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1 Introduction and main result

In our previous work [1] we considered the following free boundary problem {(1.1)-(1.6)}
denoted by P(λ) for λ ∈ (0, 1). We note that the boundary and initial functions of P(λ)
depend on the parameter λ ∈ (0, 1). For λ ∈ (0, 1) P(λ) is to find a curve x = s(t) on
[0, T ] and a function u on the set Qs(T ) := {(t, x) : 0 < t < T, s(t) < x < L}, T > 0,
such that

ρvut − kuxx = 0 in Qs(T ), (1.1)

u(t, L) = h(λ, t) for t ∈ (0, T ), (1.2)

kux(t, s(t)) = (ρw − ρvu(t, s(t)))st(t) for t ∈ (0, T ), (1.3)

st(t) = a(u(t, s(t))− φ(s(t))) for t ∈ (0, T ), (1.4)

s(0) = s0(λ), (1.5)

u(0, x) = u0(λ, x) for x ∈ [s0(λ), L], (1.6)

where ρv, ρw, k and a are given positive constants and φ is a given continuous function
on R. Also, for each λ ∈ (0, 1), h(λ) = h(λ, ·) is a given function on (0, T ), s0(λ) ∈ [0, L)
is a constant and u0(λ, ·) is a given function on [s0(λ), L].

The problem P(λ) was originally proposed by Sato-Aiki-Murase-Shirakawa [4, 11] as
a mathematical model describing water adsorption in concrete carbonation process and
studied in [3, 2, 5, 9, 8]. Its physical interpretation is mentioned in these papers. Moreover,
in case λ is varying over the interval (0, 1), we can obtain a solution (s(λ), u(λ)) of P(λ)
for each λ ∈ (0, 1). Accordingly, by regarding s (resp. u) as a function of λ and t (resp.
λ, t and x) we established continuity, measurability and differentiability of s and u with
respect to λ in [6, 7, 1]. In these results, the example of λ is mentioned.

The aim of this paper is to establish an estimate for maximum of derivatives of solu-
tions to P(λ) with respect to λ under some suitable conditions for h, s0 and u0, when λ
varies in (0, 1).

This paper is organized as follows: In Section 2 we state our main theorem concerned
with the maximum of derivatives of s and u with respect to λ ∈ (0, 1). We already
proved that the derivative of u is a weak solution of a linear parabolic problem so that
by applying a classical theory for differential equations of parabolic type we can obtain
the estimate for the maximum. In Section 3 we recall our previous results and some basic
properties concerned with the theory for weak solutions. Finally, a proof of the theorem
will be given.

2 A main result

First, in order to recall our previous results, we give a list of assumptions as follows:
(A1) T , k and a are positive constants.
(A2) φ ∈ C2(R)∩W 2,∞(R), φ = 0 on (−∞, 0], φ ≤ 1 on R, φ′ > 0 on (0, L]. Also, we

denote by φ̂ the primitive function of φ with φ̂(0) = 0 and put Cφ = |φ′|L∞(R)+ |φ′′|L∞(R).
(A3) h(:= h(λ, t)) ∈ L∞(0, 1;W 1,2(0, T )) with 0 ≤ h(λ, ·) ≤ h∗ on (0, T ) for any

λ ∈ (0, 1), where h∗ is a positive constant satisfying h∗ < φ(L).
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(A4) Two positive constants ρw and ρv satisfy

ρw > 2ρv, ρw ≥ ρv(Cφ + 2), 9aLρ2v ≤ kρw.

(A5) s0 ∈ L2(0, 1) and 0 ≤ s0(λ) ≤ L − ℓ0 for any λ ∈ (0, 1), where ℓ0 is a positive
constant. Also, u0 is defined on the set {(λ, x)|λ ∈ (0, 1), x ∈ (s0(λ), L)} and for each
λ ∈ (0, 1) u0(λ) ∈ W 1,2(s0(λ), L) such that

|u0(λ)|W 1,2(s0(λ),L) ≤ C0, u0(λ, L) = h(0, λ) and 0 ≤ u0(λ) ≤ 1 on [s0(λ), L] for λ ∈ (0, 1),

where C0 is a positive constant.

Here, we define a solution of P(λ) for each λ ∈ (0, 1).

