8,55% 0% 30,84%
O 33,9172 0,0235 14,51% 8,89% 1,69% 31,22%
P 0,0150 0,0044 8,06% 8,30% 0% 25,96%
Q 0,1563 0,0162 10,75% 6,61% 0% 34,69%
R 0,2528 0,0215 9,50% 6,25% 0% 30%
S 1,0054 0,0086 14,89% 7,26% 0,40% 31,69%
T 84,6561 0,0599 14,52% 9,83% 1,74% 31,22%
U 0,0297 0,0053 9,11% 7,45% 0% 31,37%
V 0,3148 0,0269 9,58% 5,60% 0% 30%
W 0,4994 0,0298 7,77% 6,54% 0% 25%
X 2,0107 0,0079 16,14% 8,24% 0,41% 32,18%
Y 169,2361 0,0922 13,73% 9,93% 1,74% 31,22%

the tests performed, this interval was less than 10%, denoting small intervals. Although
the execution time indicates high values (see Figure 3), the pkX heuristic demonstrates
quality in the solutions obtained (see Figure 2).

The pkGREEDY heuristic fills the knapsack with the most efficient items, this feature
allows less execution time compared to pkX heuristics. On the other hand, due to this
characteristic, the solutions present gap higher than the heuristics in comparison, pkX
and pkMTComp. From the results obtained through the experiments performed, only
32% has an average gap less than 10%, and none of the categories presented an average
gap less than 5%.

Another situation unfavorable to this heuristic is the amplitudes of the gap intervals
with intervals greater than 20% in all simulated categories, another factor to be noted
is that in 52% of the simulated categories, in none of the 100 examples of each category
the optimum was found as a solution, presenting the worst performance in relation to the
solutions obtained in comparison with the heuristics pkX and pkMTComp.
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Table 5: Heuristic pkMTComp Statistics.

Sets pkMTComp
T σ(T ) gap σ(gap) gapmin gapmax

A 0,0018 0,0048 1,21% 1,78% 0% 7,14%
B 0,0108 0,0285 1,64% 2,55% 0% 11,42%
C 0,0112 0,0065 2,03% 1,73% 0% 5,82%
D 0,0575 0,0102 1,12% 1,54% 0% 6,12%
E 1,8970 0,2344 1,10% 1,42% 0% 3,84%
F 0,0045 0,0069 1,14% 1,48% 0% 10,20%
G 0,0115 0,0068 1,58% 1,85% 0% 5,56%
H 0,0063 0,0082 1,58% 1,54% 0% 6,15%
I 0,0909 0,0112 0,99% 1,25% 0% 3,61%
J 3,4362 0,2815 0,35% 0,63% 0% 3,54%
K 0,0070 0,0075 0,66% 1,77% 0% 6,32%
L 0,0214 0,0070 0,60% 1,24% 0% 5,26%
M 0,0350 0,0070 1,28% 1,45% 0% 6,68%
N 0,1624 0,0145 0,99% 1,21% 0% 3,55%
O 6,7815 0,3451 0,18% 0,09% 0,05% 0,48%
P 0,0111 0,0290 0,22% 0,73% 0% 4,21%
Q 0,0487 0,0080 0,41% 0,89% 0% 5,26%
R 0,0792 0,0120 0,66% 1,06% 0% 5,48%
S 0,4030 0,0198 0,96% 1,62% 0% 7,39%
T 17,3080 1,6290 0,11% 0,06% 0,05% 0,26%
U 0,0270 0,0380 0,64% 1,50% 0% 6,90%
V 0,1028 0,0114 0,33% 0,83% 0% 5,26%
W 0,1582 0,0224 0,63% 0,98% 0% 3,28%
X 0,7968 0,0251 0,96% 1,25% 0% 6,09%
Y 35,0490 2,5510 0,09% 0,05% 0% 0,21%

Finally, the pkMTComp heuristic among the three proposed heuristics showed results
that indicate the best performance for the considered specimens. The fact that this
heuristic does not depend on proprietary software with embedded solutions to solve the
heuristic subproblems is a differential when compared to the pkX heuristic. The use of
the Martello and Toth cite MARTELLO1990b method enabled solutions with low gap
values, 100% of the average values obtained from the categories were less than 5%, with
96% of the average values obtained were less than 2% of the optimal solution and the
standard deviation shows that 96% of the values are below 2% (Table 5 shows this).

Regarding the gap intervals obtained, 92% were below 10%, indicating small variations
in the results obtained. Another factor to be noted is for categories with n = 10000, which
have better performance indicators for the solutions obtained.

