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Abstract. This paper is concerned with doubly nonlinear evolution inclusions gov-
erned by time-dependent subdifferentials with the unknown-dependent constraints of the
form:

∂∗ψ
t(u;u′(t)) + ∂∗φ

t(u;u(t)) + g(u; t, u(t)) ∋ f(t) in V ∗, u(0) = u0 in V,

where V is a uniformly convex Banach space with its dual space V ∗; ∂∗ψ
t(v; z) and

∂∗φ
t(v; z) are subdifferentials from V into V ∗ of convex functions z → ψt(v; z) and z →

φt(v; z) on V , v being an unknown parameter; g(v; t, z) is a perturbation term depending
on the parameter v. The main objective of this paper is to establish an existence result
of the above problem which includes the so-called quasi-variational structure, specifying
the classes of functions ψt(v; z) and φt(v; z).
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1 Introduction

This paper is concerned with doubly nonlinear quasi-variational evolution inclusions gov-
erned by time-dependent subdifferentials.

Throughout this paper, let H be a real Hilbert space and V be a uniformly convex
Banach space such that V is dense in H and the injection from V into H is compact,
supposing also that the dual space V ∗ of V is uniformly convex; the norms in V and V ∗

are denoted by | · |V and | · |V ∗ , respectively, and the duality pairing between V and V ∗ is
denoted by ⟨·, ·⟩; similarly the norm and the inner product in H are denoted by | · |H and
(·, ·)H , respectively. In this case, identifying H with its dual, we have

V ↪→ H ↪→ V ∗ (with dense and compact embeddings);

note that

⟨u, v⟩ = (u, v)H , if u ∈ H and v ∈ V.

We now recall the usual notation and definitions of subdifferentials of convex functions.
Let ϕ : V → R ∪ {∞} be a proper (i.e., not identically equal to infinity), lower semi-
continuous (l.s.c.), and convex function. Then, the effective domain D(ϕ) is defined by

D(ϕ) := {z ∈ V ; ϕ(z) <∞}.

The subdifferential ∂∗ϕ : V → V ∗ of ϕ is a possibly multi-valued operator from V into
V ∗, and is defined by z∗ ∈ ∂∗ϕ(z) if and only if

z ∈ D(ϕ) and ⟨z∗, y − z⟩ ≤ ϕ(y)− ϕ(z) for all y ∈ V.

Its graph is the set G(∂∗ϕ) := {[z, z∗] ∈ V × V ∗ ; z∗ ∈ ∂∗ϕ(z)}, which is often identified
with ∂∗ϕ, namely, z∗ ∈ ∂∗ϕ(z) is denoted by [z, z∗] ∈ ∂∗ϕ. For various properties and
related notions of a proper, l.s.c., convex function ϕ and its subdifferential ∂∗ϕ, we refer
to the monographs by V. Barbu [5, 6]. In particular, for those in Hilbert spaces, we refer
to the monographs by H. Brézis [7].

We consider the following doubly quasi-variational evolution inclusions governed by
time-dependent subdifferentials in the Banach space V ∗:{

∂∗ψ
t(u;u′(t)) + ∂∗φ

t(u;u(t)) + g(u; t, u(t)) ∋ f(t) in V ∗ for a.a. t ∈ (0, T ),

u(0) = u0 in V,
(1.1)

where 0 < T < ∞, u′ = du
dt

in V , f is a given V ∗-valued function, and u0 ∈ V is a given
initial datum.

For each parameter v and t ∈ [0, T ], ψt(v; z) is a proper, l.s.c., convex function in
z ∈ V , φt(v; z) is a non-negative, continuous convex function in z ∈ V , and g(v; t, z) is a
single-valued Lipschitz operator from V into V ∗ (see Section 2 for their precise definitions).
Note that (t, v) is a parameter that determines the convex functions ψt(v; ·), φt(v; ·), and
the perturbation g(v; t, ·).
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The main objective of this paper is to establish an abstract result on the existence of
solutions to (1.1) under some additional assumptions. Also, we show that the solutions
to (1.1) is not unique, in general, by giving an example for non-uniqueness.

Similar types of doubly nonlinear evolution inclusions have been discussed from various
motivations by many mathematicians, for instance, G. Akagi [1], T. Arai [2], M. Aso–M.
Frémond–N. Kenmochi [3], P. Colli [8], P. Colli–A. Visintin [9], O. Grange–F. Mignot [10],
and T. Senba [16]. Most of them treated the case

∂ψt(u′(t)) + ∂φ(u(t)) ∋ f(t) in H for a.a. t ∈ (0, T ) (1.2)

and it should be noticed that two subdifferentials of (1.2) are independent of v and there
is no perturbation term g. In such a case the energy inequality is easily obtained.

Subsequently, in the works of N. Kenmochi–K. Shirakawa–N. Yamazaki [12, 13], a
more general approach was proposed to treat

∂∗ψ
t(u′(t)) + ∂∗φ

t(u;u(t)) + g(t, u(t)) ∋ f(t) in V ∗ for a.a. t ∈ (0, T ).

The main idea of this approach is based on the treatment for quasi-variational evolution
inequalities, and in this paper we shall establish the solvability of the final goal (1.1).

In the application of our abstract result this development enables us to deal with
doubly nonlinear evolution inclusions for the quasi-linear partial differential inequalities
of parabolic type with gradient constraints for the time-derivative. For instance, consider

φt(v; z) :=
1

2

∫
Ω

a(x, t, v(x, t))|∇z(x)|2dx, z ∈ H1
0 (Ω),

ψt(v; z) :=
τ0
2

∫
Ω

|z(x)|2dx+ IK(v;t)(z), z ∈ H1
0 (Ω)

with

K(v; t) := {z ∈ H1
0 (Ω) | |∇z| ≤ γ(v(·, t)), a.e. on Ω},

where Ω is a bounded domain in RN , a(x, t, v) is a positive, bounded, and continuous
function on Ω × [0, T ] × R, γ is a positive continuous function on R, and IK(v;t) is the
indicator function of K(v; t). In such a case,

∂∗φ
t(v; z) = −div (a(·, t, v(·, t))∇z),

and

∂∗ψ
t(v; z) = τ0z + ∂∗IK(v;t)(z).

Therefore, for a solution u of (1.1) the first term of (1.1) requires∣∣∣∣∇(
∂u

∂t

)∣∣∣∣ ≤ γ(u), a.e. on Q := Ω× (0, T ).
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This paper is organized as follows. In Section 2, we state the abstract result of the
existence of solutions to (1.1) for each f ∈ L2(0, T ;V ∗) and u0 ∈ V . In Section 3, we give
a proof of the existence of solutions to (1.1), which is the main result of this paper. In the
final Section 4, we apply our general results to some model problems: quasi-variational
inequalities with time-dependent constraints for quasi-linear parabolic inequalities and for
Navier–Stokes type.

2 Solvability of (1.1)

Prior to formulate the main result of this paper, we recall a notion of convergence for
convex functions, developed by U. Mosco [14, 15] and H. Attouch [4].

Let ϕ, ϕn (n ∈ N) be proper, l.s.c., and convex functions on V . Then, we say that
ϕn converges to ϕ on V in the sense of U. Mosco [14] as n → ∞ if the following two
conditions are satisfied:

(i) for any subsequence {ϕnk
}k∈N ⊂ {ϕn}n∈N, if zk → z weakly in V as k → ∞, then

lim inf
k→∞

ϕnk
(zk) ≥ ϕ(z);

(ii) for any z ∈ D(ϕ), there is a sequence {zn}n∈N in V such that

zn → z in V as n→ ∞ and lim
n→∞

ϕn(zn) = ϕ(z).

For some important properties of the Mosco convergence of convex functions, we refer
to the monographs by H. Attouch [4] and N. Kenmochi [11]. Especially the following ones
are often used. Let ϕ, ϕn (n ∈ N) be proper, l.s.c., and convex functions on V . Assume
ϕn converges to ϕ on V in the sense of Mosco as n→ ∞. Then:

(Fact 1) z∗n ∈ ∂∗ϕn(zn), zn → z weakly in V , z∗n → z∗ weakly in V ∗, and ⟨z∗n, zn⟩ → ⟨z∗, z⟩
(as n→ ∞), then z∗ ∈ ∂∗ϕ(z).

(Fact 2) (Graph convergence) If z∗ ∈ ∂∗ϕ(z), then there are sequences {zn}n∈N ⊂ V
and {z∗n}n∈N ⊂ V ∗ such that

z∗n ∈ ∂∗ϕn(zn), zn → z in V, and z∗n → z∗ in V ∗.

These results will be often used in the proofs of our statements.

2.1 Statement of the existence result

We begin with the precise formulation of our problem. For this purpose, we use a time-
dependent proper, l.s.c., and convex function ψt0(·) on V such that there are positive
constants C1 and C2 satisfying

ψt0(z) ≥ C1|z|2V − C2, ∀z ∈ V, ∀t ∈ [0, T ], 0 < T <∞, (2.1)
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and t→ ψt0(·) is continuous on V in the sense of Mosco.

Our doubly nonlinear evolution inclusions are formulated in terms of two functionals
ψt(v; z), φt(v; z), and a mapping g(v; t, z) together with a prescribed initial-value u0 and
a forcing term f , as follows:{

∂∗ψ
t(u;u′(t)) + ∂∗φ

t(u;u(t)) + g(u; t, u(t)) ∋ f(t) in V ∗, a.a. t ∈ (0, T ),

u(0) = u0 in V,
(2.2)

and their solutions are constructed in the class

D0 :=

{
v ∈ W 1,2(0, T ;V )

∣∣∣∣ ∫ T

0

ψt0(v
′(τ))dτ <∞, v(0) = u0

}
, (2.3)

depending on the functional ψt0 and the initial-value u0.
We suppose that D0 ̸= ∅ and the following assumptions are fulfilled:

(Assumption (ψ))

The functional ψt(v; z) is defined for each (t, v, z) ∈ [0, T ]×D0 × V so that ψt(v; z) is
proper, l.s.c., and convex in z ∈ V for any t ∈ [0, T ] and any v ∈ D0, and

ψt(v1; z) = ψt(v2; z), ∀z ∈ V, if v1 = v2 on [0, t],

for vi ∈ D0, i = 1, 2. Furthermore, assume:

(ψ1) If tn ∈ [0, T ], vn ∈ D0, supn∈N
∫ T
0
ψt0(v

′
n(t))dt < ∞, tn → t, and vn → v in

C([0, T ];H) (hence v ∈ D0 and v ∈ W 1,2(0, T ;V ) by (2.1)) as n→ ∞, then

ψtn(vn; ·) → ψt(v; ·) on V in the sense of Mosco as n→ ∞.

(ψ2) D(ψt(v; ·)) ⊂ D(ψt0) for all v ∈ D0 and t ∈ [0, T ], and

ψt(v; z) ≥ ψt0(z), ∀t ∈ [0, T ], ∀v ∈ D0, ∀z ∈ D(ψt(v; ·)).

(ψ3) ∂∗ψ
t(v; 0) ∋ 0 for all t ∈ [0, T ] and v ∈ D0, and there is a non-negative function

cψ(·) ∈ L1(0, T ) such that

ψt(v; 0) ≤ cψ(t), ∀t ∈ [0, T ], ∀v ∈ D0.