Definition 2.1. For T > 0 and λ ∈ (0, 1), let s and u be functions on [0, T ] and Qs(T ),
respectively. We call that a pair (s, u) is a solution of P(λ) on [0, T ] if the conditions
(S1)-(S6) hold:

(S1) s ∈ W 1,∞(0, T ), 0 ≤ s < L on [0, T ], u ∈ L∞(Qs(T )), ut, uxx ∈ L2(Qs(T )) and
|ux(·)|L2(s(·),L) ∈ L∞(0, T ).

(S2) ρvut − kuxx = 0 a.e. on Qs(T ).
(S3) u(t, L) = h(λ, t) for a.e. t ∈ [0, T ].
(S4) kux(t, s(t)) = (ρw − ρvu(t, s(t))) st(t) for a.e. t ∈ [0, T ].
(S5) st(t) = a(u(t, s(t))− φ(s(t))) for a.e. t ∈ [0, T ].
(S6) s(0) = s0(λ), u(0, x) = u0(λ, x) for x ∈ [s0(λ), L].

Theorem 2.1 is concerned with the existence and the uniqueness of a solution of P(λ)
on [0, T ].

Theorem 2.1. (cf. [2, Theorem 4.1]) Assume (A1)-(A5). Then, for any λ ∈ (0, 1) there
exists a unique solution (s, u) of P(λ) on [0, T ] such that

0 ≤ u ≤ 1 a.e. on Qs(T ), 0 ≤ s ≤ s∗ on [0, T ] and |st| ≤ a a.e. on [0, T ], (2.1)

where s∗ is a positive constant satisfying s∗ < L which does not depend on λ.

From Theorem 2.1 we can denote a solution of P(λ) by (s(λ, ·), u(λ, ·, ·)) for each λ ∈
(0, 1). For simplicity, we sometimes write s(λ) = s(λ, ·) and u(λ) = u(λ, ·, ·). Moreover,
in order to give a statement on differentiability we introduce the following notation and
change of variables

ũ(λ, t, y) = u(λ, t, σ(λ, y)) for y ∈ (0, T )× [0, 1], (2.2)

where σ(λ, y) = (1− y)s(λ, t) + yL. By using (2.2), P(λ) becomes the following problem
on the cylindrical domain Q(T ) := (0, T )× (0, 1):

ρvũt(λ)−
k

(L− s(λ))2
ũyy(λ) =

ρv(1− y)st(λ)

L− s(λ)
ũy(λ) on Q(T ), (2.3)
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ũ(λ, t, 1) = h(λ, t) for t ∈ [0, T ], (2.4)

k

L− s(λ, t)
ũy(λ, t, 0) = (ρw − ρvũ(λ, t, 0))st(λ, t) for t ∈ [0, T ], (2.5)

st(λ, t) = a(ũ(λ, t, 0)− φ(s(λ, t))) for t ∈ [0, T ], (2.6)

s(λ, 0) = s0(λ), ũ(λ, 0, y) = u(0, σ(λ, y)) =: ũ0(λ, y) on [0, 1]. (2.7)

Remark 2.1. For T > 0 and λ ∈ (0, 1), let s(λ) and u(λ) be functions on [0, T ] and
Qs(λ)(T ), respectively and define a function ũ(λ) on Q(T ) by (2.2). The pair (s(λ), u(λ))
is a solution of P(λ) if and only if (S’1) and (S’2) hold:

(S’1) s(λ) ∈ W 1,∞(0, T ), 0 ≤ s(λ) < L a.e. on [0, T ], ũ(λ) ∈ W 1,2(0, T ;L2(0, 1)) ∩
L∞(0, T ;H1(0, 1)) ∩ L∞(Q(T )) ∩ L2(0, T ;H2(0, 1)).

(S’2) (2.3)-(2.7) hold.
Hence, if (A1) – (A5) hold, then for any λ ∈ (0, 1) it holds that 0 ≤ ũ(λ) ≤ 1 a.e. Q(T )
and 0 ≤ s(λ) ≤ s∗ on [0, T ], where s∗ is defined in Theorem 2.1.

The next theorem guarantees differentiability of s and u with respect to λ.

