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Abstract. In our recent work [1] we discussed free boundary problems with bound-
ary and initial functions depending on some parameter and obtained differentiability of
solutions with respect to the parameter. This paper is its sequel and to give more precise
estimate for the derivatives by applying the classical theory for weak solutions of differen-
tial equations of parabolic type. This result will be applicable to analysis of our two-scale
model describing moisture transport appearing in concrete carbonation process.
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1 Introduction and main result

In our previous work [1] we considered the following free boundary problem {(1.1)-(1.6)}
denoted by P(X) for A € (0,1). We note that the boundary and initial functions of P(\)
depend on the parameter A € (0,1). For A € (0,1) P()\) is to find a curve z = s(t) on
[0,7] and a function u on the set Q4(T") := {(t,z) : 0 <t < T, s(t) <z < L}, T > 0,
such that

potty — kg, = 0in Qy(T),

u(t, L) = h(\t) for t € (0,T),

Fualt,5(1)) = (pu — pou(t, s(8))se() for ¢ € (0,7),
si(t) = a(u(t, s(t)) — @(s(t))) for t € (0,T),

s(0) = so(A),

w(0,2) = ug(\, ) for x € [so(N), L],

e N N e R
—_ = = = e
S Ot = W N
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where p,, pw, k and a are given positive constants and ¢ is a given continuous function
on R. Also, for each A € (0,1), h(\) = h(),-) is a given function on (0,7, so(\) € [0, L)
is a constant and ug(A,-) is a given function on [so(A), L].

The problem P()\) was originally proposed by Sato-Aiki-Murase-Shirakawa [4, 11] as
a mathematical model describing water adsorption in concrete carbonation process and
studied in [3, 2, 5, 9, 8]. Its physical interpretation is mentioned in these papers. Moreover,
in case A is varying over the interval (0, 1), we can obtain a solution (s(\),u(\)) of P(X)
for each A € (0,1). Accordingly, by regarding s (resp. u) as a function of A and ¢ (resp.
A, t and x) we established continuity, measurability and differentiability of s and u with
respect to A in [6, 7, 1]. In these results, the example of A is mentioned.

The aim of this paper is to establish an estimate for maximum of derivatives of solu-
tions to P(\) with respect to A under some suitable conditions for h, sy and ug, when A
varies in (0, 1).

This paper is organized as follows: In Section 2 we state our main theorem concerned
with the maximum of derivatives of s and u with respect to A € (0,1). We already
proved that the derivative of u is a weak solution of a linear parabolic problem so that
by applying a classical theory for differential equations of parabolic type we can obtain
the estimate for the maximum. In Section 3 we recall our previous results and some basic
properties concerned with the theory for weak solutions. Finally, a proof of the theorem
will be given.

2 A main result

First, in order to recall our previous results, we give a list of assumptions as follows:
(A1) T, k and a are positive constants.
(A2) p € C3(R)NW?2>®(R), o =0 on (—00,0], p < 1on R, ¢ > 0on (0,L]. Also, we
denote by ¢ the primitive function of ¢ with ¢(0) = 0 and put Cy, = [¢|peor) +|@"| Lo (r)-
(A3) h(:= h(At)) € L>=(0,1;Wh2(0,T)) with 0 < h(A,-) < h* on (0,7T) for any
A € (0,1), where h* is a positive constant satisfying h* < ¢(L).
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(A4) Two positive constants p,, and p, satisfy
Pw > 2ps,  pu > po(Co+2),  9aLpl < kpy.

(A5) sg € L*(0,1) and 0 < so(\) < L — £y for any A € (0,1), where ¢, is a positive
constant. Also, ug is defined on the set {(A, z)|A € (0,1),z € (so(N), L)} and for each
A€ (0,1) ug(\) € Wh?(so(N), L) such that

|u0(/\)|W1!2(50()\),L) S CO7UO()\,L) = h(O, /\) and 0 S UO()\) S 1 on [80(/\), L] for A € (0, ].),
where Cj is a positive constant.

Here, we define a solution of P(\) for each A € (0, 1).

