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Abstract. This paper is concerned with doubly nonlinear evolution inclusions gov-
erned by time-dependent subdifferentials with the unknown-dependent constraints of the
form:

O (s ! (1)) + Oupt (us u(t)) + gust,u(t)) 3 f(t) in VF, u(0) =g in 'V,

where V is a uniformly convex Banach space with its dual space V*; 9,¢(v;z) and
0.p'(v; 2) are subdifferentials from V into V* of convex functions z — 9*(v;2) and z —
¢'(v;z) on V, v being an unknown parameter; g(v;t, z) is a perturbation term depending
on the parameter v. The main objective of this paper is to establish an existence result
of the above problem which includes the so-called quasi-variational structure, specifying
the classes of functions ¢! (v; z) and ¢*(v; 2).
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1 Introduction

This paper is concerned with doubly nonlinear quasi-variational evolution inclusions gov-
erned by time-dependent subdifferentials.

Throughout this paper, let H be a real Hilbert space and V' be a uniformly convex
Banach space such that V' is dense in H and the injection from V into H is compact,
supposing also that the dual space V* of V is uniformly convex; the norms in V and V*
are denoted by |- |y and |- |y«, respectively, and the duality pairing between V' and V* is
denoted by (-, -); similarly the norm and the inner product in H are denoted by |- |y and
(-, ) m, respectively. In this case, identifying H with its dual, we have

V — H < V* (with dense and compact embeddings);

note that
(u,v) = (u,v)g, ifue HandveV.

We now recall the usual notation and definitions of subdifferentials of convex functions.
Let ¢ : V — R U {oco} be a proper (i.e., not identically equal to infinity), lower semi-
continuous (L.s.c.), and convex function. Then, the effective domain D(¢) is defined by

D(¢p) :={z€V; ¢(2) < c0}.

The subdifferential 0,¢ : V' — V* of ¢ is a possibly multi-valued operator from V into
V* and is defined by z* € 0.¢(z) if and only if

z€ D(¢) and (2" y—2z) <o(y) —¢(z) forall yeV.

Its graph is the set G(0.¢) := {[z,2*] € V x V*; z* € 0,¢(z)}, which is often identified
with 0,¢, namely, z* € 0,¢(z) is denoted by [z, 2*] € d,¢. For various properties and
related notions of a proper, l.s.c., convex function ¢ and its subdifferential 0,¢, we refer
to the monographs by V. Barbu [5, 6]. In particular, for those in Hilbert spaces, we refer
to the monographs by H. Brézis [7].

We consider the following doubly quasi-variational evolution inclusions governed by
time-dependent subdifferentials in the Banach space V*:

(1.1)

Ot (u; 0 (t)) 4+ 0w (u;u(t)) + g(us t,u(t)) 2 f(t) in V* for a.a. t € (0,7),
uw(0) =wuy inV,

where 0 < T < oo, v/ = @ in V, f is a given V*-valued function, and uy € V is a given

initial datum. “

For each parameter v and ¢ € [0,7T], ¥'(v;2) is a proper, ls.c., convex function in
z €V, ¢'(v; 2) is a non-negative, continuous convex function in z € V', and g(v;t, 2) is a
single-valued Lipschitz operator from V' into V* (see Section 2 for their precise definitions).
Note that (¢,v) is a parameter that determines the convex functions ' (v;-), ¢*(v;-), and
the perturbation g(v;t,-).
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The main objective of this paper is to establish an abstract result on the existence of
solutions to (1.1) under some additional assumptions. Also, we show that the solutions
to (1.1) is not unique, in general, by giving an example for non-uniqueness.

Similar types of doubly nonlinear evolution inclusions have been discussed from various
motivations by many mathematicians, for instance, G. Akagi [1], T. Arai [2], M. Aso-M.
Frémond-N. Kenmochi [3], P. Colli [8], P. Colli-A. Visintin [9], O. Grange-F. Mignot [10],
and T. Senba [16]. Most of them treated the case

oWt (' (t)) + dp(u(t)) > f(t) in H for a.a. t € (0,7) (1.2)

and it should be noticed that two subdifferentials of (1.2) are independent of v and there
is no perturbation term g. In such a case the energy inequality is easily obtained.

Subsequently, in the works of N. Kenmochi-K. Shirakawa-N. Yamazaki [12, 13|, a
more general approach was proposed to treat

O (U (1)) + 0.0 (s u(t)) + g(t,u(t)) > f(t) in V* for a.a. t € (0,7).

The main idea of this approach is based on the treatment for quasi-variational evolution
inequalities, and in this paper we shall establish the solvability of the final goal (1.1).

In the application of our abstract result this development enables us to deal with
doubly nonlinear evolution inclusions for the quasi-linear partial differential inequalities
of parabolic type with gradient constraints for the time-derivative. For instance, consider

o' (v;2) = %/Qa(:c,t,v(x,t))|Vz(x)|2d:v, z € Hy(Q),

V032 i= 3 [ 0o + Iun(), 2 € HY®

with
K(vit) :={z € Hy(Q) | |[Vz| <v(v(-,1)), a.e. on Q},

where € is a bounded domain in RY, a(z,t,v) is a positive, bounded, and continuous
function on © x [0,7] x R, v is a positive continuous function on R, and Iy is the
indicator function of K(v;t). In such a case,

0,0 (v; 2) = —div (a(-,t,v(-, 1)) Vz),

and
' (v;2) = To2 + Ol k() (2).

Therefore, for a solution u of (1.1) the first term of (1.1) requires

‘V (%)‘ <~v(u), ae. on@:=Qx(0,7).
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This paper is organized as follows. In Section 2, we state the abstract result of the
existence of solutions to (1.1) for each f € L*(0,7;V*) and ug € V. In Section 3, we give
a proof of the existence of solutions to (1.1), which is the main result of this paper. In the
final Section 4, we apply our general results to some model problems: quasi-variational
inequalities with time-dependent constraints for quasi-linear parabolic inequalities and for
Navier—Stokes type.

2 Solvability of (1.1)

Prior to formulate the main result of this paper, we recall a notion of convergence for
convex functions, developed by U. Mosco [14, 15] and H. Attouch [4].

Let ¢, ¢, (n € N) be proper, ls.c., and convex functions on V. Then, we say that
¢n, converges to ¢ on V in the sense of U. Mosco [14] as n — oo if the following two
conditions are satisfied:

(i) for any subsequence {¢,, tren C {@n fnen, if 2z — 2z weakly in V as k — oo, then

hgn inf ¢, (z1) > ¢(2);

(ii) for any z € D(¢), there is a sequence {2, }nen in V' such that

zp > zinVasn—oo and  lim ¢,(z,) = ¢(2).

n—o0

For some important properties of the Mosco convergence of convex functions, we refer
to the monographs by H. Attouch [4] and N. Kenmochi [11]. Especially the following ones
are often used. Let ¢, ¢, (n € N) be proper, l.s.c., and convex functions on V. Assume
¢, converges to ¢ on V in the sense of Mosco as n — oo. Then:

(Fact 1) 2! € 0.0n(2n), 2n — 2z weakly in V, z¥ — 2* weakly in V*, and (2}, z,,) — (2, 2)
(as n — 00), then z* € 0.¢(z).

(Fact 2) (Graph convergence) If z* € 0,¢(z), then there are sequences {z, }neny C V
and {2} }nen C V* such that

20 € Oun(2n), 2n — 2in 'V, and 2z, — 2% in V™.

These results will be often used in the proofs of our statements.

2.1 Statement of the existence result

We begin with the precise formulation of our problem. For this purpose, we use a time-
dependent proper, l.s.c., and convex function ¢(-) on V such that there are positive
constants C} and C satisfying

Vi(z) > Chlzf3 — Cyy, V2 €V, Ve [0,T], 0<T < oo, (2.1)



315

and ¢t — f(+) is continuous on V' in the sense of Mosco.

Our doubly nonlinear evolution inclusions are formulated in terms of two functionals
P'(v; 2), p'(v; 2), and a mapping g(v;t, z) together with a prescribed initial-value uy and
a forcing term f, as follows:

O (0) + Do (i) F 9(ust. ) 3 S0 MV 2t O.T)
2.2
uw(0) =up inV,
and their solutions are constructed in the class
T
Dy := {v c W2(0,T;V) ' / Y (7))dT < 00, v(0) = uo} : (2.3)
0

depending on the functional ¥§ and the initial-value u.
We suppose that Dy # () and the following assumptions are fulfilled:

(Assumption (1))

The functional ¢*(v; z) is defined for each (¢,v,z) € [0,T] x Dy X V so that ¢'(v; 2) is
proper, l.s.c., and convex in z € V for any ¢t € [0,7] and any v € Dy, and

V! (v;2) = PH(vg; 2), V2 € V, if v = vy on [0, 1],
for v; € Dy, i = 1,2. Furthermore, assume:

(Y1) If t, € [0,T], v, € Dy, sup,cn fOTwé(v;(t))dt < o0, t, — t, and v, — v in
C([0,T); H) (hence v € Dy and v € W2(0,T; V) by (2.1)) as n — oo, then

P (vg; ) = ¥ (v;+) on V in the sense of Mosco as n — co.

(¢¥2) D(¢'(v;+)) € D) for all v € Dy and ¢ € [0,T], and

V(v 2) > Ph(z), Vte[0,T], Vv € Dy, Yz € D' (v;-)).