(Assumption (ϕ))

Let φt : [0, T ] ×D0 × V → R be a function such that φt(v; z) is non-negative, finite,
continuous, and convex in z ∈ V for any t ∈ [0, T ] and any v ∈ D0, and

φt(v1; z) = φt(v2; z), ∀z ∈ V, if v1 = v2 on [0, t],

for vi ∈ D0, i = 1, 2. Besides, assume the following:
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(ϕ1) The subdifferential ∂∗φ
t(v; z) of φt(v; z) with respect to z ∈ V is linear and bounded

from D(∂∗φ
t(v; ·)) = V into V ∗ for each t ∈ [0, T ] and v ∈ D0, and there is a positive

constant C3 such that

|∂∗φt(v; z)|V ∗ ≤ C3|z|V , ∀z ∈ V, ∀t ∈ [0, T ], ∀v ∈ D0.

(ϕ2) If {vn}n∈N ⊂ D0, supn∈N
∫ T
0
ψt0(v

′
n(t))dt < ∞, v ∈ D0, and vn → v in C([0, T ];H)

(as n→ ∞), then

φt(vn; ·) → φt(v; ·) on V in the sense of Mosco, ∀t ∈ [0, T ].

(ϕ3) φ0(v; 0) = 0 for all v ∈ D0. Moreover, there is a positive constant C4 such that

φ0(v; z) ≥ C4|z|2V , ∀z ∈ V, ∀v ∈ D0.

(ϕ4) There is a function α ∈ W 1,1(0, T ) such that

|φt(v; z)− φs(v; z)| ≤ |α(t)− α(s)|φs(v; z), ∀z ∈ V, ∀v ∈ D0, ∀s, t ∈ [0, T ].

(Assumption (g))

Let g := g(v; t, z) be a single-valued operator from D0 × [0, T ]× V into V ∗ such that
g(v; t, z) is strongly measurable in t ∈ [0, T ] for each v ∈ D0 and z ∈ V , and

g(v1; t, z) = g(v2; t, z), ∀z ∈ V, if v1, v2 ∈ D0 and v1 = v2 on [0, t], ∀t ∈ [0, T ].

Moreover, assume:

(g1) Let {vn}n∈N be a sequence in D0 such that supn∈N
∫ T
0
ψt0(v

′
n(t))dt <∞ and vn → v

in C([0, T ];H) (as n → ∞), and {zn}n∈N be a sequence in V such that zn → z
weakly in V . Then,

g(vn; t, zn) → g(v; t, z) in V ∗, ∀t ∈ [0, T ].

(g2) g(v; ·, 0) ∈ L2(0, T ;V ∗) for any v ∈ D0, and g(v; t, ·) is uniformly Lipschitz from V
into V ∗, i.e., there is a constant Lg > 0 such that

|g(v; t, z1)− g(v; t, z2)|V ∗ ≤ Lg|z1 − z2|V , ∀zi ∈ V (i = 1, 2), ∀v ∈ D0, ∀t ∈ [0, T ].

(g3) There is a non-negative function g0 ∈ L2(0, T ) such that

|g(v; t, 0)|V ∗ ≤ g0(t), a.a. t ∈ (0, T ), ∀v ∈ D0.

Next, we give the definition of solutions to evolution inclusion (2.2).

Definition 2.1. Given data f ∈ L2(0, T ;V ∗) and u0 ∈ V , a function u : [0, T ] → V
is called a solution to CP (ψt, φt, g; f, u0) or CP (f, u0) or simply CP , if and only if the
following conditions are fulfilled:
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(i) u ∈ W 1,2(0, T ;V ).

(ii) There exists a function ξ ∈ L2(0, T ;V ∗) such that

ξ(t) ∈ ∂∗ψ
t(u;u′(t)) in V ∗, a.a. t ∈ (0, T ),

and
ξ(t) + ∂∗φ

t(u;u(t)) + g(u; t, u(t)) = f(t) in V ∗, a.a. t ∈ (0, T ).

(iii) u(0) = u0 in V .

Now, we are ready to state our main claim for evolution inclusion CP (f, u0).

Theorem 2.1. Assume that u0 ∈ V and assumptions (ψ), (ϕ), and (g) are fulfilled.
Let f be any function in L2(0, T ;V ∗). Then, CP (f, u0) admits at least one solution u.
Moreover, there exists a constant N1 > 0, independent of f and u0, such that∫ T

0

ψt(u;u′(t))dt+ sup
t∈[0,T ]

φt(u;u(t)) ≤ N1

(
|u0|2V + |f |2L2(0,T ;V ∗) + 1

)
(2.4)

for any solution u to CP (f, u0).

The solvability for CP (f, u0) will be performed in several steps. Our approach is first
to consider an auxiliary approximate problem of the form for each fixed ε ∈ (0, 1] and
v ∈ D0:

εF0u
′
ε,v(t) + ∂∗ψ

t(v;u′ε,v(t)) + ∂∗φ
t(v;uε,v(t)) + g(v; t, uε,v(t)) ∋ f(t) in V ∗, t > 0, (2.5)

subject to initial condition uε,v(0) = u0 in V , where F0 is a linear continuous maximal
monotone mapping from D(F0) := V into V ∗; such a mapping F0 always exists as will
be remarked in subsection 2.4. In the first step we shall prove the existence of a unique
solution uε,v to (2.5) for every ε ∈ (0, 1] and v ∈ D0. In the second step the convergence
of approximate solution uε,v will be discussed. For each ε ∈ (0, 1] and v ∈ D0, the solution
uε,v of (2.5) is denoted by Sε(v), namely uε,v := Sε(v), and in the third step we shall find
a fixed point of Sε in D0, uε,v = Sε(uε,v), which is denoted simply by uε. It is a solution
to

εF0(u
′
ε(t)) + ∂∗ψ

t(uε;u
′
ε(t)) + ∂∗φ

t(uε;uε(t)) + g(uε; t, uε(t)) ∋ f(t), uε(0) = u0, (2.6)

which is denoted by CPε(f, u0). In the final step we shall show that the solution uε
converges in C([0, T ];V ) as ε→ 0 and the limit u is a solution of CP (f, u0).

2.2 Some lemmas

In this subsection we give some lemmas derived directly from assumptions (ψ) and (ϕ).

Lemma 2.1. Suppose that assumption (ϕ) is satisfied. Then, the following inequality
holds: for all t ∈ [0, T ], z ∈ V , and v ∈ D0,

C4

|α′|L1(0,T ) + 1
|z|2V ≤ φt(v; z) ≤ ⟨∂∗φt(v; z), z⟩ ≤ C3|z|2V . (2.7)
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Proof. Let v ∈ D0 and fix it. Since φ0(v; 0) = 0 by (ϕ3), it follows from (ϕ1) that

φ0(v; z) = φ0(v; z)− φ0(v; 0) ≤ ⟨∂∗φ0(v; z), z⟩ ≤ |∂∗φ0(v; z)|V ∗|z|V ≤ C3|z|2V ,

hence
C4|z|2V ≤ φ0(v; z) ≤ C3|z|2V , ∀z ∈ V. (2.8)

Note from (ϕ4) with s = 0 that

|φt(v; z)− φ0(v; z)| ≤ |α(t)− α(0)|φ0(v; z) ≤
∫ t

0

|α′(τ)|dτ · φ0(v; z),

∀t ∈ [0, T ], ∀z ∈ V,

whence
φt(v; z) ≤

(
|α′|L1(0,T ) + 1

)
φ0(v; z), ∀t ∈ [0, T ], ∀z ∈ V. (2.9)

From (2.9) we see that φt(v; 0) = 0 for all t ∈ [0, T ] and by (ϕ1),

φt(v; z) ≤ ⟨∂∗φt(v; z), z⟩ ≤ C3|z|2V , ∀z ∈ V. (2.10)

Similarly,
φ0(v; z) ≤

(
|α′|L1(0,T ) + 1

)
φt(v; z), ∀t ∈ [0, T ], ∀z ∈ V. (2.11)

Hence, we infer from (2.11) with (2.8) that

φt(v; z) ≥ 1

|α′|L1(0,T ) + 1
φ0(v; z) ≥ C4

|α′|L1(0,T ) + 1
|z|2V , ∀t ∈ [0, T ], ∀z ∈ V. (2.12)

Thus, we conclude from (2.10) with (2.12) that (2.7) holds. □

Lemma 2.2. Suppose that assumption (ϕ) is satisfied. Let {tn}n∈N ⊂ [0, T ] and {vn}n∈N ⊂
D0 such that

tn → t, vn → v in C([0, T ];H) (as n→ ∞), sup
n∈N

∫ T

0

ψτ0 (v
′
n(τ))dτ <∞.

Then:

(i) φtn(vn; ·) → φt(v; ·) on V in the sense of Mosco as n→ ∞.

(ii) For any sequence {zn}n∈N in V such that zn → z in V , we have

∂∗φ
tn(vn; zn) → ∂∗φ

t(v; z) in V ∗ as n→ ∞. (2.13)

Proof. Let {tn}n∈N and {vn}n∈N be the sequences in the statement of this lemma. We
shall prove the following two properties of φtn(vn; ·) (the definition of Mosco convergence):

(M1) φt(v; z) ≤ lim inf
n→∞

φtn(vn; z̄n) for any sequence {z̄n}n∈N with z̄n → z weakly in V .
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(M2) For each z ∈ V there is a sequence {z̃n}n∈N in V such that z̃n → z in V and
φtn(vn; z̃n) → φt(v; z) as n→ ∞.

Let {z̄n}n∈N be the same as in (M1). First we note from (ϕ2) that

φt(v; z) ≤ lim inf
n→∞

φt(vn; z̄n). (2.14)

Since φt(vn; z̄n) is bounded by Lemma 2.1, we infer from (ϕ4) that

|φtn(vn; z̄n)− φt(vn; z̄n)| ≤ |α(tn)− α(t)|φt(vn; z̄n) −→ 0 as n→ ∞.

Therefore, we observe from (2.14) that

lim inf
n→∞

φtn(vn; z̄n) ≥ lim inf
n→∞

{
φt(vn; z̄n)− |α(tn)− α(t)|φt(vn; z̄n)

}
≥ φt(v; z).

Hence, (M1) was shown.
Next, to prove (M2), let z be any element in V . Since φt(vn; ·) converges to φt(v; ·) in

the sense of Mosco by (ϕ2), there is a sequence {z̃n}n∈N in V such that z̃n → z in V and
φt(vn; z̃n) → φt(v; z) as n → ∞. For this sequence {z̃n}n∈N, we observe from (ϕ4) and
Lemma 2.1 that

|φtn(vn; z̃n)− φt(v; z)|
≤ |φtn(vn; z̃n)− φt(vn; z̃n)|+ |φt(vn; z̃n)− φt(v; z)|
≤ |α(tn)− α(t)|φt(vn; z̃n) + |φt(vn; z̃n)− φt(v; z)|

−→ 0.

Hence, (M2) is obtained. Thus, φtn(vn; ·) → φt(v; ·) on V in the sense of Mosco as n→ ∞.
Finally, we show (2.13). To this end, let {zn}n∈N be the sequence as in (ii). In addition,

note that the assertion (i) is equivalent to the fact that ∂∗φ
tn(vn; ·) converges to ∂∗φt(v; ·)

in the graph sense (cf. (Fact 2) or [4, 11]). Accordingly, there is a sequence {z̃n}n∈N in V
such that

z̃n → z in V, ∂∗φ
tn(vn; z̃n) → ∂∗φ

t(v; z) in V ∗ as n→ ∞.

From the above convergences and (ϕ1), we conclude that

|∂∗φtn(vn; zn)− ∂∗φ
t(v; z)|V ∗

≤ |∂∗φtn(vn; zn)− ∂∗φ
tn(vn; z̃n)|V ∗ + |∂∗φtn(vn; z̃n)− ∂∗φ

t(v; z)|V ∗

≤ C3|zn − z̃n|V + |∂∗φtn(vn; z̃n)− ∂∗φ
t(v; z)|V ∗

−→ 0.