Definition 2.1. For 7> 0 and A € (0,1), let s and u be functions on [0, 7] and Q4(T),
respectively. We call that a pair (s,u) is a solution of P(\) on [0,7] if the conditions
(S1)-(S6) hold:

(S1) s € WhH=(0,T), 0 < s < Lon [0,T], u € L®(Qs(T)), us, upr € L*(Qs(T)) and
() 120000 € L=(0.T).
S2) pyus — kug, = 0 ae. on Q4(T).
u(t, L) = h(\,t) for a.e. t € [0, 7).
ku,(t,s(t)) = (pw — poul(t, s(t))) si(t) for a.e. t € [0,T].
s(t) = alu(t,s(t)) — (,0( (t))) for a.e. t € [0,T].
5(0) = so(A), u(0, ) = ug(A, x) for = € [so(N), L].

Theorem 2.1 is concerned with the existence and the uniqueness of a solution of P(\)
on [0, 7.

Theorem 2.1. (c¢f. [2, Theorem 4.1]) Assume (A1)-(A5). Then, for any X € (0,1) there
exists a unique solution (s,u) of P(A) on [0,T] such that

0<u<1lae onQsT),0<s<s,0nl0,T] and |s;] < a a.e. on [0,T], (2.1)

where s, 1s a positive constant satisfying s, < L which does not depend on .

From Theorem 2.1 we can denote a solution of P(\) by (s(A, ), u(A, -, -)) for each A €
(0,1). For simplicity, we sometimes write s(A) = s(A,-) and u(\) = u(A, -, ). Moreover,
in order to give a statement on differentiability we introduce the following notation and
change of variables

a(\ t,y) = u(\ t,0(N\y)) for y € (0,T) x [0,1], (2.2)

where o(\,y) = (1 — y)s(\, t) + yL. By using (2.2), P()\) becomes the following problem
on the cylindrical domain Q(T") := (0,7") x (0, 1):

PN - i) = P o, e
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a(\, t,1) = h(\t) for t € [0,T], (2.4)
%M Uy (N, 1,0) = (pw — poti(A,t,0))s:(A, 1) for ¢ € [0,T], (2.5)
se(A\t) = a(a(A, t,0) — @(s(A 1)) for t € [0,T7, (2.6)

s(A,0) = so(A), a(A, 0,y) = u(0,0(X, y)) = to(A,y) on [0, 1]. (2.7)

Remark 2.1. For 7" > 0 and A € (0,1), let s(\) and u(\) be functions on [0,7] and
Qs (T), respectively and define a function @(A\) on Q(7") by (2.2). The pair (s(A),u(N))
is a solution of P(\) if and only if (S’1) and (S’2) hold:

(S’1) s(\) € Wh(0,7),0 < s(\) < Lae. on[0,T], a(\) € WH0,T; L*(0,1)) N
L>(0,T; H'(0,1)) N L>(Q(T)) N L*(0,T; H*(0,1)).

(S2) (2.3)-(2.7) hold.
Hence, if (A1) — (A5) hold, then for any A € (0, 1) it holds that 0 < a(\) < 1 a.e. Q(T)
and 0 < s(A) < s, on [0, 7], where s, is defined in Theorem 2.1.

The next theorem guarantees differentiability of s and u with respect to A.

Theorem 2.2. (c¢f. [1, Theorem 2/) Assume (A1) — (A5) hold. Let A € (0,1) and
(s(A),u(A)) be a solution of P(X) on [0,T] and u(\) be a function decided from u(\) by
(2.2). If h, so and ug satisfy

Oh

O o 1. L2
a L7 (0, 1; WH2(0,T)), (2.8)
and 9 Dug
;A" € L2(0,1),u0 € L¥(0, 1, W(0, L)), 5L € L2(0,1; LX(0, L)), (2.9)
then for a.e. A € (0,1) it holds
Js 1,2 ou 2 2 1
By ew20.1), 20y e Co.71L20.1) N 0.7 0. ).