(¢3) 0.4 (v;0) > 0 for all t € [0,7] and v € Dy, and there is a non-negative function
cy(+) € L'(0,T) such that

Vi (v;0) < ey(t), Vte[0,T], Yv € Dy.

(Assumption (¢))

Let ¢ : [0,T] x Dy x V' — R be a function such that ¢'(v; z) is non-negative, finite,
continuous, and convex in z € V for any t € [0, 7] and any v € Dy, and

¢ (v1;2) = p'(ve; 2), Yz €V, if v1 = vy on [0, 1],

for v; € Dy, i = 1,2. Besides, assume the following;:
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(¢1) The subdifferential 0,p"(v; z) of ¢’(v; 2) with respect to z € V' is linear and bounded
from D(0.¢"(v;+)) = V into V* for each ¢ € [0,T] and v € Dy, and there is a positive
constant C5 such that

0. (v: 2)

ve < Cslzly, VzeV, Vte|0,T], Vv e D,.

(¢2) If {vy}nen C Do, SUp,ey fOT P (vl (t))dt < oo, v € Dy, and v, — v in C([0,T]; H)
(as m — 00), then

@ (vp;+) — @' (v;+) on V in the sense of Mosco, Vt € [0,T].

(¢3) ¢°(v;0) = 0 for all v € Dy. Moreover, there is a positive constant Cy such that

W (v;2) > Cylz|}, Vz €V, Yo € Dy.

(¢4) There is a function a € WH(0,T) such that

|0 (v; 2) — ©*(v; 2)| < |a(t) — a(s)|p®(v;2), Vz €V, Vv & Dy, Vs, t€l0,T].

(Assumption (g))

Let g := g(v;t, 2) be a single-valued operator from Dy x [0,7] x V into V* such that
g(v;t, z) is strongly measurable in t € [0, T for each v € Dy and z € V, and

g(vi;t, z) = g(va;t, 2), Vz €V, if vy, 09 € Dy and v3 = vy on [0,t], Vt € [0,T].
Moreover, assume:

(g1) Let {v, }nen be a sequence in Dy such that sup,,cy fOT YE (vl (t))dt < oo and v, — v
in C([0, T]; H) (as n — o0), and {z,}.en be a sequence in V' such that z, — z
weakly in V. Then,

g(n;t, zp) = g(ust, z) in V* VYt e[0,T].

(92) g(v;-,0) € L*(0,T;V*) for any v € Dy, and g(v;t,-) is uniformly Lipschitz from V'
into V*, i.e., there is a constant L, > 0 such that

lg(v;t,21) — g(vst, z2)|ve < Lylz1 — 22|y, V2 €V (i =1,2), Yv € Dy, Vt € [0,T].

(¢3) There is a non-negative function gy € L*(0,7T') such that

lg(v;t,0)

ve < go(t), aa.te(0,T), Vv e Dy.

Next, we give the definition of solutions to evolution inclusion (2.2).

Definition 2.1. Given data f € L*(0,T;V*) and uy € V, a function v : [0,7] — V
is called a solution to CP(¢*', ¢!, g; f,ug) or CP(f,ug) or simply C'P, if and only if the
following conditions are fulfilled:
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(i) w € WE2(0,T; V).
(ii) There exists a function & € L*(0,T; V*) such that
E(t) € 00 (us ' (t)) in V*, aa. t e (0,T),
and
() + 0,0 (u;u(t)) + glus t,u(t)) = f(t) in V* aa.te (0,T).
(iii) u(0) = g in V.

Now, we are ready to state our main claim for evolution inclusion C'P(f, ug).

Theorem 2.1. Assume that ug € V and assumptions (V), (¢), and (g) are fulfilled.
Let f be any function in L*(0,T;V*). Then, CP(f, uy) admits at least one solution wu.
Moreover, there exists a constant Ny > 0, independent of f and ug, such that

T
/0 Vs ()t + sup @f(usu(t) < N (ol + 1/ By +1)  (24)
€0,

for any solution u to CP(f, ug).

The solvability for C'P(f,ug) will be performed in several steps. Our approach is first
to consider an auxiliary approximate problem of the form for each fixed ¢ € (0,1] and
v € Dol

eyl (1) + 0.6 (03, (6)) + 0up (05 e (1)) + 9051, u(£)) 3 F(£) i V7, £> 0, (2.5)

subject to initial condition wu.,(0) = ug in V, where Fj is a linear continuous maximal
monotone mapping from D(Fp) := V into V*; such a mapping Fy always exists as will
be remarked in subsection 2.4. In the first step we shall prove the existence of a unique
solution u,. , to (2.5) for every € € (0,1] and v € Dy. In the second step the convergence
of approximate solution u, , will be discussed. For each € € (0,1] and v € Dy, the solution
us, of (2.5) is denoted by S.(v), namely wu., := S.(v), and in the third step we shall find
a fixed point of S. in Dy, u., = S:(uc,), which is denoted simply by u.. It is a solution
to

eFo(u(t)) + 0.0 (uss (b)) + 0. (e ue (b)) + gluei t, ue(t)) 3 (), ue(0) = uo, (2.6)

which is denoted by CP.(f,up). In the final step we shall show that the solution w.
converges in C'([0,7];V) as € — 0 and the limit u is a solution of C'P(f,uy).

2.2 Some lemmas
In this subsection we give some lemmas derived directly from assumptions (1) and (¢).

Lemma 2.1. Suppose that assumption (¢) is satisfied. Then, the following inequality
holds: for allt € [0,T], z€ V, and v € Dy,

Cy

W!Zﬁ/ < @' (v;2) < (0" (03 2), 2) < Oz (2.7)
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Proof. Let v € Dy and fix it. Since ¢°(v;0) = 0 by (¢3), it follows from (¢1) that
'(v52) = ¢ (v:2) = " (v:0) (0" (v52), 2) < 10" (03 2)lv-|zlv < Csl2y,

hence
C4lz|%/ < goo(v;z) < C’3|zﬁ/, VzeV. (2.8)

Note from (¢4) with s = 0 that

6 (0; 2) — (0: 2)] < Jalt) — a(0)] (v 2) < / o (ldr - (v; 2),
Vi e [0,7], V2 eV,

whence
' (v;2) < (|| +1) @°(v;2), VE€[0,T], Vz€ V. (2.9)

From (2.9) we see that ¢'(v;0) = 0 for all ¢ € [0,7] and by (¢1),
©'(v;2) < (0.9 (v;2), 2) < Cs2]}, VzeV. (2.10)

Similarly,
' (v;2) < (|| + 1) @' (v 2), VE€[0,T], Vz€ V. (2.11)

Hence, we infer from (2.11) with (2.8) that

1 C
fo2) > ——————— (v 2 >—4z2, vVt €10,T], Vz e V. 2.12
gp( ) = |CY/|L1(0,T) n 190 ( ) = |O/|L1(O,T) + 1| |V [ ] ( )
Thus, we conclude from (2.10) with (2.12) that (2.7) holds. O

Lemma 2.2. Suppose that assumption (¢) is satisfied. Let {t;}nen C [0,T] and {v, }nen C
Dy such that

T
tn = t, v, —vin C([0,T];H) (as n — o0), sup/ Wi (V) (7))dT < 0.
0

neN

Then:
(i) @' (vn; ) = @'(v;+) on V in the sense of Mosco as n — oc.
(ii) For any sequence {zp}nen in V such that z, — z in 'V, we have

0o (U 2) — 00" (v52) in V* asn — oo, (2.13)

Proof. Let {t,}nen and {v,}nen be the sequences in the statement of this lemma. We
shall prove the following two properties of @' (v,; -) (the definition of Mosco convergence):

(M1) ¢'(v; 2) < liminf o' (v,; 2,) for any sequence {Z, }nen With z, — 2z weakly in V.
n—oo
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(M2) For each z € V there is a sequence {Z,},en in V such that Z, — z in V and
O (v Z) — @' (v; 2) as n — 0.

Let {Z, }nen be the same as in (M1). First we note from (¢2) that

o' (v; 2) < liminf ' (vy,; 2,). (2.14)

n—oo

Since ¢'(vy; Z,) is bounded by Lemma 2.1, we infer from (¢4) that
|0" (Vn; Z0) — ' (03 20)| < Ja(ty) — at)|" (vn; Z,) — 0 as n — oo.
Therefore, we observe from (2.14) that

lim inf " (v,; Z,,) > lim inf {gpt(vn; Z,) — |a(tn) — a()|¢! (v Zn)} > ' (v; 2).

n—oo n—oo

Hence, (M1) was shown.

Next, to prove (M2), let z be any element in V. Since ¢'(v,;-) converges to ¢'(v;-) in
the sense of Mosco by (¢2), there is a sequence {Z, }nen in V such that z, — z in V and
O (vn; Z,) = p'(v;2) as n — oo. For this sequence {Z, },en, we observe from (¢4) and
Lemma 2.1 that

|90tn (Un; gn) - @t(UQ Z)|

|0 (Un; Zn) = @' (0n; Zn)| + |9 (Un; 20) — @' (v; 2)]
|a(tn) — ()]0 (n; Zn) + |0 (Un; 2n) — 9" (v; 2)]
— 0.