Thus (2.13) holds. □

Lemma 2.3. Suppose that assumption (ϕ) is satisfied. Let v ∈ D0 and w ∈ W 1,1(0, T ;V ).
Then,

d

dt
φt(v;w(t))− ⟨∂∗φt(v;w(t)), w′(t)⟩ ≤ |α′(t)|φt(v;w(t)), a.a. t ∈ (0, T ). (2.15)



320

Proof. By (ϕ4), φt(v;w(t)) is absolutely continuous on [0, T ]. Hence,

φt(v;w(t))− φs(v;w(s))− ⟨∂∗φt(v;w(t)), w(t)− w(s)⟩
≤ φt(v;w(s))− φs(v;w(s))

≤ |α(t)− α(s)|φs(v;w(s)), ∀s, t ∈ [0, T ], s < t.

Dividing the above ineqalities by t− s and letting s ↑ t, we get (2.15). □

Now, for each v ∈ D0 and t ∈ [0, T ] we define a functional Ψ̃t(v; ·) on L2(0, t;V ) by

Ψ̃t(v;w) :=

∫ t

0

e
∫ s
0 |α′(τ)|dτψs(v;w(s))ds, ∀w ∈ L2(0, t;V ). (2.16)

Clearly, Ψ̃t(v; ·) is proper, l.s.c., and convex on L2(0, T ;V ) for every v ∈ D0 and t ∈ [0, T ].

Lemma 2.4. Suppose that assumption (ψ) and (ϕ) are satisfied, and let {vn}n∈N ⊂ D0

such that

sup
n∈N

∫ T

0

ψt0(v
′
n(t))dt <∞, vn → v in C([0, T ];H) as n→ ∞.

Then
Ψ̃t(vn; ·) → Ψ̃t(v; ·) on L2(0, t;V ) in sense of Mosco as n→ ∞ (2.17)

for every t ∈ [0, T ].

Proof. Setting

ψ̃s(vn; z) := e
∫ s
0 |α′(τ)|dτψs(vn; z), ∀z ∈ V, ∀s ∈ [0, T ],

we easily observe from (ψ1) that ψ̃s(vn; ·) → ψ̃s(v; ·) on V in sense of Mosco as n→ ∞ for
all s ∈ [0, T ]. It is also easy to see from the definition of Moreau-Yosida approximation
that for their Moreau-Yosida approximations ψ̃sλ(vn; ·) and Ψ̃t

λ(vn; ·), λ > 0, we have

Ψ̃t
λ(vn;w) =

∫ t

0

ψ̃sλ(vn;w(s))ds, ∀w ∈ L2(0, t;V ). (2.18)

By the Lebesgue dominated convergence theorem and the general theory on the Mosco
convergence (cf. [4, Theorem 3.26]), for all w ∈ L2(0, t;V ), all λ > 0, and all t ∈ [0, T ],
the right hand side of (2.18) converges to

∫ t
0
ψ̃sλ(v;w(s))ds, so that Ψ̃t

λ(vn;w) → Ψ̃t
λ(v;w)

as n→ ∞. This implies that (2.17) holds. □

2.3 Convergence result

Given u0 ∈ V , v ∈ D0, and f ∈ L2(0, T ;V ∗), we denote by CPv(f, u0) the problem to find
a function u ∈ W 1,2(0, T ;V ) with ξ ∈ L2(0, T ;V ∗) satisfying that

ξ(t) ∈ ∂∗ψ
t(v;u′(t)) in V ∗, a.a. t ∈ (0, T ),

ξ(t) + ∂∗φ
t(v;u(t)) + g(v; t, u(t)) = f(t) in V ∗, a.a. t ∈ (0, T ),

u(0) = u0 in V.

(2.19)
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Then, in this subsection, we establish the convergence result of solutions to CPv(f, u0)
with respect to the data v and f .

Note that the existence solutions to CPv(f, u0) can be proved applying the abstract
theory established in [12, Theorems 1 and 2]. Therefore, we omit the detailed proof of
the following Proposition 2.1.

Proposition 2.1 (cf. [12, Theorem 1]). Suppose that u0 ∈ V and assumptions (ψ), (ϕ),
and (g) are satisfied. Then, for each v ∈ D0 and f ∈ L2(0, T ;V ∗), there exists at least
one solution u to CPv(f, u0).

We discuss the uniqueness of solutions to CPv(f, u0) in the next Section 3, more
precisely, Corollary 3.1.

We here derive the energy inequality to CPv(f, u0).

Lemma 2.5 (Energy inequality). For any fixed v ∈ D0, any solution u to CPv := CPv(f, u0)
satisfies the bound: there exists a constant N1 > 0, independent of v ∈ D0 and f ∈
L2(0, T ;V ∗), such that∫ T

0

ψt(v;u′(t))dt+ sup
t∈[0,T ]

φt(v;u(t)) ≤ N1(|u0|2V + |f |2L2(0,T :V ∗) + 1), (2.20)

where N1 is the same constant as in (2.4) of Theorem 2.1.

Proof. We multiply the equation

ξ(t) + ∂∗φ
t(v;u(t)) + g(v; t, u(t)) = f(t) in V ∗

by u′(t), where ξ(t) ∈ ∂∗ψ
t(v;u′(t)), a.a. t ∈ (0, T ). Then

⟨ξ(t), u′(t)⟩+ ⟨∂∗φt(v;u(t)), u′(t)⟩+ ⟨g(v; t, u(t)), u′(t)⟩

= ⟨f(t), u′(t)⟩, a.a. t ∈ (0, T ).
(2.21)

It follows from (ψ3) and (2.15) of Lemma 2.3 that:

⟨ξ(t), u′(t)⟩ ≥ ψt(v;u′(t))− ψt(v; 0) ≥ ψt(v;u′(t))− cψ(t), (2.22)

⟨∂∗φt(v;u(t)), u′(t)⟩ ≥
d

dt
φt(v;u(t))− |α′(t)|φt(v;u(t)). (2.23)

Also, from (ψ2), (2.7) of Lemma 2.1, (g2), and Schwarz’s inequality, we observe that

|⟨g(v; t, u(t)), u′(t)⟩| ≤ |g(v; t, u(t))|V ∗|u′(t)|V

≤ C1

4
|u′(t)|2V +

1

C1

|g(v; t, u(t))|2V ∗

≤ 1

4
ψt(v;u′(t)) +

C2

4
+

1

C1

(|g(v; t, 0)|V ∗ + Lg|u(t)|V )2

≤ 1

4
ψt(v;u′(t)) +

C2

4
+

2|g(v; t, 0)|2V ∗

C1

+
2L2

g(|α′|L1(0,T ) + 1)

C1C4

φt(v;u(t))

(2.24)
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and

|⟨f(t), u′(t)⟩| ≤ C1

4
|u′(t)|2V +

1

C1

|f(t)|2V ∗ ≤
1

4
ψt(v;u′(t)) +

C2

4
+

1

C1

|f(t)|2V ∗ . (2.25)

Thus, by (2.22)∼(2.25), (ψ3), and (g3), it follows from (2.21) that

1

2
ψt(v;u′(t)) +

d

dt
φt(v;u(t))

≤ M1 (|α′(t)|+ 1)φt(v;u(t)) +M2(|f(t)|2V ∗ + cψ(t) + g20(t) + 1) ,

a.a. t ∈ (0, T ),

(2.26)

where M1 > 0 and M2 > 0 are constants independent of v ∈ D0 and f ∈ L2(0, T ;V ∗).
Applying Gronwall’s inequality to (2.26), we get (2.20). □

We prove a convergence result of solutions to CPv(f, u0) with respect to the data v
and f .

Proposition 2.2. Let u0 ∈ V , {vn}n∈N and {fn}n∈N be any sequences in D0 and L
2(0, T ;V ∗),

respectively, such that sup
n∈N

∫ T

0

ψt0(v
′
n(t))dt <∞, vn → v in C([0, T ];H),

fn → f in L2(0, T ;V ∗) (as n→ ∞),

(2.27)

and let {un}n∈N be a sequence of solutions to CPvn(fn, u0). Then, any weak cluster point
u of {un}n∈N in L2(0, T ;H) is a solution to the limit problem CPv(f, u0).

Proof. We first note by (2.27) that∫ T

0

ψt0(v
′(t))dt ≤ sup

n∈N

∫ T

0

ψt0(v
′
n(t))dt <∞,

so that v ∈ D0 and vn → v weakly in W 1,2(0, T ;V ).
From (2.1), (ψ2), (2.7) of Lemma 2.1, (2.20) of Lemma 2.5, and the Ascoli–Arzelà

theorem, it follows that there exist a subsequence of {un}n∈N, referred to as {un}n∈N
again, and a function u ∈ W 1,2(0, T ;V ) such that

un → u in C([0, T ];H) and weakly in W 1,2(0, T ;V ) (2.28)

and
un(t) → u(t) weakly in V, ∀t ∈ [0, T ] (2.29)

as n→ ∞. Clearly, u(0) = u0 in V .
We next show that un → u in C([0, T ];V ). For simplicity we use the notation

Ψ̃t(w; z) :=

∫ t

0

e−
∫ s
0 |α′(τ)|dτ (ψs(w; z(s)) + C2) ds,

∀w ∈ D0, ∀z ∈ L2(0, t;V ), ∀t ∈ [0, T ].
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By Lemma 2.4,

Ψ̃t(vn; ·) → Ψ̃t(v; ·) on L2(0, t;V ) in the sense of Mosco, ∀t ∈ [0, T ]

as n→ ∞. Therefore, it follows from (2.28) that

Ψ̃t(v;u′) ≤ lim inf
n→∞

Ψ̃t(vn;u
′
n) <∞,

namely, ∫ t

0

e−
∫ s
0 |α′(τ)|dτ (ψs(v;u′(s)) + C2) ds

≤ lim inf
n→∞

∫ t

0

e−
∫ s
0 |α′(τ)|dτ (ψs(vn;u

′
n(s)) + C2) ds

≤ N ′
1 <∞, ∀t ∈ [0, T ],

(2.30)

for some positive constant N ′
1, whence u

′ ∈ D(Ψ̃t(v; ·)) for all t ∈ [0, T ], and u′(s) ∈
D(ψs(v; ·)) for a.a. s ∈ (0, T ). By the Mosco convergence of Ψ̃t(vn; ·) for each t ∈ [0, T ]
we can find a sequence {zn}n∈N ⊂ L2(0, t;V ) such that

zn → u′ in L2(0, t;V ) and Ψ̃t(vn; zn) → Ψ̃t(v;u′). (2.31)

Setting

wn(s) :=

∫ s

0

zn(τ)dτ + u0 in V, ∀s ∈ [0, t], (2.32)

we observe that zn(s) ∈ D(ψs(vn; ·)) for a.a. s ∈ (0, t), and

w′
n(s) = zn(s) in V, a.a. s ∈ (0, t),

hence, w′
n(s) ∈ D(ψs(vn; ·)) for a.a. s ∈ (0, t). Also, we infer from (2.27), (2.31), and

(2.32) that

wn(s) →
∫ s

0

u′(τ)dτ + u0 (= u(s)) in V, ∀s ∈ [0, t], (2.33)

and
w′
n(= zn) → u′ in L2(0, t;V ), ∀t ∈ [0, T ]. (2.34)

As un is a solution to CPvn(fn, u0), there exists a function ξn in L2(0, T ;V ∗) such that

ξn(t) ∈ ∂∗ψ
t(vn;u

′
n(t)) in V ∗, a.a. t ∈ (0, T )

and
ξn(t) + ∂∗φ

t(vn;un(t)) + g(vn; t, un(t)) = fn(t) in V ∗, a.a. t ∈ (0, T ).