Moreover, there exists a positive constant C which depends on py, pw, k, a, L, Cy,, £y and
Cy such that

0s ou ou
—(A)‘ + (V) +157 (M)
oA W12(0,T) oA C([0,T};L2(0,1)) 2 L2(0,T;H(0,1))
880 auo oh
<C —(A)\ + 120 o <A>\ )
o\ o\ L2(s0(N) O w1.2(0,T)

Now, we provide a main result of this paper.

Theorem 2.3. Assume (A1) — (A5), (2.8) and (2.9). If ug and h satisfy

oh
o € L=((0,1) x (0.7)), (2.10)
and 5
T30 € L0, 1), up € WH2((0,1) x (0, L)), (2.11)

O
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then it holds that

% € L>((0,1) x Q(T)) s € L>((0,1) x (0,7)) (2.12)
o\ ’ TONOt ’ e '
~ 2
Here, % and ' 07 15 estimated by a positive constant de-
OX| Lo ((0,1)x@(1) ONIE| Lo (0,1)x0.7)

pending on data appearing in the assumption.

3 Known results

First, in order to recall a result concerned with derivatives of u with respect to A we
introduce the following problem P(\) = {(3.1) — (3.5)}:

k

pulie(A) — mﬁyy(k)

s i), - gs()

= muyy(k) L= s\ 5:(A) + T(/\)uy(A)

pll= sV,

+ L—sV)? Uy (N)$(N) in Q(T), (3.1)
(A t,1) = hy(\ t) for a.e. t € [0,T], (3.2)
%Mayo\, t,0) = _mé“’ t)iy (A, t,0) + pwsdi(A, 1)

— puSt(A, )N, t,0) — pya(A, t,0)8(t) for a.e. t € [0,7], (3.3)

S\ t) = a(u(At,0) — @' (s(A\, 1)5(A, 1)) for ae. t €[0,T],5(N 0) = sor(N), (3.4)

ﬁ’(}‘v 07 y) = Uo)\()\, U<>\7 y)) + (1 - y)SO)\(AJ y>u0£<)‘7 O-(Aa y)) for a.e. ye (07 1) (35>
In the system above we used following notation:

('3u0 ()\)
oA

880<>\)

oA '

= Sox(N), 9

= wupx(A), and = hy(\,-).

Next, we define a weak solution of P()) on [0, 7] as follows:

Definition 3.1. For T > 0 and A € (0,1) let $(\) and 4(X\) be functions on [0,T] and
Q(T), respectively. We call that the pair (3(\),4(N)) is a weak solution of P(\) on [0,T]
if the following conditions hold:

(W1) 3(\) € WH2(0,T) and u(N) € C([0,T); L*(0,1)) N L*(0,T; H*(0,1)).

(W2) For anyn € W2(0,T; L*(0,1))NL*(0,T; H*(0,1)) withn(T) = 0 and n(t,1) =0
fort € [0,T], it holds that
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CIJ>

:/ Polio(A dy+/ / — s uyy()\)ndydt

po(1 — )iy, (M) T po(l = y)s(N)
/ / 0 s (N ndydt + / L—uy(k)ndydt
y)

L —s(X\) 0
po(1 —y)si(A R
v [ ] e s

(V)
where (A, y) = uoa(A, (A, y)) + woe (A, (A, ) (1 — y)soa (A, y) for a.e. y € (0,1).

(W3) (3.2) and (3.4) hold.

We have already proved:

Lemma 3.1. (¢f. [1, Theorem 2]) Under the same assumption as in Theorem 2.2 the

pair (sx(N), ix(N)) is a weak solution of P(\) for a.e. X € (0,1).

We note that (3.1) is a linear differential equation of parabolic type. Accordingly,
our main theorem, Theorem 2.3, is a direct consequence of [10, Theorem 7.1 in Chapter
3]. However, since our boundary condition is different from that of [10, Theorem 7.1 in

Chapter 3], we provide its complete proof for reader’s convenient.