IAIA

Hence, (M2) is obtained. Thus, @™ (v,;:) — ¢'(v;-) on V in the sense of Mosco as n — co.
Finally, we show (2.13). To this end, let {z, },en be the sequence as in (ii). In addition,
note that the assertion (i) is equivalent to the fact that 9,0™ (v,;-) converges to d,¢"(v;-)
in the graph sense (cf. (Fact 2) or [4, 11]). Accordingly, there is a sequence {Z, }neny in V/
such that
Zo = 2in V) 0,0 (vn; 2,) = Oup'(v;2) in V* as n — oo,

From the above convergences and (¢1), we conclude that

|0,0"" (Vn; 2n) — Buip! (v; 2) |y

< 10 (0 7) — Do (03 Z) v+ 10u (1 3) — B (03 2) -
< Gylzn — Zolv + |8*§0tn (Un; Zn) — a*(Pt(v; 2)|v+
— 0.
Thus (2.13) holds. O

Lemma 2.3. Suppose that assumption (¢) is satisfied. Letv € Dy andw € W11(0,T;V).
Then,

%wt(v;w(t)) — (0" (v w(t),w'(t)) < o/ (B)|¢"(v;w(t), a.a t€(0,T).  (2.15)
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Proof. By (¢4), ¢'(v;w(t)) is absolutely continuous on [0, 7]. Hence,

Pl (viw(t)) — ¢ (v;w(s)) = (0w’ (v;w (1)), w(t) — w(s))
' (v;w(s)) — ¢*(v;w(s))
la(t) — a(s)|¢®(v;w(s)), Vs, te€]0,T], s <t.

VARVAN

Dividing the above ineqalities by ¢ — s and letting s 1 ¢, we get (2.15). O

Now, for each v € Dy and t € [0,T] we define a functional W*(v;-) on L2(0,¢; V) by

t
U (v;w) := / eJo 1Oy (4w (s))ds, Vw € L*(0,t; V). (2.16)
0
Clearly, W*(v; -) is proper, Ls.c., and convex on L?(0,T; V) for every v € Dy and t € [0, 7).

Lemma 2.4. Suppose that assumption (1) and (¢) are satisfied, and let {v,}nen C Do
such that

sup/ Yo(vl(t))dt < oo, v, — v in C([0,T]; H) as n — .
neN
Then ) )
U (v,;-) — W(v;-) on L*(0,t;V) in sense of Mosco as n — oo (2.17)

for every t € [0,T].
Proof. Setting
U (; 2) == elo O3 (v,: 2), Yz €V, Vs € [0,T],

we easily observe from (1) that 1*(v,; -) = 1*(v; ) on V in sense of Mosco as n — oo for
all s € [0,77]. Tt is also easy to see from the definition of Moreau-Yosida approximation
that for their Moreau-Yosida approximations 5 (v,; -) and W (v,;-), A > 0, we have

S w /zﬁ)\ vy w(s))ds, Yw € L*(0,t; V). (2.18)

By the Lebesgue dominated convergence theorem and the general theory on the Mosco
convergence (cf. [4, Theorem 3.26]), for all w € L*(0,¢;V), all A > 0, and all ¢ € [0, 7],
the right hand side of (2.18) converges to fg U3 (v;w(s))ds, so that W, (v,; w) — W (v;w)
as n — oo. This implies that (2.17) holds. O

2.3 Convergence result

Given ug € V, v € Dy, and f € L*(0,T;V*), we denote by CP,(f,uo) the problem to find
a function u € W12(0,T; V) with & € L?(0,T;V*) satisfying that

E(t 81/1(1} W' (t)) in V¥ aa. t e (0,7T),
E(t o' (v;u(t)) + g(vst,u(t)) = f(t) in V*, aa. t € (0,7T), (2.19)
u(0) =y in V.

) €
)+



321

Then, in this subsection, we establish the convergence result of solutions to C'P,(f,ug)
with respect to the data v and f.

Note that the existence solutions to C'P,(f,ug) can be proved applying the abstract
theory established in [12, Theorems 1 and 2]. Therefore, we omit the detailed proof of
the following Proposition 2.1.

Proposition 2.1 (cf. [12, Theorem 1]). Suppose that ug € V' and assumptions (¢ ), (¢),
and (g) are satisfied. Then, for each v € Dy and f € L*(0,T;V*), there exists at least
one solution u to CP,(f,uo).

We discuss the uniqueness of solutions to C'P,(f,up) in the next Section 3, more
precisely, Corollary 3.1.
We here derive the energy inequality to C'P,(f, uo).

Lemma 2.5 (Energy inequality). For any fired v € Dy, any solution u to CP, := C'P,(f, uo)
satisfies the bound: there exists a constant N1 > 0, independent of v € Dy and f €
L2(0,T;V*), such that

T
/O Y (v; 0/ (8))dt + S, ' (viu(t)) < Ni(luoly + |f 220+ + 1), (2.20)
€0,

where Ny is the same constant as in (2.4) of Theorem 2.1.
Proof. We multiply the equation

§(t) + 0w’ (viult)) + g(vit, u(t)) = f(t) in V*
by u/(t), where £(t) € 0,9 (v;u/(t)), a.a. t € (0,T). Then

(1), u' (1)) + (Oup" (v ult)), w'(8)) + (g(vs £, u(t)), ' (1))

(2.21)
= (f(t),d'(t)), aa.te(0,T).
It follows from (¢3) and (2.15) of Lemma 2.3 that:
(), ' (8)) = ¥ (viu/(8)) — ¥ (v;0) = ¥ (vsw/ (1) — ey(t), (2.22)
(0.¢" (v u(t)), ' (1)) > %sﬁt(v;U(t)) — o/ (#)]" (v; u(t)). (2.23)
Also, from (¢2), (2.7) of Lemma 2.1, (¢2), and Schwarz’s inequality, we observe that
[{g (st u(t), w' ()] < lg(vst, u(t)) v+ (E)]v
< O] + latst.ud)- -
2.2
< U 0)+ 4 o ot 0l + Lol

CQ 2|g(U, t, 0) %/* QLE(‘O/|L1(O,T) —+ 1) ’
4 + el + C.C, ¢ (vsu(t))

IN

1 ti . q/
P @) +
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and

OO < TR + I OF- < oesd@) + Z+ S OR-. (225)

4
Thus, by (2.22)~(2.25), (13), and (g3), it follows from (2.21) that

900 (1)) + ! (o5 u(t)
< My (ol (0] + 105 () + My(1£()
a.a. t e (0,7),

(2.26)

Vet ep(t) +g5(t) + 1),

where M; > 0 and M, > 0 are constants independent of v € Dy and f € L?(0,T;V*).
Applying Gronwall’s inequality to (2.26), we get (2.20). O

We prove a convergence result of solutions to C'P,(f,ug) with respect to the data v
and f.

Proposition 2.2. Letug € V, {0, bnen and { fn}nen be any sequences in Dy and L*(0,T;V*),
respectively, such that

Sup/ Yh(vl(t))dt < oo, v, — v in C([0,T]; H),

neN

fo— [ in LQ(O,T, V) (as n— o0),

(2.27)

and let {u, tnen be a sequence of solutions to CP,, (fn,uo). Then, any weak cluster point
w of {tn }tnen in L2(0,T; H) is a solution to the limit problem CP,(f,uq).

Proof. We first note by (2.27) that
/1/10 dt<sup/ Yh (vl (t))dt < oo,
neN

so that v € Dy and v,, — v weakly in W12(0,T;V).

From (2.1), (¢2), (2.7) of Lemma 2.1, (2.20) of Lemma 2.5, and the Ascoli-Arzela
theorem, it follows that there exist a subsequence of {u,}nen, referred to as {u,}nen
again, and a function v € WH2(0,T; V) such that

u, — u in C([0,T); H) and weakly in W2(0,T;V) (2.28)

and
un(t) — u(t) weakly in V, Vt e [0,T] (2.29)

as n — oo. Clearly, u(0) = up in V.
We next show that w, — u in C([0,7T]; V). For simplicity we use the notation

. t
Wi z) im [ e B0 (s 2(0) + Co) s,
0
Vw € Dy, Vz € L*(0,t; V), Vt € [0,T].
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By Lemma 2.4,

U (v,; ) — Ul(v;+) on L2(0,¢; V) in the sense of Mosco, Vt € [0,T]
as n — 00. Therefore, it follows from (2.28) that

U (v;u') < liminf U (v,;0)) < oo,

n—oo

namely,
t
/ e o 10T (5 (24 (5)) + Cy) dis
0
(2.30)

n—oo

< Ny < o0, Vtel0,T],

gnmmf/ IS 1O (g (5, (5)) + C) dis
0

for some positive constant N, whence o/ € D(Ut(v;-)) for all t € [0,7], and u'(s) €
D(¢*(v;)) for a.a. s € (0,T). By the Mosco convergence of W(v,;-) for each t € [0, 7]
we can find a sequence {z, tnen C L?(0,¢; V) such that

zn — ' in L2(0, V) and U(vy; z,) — U(o; ). (2.31)
Setting
wy(s) ::/ 2o(T)dT +ug inV, Vs e |0,t], (2.32)
0
we observe that z,(s) € D(¢*(vy;-)) for a.a. s € (0,t), and

wh(8) = 2,(s) inV, aa.se(0,t),

n

hence, w!,(s) € D(*(vy,;-)) for a.a. s € (0,t). Also, we infer from (2.27), (2.31), and
(2.32) that