Here, we multiply this equation by u′n(s)− w′
n(s) to get:

⟨ξn(s), u′n(s)− w′
n(s)⟩+ ⟨∂∗φs(vn;un(s)), u′n(s)− w′

n(s)⟩

+ ⟨g(vn; s, un(s)), u′n(s)− w′
n(s)⟩

= ⟨fn(s), u′n(s)− w′
n(s)⟩, a.a. s ∈ (0, t).

(2.35)



324

Also, we note that

⟨ξn(s), u′n(s)− w′
n(s)⟩ ≥ ψs(vn;u

′
n(s))− ψs(vn;w

′
n(s)), a.a. s ∈ (0, t), (2.36)

and by (ϕ1) and Lemma 2.3 that

⟨∂∗φs(vn;un(s)), u′n(s)− w′
n(s)⟩

= ⟨∂∗φs(vn;un(s)− wn(s)), u
′
n(s)− w′

n(s)⟩+ ⟨∂∗φs(vn;wn(s)), u′n(s)− w′
n(s)⟩

≥ d

ds
φs(vn;un(s)− wn(s))− |α′(s)|φs(vn;un(s)− wn(s))

+⟨∂∗φs(vn;wn(s)), u′n(s)− w′
n(s)⟩, a.a. s ∈ (0, t).

(2.37)

Therefore, from (2.35)∼(2.37) we obtain that:

d

ds
φs(vn;un(s)− wn(s))

≤ |α′(s)|φs(vn;un(s)− wn(s)) + Ln(s) + ψs(vn;w
′
n(s))− ψs(vn;u

′
n(s)),

a.a. s ∈ (0, t),

(2.38)

where Ln(·) is a function defined by:

Ln(s) := ⟨fn(s)− ∂∗φ
s(vn;wn(s))− g(vn; s, un(s)), u

′
n(s)− w′

n(s)⟩, a.a. s ∈ (0, t).

Multiplying (2.38) by e−
∫ s
0 |α′(τ)|dτ and integrating in time, we use φ0(vn; 0) = 0 (cf. (ϕ3))

to obtain:

e−
∫ t
0 |α′(τ)|dτφt(vn;un(t)− wn(t))

≤
∫ t

0

e−
∫ s
0 |α′(τ)|dτLn(s)ds+

∫ t

0

e−
∫ s
0 |α′(τ)|dτ (ψs(vn;w

′
n(s)) + C2)ds

−
∫ t

0

e−
∫ s
0 |α′(τ)|dτ (ψs(vn;u

′
n(s)) + C2)ds

(2.39)

for all t ∈ [0, T ]. Here we note from (ψ2) with (2.1), (2.30), and (2.31) that

lim sup
n→∞

{∫ t

0

e−
∫ s
0 |α′(τ)|dτ (ψs(vn;w

′
n(s)) + C2)ds

−
∫ t

0

e−
∫ s
0 |α′(τ)|dτ (ψs(vn;u

′
n(s)) + C2)ds

}
≤ lim sup

n→∞

{∫ t

0

e−
∫ s
0 |α′(τ)|dτ (ψs(vn;w

′
n(s)) + C2)ds

−
∫ t

0

e−
∫ s
0 |α′(τ)|dτ (ψs(v;u′(s)) + C2)ds

}
+ lim sup

n→∞

{∫ t

0

e−
∫ s
0 |α′(τ)|dτ (ψs(v;u′(s)) + C2)ds

−
∫ t

0

e−
∫ s
0 |α′(τ)|dτ (ψs(vn;u

′
n(s)) + C2)ds

}
= lim

n→∞

{
Ψ̃t(vn;w

′
n)− Ψ̃t(v;u′)

}
− lim inf

n→∞

{
−Ψ̃t(v;u′) + Ψ̃t(vn;u

′
n)
}

≤ 0.

(2.40)
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Additionally, note from (2.27), (2.33), and Lemma 2.2(ii) that

∂∗φ
s(vn;wn(s)) → ∂∗φ

s(v;u(s)) in V ∗, ∀s ∈ [0, t]

Therefore, we infer from (ϕ1), (2.33), and the Lebesgue dominated convergence theorem
that

∂∗φ
(·)(vn;wn) → ∂∗φ

(·)(v;u) in L2(0, t;V ∗) for all t ∈ [0, T ] as n→ ∞. (2.41)

Thus, it concludes from (2.28), (2.34), and (2.41) that

lim
n→0

∫ t

0

e−
∫ s
0 |α′(τ)|dτ ⟨∂∗φs(vn;wn(s)), u′n(s)− w′

n(s)⟩ds

= lim
n→0

∫ t

0

⟨e−
∫ s
0 |α′(τ)|dτ∂∗φ

s(vn;wn(s)), u
′
n(s)− w′

n(s)⟩ds

= 0.

(2.42)

Similarly, we observe from assumption (g), (2.29), and the Lebesgue dominated conver-
gence theorem that

g(vn; ·, un) → g(v; ·, u) in L2(0, t;V ∗), ∀t ∈ [0, T ],

and therefore

lim
n→0

∫ t

0

e−
∫ s
0 |α′(τ)|dτ ⟨g(vn; s, un(s)), u′n(s)− w′

n(s)⟩ds

= lim
n→0

∫ t

0

⟨e−
∫ s
0 |α′(τ)|dτg(vn; s, un(s)), u

′
n(s)− w′

n(s)⟩ds

= 0.

(2.43)

Additionally,

lim
n→0

∫ t

0

e−
∫ s
0 |α′(τ)|dτ ⟨fn(s), u′n(s)− w′

n(s)⟩ds

= lim
n→0

∫ t

0

⟨e−
∫ s
0 |α′(τ)|dτfn(s), u

′
n(s)− w′

n(s)⟩ds

= 0.

(2.44)

Thus, it follows that

lim
n→∞

∫ t

0

e−
∫ s
0 |α′(τ)|dτLn(s)ds = 0, ∀t ∈ [0, T ]. (2.45)

We conclude from (2.39) with (2.40)∼(2.45) that

lim sup
n→∞

e−
∫ t
0 |α′(τ)|dτφt(vn;un(t)− wn(t)) ≤ 0 uniformly in t ∈ [0, T ]. (2.46)

Hence,
lim sup
n→∞

φt(vn;un(t)− wn(t)) ≤ 0 uniformly in t ∈ [0, T ],
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which implies that

un(t)− wn(t) → 0 in V uniformly in t ∈ [0, T ] as n→ ∞.

This implies from (2.29) and (2.33) that

un(t) → u(t) uniformly in V on [0, T ] as n→ ∞;

thus, we conclude that
un → u in C([0, T ];V ). (2.47)

Finally we show that u is a solution to CPv(f, u0). We first note from (2.47) and
Lemma 2.2(ii) that

∂∗φ
t(vn;un(t)) → ∂∗φ

t(v;u(t)) in V ∗, ∀t ∈ [0, T ].

Therefore, by (ϕ1) with the Lebesgue dominated convergence theorem,

∂∗φ
(·)(vn;un) → ∂∗φ

(·)(v;u) in L2(0, T ;V ∗), (2.48)

so that

∂∗ψ
(·)(vn;u

′
n) ∋ ξn := fn − ∂∗φ

(·)(vn;un)− g(vn; ·, un)

→ f − ∂∗φ
(·)(v;u)− g(v; ·, u) =: ξ in L2(0, t;V ∗), ∀t ∈ [0, T ]

as n → ∞. As to the limit function ξ, we have by the basic property the Mosco conver-
gence (cf. (Fact 1) with (ψ1)) that ξ(t) ∈ ∂∗ψ

t(v;u′(t)) for a.a. t ∈ (0, T ). Hence,

ξ(t) + ∂∗φ
t(v;u(t)) + g(v; t, u(t)) = f(t) in V ∗, a.a. t ∈ (0, T ).

Since u(0) = u0 in V , thus, u is a solution to CPv(f, u0). □

2.4 Approximate problems for CPv(f, u0)

In this subsection we discuss the approximate problem for CPv(f, u0) under the same
assumptions as Theorem 2.1, and its convergence.

We begin with the formulation of auxiliary approximate problems for CPv(f, u0).
Let us choose a function v0 ∈ D0 and consider the continuous convex function φ0(v0; ·)

on V and its subdifferential F0 := ∂∗φ
0(v0; ·). Then, on account of (2.7) of Lemma 2.1,

we observe that F0 : D(F0) = V → V ∗ satisfies

c0|z|2V ≤ ⟨F0z, z⟩ ≤ c′0|z|2V , ∀z ∈ V, (2.49)

with c0 :=
C4

|α′|L1(0,T )+1
and c′0 = C3, so that F0 is linear, coercive, continuous, and single-

valued maximal monotone from V into V ∗.

Now, for each v ∈ D0 and ε ∈ (0, 1], we consider the following doubly nonlinear
evolution inclusion, refered to as CPε,v := CPε,v(f, u0):

εF0u
′
ε,v(t)+ ξε,v(t)+ ∂∗φ

t(v;uε,v(t))+ g(v; t, uε,v(t)) ∋ f(t) in V ∗, a.a. t ∈ (0, T ), (2.50a)
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ξε,v(t) ∈ ∂∗ψ
t(v;u′ε,v(t)) in V

∗, a.a. t ∈ (0, T ), (2.50b)

uε,v(0) = u0 in V. (2.50c)

We now prove an existence result of solutions to CPε,v.

Lemma 2.6. Assume that u0 ∈ V and assumptions (ψ), (ϕ), and (g) are fulfilled. Let f be
any function in L2(0, T ;V ∗). Then, for every ε > 0 and v ∈ D0, there is a unique function
uε,v ∈ W 1,2(0, T ;V ) with ξε,v ∈ L2(0, T ;V ) such that (2.50):= {(2.50a), (2.50b), (2.50c)}
holds. Such a function uε,v is called a solution to CPε,v.

Proof. For the construction of the solution to CPε,v we apply the general theory of ordi-
nary differential equations. To this end let us introduce the following mappings for each
fixed v ∈ D0 and ε > 0:

B(t)z∗ := (εF0 + ∂∗ψ
t(v; ·))−1z∗, ∀z∗ ∈ V ∗, ∀t ∈ [0, T ]

and
F(t)z := f(t)− ∂∗φ

t(v; z)− g(v; t, z), ∀z ∈ V, ∀t ∈ [0, T ].

We show that B(t) is Lipschitz continuous from V ∗ into V for each t ∈ [0, T ]. In fact,
setting zi = B(t)z∗i , i = 1, 2, we observe that z∗i = εF0zi + zi,∗ for some zi,∗ ∈ ∂∗ψ

t(v; zi).
By (2.49) and the monotonicity of ∂∗ψ

t(v; ·), we have

⟨z∗1 − z∗2 , z1 − z2⟩ = ⟨εF0z1 + z1,∗ − εF0z2 − z2,∗, z1 − z2⟩
≥ ε⟨F0(z1 − z2), z1 − z2⟩
≥ εc0|z1 − z2|2V .