Here, we introduce function spaces and show a useful inequality as a lemma. For sim-
plicity, we put H = L?(0,1), X = {z € W'?(0,1)|2(1) = 0}, and V(T) = L>(0,T; H) N

L?(0,T; X) for any T > 0. Also, we denote their norms as follows;

1
12 = (/ (2[2dy) /2 for = € H, |2|x = |2, for = € X,

0
|Z|V(T) = ‘Z|LOO(O7T;H) + |Zy‘L2(Q(T)) for z € V(T)
Lemma 3.2. ([10, (3.8) in Chapter 2]) The following inequality holds.
12| Loy < |2|viry for z € V(T) and ¢ = 5,6.

Proof. Easily, we obtain

1
| teldyar < [ A1y
Q(T) om Jo Oy
T 1
< [0 [ 1aPlefle Brdude
0 0

S |Z‘?/(T) for z < V(T)
Similarly, we can obtain (3.6) for ¢ = 5.

At the end of this section we show a property of weak solutions.

(3.6)
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Lemma 3.3. ([10, (7.6) in Chapter 3]) For any X € (0,1) let (8,4) be a weak solution

of ID()\) If 7 = max{|ha(A)|Le(0/), [tor(A)|zoo0,2) + [Soa(A)|[t0e(A) L0,y } =2 Mo, then
it holds:

t1 1 v 1 _
+/ / Mayg[a —j]tdydt  for0<t <T,
0

where [r]t = max{r,0} forr € R.

4 Estimate for maximum of the derivatives

In this section we suppose that the assumption of Theorem 2.3 always holds and shall
prove it in a similar way to that of [10, Theorem 7.1 in Chapter 3]. The proof is rather
long we divide it to several lemmas.
First, let (s,u) be a solution of P()\), @ be a function defined by (2.2), § = 25()\) and
4

i = 2%()\), and denote the right hand side of (3.1) by Y _ f;.
i=1
Lemma 4.1. For each i = 1,2,3,4, f; € L*(0,T; H).
Proof. First, by (2.1) it is easy to see that
< 2k N~ <« P s .
|fi)|a < m|3(t)||uyy(t)\m o) < - S*|St(t)||uy(t)|H,

o0l < Ol L) < SOl Ol for ae. t€[0,7)

Here, (W1) and (S’1) imply that f; € L*(0,T; H) for i = 1,2, 3, 4. O

Next, we write the third term and the sum of fourth to sixth terms in the left hand
side of (3.7) as Io(t1) and Sp(t1), respectively. Also, we put
A;(t) ={y € (0,1)|u(t,y) > 5} for t € [0,T] and j € R.
Lemma 4.2. There exists a positive constant Cy independent of j and ty such that

k t1 . t1 .
ot +5alt) = ~55 [ (O rtt=2Cs [ 14,01t for 0 < 0 < T = mo+1,
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Proof. Let j > mg + 1. First, by (2.5), (A4) and (2.1) we see that
el =1 [ 1.0 51— ()t

h apw o0 X .
</ 'L aPulilimo) 4 ) _ jia

s,
< jKl/ [a(t,0) — j]*dt for0<t, <T, (4.1)
0
where K, = 2Pelli=om)
L — s,
Next, by (3.4) we observe that
t1
Su(t) = [ (0usi(0) = pusu(D)(1,0) = 0, 0)5(0)) a.0) — 1)
0
t1
—/ (a(pw — puia(t,0)) — pysi(t)) alt, 0)[a(t, 0) — j]*dt (4.2)
0
t1
= [ alou = (. 0) ()50 a2, 0) ~ )
0
:Ijl(tl) + IQ(tl) for 0 S tl S T.
Here, by putting po = pw — 2p, > 0 we note that
t1
R(t) = [ (alou = palt,0) = puss(O)(alt,0) = 1 + slat,0) ~ )
0
t1
2/ apol[it(t,0) — jIH P+ jla(t,0) — j])dt  for 0 <t < T, (4.3)
0
and
t1
R0 < [ alpn = pat ) (O30 a(t.0) 51
t1
< / apuCll8| o [a(t,0) — jTHdE for 0< b <T. (4.4)
0
From (4.2) ~ (4.4) it follows that
Io(tl) + So(tl)
t1
>+ Ko) [ (a(e.0) =gl
> — j(Ki + K>) / / \[u(t,y) — jl; |dydt
G2(Ky + Ky)?L? koo[m 12
> - LIS BPL [P sl - o [ i)~ sl for0 < <7 (45)
where Ky = ap,Cy|5|p0r). Thus, we have proved this lemma. O
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For simplicity we put f = 375, fi.