Theorem 2.2. (cf. [1, Theorem 2]) Assume (A1) – (A5) hold. Let λ ∈ (0, 1) and
(s(λ), u(λ)) be a solution of P(λ) on [0, T ] and ũ(λ) be a function decided from u(λ) by
(2.2). If h, s0 and u0 satisfy

∂h

∂λ
∈ L2(0, 1;W 1,2(0, T )), (2.8)

and
∂s0
∂λ

∈ L2(0, 1), u0 ∈ L∞(0, 1;W 1,2(0, L)),
∂u0

∂λ
∈ L2(0, 1;L2(0, L)), (2.9)

then for a.e. λ ∈ (0, 1) it holds

∂s

∂λ
(λ) ∈ W 1,2(0, T ),

∂ũ

∂λ
(λ) ∈ C([0, T ];L2(0, 1)) ∩ L2(0, T ;H1(0, 1)).

Moreover, there exists a positive constant C which depends on ρv, ρw, k, a, L, Cφ, ℓ0 and
C0 such that ∣∣∣∣∂s∂λ(λ)

∣∣∣∣
W 1,2(0,T )

+

∣∣∣∣∂ũ∂λ(λ)
∣∣∣∣
C([0,T ];L2(0,1))

+

∣∣∣∣∂ũ∂λ(λ)
∣∣∣∣
L2(0,T ;H1(0,1))

≤C(

∣∣∣∣∂s0∂λ
(λ)

∣∣∣∣+ ∣∣∣∣∂u0

∂λ
(λ)

∣∣∣∣
L2(s0(λ),L)

+

∣∣∣∣∂h∂λ(λ)
∣∣∣∣
W 1,2(0,T )

).

Now, we provide a main result of this paper.

Theorem 2.3. Assume (A1) – (A5), (2.8) and (2.9). If u0 and h satisfy

∂h

∂λ
∈ L∞((0, 1)× (0, T )), (2.10)

and
∂s0
∂λ

∈ L∞(0, 1), u0 ∈ W 1,∞((0, 1)× (0, L)), (2.11)
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then it holds that

∂ũ

∂λ
∈ L∞((0, 1)×Q(T )),

∂2s

∂λ∂t
∈ L∞((0, 1)× (0, T )). (2.12)

Here,

∣∣∣∣∂ũ∂λ
∣∣∣∣
L∞((0,1)×Q(T ))

and

∣∣∣∣ ∂2s

∂λ∂t

∣∣∣∣
L∞((0,1)×(0,T ))

is estimated by a positive constant de-

pending on data appearing in the assumption.

3 Known results

First, in order to recall a result concerned with derivatives of ũ with respect to λ we
introduce the following problem P̂(λ) = {(3.1)− (3.5)}:

ρvût(λ)−
k

(L− s(λ))2
ûyy(λ)

=
2kŝ(λ)

(L− s(λ))3
ũyy(λ) +

ρv(1− y)ũy(λ)

L− s(λ)
ŝt(λ) +

ρv(1− y)st(λ)

L− s(λ)
ûy(λ)

+
ρv(1− y)st(λ)

(L− s(λ))2
ũy(λ)ŝ(λ) in Q(T ), (3.1)

û(λ, t, 1) = hλ(λ, t) for a.e. t ∈ [0, T ], (3.2)

k

L− s(λ, t)
ûy(λ, t, 0) = − k

(L− s(λ, t))2
ŝ(λ, t)ũy(λ, t, 0) + ρwŝt(λ, t)

− ρvst(λ, t)û(λ, t, 0)− ρvũ(λ, t, 0)ŝt(t) for a.e. t ∈ [0, T ], (3.3)

ŝt(λ, t) = a(û(λ, t, 0)− φ′(s(λ, t))ŝ(λ, t)) for a.e. t ∈ [0, T ], ŝ(λ, 0) = s0λ(λ), (3.4)

û(λ, 0, y) = u0λ(λ, σ(λ, y)) + (1− y)s0λ(λ, y)u0x(λ, σ(λ, y)) for a.e. y ∈ (0, 1). (3.5)

In the system above we used following notation:

∂s0(λ)

∂λ
:= s0λ(λ),

∂u0(λ)

∂λ
:= u0λ(λ), and

∂h(λ, ·)
∂λ

:= hλ(λ, ·).