Hence,

|B(t)z∗1 − B(t)z∗2 |V = |z1 − z2|V ≤ 1

εc0
|z∗1 − z∗2 |V ∗ (2.51)

and B(t) : V ∗ → V is Lipschitz for each t ∈ [0, T ]. In particular, since F00 = 0 and
∂∗ψ

t(v; 0) ∋ 0, it follows that 0 = εF00 + 0. This shows that B(t)0 = 0 and by (2.51)

|B(t)z∗|V ≤ 1

εc0
|z∗|V ∗ ,

thus, the function t→ B(t)z∗ is bounded in V for each z∗ ∈ V ∗.
Next, we fix any z∗ ∈ V ∗ to show that t ∈ [0, T ] → B(t)z∗ ∈ V is continuous. Put

zt := B(t)z∗, hence, εF0z
t + ∂∗ψ

t(v; zt) ∋ z∗. Let {sn}n∈N ⊂ [0, T ] with sn → t (as
n→ ∞). Note that zsn ∈ D(∂∗ψ

sn(v; ·)) and

z∗ = εF0z
sn + zsn∗ for some zsn∗ ∈ ∂∗ψ

sn(v; zsn).

Also, we observe from (ψ1) that ∂∗ψ
sn(v; ·) converges to ∂∗ψ

t(v; ·) in the graph sense
as n → ∞. Therefore, for [zt, z∗ − εF0z

t] ∈ G(∂∗ψ
t(v; ·)), there exists a sequence

{[zn, z∗n]}n∈N ⊂ V × V ∗ such that [zn, z
∗
n] ∈ G(∂∗ψ

sn(v; ·)) in V × V ∗,

zn → zt in V and z∗n → z∗ − εF0z
t in V ∗ as n→ ∞. (2.52)
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Since F0 is Lipschitz continuous from V into V ∗ (cf. (ϕ1)), we observe from (2.52)

z∗n + εF0zn → z∗ − εF0z
t + εF0z

t = z∗ in V ∗ as n→ ∞.

Hence, we infer from the monotonicity of ∂∗ψ
sn(v; ·) that

0 = lim
n→∞

⟨z∗ − z∗n − εF0zn, z
sn − zn⟩

= lim
n→∞

⟨εF0z
sn + zsn∗ − z∗n − εF0zn, z

sn − zn⟩

≥ lim sup
n→∞

ε⟨F0z
sn − F0zn, z

sn − zn⟩

≥εc0 lim sup
n→∞

|zsn − zn|2V ,

which implies that

zsn = B(sn)z∗ → zt = B(t)z∗ in V as sn → t.

Thus, the operator B(t)z∗ is continuous in V with respect to t ∈ [0, T ] for all z∗ ∈ V ∗.
Similarly, since f ∈ L2(0, T ;V ∗), it follows from assumptions (ϕ) and (g) that the operator
F(t)z : [0, T ]×V → V ∗ is Lipschitz in z ∈ V for a.a. t ∈ (0, T ) and integrable in t ∈ [0, T ]
for each z ∈ V and f ∈ L2(0, T ;V ∗).

From the above observation and assumption (g) we see that the composition mapping
B(t) ◦F(t)z is integrable on (0, T ) in V for each z ∈ V and Lipschitz continuous in z ∈ V
for a.a. t ∈ (0, T ). Therefore, by virtue of the general theory of ordinary differential
equations, the problem

u′(t) = B(t) ◦ F(t)u(t) in V, t ∈ (0, T ), u(0) = u0 in V,

possesses a unique solution u ∈ W 1,2(0, T ;V ). Denoting u by uε,v we see that uε,v satisfies

εF0u
′
ε,v(t) + ξε,v(t) + ∂∗φ

t(v;uε,v(t)) + g(v; t, uε,v(t)) = f(t) in V ∗, a.a. t ∈ (0, T ),

where ξε,v ∈ L2(0, T ;V ∗) and

ξε,v(t) ∈ ∂∗ψ
t(v;u′ε,v(t)) in V

∗, a.a. t ∈ (0, T ).

Thus uε,v is a unique solution of CPε,v. □

We here give the energy inequality to CPε,v.

Lemma 2.7. For any fixed v ∈ D0 and ε > 0, the solution uε,v to CPε,v satisfies the bound:
there exists a constant N1 > 0, independent of ε > 0, v ∈ D0, and f ∈ L2(0, T ;V ∗), such
that

εC4|u′ε,v|2L2(0,T ;V ) +

∫ T

0

ψt(v;u′ε,v(t))dt+ sup
t∈[0,T ]

φt(v;uε,v(t))

≤ N1(|u0|2V + |f |2L2(0,T :V ∗) + 1),

(2.53)

where C4 is the same constant as in (ϕ3) as well as N1 in (2.20) of Lemma 2.5.



329

Proof. For each ε > 0 we put

ψtε(v; z) := εφ0(v0; z) + ψt(v; z), ∀z ∈ V. (2.54)

As easily checked, the family {ψtε} satisfies assumption (ψ) with ψt replaced by ψtε. In
addition, from (2.54) and the general theory of maximal monotone operators of the sub-
differential type, we observe that CPε,v can be regarded as CPv with ψt replaced by ψtε.
Therefore, applying the energy estimate obtained by Lemma 2.5, we have∫ T

0

ψtε(v;u
′
ε,v(t))dt+ sup

t∈[0,T ]
φt(v;uε,v(t)) ≤ N1(|u0|2V + |f |2L2(0,T :V ∗) + 1).

Since φ0(v0; z) ≥ C4|z|2V for all z ∈ V by (ϕ3), estimate (2.53) is immediately obtained
from the above inequality. □

Fixing ε > 0 and f ∈ L2(0, T ;V ∗), we denote by Sε(v) the solution to CPε,v for each
v ∈ D0. It is clear that any fixed point of Sε(·) is a solution uε to (2.6).

We now prove an existence result of solutions to an approximate equation (2.6) for
CP (f, u0).

Proposition 2.3. Suppose that u0 ∈ V and assumptions (ψ), (ϕ), and (g) are fulfilled.
Let ε > 0 and f ∈ L2(0, T ;V ∗). Then there are functions uε ∈ W 1,2(0, T ;V ) and ξε ∈
L2(0, T ;V ∗) such that

εF0u
′
ε(t) + ξε(t) + ∂∗φ

t(uε;uε(t)) + g(uε; t, uε(t)) = f(t) in V ∗, a.a. t ∈ (0, T ), (2.55a)

ξε(t) ∈ ∂∗ψ
t(uε;u

′
ε(t)) in V ∗, a.a. t ∈ (0, T ), (2.55b)

uε(0) = u0 in V. (2.55c)

Moreover, we have the following uniform estimate

εC4|u′ε|2L2(0,T ;V ) +

∫ T

0

ψt(uε;u
′
ε(t))dt+ sup

t∈[0,T ]
φt(uε;uε(t))

≤ N1(|u0|2V + |f |2L2(0,T ;V ∗) + 1).

(2.56)

Proof. For the existence of solution to (2.55) (= {(2.55a), (2.55b), (2.55c)}) it is enough
to find a fixed point of the mapping Sε in D0. To this end, with the bound (2.56), we put

Ñ1 := N1(|u0|2V + |f |2L2(0,T ;V ∗) + 1)

and

X(Ñ1) :=

{
v ∈ W 1,2(0, T ;V )

∣∣∣∣ v(0) = u0 in V,

∫ T

0

ψt0(v
′(t))dt ≤ Ñ1

}
;

note that X(Ñ1) ⊂ D0. In addition, note from Lemmas 2.6 and 2.7 that Sε(v) ∈ X(Ñ1)
for any v ∈ X(Ñ1). Clearly, X(Ñ1) is non-empty, compact, and convex in C([0, T ];H) as
well as bounded and closed in W 1,2(0, T ;V ).
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We next show that Sε is continuous inX(Ñ1) with respect to the topology of C([0, T ];H).
To this end, let {vn}n∈N be a sequence in X(Ñ1) such that vn → v in C([0, T ];H); note
from Lemma 2.7 and the definition of X(Ñ1) that vn → v weakly in W 1,2(0, T ;V ) and
{Sε(vn)}n∈N ⊂ X(Ñ1). Now, put uε,n := Sε(vn). Then, note from (2.54) that CPε,vn
can be regarded as CPvn with ψt replaced by ψtε. Therefore, by Proposition 2.2 for CPvn
(=CPε,vn) and by extracting a subsequence from {uε,n}n∈N if necessary, referred to as
{uε,n}n∈N again, we observe that uε,n → ũ in C([0, T ];V ) as n → ∞ for some function
ũ ∈ W 1,2(0, T ;V ), and ũ is a solution to CPε,v, namely ũ = Sε(v). From the uniqueness
of solution to CPε,v, we conclude that Sε(vn) → Sε(v) in C([0, T ];V ) without extracting
any subsequence of {Sε(vn)}n∈N. This shows that Sε is continuous in X(Ñ1) with respect
to the topology of C([0, T ];H).

Therefore, by the Schauder fixed point theorem, Sε has at least one fixed point uε in
X(Ñ1), uε = Sε(uε). This is a solution to (2.55). Besides, the uniform estimate (2.56) is
immediately obtained by Lemma 2.7. □

3 Proof of Theorem 2.1 and comments of uniqueness

In this section, we give the proof of Theorem 2.1 and remark on uniqueness of solu-
tions to CP (f, u0). To this end, system (2.55) is denoted by CPε(ψ

t, φt, g; f, u0) :=
CP (ψtε, φ

t, g; f, u0).
We first prove Theorem 2.1 by letting ε→ 0 in CPε(ψ

t, φt, g; f, u0).

Proof of Theorem 2.1. Let uε be a solution to CPε(ψ
t, φt, g; f, u0). Note from Proposition

2.3 that the uniform estimate (2.56) holds and uε satisfies that

εF0u
′
ε(t) + ξε(t) + ∂∗φ

t(uε;uε(t)) + g(uε; t, uε(t)) = f(t) in V ∗, a.a. t ∈ (0, T ),

namely

ξε(t) + ∂∗φ
t(uε;uε(t)) + g(uε; t, uε(t)) = f(t)− εF0u

′
ε(t) in V ∗, a.a. t ∈ (0, T ), (3.1)

with

ξε ∈ L2(0, T ;V ∗), ξε(t) ∈ ∂∗ψ
t(uε;u

′
ε(t)) in V

∗, a.a. t ∈ (0, T ), uε(0) = u0 in V.

From the uniform estimate (2.56) and the Ascoli–Arzelà theorem, we can find a sequence
{εn}ε∈N with εn ↓ 0 (as n→ ∞) and a function u ∈ W 1,2(0, T ;V ) such that

uεn → u in C([0, T ];H) and weakly in W 1,2(0, T ;V ),

uεn(t) → u(t) weakly in V, ∀t ∈ [0, T ]

as n → ∞. Since εnF0u
′
εn → 0 in L2(0, T ;V ∗) (as n → ∞), it follows from Proposition

2.2 that the limit u is a solution of CPu(f, u0), namely u is a solution to CP (f, u0),
satisfying (2.4). By Lemma 2.5, any solution of CP (f, u0) satisfies (2.4). Thus, the proof
of Theorem 2.1 is complete. □
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In general, CP (f, u0) has multiple solutions as the next simple example shows.

Example 3.1. Let Ω = (0, 1), and set V = H1(Ω) and H = L2(Ω). As usual, set
Q := Ω× (0, T ), and let ρ be a prescribed obstacle function in C(Q) such that

1 ≤ ρ(x, t) ≤ ρ∗, ∀(x, t) ∈ Q, (3.2)

where ρ∗ is a positive constant.
Now, for each t ∈ [0, T ], define a closed convex subset K(t) of V by

K(t) := {z ∈ V ; |z(x)| ≤ ρ(x, t), |zx(x)| ≤ ρ(x, t), a.a. x ∈ Ω} . (3.3)

Then, we consider the following variational inclusion:
ut(t) ∈ K(t) for a.a. t ∈ (0, T ),∫

Ω

ux(x, t)(uxt(x, t)− wx(x))dx ≤ 0, ∀w ∈ K(t), a.a. t ∈ (0, T ),

u(x, 0) = 0, x ∈ Ω.