Regarding the execution time, the results obtained in these specimens indicate a final
execution time lower than the heuristic pkX and in some categories values lower than the
heuristic pkGREEDY .
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Figure 3: Heuristics performance - T .

As shown by Tables 3, 4 and 5 the pkMTComp heuristic has a superior performance
compared to the pkX and pkGREEDY heuristics, with the results obtained indicating
that it is a promising heuristic among the three developed.

When looking at the execution time of the three heuristics (see Figure 3), the indicators
show that the pkMTComp heuristic presents a lower execution time than the pkX and
pkGREEDY heuristics.

Table 6 presents the results obtained through the experiments carried out with the
heuristic pkMTComp and w − capacities which indicate a superior performance of the
heuristic pkMTComp in relation to the obtained solution, producing solutions with a
lower gap compared to the w− capacity heuristic. Another detail where the pkMTComp
heuristic is superior to the w− capacities heuristic is in solving examples with thousands
of items, something not accomplished by the w − capacities heuristic. The use of the
Martello and Toth [22] method allows the execution of copies with thousands of items,
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Table 6: Heuristica w − capacities Statistics.

Sets w − capacidade
T σ(T ) gap σ(gap) gapmin gapmax

A 0 0 5,32% 7,67% 0% 28,11%
B 0,0003 0,0020 16,82% 8,58% 0% 30,00%
C 0,0321 0,0158 18,76% 4,28% 0,39% 22,73%
D * * * * * *
E * * * * * *
F 0 0 4,55% 7,50% 0% 26%
G 0,0010 0,0040 11,40% 9,75% 0% 28,76%
H 0,0202 0,0177 19,02% 3,22% 3,16% 23,00%
I * * * * * *
J * * * * * *
K 0,0004 0,0020 1,81% 2,26% 0% 8,24%
L 0,0010 0,0040 12,72% 9,88% 0% 30,00%
M 0,0420 0,0370 17,65% 5,32% 1% 22,73%
N * * * * * *
O * * * * * *
P 0,0009 0,0030 2,68% 5,01% 0% 33,68%
Q 0,0050 0,0070 12,09% 9,64% 0% 31,32%
R 0,1067 0,0660 16,86% 6,42% 0% 23%
S * * * * * *
T * * * * * *
U 0,0030 0,0060 3,92% 6,24% 0% 37,27%
V 0,0120 0,0090 11,32% 9,70% 0% 31%
W 0,2170 0,1020 16,40% 6,70% 0% 23%
X * * * * * *
Y * * * * * *

whereas the w − capacities heuristic when using the Gilmore and Gomory [24] method
is not able to solve them. Regarding the execution time, both heuristics share similar
execution times (see Figure 5).

The solutions obtained through the execution of the w− capacities heuristic presents
the best solutions for the copies with n = 10 when compared to the solutions obtained in
copies with n = 50 and n = 100, when the solutions are compared , in copies with n = 10
the gap is close to 5% in the case of 5 classes and below the 5% of gap for the categories
20/10, 50/10 and 100/10. Observing the results obtained by Marques [6] it is possible to
verify that when the number of items increases, solutions of greater gap are obtained (see
Figure 4).
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4 Conclusion
This work addresses the problem of the compartmentalized knapsack, and presents three
new heuristics for its resolution. In the development of two heuristics, the programming
language C and threads were used, providing a better use of the computational resource
and reducing the time of execution of the simulations.

A modification was made in the MTU1 algorithm, to include the knives that are
present in the linear model proposed by Inarejos [4], leaving the modeling of the algorithm
true to reality, a modification was also made in the Algorithm for elaborating viable
compartments, including the utility associated with each compartment in its creation.

As contributions, the pkMTComp heuristic can be highlighted, where preliminary
experiments indicate that the method is promising. The indicative in relation to the
execution time shows that when compared with the heuristics pkX and pkGREEDY the
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method using the algorithm of Martello and Toth [1], presents results with the smaller
gap, resulting in solutions closer to the optimum without the use of proprietary solutions
to solve the subproblems generated by the heuristic.

When compared to the w− capacities heuristic, the tests performed indicate that the
pkMTComp heuristic produces results closer to the optimum, that is. lower gap. The
pkMTComp heuristic is capable of solving categories with a higher number of items in each
class, which does not happen with the w−capacities heuristic, another detail is in relation
to the gap obtained with the heuristic pkMTComp being less than the w − capabilities
heuristic. Thus, the execution of numerical simulations and analysis of the results indicate
that the pkMTComp heuristic is superior for solving the compartmentalized knapsack
problem, when compared to the w − capacities heuristic.

As future perspectives is the implementation of the heuristic for the restricted case of
the Compartmented Knapsack Problem.
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