Next, we define a weak solution of P̂(λ) on [0, T ] as follows:

Definition 3.1. For T > 0 and λ ∈ (0, 1) let ŝ(λ) and û(λ) be functions on [0, T ] and
Q(T ), respectively. We call that the pair (ŝ(λ), û(λ)) is a weak solution of P̂(λ) on [0, T ]
if the following conditions hold:

(W1) ŝ(λ) ∈ W 1,2(0, T ) and û(λ) ∈ C([0, T ];L2(0, 1)) ∩ L2(0, T ;H1(0, 1)).
(W2) For any η ∈ W 1,2(0, T ;L2(0, 1))∩L2(0, T ;H1(0, 1)) with η(T ) = 0 and η(t, 1) = 0

for t ∈ [0, T ], it holds that

−
∫ T

0

∫ 1

0

ρvû(λ)ηtdydt+

∫ T

0

∫ 1

0

k

(L− s(λ))2
ûy(λ)ηydydt

−
∫ T

0

k

(L− s(λ))2
ŝ(λ)ũy(λ, ·, 0)η(·, 0)dt+

∫ T

0

ρwŝt(λ)η(·, 0)dt
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−
∫ T

0

ρvst(λ)û(λ, ·, 0)η(·, 0)dt−
∫ T

0

ρvũ(λ, ·, 0)ŝt(λ)η(·, 0)dt

=

∫ 1

0

ρvû0(λ)η(0)dy +

∫ T

0

∫ 1

0

2kŝ(λ)

(L− s(λ))3
ũyy(λ)ηdydt

+

∫ T

0

∫ 1

0

ρv(1− y)ũy(λ)

L− s(λ)
ŝt(λ)ηdydt+

∫ T

0

∫ 1

0

ρv(1− y)st(λ)

L− s(λ)
ûy(λ)ηdydt

+

∫ T

0

∫ 1

0

ρv(1− y)st(λ)

(L− s(λ))2
ũy(λ)ŝ(λ)ηdydt,

where û0(λ, y) = u0λ(λ, σ(λ, y)) + u0x(λ, σ(λ, y))(1− y)s0λ(λ, y) for a.e. y ∈ (0, 1).
(W3) (3.2) and (3.4) hold.

We have already proved:

Lemma 3.1. (cf. [1, Theorem 2]) Under the same assumption as in Theorem 2.2 the
pair (sλ(λ), ũλ(λ)) is a weak solution of P̂(λ) for a.e. λ ∈ (0, 1).

We note that (3.1) is a linear differential equation of parabolic type. Accordingly,
our main theorem, Theorem 2.3, is a direct consequence of [10, Theorem 7.1 in Chapter
3]. However, since our boundary condition is different from that of [10, Theorem 7.1 in
Chapter 3], we provide its complete proof for reader’s convenient.

Here, we introduce function spaces and show a useful inequality as a lemma. For sim-
plicity, we put H = L2(0, 1), X = {z ∈ W 1,2(0, 1)|z(1) = 0}, and V (T ) = L∞(0, T ;H) ∩
L2(0, T ;X) for any T > 0. Also, we denote their norms as follows;

|z|H = (

∫ 1

0

|z|2dy)1/2 for z ∈ H, |z|X = |zy|H for z ∈ X,

|z|V (T ) = |z|L∞(0,T ;H) + |zy|L2(Q(T )) for z ∈ V (T ).

Lemma 3.2. ([10, (3.8) in Chapter 2]) The following inequality holds.

|z|Lq(Q(T )) ≤ |z|V (T ) for z ∈ V (T ) and q = 5, 6. (3.6)

Proof. Easily, we obtain∫
Q(T )

|z|6dydt ≤
∫
Q(T )

z2(

∫ 1

0

| ∂
∂y

(z2)|dy)2dydt

≤
∫ T

0

∫ 1

0

|z|2|z|2H |zy|2Hdydt

≤ |z|6V (T ) for z ∈ V (T ).

Similarly, we can obtain (3.6) for q = 5.