Lemma 4.3. There exists a positive constant Cy independent of j and t such that
A . 2
4 — J]+|V(t1)

t1
<Colflrzommty e — 31 oy + Cod’( / |A;(0)|dt)? for 0 <ty < T,5>mg+ 1.
0
(4.6)

Proof. Let j > mg+ 1. Thanks to Lemmas 3.3 and 4.2 we have
o [ o) — %Py + g [ 1030) = T
ngCl/ ]dt+//f t) —j]Tdydt for 0 <t <T.

By elementary calculations we see that

//f t) — 4T dydt

<([" [ avaryr [ [ ac)
// ()P dydt) 3/5//A(t AP+ 57)dydt)*?

t1
<Ulorant (( [ |[a<t>—j]+|5dydt>2/5+f</ A1) for0 <t <
Q(t1) 0

|5/2dydt>2/5

From these inequalities and Lemma 3.2 we obtain

t1

o [ )~ Py + g [ a0~ 5
t1
SJ'Q(Clt? At | fle20,1:m) t}/m)(/ |A;(t)|dt)*/® + ‘f\LQ(mT;H)?ﬁ/lO(/( | [a(t) — j]F Pdydt)*®
0 Q(t1
t1
<j2Ks( / A (0)]dt) + | flreozanty i) — 51 [, for 0 <t < T
0

where KQ = 01T3/5 + ’f’LQ(OTH Tl/lo
Here, by putting 1o = min{2, -5} and Cy = (1 + K>)/p0, we get (4.6). O

Now, we give a proof of Theorem 2.3.

Proof of Theorem 2.3. First, we choose T7 > 0 such that

1
CZ|f|L2(0,T;H)T11/1O < 5
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By Lemma 4.3 it is clear that
T
= 31 vy < o [ 145010 for = mo + 1.
0
where C3 = +/2C5.

Let m; > mo+1 and j, = (2—279)m, for ¢ =0,1,2,---. Accordingly, by Lemma 3.2
we see that

Gt — o) / AL (D)) <( /Q o 0) = i) Py

§|[ﬁ<t) - jq]+|V(T1)

T
<Cyjq( / |Aj, (£)]dt)'/? for g =0,1,2,---, (4.7)
0
and
Ty T
([ 1A 0ty < 4y 20 / A5, (D]d0)" for g =0,1,2,--
0 0
Here, we define a sequence {a,} by o, = fo (t)|dt)"/® for ¢ = 0,1,2,---. Easily, we
obtain

Qg1 < 4C5 - 2‘104;“/5 for g =0,1,2,---

Similarly to (4.7), we have

(m1 — (mo+1))(/0 A, (1)]dt) /% < Cg(mo+1)(/o A1 (D10 < Colmy+ DT,

and
< 03(m0 -+ 1)

Qg > T11/5

ml—mo—l

For a positive number N we put m; = N(mg + 1) and obtain

C
. 1T11/5,ozq+1 <40y - 290l for ¢ = 0,1,2,-- - .

ap <

By applying [10, Lemma 5.6 in Chapter 2] we infer that if ap < (403) 5272% then a,; — 0

as ¢ — oo. Hence, by taking N > 1+ C5T,/°(4C3)%2%, we get fo |A2m1|dt = 0, namely,

@ < 2my a.e. on Q(T7). Since the choice of T is independent of mg, by repeating the

argument above we can get an estimate for the maximum of 4 on Q(7"). Moreover, we
can get the same estimate for —u. Thus, we conclude that @ € L>(Q(T)).

Finally, (3.4) guarantees that s € W1>(0,T). O
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