) — / T)dT + ug (= u(s)) in V, Vs € [0,¢], (2.33)

and
w (= 2,) —u' in L*0,t;V), Vte0,T)] (2.34)

n

As u,, is a solution to CP,, ( f,,u), there exists a function &, in L?(0, T; V*) such that
E(t) € 0 (vp;ul, (1)) in V*, aa. te (0,7)
and
Ea(t) + 0.0 (Vn; un (t) + g(vns t, un(t)) = fu(t) in V*, aa. t € (0,7).
Here, we multiply this equation by u/,(s) — w/,(s) to get:
(&n(8), up (8) — wi,(5)) + (0x 0" (Vni un(8)), Ui () — wi(s))
+ (9(vn; 8, un(5)), up, (5) — wy,(s)) (2.35)
= (fu(8),u,(s) —wi(s)), aa. s€(0,t).
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Also, we note that
(€n(5), un(5) = wy(5)) = & (U (5)) — Y% (vn; wi(s)),  aa. s € (0,1), (236)
and by (¢1) and Lemma 2.3 that
(02" (Un; un(s)), 1 (5) — wi(s))
= (0. (Un; un(s) = wn(s)), un(s) = w(s)) + (0up” (vn; wn(s)), up (s) — wi(s))

d (2.37)
2 " (Vns un(s) = wa(s)) — [0 ()] (vns un(s) — wnls))
+{0. 0" (VWi (8)),ul,(s) — W (s)), a.a.s e (0,t).
Therefore, from (2.35)~(2.37) we obtain that:
(0 () — )
<1 (3)]6" (03 () = wn(9) + Ln(s) + ¥ (ws i (s5)) = ¥ (s (5), Y

a.a. s € (0,1),
where L,(-) is a function defined by:

Ln(s) = (fu(s) = 0:0"(Un; wn(5)) = g(vn; 8, un(9)), uy (s) — wy(s)), aa. s €(0,1).

Multiplying (2.38) by e~ fo [0/(1)I4T and integrating in time, we use °(v,;0) = 0 (cf. (¢3))
to obtain:

o B 1) — )

t t
< / Ol (s / e 1O (2 (0,0, (5)) + Co)ds (2.39)
0 . 0
_ / e I3 10/ DIAT (5 (! (s)) + C)ds
0

for all t € [0, T]. Here we note from (12) with (2.1), (2.30), and (2.31) that
limsup{/ e~ Jole/(r T (% (03w, (5)) + Cy)ds
n—00 0 .
= [T )+ s
0
< limsup { / I3 O (4 (0,5l (5)) + Ca)ds
n—00 0 .
_ /0 e~ 5o |a’(7')\dr(w8(v; u’(s)) -+ CQ)dS} (2.40)
+ lim sup {/t e Jo 10/ (45 (42 4/ () + Cs)ds
n—00 0
= [ O o)+ Colas
0

= lim {\T/t(vn; w!) — Ut(v; u’)} — liminf {—@t(v; u') 4+ U (vy; u;)}

n—oo n—oo

<0.



Additionally, note from (2.27), (2.33), and Lemma 2.2(ii) that

0 0° (Vn; Wy (8)) = 0wp®(v5u(s)) in V™, Vs € [0, t]
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Therefore, we infer from (¢1), (2.33), and the Lebesgue dominated convergence theorem

that

040 (Un; wy) — Oy (v;w) in L2(0,t; V) for all t € [0,T] as n — oo.

Thus, it concludes from (2.28), (2.34), and (2.41) that

t
lim [ e 01O (8, 0% (0w, (), Ul (s) — wl (s))ds

n~>00 T "
t

= lim [ (e o 1DIG o (v, wn (), (s) — w'(s))ds

n n
n—0 0

= 0.

(2.41)

(2.42)

Similarly, we observe from assumption (g), (2.29), and the Lebesgue dominated conver-

gence theorem that
g(Un; un) = g(v;-,u) in L2(0,;V*), Vt€[0,T],

and therefore

t
lim [ e 01Ol (g (0,0 s un(s)), ul (s) — w(s))ds
n—=0 /o

t
= lim [ (e 01D 5w, (s)), 4 (s) — w (s))ds

r N

Additionally,

t

lim [ e Jo @O (£ (5) 0l (s) — w)(s))ds
n—0 0
t

= lim [ (e B O f (5) 0 (5) = wi(5))ds

Thus, it follows that

o
lim / e~ ol (sVds =0, Yt e[0,T)].

n—o0 0

We conclude from (2.39) with (2.40)~(2.45) that

lim sup e~ Jo M7 S (03w, (£) — wy(£)) < 0 uniformly in ¢ € [0,T].

n—oo

Hence,
lim sup " (vn; un (t) — wy,(t)) < 0 uniformly in ¢ € [0, 77,

n—oo

(2.43)

(2.44)

(2.45)

(2.46)
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which implies that
Up(t) — w,(t) = 0 in V uniformly in ¢ € [0,7] as n — co.
This implies from (2.29) and (2.33) that
up(t) = u(t) uniformly in V on [0,7] as n — oc;

thus, we conclude that

up, — u in C([0, T]; V). (2.47)

Finally we show that w is a solution to C'P,(f,up). We first note from (2.47) and
Lemma 2.2(ii) that

0w (Vs Un (1)) = Oup(vsu(t)) in V*, Vte[0,T).
Therefore, by (¢1) with the Lebesgue dominated convergence theorem,
0up" (vni ) — W (viw) in L2(0, T3 V), (2.48)
so that
000 () 3 &0 1= fu = 0V (Vi) — g (03 -, un)
— [ — 0,0V (v;u) — g(v; -, u) =: & in L*(0,t;V*), Vt € [0,T]

as n — 00. As to the limit function &, we have by the basic property the Mosco conver-
gence (cf. (Fact 1) with (¢1)) that £(¢) € 0.0t (v;u/(t)) for a.a. t € (0,T). Hence,

E(t) + 0.0 (v u(t) + glvst,u(t)) = f(t) in V¥, aa. te(0,7T).

Since u(0) = ug in V, thus, u is a solution to C'P,(f, ug). O

2.4 Approximate problems for C'P,(f, uy)

In this subsection we discuss the approximate problem for C'P,(f,u) under the same
assumptions as Theorem 2.1, and its convergence.

We begin with the formulation of auxiliary approximate problems for C'P,(f, uo).

Let us choose a function vy € Dy and consider the continuous convex function ¢°(vg; -)
on V and its subdifferential Fy := 9,¢%(vo;-). Then, on account of (2.7) of Lemma 2.1,
we observe that Fy : D(Fy) =V — V* satisfies

colz| < (Foz, 2) < chlzf3, Yz eV, (2.49)

with ¢g := and ¢, = Cs, so that Fj is linear, coercive, continuous, and single-

4
‘0‘,|L1(0,T)‘H
valued maximal monotone from V into V*.

Now, for each v € Dy and £ € (0,1], we consider the following doubly nonlinear
evolution inclusion, refered to as CP.,, := C'P. ,(f, uo):

Byt () + €o.0(8) F 0up! (05 1 (8)) + 951, 1 (£)) 3 £(£) in V¥, aca t € (0,T), (2.50a)
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£..(8) € Dt (vl (1)) in V*, aa. t € (0,T), (2.50b)

)y Ve

Uz (0) =uy in V. (2.50¢)
We now prove an existence result of solutions to C'P. ,,.

Lemma 2.6. Assume that ug € V' and assumptions (V) (¢), and (g) are fulfilled. Let f be
any function in L*(0,T; V*). Then, for every e > 0 and v € Dy, there is a unique function
ue, € WH(0,T; V) with &, € L*(0,T; V) such that (2.50):= {(2.50a), (2.50b), (2.50c)}
holds. Such a function u., s called a solution to C'P.,.

Proof. For the construction of the solution to C'P., we apply the general theory of ordi-
nary differential equations. To this end let us introduce the following mappings for each
fixed v € Dy and € > 0:

B(t)z* == (eFy + 0. (v;-)) 12*, V2" € V¥, vt €[0,T]
and
F(t)z:= f(t) — 0.9 (v;2) — g(v;t,2), VzeV, Vtel0,T).
We show that B(t) is Lipschitz continuous from V* into V for each t € [0,7]. In fact,

setting z; = B(t)z;, i = 1,2, we observe that zf = eFyz; + 2; . for some z;. € 0.4 (v; ;).

By (2.49) and the monotonicity of 9,1(v;-), we have
(21 — 25,21 — 29) = (eFpz1 + 210 — €F022 — 224, 21 — 22)

> e(Fo(z1 — 22), 21 — 22)

> ecolzr — 2.
Hence,

* * 1 * *
1B(t)z1 — B(t)z3]v = |21 — 2]y < g|z1 — 25 |v (2.51)
0

and B(t) : V* — V is Lipschitz for each ¢t € [0,7]. In particular, since Fy0 = 0 and
0, (v;0) 3 0, it follows that 0 = eF,0 + 0. This shows that B(t)0 = 0 and by (2.51)

1
B(t)z" |y < —|z"|v+
BO v < Il
thus, the function ¢t — B(t)z* is bounded in V for each z* € V*.
Next, we fix any z* € V* to show that ¢ € [0,7] — B(t)z* € V is continuous. Put
2t = B(t)z*, hence, eFyzt + 0,0t (v;2t) 3 2*. Let {su}nen C [0,7] with s, — ¢ (as
n — 00). Note that z*» € D(0,¢*"(v;-)) and

¥ =ekyz™ + z;" for some z;" € 0,° (v; 2°").