At the end of this section we show a property of weak solutions.
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Lemma 3.3. ([10, (7.6) in Chapter 3]) For any λ ∈ (0, 1) let (ŝ, û) be a weak solution
of P̂(λ). If j ≥ max{|hλ(λ)|L∞(0,T ), |u0λ(λ)|L∞(0,L) + |s0λ(λ)||u0x(λ)|L∞(0,L)} =: m0, then
it holds:

ρv
2

∫ 1

0

|[û(t1)− j]+|2dy +
∫ t1

0

∫ 1

0

k

(L− s)2
ûy[û− j]+y dydt

−
∫ t1

0

k

(L− s)2
ŝũy(·, 0)[û(·, 0)− j]+dt+

∫ t1

0

ρwŝt[û(·, 0)− j]+dt

−
∫ t1

0

ρvstû(·, 0)[û(·, 0)− j]+dt−
∫ t1

0

ρvũ(·, 0)ŝt[û(·, 0)− j]+dt

=

∫ t1

0

∫ 1

0

2kŝ

(L− s)3
ũyy[û− j]+dydt (3.7)

+

∫ t1

0

∫ 1

0

ρv(1− y)ũy

L− s
ŝt[û− j]+dydt+

∫ t1

0

∫ 1

0

ρv(1− y)st
L− s

ûy[û− j]+dydt

+

∫ t1

0

∫ 1

0

ρv(1− y)st
(L− s)2

ũyŝ[û− j]+dydt for 0 ≤ t1 ≤ T,

where [r]+ = max{r, 0} for r ∈ R.

4 Estimate for maximum of the derivatives

In this section we suppose that the assumption of Theorem 2.3 always holds and shall
prove it in a similar way to that of [10, Theorem 7.1 in Chapter 3]. The proof is rather
long we divide it to several lemmas.

First, let (s, u) be a solution of P(λ), ũ be a function defined by (2.2), ŝ = ∂s
∂λ
(λ) and

û = ∂ũ
∂λ
(λ), and denote the right hand side of (3.1) by

4∑
i=1

fi.

Lemma 4.1. For each i = 1, 2, 3, 4, fi ∈ L2(0, T ;H).

Proof. First, by (2.1) it is easy to see that

|f1(t)|H ≤ 2k

(L− s∗)3
|ŝ(t)||ũyy(t)|H , |f2(t)|H ≤ ρv

L− s∗
|ŝt(t)||ũy(t)|H ,

|f3(t)|H ≤ aρv
L− s∗

|ûy(t)|H , |f4(t)|H ≤ aρv
(L− s∗)2

|ŝ(t)||ũy(t)|H for a.e. t ∈ [0, T ].

Here, (W1) and (S’1) imply that fi ∈ L2(0, T ;H) for i = 1, 2, 3, 4.

Next, we write the third term and the sum of fourth to sixth terms in the left hand
side of (3.7) as I0(t1) and S0(t1), respectively. Also, we put

Aj(t) = {y ∈ (0, 1)|û(t, y) ≥ j} for t ∈ [0, T ] and j ∈ R.

Lemma 4.2. There exists a positive constant C1 independent of j and t1 such that

I0(t1)+S0(t1) ≥ − k

2L2

∫ t1

0

|[û(t)−j]+y |2Hdt−j2C1

∫ t1

0

|Aj(t)|dt for 0 ≤ t1 ≤ T, j ≥ m0+1.
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Proof. Let j ≥ m0 + 1. First, by (2.5), (A4) and (2.1) we see that

|I0(t1)| = |
∫ t1

0

ŝ(t)

L− s(t)
[û(t, 0)− j]+(ρw − ρvũ(t, 0))st(t)dt|

≤ |
∫ t1

0

aρw|ŝ|L∞(0,T )

L− s∗
[û(t, 0)− j]+dt|

≤ jK1

∫ t1

0

[û(t, 0)− j]+dt for 0 ≤ t1 ≤ T, (4.1)

where K1 =
aρw|ŝ|L∞(0,T )

L− s∗
.