(3.4)

For each t ∈ [0, T ], as the time-dependent functional ψt(v; ·) we consider

ψt(z) := IK(t)(z) =

{
0, if z ∈ K(t),

∞, otherwise,

and as the functional φt(v; z) we choose

φt(z) :=
1

2

∫
Ω

|zx(x)|2dx+
1

2

∫
Ω

|z(x)|2dx, ∀t ∈ [0, T ], ∀z ∈ V ;

in the present case, D0 is formally given by (2.3) with ψt0 = IK(t), namely

D0 =
{
v ∈ W 1,2(0, T ;V ) | v′(t) ∈ K(t) for a.a. t ∈ [0, T ], v(0) = 0 in V

}
,

but actually this set is not used, since ψt and φt are independent of v ∈ D0. Now we
have:

(i) z∗ ∈ ∂∗ψ
t(z) if and only if

z∗ ∈ V ∗, z ∈ K(t), and ⟨z∗, w − z⟩ ≤ 0 for all w ∈ K(t),

(ii) ⟨∂∗φt(z), w⟩ =
∫
Ω

zx(x)wx(x)dx+

∫
Ω

z(x)w(x)dx for all z, w ∈ V ,

for all t ∈ [0, T ].
Also, we observe that problem (3.4) is written as CP (ψt, φt, g; 0, 0) with g(v; t, z) =

−z. It is easy to check assumptions (ψ), (ϕ), and (g). Therefore, by Theorem 2.1, problem
(3.4) has at least one solution u ∈ W 1,2(0, T ;V ).

Moreover, note that for each constant c ∈ (0, 1) the function uc defined by

uc(x, t) := c(1− e−t) for all (x, t) ∈ Q
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is a solution to (3.4) on [0, T ]. Indeed, we observe that

uct(x, t) = ce−t, ucx(x, t) = 0, ucxt(x, t) = 0

for all (x, t) ∈ Q. Therefore, by (3.3),

uct(t) ∈ K(t), ∀t ∈ (0, T ).

Hence, we easily observe that for each c ∈ (0, 1) the function uc satisfies (3.4). Thus,
{uc}c∈(0,1) provides with an infinite family of solutions to (3.4) on [0, T ].

As is seen from the above counterexample, the uniqueness of solutions to doubly
nonlinear evolution inclusions is not expected, in general. However, in a restricted class
for ψt and φt we have the uniqueness of solution.

Proposition 3.1. Suppose that ψt and g are independent of v ∈ D0, namely ψt(v; z) =
ψt(z) and g(v; t, z) = g(t, z) for all v ∈ D0 and z ∈ V ; in this case ψt0 := ψt on V . In
addition, assume that ψt is uniformly monotone for any t ∈ [0, T ], namely, there exists a
positive constant C5 > 0 such that

⟨ξ1 − ξ2, z1 − z2⟩ ≥ C5|z1 − z2|2V ,
∀zi ∈ D(∂∗ψ

t), ξi ∈ ∂∗ψ
t(zi) (i = 1, 2), ∀t ∈ [0, T ].

(3.5)

Furthermore, suppose that u0 ∈ V and assumptions (ψ), (ϕ), and (g) are fulfilled. Also,
assume that ∂∗φ

t(v; ·) is Lipschitz in v ∈ D0, more precisely, there exists a positive con-
stant C6 > 0 such that

|∂∗φt(v1; z)− ∂∗φ
t(v2; z)|V ∗ ≤ C6|v1(t)− v2(t)|V (1 + |z|V ) ,

∀vi ∈ D0 (i = 1, 2), ∀z ∈ D0, ∀t ∈ [0, T ].
(3.6)

Let f be any function in L2(0, T ;V ∗). Then, CP (ψt, φt, g; f, u0) has at most one solution.

Proof. Let ui, i = 1, 2, be two solutions of CP (ψt, φt, g; f, u0). Then, by Theorem 2.1,
we have ui ∈ W 1,2(0, T ;V ) and ui ∈ D0 for i = 1, 2. Subtract the evolution inclusion for
i = 2 from the one for i = 1, and multiply the resultant by u′1 − u′2 to get

⟨ξ1(t)− ξ2(t), u
′
1(t)− u′2(t)⟩+ ⟨∂∗φt(u1;u1(t))− ∂∗φ

t(u2;u2(t)), u
′
1(t)− u′2(t)⟩

+⟨g(t, u1(t))− g(t, u2(t)), u
′
1(t)− u′2(t)⟩ = 0 for a.a. t ∈ (0, T ),

(3.7)

where ξi(t) ∈ ∂∗ψ
t(u′i(t)) for a.a. t ∈ (0, T ) (i = 1, 2). From (3.5) we observe that

⟨ξ1(t)− ξ2(t), u
′
1(t)− u′2(t)⟩ ≥ C5|u′1(t)− u′2(t)|2V for a.a. t ∈ (0, T ), (3.8)

and by Lemma 2.3 and (3.6) that

⟨∂∗φt(u1;u1(t))− ∂∗φ
t(u2;u2(t)), u

′
1(t)− u′2(t)⟩

= ⟨∂∗φt(u1;u1(t))− ∂∗φ
t(u2;u1(t)), u

′
1(t)− u′2(t)⟩

+⟨∂∗φt(u2;u1(t)− u2(t)), u
′
1(t)− u′2(t)⟩

≥ −|∂∗φt(u1;u1(t))− ∂∗φ
t(u2;u1(t))|V ∗|u′1(t)− u′2(t)|V

+
d

dt
φt(u2;u1(t)− u2(t))− |α′(t)|φt(u2;u1(t)− u2(t))

≥ −C6|u1(t)− u2(t)|V (1 + |u1(t)|V ) |u′1(t)− u′2(t)|V

+
d

dt
φt(u2;u1(t)− u2(t))− |α′(t)|φt(u2;u1(t)− u2(t))

(3.9)
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for a.a. t ∈ (0, T ). Therefore, we observe from (3.7)∼(3.9) and (g2) with the help of the
Schwarz inequality that

C5|u′1(t)− u′2(t)|2V +
d

dt
φt(u2;u1(t)− u2(t))

≤|α′(t)|φt(u2;u1(t)− u2(t)) + C6|u1(t)− u2(t)|V (1 + |u1(t)|V ) |u′1(t)− u′2(t)|V
+ |g(t, u1(t))− g(t, u2(t))|V ∗|u′1(t)− u′2(t)|V

≤|α′(t)|φt(u2;u1(t)− u2(t)) +
C2

6

C5

|u1(t)− u2(t)|2V (1 + |u1(t)|V )2 +
C5

4
|u′1(t)− u′2(t)|2V

+
1

C5

|g(t, u1(t))− g(t, u2(t))|2V ∗ +
C5

4
|u′1(t)− u′2(t)|2V

≤|α′(t)|φt(u2;u1(t)− u2(t)) +
C2

6

C5

|u1(t)− u2(t)|2V (1 + |u1(t)|V )2

+
L2
g

C5

|u1(t)− u2(t)|2V +
C5

2
|u′1(t)− u′2(t)|2V

for a.a. t ∈ (0, T ). From the above inequality with (2.7) of Lemma 2.1 we infer that

C5

2
|u′1(t)− u′2(t)|2V +

d

dt
φt(u2;u1(t)− u2(t))

≤ K1(|α′(t)|+ |u1(t)|2V + 1)φt(u2;u1(t)− u2(t)) for a.a. t ∈ (0, T )
(3.10)

for some constantK1 > 0 being independent of ui (i = 1, 2). Hence, applying the Gronwall
inequality to (3.10), we conclude that u1(t)− u2(t) = 0 in V for all t ∈ [0, T ]. Thus the
proof of Proposition 3.1 has been completed. □

By arguments similar to that as in Proposition 3.1, we can obtain the following unique-
ness result of solutions to CPv(f, u0).

Corollary 3.1. Suppose that u0 ∈ V and assumptions (ψ), (ϕ), and (g) are fulfilled.
In addition, assume that ψt(v; ·) is uniformly monotone for any t ∈ [0, T ] and v ∈ D0,
namely, there exists a positive constant C5 > 0 such that

⟨ξ1 − ξ2, z1 − z2⟩ ≥ C5|z1 − z2|2V ,
∀zi ∈ D(∂∗ψ

t(v; ·)), ξi ∈ ∂∗ψ
t(v; zi), i = 1, 2, ∀v ∈ D0, ∀t ∈ [0, T ].

Let f be any function in L2(0, T ;V ∗). Then, problem CPv(f, u0), namely{
∂∗ψ

t(v;u′(t)) + ∂∗φ
t(v;u(t)) + g(v; t, u(t)) ∋ f(t) in V ∗, a.a. t ∈ (0, T ),

u(0) = u0 in V,

admits a unique solution u on [0, T ].
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Remark 3.1. Under the following assumptions:

⟨ξ1 − ξ2, z1 − z2⟩ ≥ C5|z1 − z2|2H ,
∀zi ∈ D(∂∗ψ

t(v; ·)), ξi ∈ ∂∗ψ
t(v; zi), i = 1, 2, ∀v ∈ D0, ∀t ∈ [0, T ],

and g(v; t, ·) is uniformly Lipschitz from V into H in the sense that

|g(v; t, z1)− g(v; t, z2)|H ≤ L′
g|z1 − z2|H , ∀zi ∈ V, i = 1, 2, ∀v ∈ D0, ∀t ∈ [0, T ]

for a positive constant L′
g. Then, Proposition 3.1 guarantees that for any fixed v ∈ D0,

problem CPv(f, u0) admits a unique solution u on [0, T ]. Because, by a modification of
the computation in the proof of Proposition 3.1, we have for any two solutions u1 and u2

C5

2
|u′1(t)− u′2(t)|2H +

d

dt
φt(v;u1(t)− u2(t))

≤ K ′
1(|α′(t)|+ 1)φt(v;u1(t)− u2(t)), a.a. t ∈ (0, T )

for a certain constant K ′
1 > 0 being independent of ui (i = 1, 2). Therefore, it results by

the Gronwall inequality that u1(t)− u2(t) = 0 in V for all t ∈ [0, T ].

4 Applications

A sort of quasi-variational structure is found in our class of doubly nonlinear evolution
inclusions, more concretely in the v-dependence of ψt(v; ·) and φt(v; ·). In this section we
shall deal with some doubly nonlinear quasi-variational evolution inclusions as applications
of our abstract result.

4.1 Doubly nonlinear quasi-variational evolution inclusions

Let Ω be a bounded domain in RN (1 ≤ N < ∞) with a smooth boundary Γ := ∂Ω,
Q := Ω× (0, T ), and Σ := Γ× (0, T ) for 0 < T <∞, and put

V := H1
0 (Ω), H := L2(Ω), V ∗ := H−1(Ω);

we employ |z|V := |∇z|H as the norm of V ; ⟨·, ·⟩ stands for the duality between V ∗ and
V . In this subsection we treat a quasi-variational inequality with gradient constraint for
the time derivatives.