Also, we observe from (¢1) that 0,4 (v;-) converges to d,¢'(v;-) in the graph sense
as n — oo. Therefore, for [2%,2* — eFyz'] € G(9.¢"(v;-)), there exists a sequence
{lzn, 25 }nen €V x V* such that [z,, z5] € G(0.¢° (v;+)) in V x V*,

2y —2'inV oand 2f — 2* —eFypz' in V* asn — oc. (2.52)
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Since Fy is Lipschitz continuous from V' into V* (cf. (¢1)), we observe from (2.52)
2t elyz, — 2 — el +eFp2t = 2" in V* asn — oo,
Hence, we infer from the monotonicity of 9,1 (v;-) that

0 :T}Lngo(z* — zn — eFyzn, 2° — z)
= li_)rn (eFpz®™ + z;m — z) — €Fozn, 2°" — zp)
n—oo

>limsupe(Fyz® — Fyz,, 2°" — 2,
— 9
n—oo

>eco limsup [2°" — 2,|3,
n—oo

which implies that

s

2% = B(s,)2" — 2 =B(t)z" in V as s, — t.

Thus, the operator B(t)z* is continuous in V' with respect to ¢t € [0,7] for all z* € V*.
Similarly, since f € L*(0,T;V*), it follows from assumptions (¢) and (g) that the operator
F(t)z : [0, T] xV — V*is Lipschitz in z € V for a.a. t € (0,7T) and integrable in ¢t € [0, 7T
for each 2 € V and f € L*(0,T;V*).

From the above observation and assumption (g) we see that the composition mapping
B(t) o F(t)z is integrable on (0,7") in V for each z € V' and Lipschitz continuous in z € V/
for a.a. ¢t € (0,7). Therefore, by virtue of the general theory of ordinary differential
equations, the problem

u'(t) =B(t) o F(t)u(t) in V, t € (0,T), u(0)=1wuginV,
possesses a unique solution u € WH2(0,T; V). Denoting u by u., we see that u., satisfies
EFyuL (1) + E(t) + 0.6 (03 e (8)) + g(us L ue(8) = F(£) in V', aa t € (0,T),
where €., € L?(0,T;V*) and
Eeo(t) € 0 (v ul (1) in V*, aa. te (0,T).

Thus u. , is a unique solution of C'P.,,. U

We here give the energy inequality to C'F. ,.

Lemma 2.7. For any fizxedv € Dy and € > 0, the solution u. , to CP., satisfies the bound:
there exists a constant N1 > 0, independent of € > 0, v € Dy, and f € L*(0,T;V*), such
that

T
wmmawm+/w%mMmﬁ+wpwm%w»
0 tE[O,T] (253)
2 2
< Ni(Juoly + |f|L2(O,T:V*) +1),

where Cy is the same constant as in (¢3) as well as Ny in (2.20) of Lemma 2.5.
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Proof. For each £ > 0 we put
Yi(v; 2) i= e®(vo; 2) + V' (v; 2), Yz € V. (2.54)

As easily checked, the family {¢.} satisfies assumption (¢)) with ¢ replaced by ¥.. In
addition, from (2.54) and the general theory of maximal monotone operators of the sub-
differential type, we observe that C'P., can be regarded as C'P, with 9" replaced by ..
Therefore, applying the energy estimate obtained by Lemma 2.5, we have

/ Ui(vsul,(t))dt + s[tér;]w(v S () < Ni(luoli + | fl72000+) + 1)
te

Since ¢%(vg; 2) > Cylz[3 for all z € V by (¢3), estimate (2.53) is immediately obtained
from the above inequality. U

Fixing ¢ > 0 and f € L*(0,T;V*), we denote by S:(v) the solution to C'P., for each
v € Dy. It is clear that any fixed point of S.(-) is a solution u. to (2.6).

We now prove an existence result of solutions to an approximate equation (2.6) for
Cp(f? uO)'

Proposition 2.3. Suppose that ug € V' and assumptions (¢), (¢), and (g) are fulfilled.
Let e > 0 and f € L*(0,T;V*). Then there are functions u. € W2(0,T;V) and &. €
L2(0,T;V*) such that

eFyu(t) + & () + 0w’ (ues ue(t)) + g(uest, ue(t)) = f(t) in V", a.a. t € (0,T), (2.55a)

E(t) € 0.4 (us;ul(t)) in V*, a.a. t € (0,T), (2.55b)
ue(0) = ug in V. (2.55¢)

Moreover, we have the following uniform estimate

eCylu_|72 —I—/ Y (ug;ul(t))dt + sup Ug; Ug (T
4| |L OTV) ( )) te[OT}SO ( ( )) (256)
< Ni(luoli + ‘f’LQ o1+ t 1).

Proof. For the existence of solution to (2.55) (= {(2.55a), (2.55b), (2.55¢)}) it is enough
to find a fixed point of the mapping S. in Dy. To this end, with the bound (2.56), we put

Ny = N1(|u0]%/ + |f|%2(O,T;V*) +1)
and

T
X(Ny) := {v e WH(0,T;V) | v(0) = ug in V, / (W' (t))dt < Ny

note that X(Nl) C Dy. In addition, note from Lemmas 2.6 and 2.7 that S.(v) € X (N;)
for any v € X (N;). Clearly, X (V) is non-empty, compact, and convex in C([0,T]; H) as
well as bounded and closed in W2(0,T; V).
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We next show that S. is continuous in X (N;) with respect to the topology of C([0, T; H).
To this end, let {v, }nen be a sequence in X (N) such that v, — v in C([0,T]; H); note
from Lemma 2.7 and the definition of X (N) that v, — v weakly in W12(0,T;V) and
{S.(va) }nen € X(Ny). Now, put u., := S-(v,). Then, note from (2.54) that CP.,,
can be regarded as C'P,, with 1* replaced by !. Therefore, by Proposition 2.2 for CP,,
(=CP.,,) and by extracting a subsequence from {u.,}nen if necessary, referred to as
{ten}nen again, we observe that u., — @ in C([0,T];V) as n — oo for some function
@€ WH(0,T;V), and @ is a solution to CP.,, namely @ = S.(v). From the uniqueness
of solution to C'P.,, we conclude that S.(v,) — S.(v) in C([0,T]; V) without extracting
any subsequence of {S.(vy) }nen. This shows that S, is continuous in X (]\71) with respect
to the topology of C([0,T]; H).

Therefore, by the Schauder fixed point theorem, S, has at least one fixed point u. in
X(Ny), ue = S-(u.). This is a solution to (2.55). Besides, the uniform estimate (2.56) is

immediately obtained by Lemma 2.7. O

3 Proof of Theorem 2.1 and comments of uniqueness

In this section, we give the proof of Theorem 2.1 and remark on uniqueness of solu-
tions to C'P(f,ug). To this end, system (2.55) is denoted by CP.(¢¥!, ¢!, g; f,up) ==

CP( 27 Sot: 9g; fa UO)'
We first prove Theorem 2.1 by letting ¢ — 0 in CP.(¥*, ¢, g; f,uo).

Proof of Theorem 2.1. Let u. be a solution to C'P.(¢*, ¢, g; f, ug). Note from Proposition
2.3 that the uniform estimate (2.56) holds and u. satisfies that

eFpul(t) + & (t) + 0.0" (ue; uc(t)) + g(uc; t,uc(t)) = f(t) in V*, aa. t € (0,7T),
namely
E(t) + 0w (uss us(t)) + g(usit,ue(t)) = f(t) — eFoul(t) in V7, aa.t€(0,7), (3.1)
with
€. € LX0,T; V"), £(t) € 00t (ue; vl (1)) in V¥, aa. t € (0,T), ue(0) =ug in V.

From the uniform estimate (2.56) and the Ascoli-Arzela theorem, we can find a sequence
{en}een With g, L 0 (as n — 00) and a function v € WH2(0,T; V) such that

u., —u in C([0,T]; H) and weakly in W*(0,T;V),

U, (t) = u(t) weakly in V, Vt € [0,T]
as n — oo. Since e, Fyu. — 0 in L*(0,T;V*) (as n — c0), it follows from Proposition
2.2 that the limit u is a solution of C'P,(f,ug), namely wu is a solution to C'P(f,uo),

satisfying (2.4). By Lemma 2.5, any solution of C'P(f, ug) satisfies (2.4). Thus, the proof
of Theorem 2.1 is complete. U



In general, C'P(f,uo) has multiple solutions as the next simple example shows.
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Example 3.1. Let Q = (0,1), and set V = HY(Q) and H = L*()). As usual, set

Q :=Q x (0,7), and let p be a prescribed obstacle function in C(@)) such that

1 <p(x,t) <p", V(r,t) €Q,

where p* is a positive constant.
Now, for each t € [0,T7], define a closed convex subset K (t) of V by

K(t) :={zeV; |z2(2)] < p(z,1), |z(2)] < plz, 1), aa. x e},
Then, we consider the following variational inclusion:

u(t) € K(t) for a.a. t € (0,7),
/ﬁﬁmﬂmﬂaﬂ—wA@MxSQ\Mekﬁ%aateﬂT%
! u(z,0) =0, zel.

For each ¢ € [0, T}, as the time-dependent functional ¢*(v;-) we consider

0, ifzeK(1),

oo, otherwise,

#1) = Tl = {
and as the functional ¢'(v; z) we choose

1 1
ﬁ@%:i/MWW®+—/b@WM,WemeWeV;
2 Jo 2 Jo

in the present case, Dy is formally given by (2.3) with ¢§ = I (), namely

Do = {veW"0,T;V) | v'(t) € K(t) for a.a. t € [0,T], v(0) =0in V},

(3.2)

but actually this set is not used, since 1! and ¢' are independent of v € Dy. Now we

have:
(i) z* € 0" (z) if and only if

2*eV* ze K(t), and (z",w— z) <0 for all w € K(t),

(ii) (Ou'(2), w) :/

2z (2)wy(x)dx + / z(x)w(z)dr for all z,w eV,
0

Q
for all t € [0, 7.

Also, we observe that problem (3.4) is written as CP(¢", ¢, g;0,0) with g(v;t, z) =
—z. It is easy to check assumptions (¢), (¢), and (g). Therefore, by Theorem 2.1, problem

(3.4) has at least one solution u € W12(0,T; V).
Moreover, note that for each constant ¢ € (0, 1) the function u° defined by

u(x,t) == c(l —e™") forall (x,t) € Q
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is a solution to (3.4) on [0, 7. Indeed, we observe that
uf(w,t) = ce™t, ul(w,t) =0, uS(z,t)=0
for all (z,t) € Q. Therefore, by (3.3),
ug(t) € K(t), Vte (0,T).
Hence, we easily observe that for each ¢ € (0,1) the function u¢ satisfies (3.4). Thus,
{u}ee(0,1) provides with an infinite family of solutions to (3.4) on [0, 7.

As is seen from the above counterexample, the uniqueness of solutions to doubly
nonlinear evolution inclusions is not expected, in general. However, in a restricted class
for 1! and ' we have the uniqueness of solution.

Proposition 3.1. Suppose that i)' and g are independent of v € Dy, namely (v z) =
YH(z) and g(v;t,z) = g(t,2) for allv € Dy and z € V; in this case ¥ == ¢" on V. In
addition, assume that V' is uniformly monotone for any t € [0,T], namely, there exists a
positive constant C's > 0 such that

(& — &, 21 — 2) > Cs|z1 — 20|},
Vzi S D(a*wt), gz S &wt(zz) (Z = 1,2), Vt € [O,T]
Furthermore, suppose that ug € V' and assumptions (¢), (¢), and (g) are fulfilled. Also,

assume that 0,0 (v;-) is Lipschitz in v € Dy, more precisely, there exists a positive con-
stant Cg > 0 such that

100" (V15 2) = 0w (v2; 2) lv+ < Cila(t) — v2(t) v (1 + |2]v),
Vvi S DO (Z = 1,2), Vz € Do, Vt € [O,T]
Let f be any function in L*(0,T;V*). Then, CP(Y', ', g; f,uo) has at most one solution.

Proof. Let w;, i = 1,2, be two solutions of CP (¢, ', g; f,ug). Then, by Theorem 2.1,
we have u; € WH2(0,T; V) and u; € Dy for i = 1,2. Subtract the evolution inclusion for
i = 2 from the one for i = 1, and multiply the resultant by v} — u} to get

(€1(t) = &), uy () — ua(t)) + (e (ur; ua(t)) — Duip’ (us ua(t)), Wi (t) — uh(t))
+(g(t,ur(t)) — g(t,ua(t)), ui(t) —uh(t)) =0 for a.a. t € (0,7),
where &;(t) € 0.9 (uj(t)) for a.a. t € (0,T) (i = 1,2). From (3.5) we observe that
(€a(t) = &(t),uy (t) — upy(t)) = Cslu(t) — uy(t)fy for aca. t € (0,T), (3-8)
and by Lemma 2.3 and (3.6) that

(3.5)

(3.6)

(3.7)

(0wt (ur; ur (1)) — Ouip (ug; ua(t)), uy () — uh(t))
= (0w (ur;ur(t)) — Ouip! (ug; ua(t)), i (t) — up(t))
F(0up (ug; ua () — ua(t)), uy () — us(t))
> —|0up" (ur;ua (1) — Dup (uz; ur () v+ |1 () — uh(8) [y
; (3.9)
o Fug; ua (t) —ug(t)) — o (1) " (ug; ur (t) — ua(t))
> —Cslur(t) —uz(t) v (1 + [ui(O)v) [uy(t) — us(t)]v
;i Fug; ua (t) — ug(t)) — o (t) | (ug; ur () — ua(t))
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for a.a. t € (0,T"). Therefore, we observe from (3.7)~(3.9) and (¢2) with the help of the
Schwarz inequality that

Colu () — (1) + ! (e (1) — (1))

<[ () |o" (uz; ua(t) — ua(t)) + Colua(t) — ua(®)ly (1 + [ua (B)|v) Jui (t) — uj(t)lv
+|g(t, ua(t)) — g(t, ua(t)) v+ uy (t) — un(t)lv

<|a/(t)|" (uz; ur (t) — ua(t)) + g—ilul(t) —us(®) [} (1 + Jua(8)]v)* + %|u/1(t) —uy(t)[5;
+ ot (0) - gt ) + 2 0) - w0
<|o/ ()" (23 ua(t) — ua(t)) + g—z\ul(t) —ua ()3 (1+ [ua(8)|v)?
Lg 2 C5 / / 2
+ @\ul(t) —ua(t)ly + 5w (t) — us ()l

for a.a. t € (0,7). From the above inequality with (2.7) of Lemma 2.1 we infer that

o0t (1) — w00+ et s (1) — a(1)

< Ki(|o/ ()] + [ur ()2 + Dt (ug; uy (t) — ua(t)) for a.a. t € (0,7)

(3.10)

for some constant K; > 0 being independent of u; (i = 1,2). Hence, applying the Gronwall
inequality to (3.10), we conclude that u;(t) — uz(t) =0 in V for all ¢ € [0,7]. Thus the
proof of Proposition 3.1 has been completed. O

By arguments similar to that as in Proposition 3.1, we can obtain the following unique-
ness result of solutions to C'P,(f, uo).

Corollary 3.1. Suppose that uy € V' and assumptions (¢), (¢), and (g) are fulfilled.

In addition, assume that ' (v;-) is uniformly monotone for any t € [0,T] and v € Dy,
namely, there exists a positive constant Cs > 0 such that

(61— & 21 — 22) > Cslz1 — 22y,
Vz; € D(0.WH(v;+)), & € 0 (v; 2;), i = 1,2, Yv € Dgy, Vt € [0,T].

Let f be any function in L*(0,T;V*). Then, problem CP,(f,ug), namely

D (v; ' (1)) + 0wt (v u(t)) + g(vs t,u(t)) 3 f(t) in V*, a.a. t € (0,7),
u(0) = ug in 'V,

admits a unique solution u on [0, 7.
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Remark 3.1. Under the following assumptions:

(&1 = &2, 21 — 2) > Csl21 — 23y,
Vz; € D(0H(v;-)), & € Ot (v; 2), i = 1,2, Yv € Dy, Vt € [0,T],

and g(v;t,-) is uniformly Lipschitz from V into H in the sense that
lg(vst, 21) — g(v;t, 29) |y < qu|z1 — 2ly, V2 €V, i=1,2, Yv € Dy, Vt € [0,T]

for a positive constant L;. Then, Proposition 3.1 guarantees that for any fized v € Dy,
problem CP,(f,ug) admits a unique solution u on [0,T]. Because, by a modification of
the computation in the proof of Proposition 3.1, we have for any two solutions uy and us

%Iu’l(t) —uh ()% + %@t(v; ur(t) — uz(t))

< Ki(|o' ()] + D" (v;ur (t) — ua(t)), a.a. t € (0,7)

for a certain constant K| > 0 being independent of w; (i = 1,2). Therefore, it results by
the Gronwall inequality that uq(t) — ug(t) =0 in 'V for allt € [0,T].

4 Applications

A sort of quasi-variational structure is found in our class of doubly nonlinear evolution
inclusions, more concretely in the v-dependence of ¢*(v; ) and ¢*(v;-). In this section we
shall deal with some doubly nonlinear quasi-variational evolution inclusions as applications
of our abstract result.

4.1 Doubly nonlinear quasi-variational evolution inclusions

Let © be a bounded domain in RY (1 < N < o0o) with a smooth boundary ' := 99,
Q:=Qx(0,7),and X :=T1 x (0,7) for 0 < T < 00, and put

V= HNQ), H:=L*Q), V*:=H Q)

we employ |z|y = |Vz|g as the norm of V; (-,-) stands for the duality between V* and
V. In this subsection we treat a quasi-variational inequality with gradient constraint for
the time derivatives.