Let ρ be a prescribed obstacle function such that

ρ := ρ(x, t, r) ∈ C(Q× R),

0 < ρ∗ ≤ ρ(x, t, r) ≤ ρ∗, ∀(x, t, r) ∈ Q× R,

|ρ(x, t1, r1)− ρ(x, t2, r2)| ≤ Lρ(|t1 − t2|+ |r1 − r2|),
∀ti ∈ [0, T ], ∀ri ∈ R, i = 1, 2, ∀x ∈ Ω,

(4.1)

where ρ∗, ρ
∗, and Lρ are positive constants.
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(Application 1)
For each t ∈ [0, T ] and v ∈ C([0, T ];H), we define a convex constraint set K(v; t) in

V by

K(v; t) := {z ∈ V ; |∇z(x)| ≤ ρ(x, t, v(x, t)), a.a. x ∈ Ω} , ∀t ∈ [0, T ], (4.2)

and a convex subset K0 of V by

K0 := {z ∈ V ; |∇z(x)| ≤ ρ∗, a.a. x ∈ Ω} . (4.3)

Now consider the following quasi-variational inequality with time-dependent gradient con-
straint:

u′(t) :=
∂u(·, t)
∂t

∈ K(u; t), a.a. t ∈ (0, T ), u(·, 0) = u0 in V, (4.4a)

τ0

∫
Ω

u′(x, t)(u′(x, t)− z(x))dx

+

∫
Ω

a(x, t, u(x, t))∇u(x, t) · ∇(u′(x, t)− z(x))dx

+

∫
Ω

g(x, t, u(x, t))(u′(x, t)− z(x))dx

≤
∫
Ω

f(x, t)(u′(x, t)− z(x))dx, ∀z ∈ K(u; t), a.a. t ∈ (0, T ),

(4.4b)

where τ0 ≥ 0 is a constant, g(·, ·, ·) is a Lipschitz continuous function on Q× R, i.e.,

|g(x1, t1, r1)− g(x2, t2, r2)| ≤ Lg(|x1 − x2|+ |t1 − t2|+ |r1 − r2|),

∀(xi, ti) ∈ Q, ∀ri ∈ R, i = 1, 2,
(4.5)

with a positive constant Lg, f is a function in L2(0, T ;H), u0 is an initial datum given in
V , and a(·, ·, ·) is a prescribed function in C(Q× R) such that

a∗ ≤ a(x, t, r) ≤ a∗, ∀(x, t) ∈ Q, ∀r ∈ R,

|a(x, t1, r1)− a(x, t2, r2)| ≤ La(|t1 − t2|+ |r1 − r2|),
∀ti ∈ [0, T ], ∀ri ∈ R, i = 1, 2, ∀x ∈ Ω,

(4.6)

where a∗, a
∗, and La are positive constants.

A function u : [0, T ] → V is called a solution to (4.4):= {(4.4a), (4.4b)}, if u ∈
W 1,2(0, T ;V ) and all of the properties required in (4.4) are fulfilled. In order to reformulate
problem (4.4) as the form CP (ψt, φt, g; f, u0), the functionals ψt0(·), ψt(v; ·), φt(v; ·) are
set up as follows:

ψt0(z) := IK0(z), ∀z ∈ V, ∀t ∈ [0, T ], (4.7)

and we define

D0 = {v ∈ W 1,2(0, T ;V ) | v′(t) ∈ K0, a.a. t ∈ (0, T ), v(0) = u0 in V }, (4.8)
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ψt(v; z) :=
τ0
2

∫
Ω

|z(x)|2dx+ IK(v;t)(z), ∀z ∈ V, ∀t ∈ [0, T ], ∀v ∈ D0, (4.9)

φt(v; z) :=
1

2

∫
Ω

a(x, t, v(x, t))|∇z(x)|2dx, ∀z ∈ V, ∀t ∈ [0, T ], ∀v ∈ D0. (4.10)

It is easy to see from the definition of subdifferential that

(i) Let v ∈ D0 and t ∈ [0, T ]. Then z∗ ∈ ∂∗ψ
t(v; z) if and only if z∗ ∈ V ∗, z ∈ K(v; t),

and

τ0

∫
Ω

z(x)(z(x)− w(x))dx+ ⟨−z∗, z − w⟩ ≤ 0, ∀w ∈ K(v; t).

(ii) Let v ∈ D0 and t ∈ [0, T ]. Then ∂∗φ
t(v; ·) is singlevalued, linear, and bounded from

V into V ∗ and

⟨∂∗φt(v; z), w⟩ =
∫
Ω

a(x, t, v(x, t))∇z(x) · ∇w(x)dx, ∀w ∈ V.

In addition, for each v ∈ D0 and t ∈ [0, T ], we define g(v; t, ·) : V → V ∗ by

⟨g(v; t, z), w⟩ :=
∫
Ω

g(x, t, z(x))w(x)dx, ∀z, w ∈ V. (4.11)

From the above characterizations (i) and (ii) of subdifferentials of ψt(v; ·) and φt(v; ·)
it follows that problem (4.4) is reformulated as CP (ψt, φt, g; f, u0).

Lemma 4.1. Let D0 be the set defined by (4.8). Then, we have:

(i) There is a positive constant k0 such that

|v(x, t)− v(x, 0)− v(y, s) + v(y, 0)| ≤ k0(|x− y|+ |t− s|),

∀v ∈ D0, ∀x, y ∈ Ω, ∀s, t ∈ [0, T ].

(ii) If {vn}n∈N ⊂ D0 and vn → v in C([0, T ];H) (as n→ ∞), then vn− v → 0 in C(Q).

Proof. For any v ∈ D0, we infer from assumption (4.3) that v′(x, t) is Lipschitz in x ∈ Ω
and is bounded in Q, since v′(x, t) = 0 for x ∈ Γ. Therefore, withM := |v′|L∞(Q), we have

|v(x, t)− v(x, s)| ≤M |t− s|, ∀x ∈ Ω, ∀t, s ∈ [0, T ].

Also, |∇(v(x, t) − v(x, 0))| = |
∫ t
0
∇v′(x, τ)dτ | ≤ Tρ∗, a.e. on Ω, which implies that

v̄(x, t) := v(x, t)− v(x, 0) is Lipschitz in x ∈ Ω uniformly in t ∈ [0, T ]. This shows that

|v̄(x, t)− v̄(y, s)| ≤ k0(|x− y|+ |t− s|), ∀x, y ∈ Ω, ∀t, s ∈ [0, T ],

for some positive constant k0. Thus, we have (i).
Next, assume that vn ∈ D0 and vn → v in C([0, T ];H) as n → ∞. Then, by (i) and

the Ascoli-Arzelà theorem, there is a subsequence {v̄nk
}k∈N of {v̄n := vn − vn(·, 0)}n∈N
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which uniformly converges to v̄ := v − v(·, 0) on Q. The limit is determined uniquely by
v, so that the whole sequence {v̄n}n∈N converges to v̄ uniformly on Q. Note from (4.8)
that vn(x, 0) = v(x, 0) = u0(x), a.a. x ∈ Ω, hence,

|vn − v|C(Q) = |v̄n − v̄|C(Q) → 0 as n→ ∞.

Thus, (ii) holds. □

Lemma 4.2. Let ψt and φt be the functionals defined by (4.9) and (4.10), respectively.
Then, assumptions (ψ) and (ϕ) are fulfilled.

Proof. Regarding assumption (ψ), its (ψ2) and (ψ3) are trivially satisfied. Therefore, we
have only to check (ψ1). We now assume that tn ∈ [0, T ], tn → t, vn ∈ D0, and vn → v
in C([0, T ];H) (as n→ ∞). Then, we show the first condition of Mosco convergence (cf.
(M1)). To this end, we assume that zn ∈ K(vn; tn) ⊂ K0 with zn → z weakly in V (as
n→ ∞). Then, by the Mazur theorem, there is a convex combinations z(k) of the form

z(k) :=

Nk∑
j=1

c
(k)
j znj(k), nj(k) ≥ k, c

(k)
j ≥ 0,

Nk∑
j=1

c
(k)
j = 1, k = 1, 2, · · · ,

such that z(k) → z in V and ∇z(k)(x) → ∇z(x), a.e. on Ω as k → ∞. In this case,

|∇z(k)(x)| ≤
Nk∑
j=1

c
(k)
j |∇znj(k)(x)| ≤

Nk∑
j=1

c
(k)
j ρ(x, tnj(k), vnj(k)(x, tnj(k))). (4.12)

Passing to the limit as k → ∞ and noting the last term of (4.12) converges to ρ(x, t, v(x, t))
uniformly on Ω by Lemma 4.1(ii), we have that

|∇z(x)| ≤ ρ(x, t, v(x, t)), a.a. x ∈ Ω,

which implies that z ∈ K(v; t). Therefore, since zn → z in H as n→ ∞, we have

ψt(v; z) =
τ0
2

∫
Ω

|z(x)|2dx = lim inf
n→∞

τ0
2

∫
Ω

|zn(x)|2dx = lim inf
n→∞

ψtn(vn; zn).

Hence, the first condition of Mosco convergence holds.
Next, we show the second condition of Mosco convergence (cf. (M2)). To this end, let

z be any element in K(v; t) and put

zn(x) :=

(
1− 1

ρ∗
|ρ(·, tn, vn(·, tn))− ρ(·, t, v(·, t))|L∞(Ω)

)
z(x);

note from (4.1) that ρ∗ > 0 and zn is well defined. Then, we observe that zn → z in V
and zn ∈ K(vn; tn) for all large n as well as ψtn(vn; zn) → ψt(v; z) (as n→ ∞). Therefore,
the second condition of Mosco convergence holds. Thus, ψtn(vn; ·) → ψt(v; ·) on V in the
sense of Mosco and (ψ1) holds.
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As to assumption (ϕ), it is easy to check (ϕ1)∼(ϕ3). We check (ϕ4) as follows. Let z
be any element in V and v ∈ D0. Then, using (4.6) and Lemma 4.1(i),

|φt(v; z)− φs(v; z)| ≤ 1

2

∫
Ω

|a(x, t, v(x, t))− a(x, s, v(x, s))||∇z(x)|2dx

≤ La(|t− s|+M |t− s|)1
2

∫
Ω

|∇z(x)|2dx

≤ Cϕ|t− s|φs(v; z),

for some positive constant Cϕ; hence (ϕ4) holds with α(t) := Cϕt. □

Proposition 4.1. Assume that (4.1), (4.5), and (4.6) are fulfilled for functions ρ(x, t, r),
g(x, t, r), and a(x, t, r). Let τ0 ≥ 0, f ∈ L2(0, T ;H), and u0 ∈ V . Then, problem
(4.4)= {(4.4a), (4.4b)} admits at least one solution u in W 1,2(0, T ;V ).

Proof. On account of Lemmas 4.1 and 4.2, {ψt(v; ·)} and {φt(v; ·)} given by (4.2), (4.9),
and (4.10) fulfill assumptions (ψ), (ϕ), and (g) is trivially verified. Hence all the assump-
tions of Theorem 2.1 are fulfilled. Therefore,

∂∗ψ
t(u;u′(t)) + ∂∗φ

t(u;u(t)) + g(u; t, u(t)) ∋ f(t) in V ∗, u(0) = u0 in V,

admits a solution u in W 1,2(0, T ;V ). By the characterization (i) and (ii) of ∂∗ψ
t(u; ·) and

∂∗φ
t(u; ·), and the definition of g(u; t, ·), u is a solution to (4.4). □

(Application 2)
Next we are going to consider a doubly nonlinear quasi-variational inequality with

non-local obstacle function.
We here define an operator L : L2(0, T ;H) → L2(0, T ;H) by

L(v;x, t) :=
∫ t

0

∫
Ω

ℓ(x, t, y, τ, v(y, τ))dydτ + δ0, ∀(x, t) ∈ Q, ∀v ∈ L2(0, T ;H),

with a given function ℓ ∈ C(Q×Q× R) and a positive constant δ0 satisfying that:
0 ≤ ℓ(x, t, y, τ, r) ≤ ℓ∗, ∀(x, t, y, τ, r) ∈ Q×Q× R,

|ℓ(x, t1, y, τ, r1)− ℓ(x, t2, y, τ, r2)| ≤ Lℓ (|t1 − t2|+ |r1 − r2|) ,

∀ti ∈ [0, T ], ∀ri ∈ R, i = 1, 2, ∀(x, y, τ) ∈ Ω×Q,

where ℓ∗ and Lℓ are positive constants. With the functional L(v;x, t) we define a con-
straint set K(v; t) by

K(v; t) := {z ∈ V | |∇z(x)| ≤ L(v;x, t), a.a. x ∈ Ω}, ∀t ∈ [0, T ]. (4.13)

Now, we consider the following quasi-variational inequality:

u′(t) ∈ K(u; t), a.a. t ∈ (0, T ), u(x, 0) = u0(x), x ∈ Ω, (4.14a)
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τ0

∫
Ω

u′(x, t)(u′(x, t)− z(x))dx

+

∫
Ω

a(x, t, u(x, t))∇u(x, t) · ∇(u′(x, t)− z(x))dx

+

∫
Ω

g(x, t, u(x, t))(u′(x, t)− z(x))dx

≤
∫
Ω

f(x, t)(u′(x, t)− z(x))dx, ∀z ∈ K(u; t), a.a. t ∈ (0, T ),

(4.14b)

where τ0 ≥ 0, a(·, ·, ·), g(·, ·, ·), f , and u0 are the same as in problem (4.4). Similarly
define functionals ψt(v; ·) and φt(v; ·) by (4.9), (4.13), and (4.10). In addition, define the
(t, v)-dependent operator g(v; t, z) by (4.11). Then we observe that all the assumptions
of Theorem 2.1 are fulfilled, and hence the above problem (4.14):= {(4.14a), (4.14b)} has
at least one solution u in W 1,2(0, T ;V ).

4.2 Doubly nonlinear evolution inclusions of Navier–Stokes type

We begin our study with the solenoidal function space formulated on a smooth bounded
domain Ω in RN , N = 2 or 3, with usual notation Q := Ω× (0, T ), 0 < T <∞, Γ := ∂Ω,
and Σ := Γ× (0, T );

V := H1
0 (Ω), H := L2(Ω).

Now, we define:

Dσ := {z = (z(1), z(2), · · · , z(N)) ∈ C∞
0 (Ω)N | divz = 0 in Ω},

and put

Hσ := the closure of Dσ in HN , V σ := the closure of Dσ in V N ,

with usual norms

|z|Hσ :=

{
N∑
k=1

|z(k)|2H

} 1
2

, |z|V σ :=

{
N∑
k=1

|∇z(k)|2H

} 1
2

.

In addition, we denote the dual space of V σ by V ∗
σ. For simplicity we denote the inner

product in Hσ by (·, ·)σ and the duality pairing between V ∗
σ and V σ by ⟨·, ·⟩σ.

Let ρ be a prescribed obstacle function in C(Q× RN) such that

0 < ρ∗ ≤ ρ(x, t, r) ≤ ρ∗, ∀(x, t, r) ∈ Q× RN , (4.15)

where ρ∗ and ρ∗ are positive constants, and K0 is a closed convex subset of V σ given by

K0 := {z ∈ V σ | |∇z(x)| ≤ ρ∗, a.e. on Ω},

and put

D0 := {v ∈ W 1,2(0, T ;V σ) | v′(t) ∈ K0, a.a. t ∈ (0, T ), v(0) = u0 in V σ}, (4.16)
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where u0 is a given initial datum in V σ (cf. (4.21a)).
Also, for each v ∈ D0 and t ∈ [0, T ], define

K(v; t) := {z ∈ V σ | |∇z(x)| ≤ ρ(x, t,v(x, t)), a.e. on Ω}, ∀t ∈ [0, T ]. (4.17)

Now, for each v ∈ D0 and t ∈ [0, T ], we define functionals ψt0(·), ψt(v; ·), and φt(v; ·)
on V σ by

ψt0(z) := IK0(z), ∀z ∈ V σ, ∀t ∈ [0, T ],

ψt(v; z) :=
τ0
2

∫
Ω

|z(x)|2dx+ IK(v;t)(z), ∀z ∈ V σ, ∀t ∈ [0, T ], (4.18)

φt(v; z) :=
1

2

∫
Ω

a(x, t,v(x, t))|∇z(x)|2dx, ∀z ∈ V σ, ∀t ∈ [0, T ], (4.19)

and g(v; t, ·) : V σ → V ∗
σ by

⟨g(v; t,w), z⟩σ :=

∫
Ω

(v(x, t) · ∇)w(x) · z(x)dx

=
N∑

i,j=1

∫
Ω

v(i)(x, t)
∂w(j)(x)

∂xi
z(j)(x)dx,

∀w = (w(1), w(2), · · · , w(N)), z = (z(1), z(2), · · · , z(N)) ∈ V σ.

(4.20)

Now we propose the following quasi-variational inequality of Navier–Stokes type with
gradient constraint for time-derivative:

u′(t) :=
∂u(x, t)

∂t
∈ K(u; t), a.a. t ∈ (0, T ), u(·, 0) = u0 in V σ, (4.21a)

τ0

∫
Ω

u′(x, t) · (u′(x, t)− z(x))dx

+

∫
Ω

a(x, t,u(x, t))∇u(x, t) · ∇(u′(x, t)− z(x))dx

+⟨g(u; t,u(t)),u′(t)− z⟩σ

≤
∫
Ω

f(x, t) · (u′(x, t)− z(x))dx, ∀z ∈ K(u; t), a.a. t ∈ (0, T ),

(4.21b)

where τ0 ≥ 0 is a constant, f is a function in L2(0, T ;Hσ), u0 is an initial datum in V σ,
and a(·, ·, ·) is a function in C(Q× RN) such that

a∗ ≤ a(x, t, r) ≤ a∗, ∀(x, t) ∈ Q, ∀r ∈ RN ,

|a(x, t1, r1)− a(x, t2, r2)| ≤ La(|t1 − t2|+ |r1 − r2|),

∀ti ∈ [0, T ], ∀ri ∈ RN , i = 1, 2, ∀x ∈ Ω,

(4.22)

where a∗, a
∗, and La are positive constants.
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Proposition 4.2. Let ρ := ρ(x, t, r) and a := a(x, t, r) be functions for which (4.15)
and (4.22) hold, and let f ∈ L2(0, T ;Hσ) and u0 ∈ V σ. Then, problem (4.21) :=
{(4.21a), (4.21b)} admits at least one solution u in W 1,2(0, T ;V σ).

In order to show the existence of a solution to (4.21) we apply Theorem 2.1. To this
end we check the assumptions (ψ), (ϕ), and (g) with g = g.

Lemma 4.3. Let ψt, φt, and g be given by (4.17)∼(4.20). Then assumptions (ψ), (ϕ),
and (g) are fulfilled.

Proof. With regard to assumptions (ψ) and (ϕ), we can verify them by using Lemmas 4.1
and 4.2 extensively to the vectorial case, too. We are going to check (g).

We now show (g1). To this end, let {vn}n∈N ⊂ D0 such that vn → v in C([0, T ];Hσ)
(as n→ ∞). Then, from Lemma 4.1 it follows that

vn − v → 0 in C(Q) and vn → v weakly in W 1,2(0, T ;V σ) as n→ ∞. (4.23)

Given {wn}n∈N ⊂ V σ satisfying that wn → w weakly in V σ, and z ∈ V σ, we observe
that

⟨g(vn; t,wn)− g(v; t,w), z⟩σ

=
N∑

i,j=1

∫
Ω

v(i)n (x, t)
∂w

(j)
n (x)

∂xi
z(j)(x)dx−

N∑
i,j=1

∫
Ω

v(i)(x, t)
∂w(j)(x)

∂xi
z(j)(x)dx

=
N∑

i,j=1

∫
Ω

(v(i)n (x, t)− v(i)(x, t))
∂w

(j)
n (x)

∂xi
z(j)(x)dx

+
N∑

i,j=1

∫
Ω

v(i)(x, t)
∂(w

(j)
n (x)− w(j)(x))

∂xi
z(j)(x)dx,

so that

|⟨g(vn; t,wn)− g(v; t,w), z⟩σ|

≤ k1|vn − v|C(Q)N |wn|V σ |z|V σ

+ sup
z ∈ V σ ,|z|V σ≤1

N∑
i,j=1

∣∣∣∣∣
∫
Ω

v(i)(x, t)
∂(w

(j)
n (x)− w(j)(x))

∂xi
z(j)(x)dx

∣∣∣∣∣
for some positive constant k1 independent of {vn}n∈N ⊂ D0, v ∈ D0, {wn}n∈N ⊂ V σ, and
z ∈ V σ. Since Y := {v(i)(t)z(j) | |z|V σ ≤ 1} is compact in H, for every i, j = 1, 2, · · · , N ,
the last term of the above inequality converges to 0 uniformly on Y as n→ ∞. Therefore,

|g(vn; t,wn)− g(v; t,w)|V ∗
σ
→ 0 as n→ ∞.

Thus, we have (g1).
We next show (g2). In a similar calculation to the above, we get

|⟨g(v; t,w1)− g(v; t,w2), z⟩σ| ≤ k2|v|L∞(0,T ;L4(Ω)N )|w1 −w2|V σ |z|V σ , ∀z ∈ V σ,
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where k2 is a positive constant independent of v ∈ D0 and wi ∈ V σ (i = 1, 2). This
implies that

|g(v; t,w1)− g(v; t,w2)|V ∗
σ
≤ k4|w1 −w2|V σ , with k4 := k3 sup

v ∈ D0

|v|L∞(0,T ;V σ),

where k3 is some positive constant, dependent on k2 and the constant of the embedding
V ↪→ L4(Ω). Thus, (g2) holds, too.

(g3) is trivially satisfied. Therefore, assumption (g) is fulfilled. Thus, the proof of
Lemma 4.3 is complete. □

Proof of Proposition 4.2. From (4.18) and (4.19) of the definitions of ψt and φt we see
the following characterizations of their subdifferentials:

(i) Let v ∈ D0 and t ∈ [0, T ]. Then z∗ ∈ ∂∗ψ
t(v; z) if and only if z∗ ∈ V ∗

σ, z ∈ K(v; t)
and

τ0

∫
Ω

z(x) · (z(x)−w(x))dx+ ⟨−z∗, z −w⟩σ ≤ 0, ∀w ∈ K(v; t).

(ii) Let v ∈ D0 and t ∈ [0, T ]. Then ∂∗φ
t(v; ·) is singlevalued, linear, and bounded from

V σ into V ∗
σ and

⟨∂∗φt(v; z),w⟩σ =

∫
Ω

a(x, t,v(x, t))∇z(x) · ∇w(x)dx, ∀z,w ∈ V σ.

These characterizations show that the quasi-variational inequality (4.21) is described as{
∂∗ψ

t(u;u′(t)) + ∂∗φ
t(u;u(t)) + g(u; t,u(t)) ∋ f(t) in V ∗

σ, a.a. t ∈ (0, T ),

u(0) = u0 in V σ.

Therefore, on account of Theorem 2.1, we obtain Proposition 4.2. □
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[3] M. Aso, M. Frémond and N. Kenmochi, Phase change problems with temperature
dependent constraints for the volume fraction velocities, Nonlinear Anal., 60 (2005),
1003–1023.

[4] H. Attouch, Variational Convergence for Functions and Operators, Pitman Advanced
Publishing Program, Boston-London-Melbourne, 1984.

[5] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach spaces, No-
ordhoff, Leyden, 1976.

[6] V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces,
Springer Monographs in Mathematics, 2010.
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