Let p be a prescribed obstacle function such that

p = p(z,t,7) € C(Q x R),

0<p. <plz,t,r)<p*, V(ztr)eQ xR, (4.1)
lp(z,t1,71) — p(x,ta,ma)| < Ly([t — ta| + |11 —1a]),

vt € [0,T], Vr; €R, i=1,2, Vo € Q,

where p,, p*, and L, are positive constants.
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(Application 1)
For each t € [0,T] and v € C([0,T]; H), we define a convex constraint set K (v;t) in
V by
K(v;it) :={z €V ; |Vz(2)| < p(z, t,v(z,t), a.a. z € Q}, Vte[0,T], (4.2)
and a convex subset Ky of V by
Koy:={z€V; |Vz(z)| < p*, aa. xe€Q}. (4.3)

Now consider the following quasi-variational inequality with time-dependent gradient con-

straint:
, du(-,t) ,
u'(t) = T € K(ust), a.a. t € (0,7), u(-,0)=wuyinV, (4.4a)

TO/U/(ZL',t)( "(z,t) — z(x))dx

+/ a(z, t,u(z,t))Vu(z,t) - V(' (z,t) — 2(x))dx

o)

(4.4D)
+ [ gz, t,u(z,t) (W (z,t) — 2(x))dz

/ Flo ) (2, 8) — 2(2))dz, V= € K(u:t), aa. te (0,T),

)

where 79 > 0 is a constant, g(-, -, ) is a Lipschitz continuous function on @ x R, i.e.,

lg(z1,t1,71) — g(x2,t2,m2)| < Ly(|z1 — 22| + [t1 — to| + |11 — 12]),

(4.5)
V(z,t;) €Q, Vr €R, i=1,2,

with a positive constant L,, f is a function in_L2(O, T; H), ug is an initial datum given in
V', and a(-,-,-) is a prescribed function in C'(Q) x R) such that
a, <a(z,t,r) <a*, V(x,t)ecQ, VrcR,
|a(z,t1,m1) — a(z,t2,72)] < La([ty — tof + |r1 — r2]), (4.6)
th S [O,T], Vri € R, 1= 1,2, Vx € ﬁ,

where a,, a*, and L, are positive constants.

A function u : [0,7] — V is called a solution to (4.4):= {(4.4a),(4.4b)}, if u €
W12(0,T; V) and all of the properties required in (4.4) are fulfilled. In order to reformulate
problem (4.4) as the form C'P(¢", ¢, g; f, up), the functionals f(-), ¥'(v;-), ¢'(v;-) are
set up as follows:

Vi(2) == Ik, (2), Vz€V, Vtel0,T], (4.7)

and we define

Dy = {ve WH(0,T;V) | v'(t) € Ky, a.a. t € (0,T), v(0) = ug in V}, (4.8)
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V(v 2) = %/ 2(2))?dz + Ik (2), Vz €V, Vte[0,T], Yo € Dy, (4.9)
Q
1
o'(v; 2) == 3 / a(z,t,v(z,1)|Vz(2)|*dz, V2 €V, Vte[0,T], Vv € Dy. (4.10)
Q

It is easy to see from the definition of subdifferential that

(i) Let v € Do and ¢ € [0,T]. Then z* € 9.4 (v; 2) if and only if z* € V*, z € K(v;t),
and
7'0/ 2(z)(z(x) —w(x))de + (—z",z —w) <0, Yw e K(v;t).
Q

(ii) Let v € Do and ¢ € [0,T]. Then 9,¢"(v;-) is singlevalued, linear, and bounded from
V into V* and

(0.0 (v; 2),w) = / a(z,t,v(x,t))Vz(z) - Vw(x)dz, Yw e V.

Q
In addition, for each v € Dy and t € [0,T], we define g(v;t,-) : V. — V* by

(g(v;t, 2),w) = /Qg(:p,t,z(x))w(m)da:, Vz,we V. (4.11)

From the above characterizations (i) and (ii) of subdifferentials of ¥(v;-) and ¢*(v;-)
it follows that problem (4.4) is reformulated as C'P (¢!, ¢', g; f, uo).

Lemma 4.1. Let Dy be the set defined by (4.8). Then, we have:
(i) There is a positive constant ko such that
|’U(Z‘,t> - U([L’, 0) - U<y7 8) + U(ya 0)’ < k0(|ZE - y| + |t - S|)7
Vv € Dy, Yo,y € Q, Vs,t €[0,T).

(ii) If {vn}tnen C Do and v, — v in C([0,T]; H) (asn — o0), then v, —v — 0 in C(Q).

Proof. For any v € Dy, we infer from assumption (4.3) that v'(x,t) is Lipschitz in z € Q
and is bounded in @, since v'(z,t) = 0 for « € I". Therefore, with M := [v'|~(q), we have

lo(z,t) —v(z,s)| < M|t —s|, VxeQ, Vt,sel0,T).

Also, |V(v(z,t) — v(z,0))| = |fg V' (z,7)dr| < Tp*, a.e. on 2, which implies that
v(x,t) :=v(z,t) — v(z,0) is Lipschitz in « € Q uniformly in ¢ € [0, T]. This shows that

o(2,t) = 0(y, s)| < kollz =yl + [t —sl), Vo,yeQ, Vt,s€[0,T],

for some positive constant ky. Thus, we have (i).
Next, assume that v, € Dy and v, — v in C([0,T]; H) as n — oo. Then, by (i) and
the Ascoli-Arzela theorem, there is a subsequence {0, }ken of {0, = v, — v,(+,0) }ren
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which uniformly converges to o := v — v(-,0) on Q. The limit is determined uniquely by
v, so that the whole sequence {v, },en converges to v uniformly on ). Note from (4.8)
that v, (z,0) = v(x,0) = up(x), a.a. x € Q, hence,

[vn — v|o@) = 100 — V|e@g) — 0 as n — oco.

Thus, (ii) holds. O

Lemma 4.2. Let ' and ' be the functionals defined by (4.9) and (4.10), respectively.
Then, assumptions (V) and (¢) are fulfilled.

Proof. Regarding assumption (¢), its (¢)2) and (¢3) are trivially satisfied. Therefore, we
have only to check (¢1). We now assume that ¢, € [0,7], t,, — ¢, v, € Dy, and v, = v
in C([0,7]; H) (as n — 00). Then, we show the first condition of Mosco convergence (cf.
(M1)). To this end, we assume that z, € K(v,;t,) C Ky with z, — z weakly in V (as
n — 00). Then, by the Mazur theorem, there is a convex combinations z*) of the form

Ny N
Z(k) = chk)znj(k)a ’I’L](k’) > k) Cgk) > 07 chk) = 17 k= 172a T
j=1

j=1

such that z®¥) — 2 in V and V2 (z) — Vz(z), a.e. on Q as k — co. In this case,

Nk Nk
k k
V2B (@)] < 192000 (@) <D 0@, by Vg 1) (@ by ) (4.12)
=1 i=1

Passing to the limit as k — oo and noting the last term of (4.12) converges to p(z, t,v(x,t))
uniformly on by Lemma 4.1(ii), we have that

|Vz(x)| < p(x,t,v(x,t)), aa. x €,

which implies that z € K (v;t). Therefore, since z, — z in H as n — oo, we have
tr ..y __T0 2 .0 T0 2, .. n )
V' (v;2) = —/ |z(z)|“de = hmmf—/ |2n(2)|7dx = lim inf " (vy; 25, ).
2 Q n—oo 2 Q n—o00

Hence, the first condition of Mosco convergence holds.
Next, we show the second condition of Mosco convergence (cf. (M2)). To this end, let
z be any element in K (v;t) and put

1
zn(x) == (1 - (st V(5 8)) — p(.7t,v(.7t))]Loo(Q)) z(x);
note from (4.1) that p, > 0 and z, is well defined. Then, we observe that z, — z in V
and z, € K(uvy;t,) for all large n as well as ¥ (v,; z,) — ¥'(v; z) (as n — 00). Therefore,
the second condition of Mosco convergence holds. Thus, ¥ (v,;-) — ¥'(v;-) on V in the
sense of Mosco and (1) holds.
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As to assumption (¢), it is easy to check (¢1)~(¢3). We check (¢4) as follows. Let z
be any element in V' and v € Dy. Then, using (4.6) and Lemma 4.1(i),

P09 =) < [ lalotole, 1)~ ale,s, o DIV de
< La(|t—s\+M]t—s|)%/Q|Vz(:c)|2dx

< Clt — s (v; 2),

for some positive constant Cy; hence (¢4) holds with a(t) := Cyt. O

Proposition 4.1. Assume that (4.1), (4.5), and (4.6) are fulfilled for functions p(z,t,r),
g(z,t,r), and a(x,t,r). Let 19 > 0, f € L*(0,T;H), and ug € V. Then, problem
(4.4)= {(4.4a), (4.4b)} admits at least one solution u in W2(0,T;V).

Proof. On account of Lemmas 4.1 and 4.2, {¢'(v;-)} and {¢’(v;-)} given by (4.2), (4.9),
and (4.10) fulfill assumptions (¢), (¢), and (g) is trivially verified. Hence all the assump-
tions of Theorem 2.1 are fulfilled. Therefore,

D, (us o (1)) + D.ip (s (1)) + glus ,u(®)) 3 F(1) in V', u(0) = ug in V)
admits a solution u in W'2(0,T; V). By the characterization (i) and (ii) of d,1*(u;-) and
0" (u; ), and the definition of g(u;t,-), u is a solution to (4.4). O

(Application 2)

Next we are going to consider a doubly nonlinear quasi-variational inequality with
non-local obstacle function.

We here define an operator £ : L*(0,T; H) — L*(0,T; H) by

t
Llot)i= [ [ ot oty n)dyds +80, W(o.t) € Q, o € L20.T3H),
0 Q

with a given function ¢ € C(Q x @ x R) and a positive constant &, satisfying that:
0 <z, tyrr) <l YztyTtr)eQxQxR,
|£<.§L’,t1, Y, T, Tl) - g(l’,tg, Y, T, T2)| < Lf (‘tl - t2’ + ’Tl - 7,2’) )

Vt; €[0,T), Vri €R, i =1,2, V(x,y,7) € Q x Q,

where (* and L, are positive constants. With the functional £(v;z,t) we define a con-
straint set K (v;t) by

K(vit) :={z €V | |Vz(x)| < L(v;x,t), a.a. x € Q}, Vt € [0,T]. (4.13)
Now, we consider the following quasi-variational inequality:

u'(t) € K(ust), a.a. t € (0,7), u(z,0) =ue(z), z € Q, (4.14a)
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m [ e t) = () da

+/ a(z,t,u(z,t))Vu(z,t) - V(u'(z,t) — z(x))dx

{O

(4.14D)
+/g z,tu(x, b)) (W (z, t) — 2(x))dx

fe}

< / fla,t) (W (x,t) — 2(z))dz, Vze K(ujt), aa.t e (0,7T),
Q

where 75 > 0, a(-,-,-), g(-,-,-), f, and uy are the same as in problem (4.4). Similarly
define functionals ¢*(v;-) and ¢'(v;-) by (4.9), (4.13), and (4.10). In addition, define the
(t,v)-dependent operator g(v;t, z) by (4.11). Then we observe that all the assumptions

of Theorem 2.1 are fulfilled, and hence the above problem (4.14):= {(4.14a), (4.14b)} has
at least one solution u in W2(0,T; V).

4.2 Doubly nonlinear evolution inclusions of Navier—Stokes type

We begin our study with the solenoidal function space formulated on a smooth bounded
domain Q in RN, N = 2 or 3, with usual notation Q := Q x (0,7), 0 < T < oo, I' := 99,
and X :=1x (0,7);

V= Hy(Q), H:=L*Q).

Now, we define:
D, i={z=(z",2%,.-- V) e (Y | diva = 0in O},
and put
H, := the closure of D, in HY, V, := the closure of D, in V7,
with usual norms

N 3 N 3
ol = {34%} ey, = {zwwz} |
k=1

k=1

In addition, we denote the dual space of V, by V.. For simplicity we denote the inner
product in H, by (-, ), and the duality pairing between V' and V, by (-, ),
Let p be a prescribed obstacle function in C(Q x RY) such that

0 < p. <plz,t,r) <p*, Yz tr)e@ xRY, (4.15)
where p, and p* are positive constants, and K is a closed convex subset of V, given by
={zeV,||Vz(z) <p", ae onQ},
and put

Dy :={ve W"(0,T;V,) | v'(t) € Ky, a.a. t € (0,T), v(0) =uyin V,}, (4.16)
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where ug is a given initial datum in V, (cf. (4.21a)).
Also, for each v € Dy and t € [0, T, define
K(vit):={z eV, | |Vz(z)| < p(z,t,v(z,t)), a.e. on Q}, Vt € [0,T]. (4.17)

Now, for each v € Dy and t € [0, T], we define functionals ¥§(-), ¥'(v; ), and ' (v;-)
on V, by
Vi(z) = Ik, (2), Vz€V,, Vte|0,T],

V(v 2) = %/ |z(2)2dx + I (2), Yz €V, Vte€[0,T], (4.18)
Q

1
o'(v;2) = 5/a(w,t,v(x,t))|Vz(x)|2dx, VzeV,, Vtel0,T], (4.19)
Q

and g(v;t,-) : V, = V> by

(g(v;t,w), z), ::/( (x,t) - V)w(z) - z(x)dx

i,7=1

Vw—(w(l ()’ w(N))’ z—(z(l)’z(2)’ 72(N))€Vo_

Now we propose the following quasi-variational inequality of Navier—Stokes type with
gradient constraint for time-derivative:

ou(z,t)

u'(t) == Py

€ K(u;t), aa. te(0,7), u(-,0)=mwupin V,, (4.21a)

7'0/ u(z,t) - (u'(z,t) — z(z))dx
Q

+/ a(z,t,u(z,t))Vu(z,t) - V(u'(z,t) — z(z))dx
: (4.21b)
+Hg(ust,u(t), u'(t) — 2)o

< / flx,t)- (' (x,t) — z(x))dz, Vz e K(u;t), aa.te(0,T),
Q

where 79 > 0 is a constant, f is a function in L*(0,T; H,), ug is an initial datum in V,
and a(-,-,-) is a function in C'(Q x RY) such that

a, < alx,t,r) <a*, Y(z,t)€Q, Vr € RY,
|a(a:,t1,r1) — a(l‘,tg,’l"gﬂ S La(ltl — t2| + |’l"1 — 7”2|), (422)
Vt; € [0,T), Vr; € RN, i =1,2, Vo €Q,

where a,, a*, and L, are positive constants.
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Proposition 4.2. Let p := p(z,t,r) and a := a(x,t,r) be functions for which (4.15)
and (4.22) hold, and let f € L*(0,T;H,) and ug € V,. Then, problem (4.21) :=
{(4.21a), (4.21b)} admits at least one solution w in W*(0,T;V ,).

In order to show the existence of a solution to (4.21) we apply Theorem 2.1. To this
end we check the assumptions (¢), (¢), and (g) with g = g.

Lemma 4.3. Let o', o', and g be given by (4.17)~(4.20). Then assumptions (¢), (¢),
and (g) are fulfilled.

Proof. With regard to assumptions (1) and (¢), we can verify them by using Lemmas 4.1
and 4.2 extensively to the vectorial case, too. We are going to check (g).

We now show (g1). To this end, let {v,}neny C Do such that v, — v in C([0,7]; H,)
(as n — 00). Then, from Lemma 4.1 it follows that

v, —v— 0in C(Q) and w, — v weakly in W"*(0,T;V,) asn — oco. (4.23)

Given {w,}h,eny C V, satisfying that w, — w weakly in V,, and z € V,,, we observe
that

< (Vs t,wy,) — g(vst,w), 2),

_ Z / 3“’7(“5 Oun (2) Z / w(;;i( ) 0 (1) da

l

1,j=1 1,j=1
()
— Z/ (v (x, t) )(x,t))Mz(j)(x)dx
821325
3,7=1
) () — @ ,
+Z/ (z,t) 9w (w)a ad (x))z(J)(x)dx,
X

2,7=1

so that

|<g(vn; t, wn) - g(’UQ t, w)? z>0‘

< kilvn, — U|C(Q)N|’wn|VU|Z|Va

3 / v (z, t)g(wg)@) — w(j)(:]c))z(j) (x)dx

+ sup Z o,

zZEV, |z|VU<12J 1

for some positive constant k; independent of {v,, },en C Do, v € Dy, {w, }nen C V,, and
z €V, Since Y := {v@(t)z0) | |z]y,, < 1} is compact in H, for every i, j =1,2,--- , N,
the last term of the above inequality converges to 0 uniformly on Y as n — oo. Therefore,

19(vy; t, w,) — g(vit,w)|y: = 0 asn — oo,

Thus, we have (g1).
We next show (¢2). In a similar calculation to the above, we get

l{g(v;t,w1) — g(v;t, ws), 2),| < k2|U|Lw(o,T;L4(Q)N)!w1 —wslv,|2lv,, VzeV,,
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where ks is a positive constant independent of v € Dy and w; € V, (i = 1,2). This
implies that

lg(v;t,wy) — g(v;t,ws)|v: < ka|lwy —walv,, with ky = k3 sup V|01,
v € Do

where k3 is some positive constant, dependent on ks and the constant of the embedding
V — L*(2). Thus, (¢2) holds, too.

(¢3) is trivially satisfied. Therefore, assumption (g) is fulfilled. Thus, the proof of
Lemma 4.3 is complete. Il

Proof of Proposition 4.2. From (4.18) and (4.19) of the definitions of ¥* and ' we see
the following characterizations of their subdifferentials:

(i) Let v € Dy and ¢ € [0,T]. Then z* € 0.¢'(v; z) if and only if 2* € VI, z € K(v;1)
and

TO/Qz(x) (z(x) —w(z))dr + (—z", z —w), <0, Yw e K(v;t).

(ii) Let v € Dy and ¢ € [0,T]. Then 0,¢"(v;-) is singlevalued, linear, and bounded from
V, into V' and

(0,0 (v; 2), W)y = /Qa(x,t,v(x,t))Vz(x) -Vw(z)dz, Vz,weV,.

These characterizations show that the quasi-variational inequality (4.21) is described as

Ot (u; /(1)) + 0hp (u; u(t)) + g(u; t,u(t)) > f(t) in VI, aa. te(0,T),
u(0) =uy in V,.

Therefore, on account of Theorem 2.1, we obtain Proposition 4.2. Il
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