Next, by (3.4) we observe that

S0(t1) =

∫ t1

0

(ρwŝt(t)− ρvst(t)û(t, 0)− ρvũ(t, 0)ŝt(t)) [û(t, 0)− j]+dt

=

∫ t1

0

(a(ρw − ρvũ(t, 0))− ρvst(t)) û(t, 0)[û(t, 0)− j]+dt (4.2)

−
∫ t1

0

a(ρw − ρvũ(t, 0))φ
′(s(t))ŝ(t)[û(t, 0)− j]+dt

=:I1(t1) + I2(t1) for 0 ≤ t1 ≤ T.

Here, by putting ρ0 = ρw − 2ρv > 0 we note that

I1(t1) =

∫ t1

0

(a(ρw − ρvũ(t, 0))− ρvst(t))(|û(t, 0)− j]+|2 + j[û(t, 0)− j]+)dt

≥
∫ t1

0

aρ0(|û(t, 0)− j]+|2 + j[û(t, 0)− j]+)dt for 0 ≤ t1 ≤ T, (4.3)

and

|I2(t1)| ≤
∫ t1

0

a(ρw − ρvũ(t, 0))|φ′(s(t))||ŝ(t)|[û(t, 0)− j]+dt

≤
∫ t1

0

aρwCφ|ŝ|L∞(0,T )[û(t, 0)− j]+dt for 0 ≤ t1 ≤ T. (4.4)

From (4.2) ∼ (4.4) it follows that

I0(t1) + S0(t1)

≥− j(K1 +K2)

∫ t1

0

[û(t, 0)− j]+dt

≥− j(K1 +K2)

∫ t1

0

∫ 1

0

|[û(t, y)− j]+y |dydt

≥− j2(K1 +K2)
2L2

2k

∫ t1

0

|Aj(t)|dt−
k

2L2

∫ t1

0

|[û(t, y)− j]+y |2Hdt for 0 ≤ t1 ≤ T, (4.5)

where K2 = aρwCφ|ŝ|L∞(0,T ). Thus, we have proved this lemma.
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For simplicity we put f =
∑4

i=1 fi.

Lemma 4.3. There exists a positive constant C2 independent of j and t1 such that

|[û− j]+|2V (t1)

≤C2|f |L2(0,T ;H)t
1/10
1 |[û− j]+|2V (t1)

+ C2j
2(

∫ t1

0

|Aj(t)|dt)2/5 for 0 ≤ t1 ≤ T, j ≥ m0 + 1.

(4.6)

Proof. Let j ≥ m0 + 1. Thanks to Lemmas 3.3 and 4.2 we have

ρv
2

∫ 1

0

|[û(t1)− j]+|2dy + k

2L2

∫ t1

0

|[û(t)− j]+y |2Hdt

≤j2C1

∫ t1

0

|Aj(t)|dt+
∫ t1

0

∫ 1

0

f(t)[û(t)− j]+dydt for 0 ≤ t1 ≤ T.

By elementary calculations we see that∫ t1

0

∫ 1

0

f(t)[û(t)− j]+dydt

≤(

∫ t1

0

∫ 1

0

|f(t)|5/3dydt)3/5(
∫ t1

0

∫ 1

0

|[û(t)− j]+|5/2dydt)2/5

≤(

∫ t1

0

∫ 1

0

|f(t)|5/3dydt)3/5(
∫ t1

0

∫
Aj(t)

(|[û(t)− j]+|5 + j5)dydt)2/5

≤|f |L2(0,T ;H)t
1/10
1

(
(

∫
Q(t1)

|[û(t)− j]+|5dydt)2/5 + j2(

∫ t1

0

|Aj(t)|dt)2/5
)

for 0 ≤ t1 ≤ T.

From these inequalities and Lemma 3.2 we obtain

ρv
2

∫ 1

0

|[û(t1)− j]+|2dy + k

2L2

∫ t1

0

|[û(t)− j]+y |2Hdt

≤j2(C1t
3/5
1 + |f |L2(0,T ;H)t

1/10
1 )(

∫ t1

0

|Aj(t)|dt)2/5 + |f |L2(0,T ;H)t
1/10
1 (

∫
Q(t1)

|[û(t)− j]+|5dydt)2/5

≤j2K2(

∫ t1

0

|Aj(t)|dt)2/5 + |f |L2(0,T ;H)t
1/10
1 |[û(t)− j]+|2V (t1)

for 0 ≤ t1 ≤ T,

where K2 = C1T
3/5 + |f |L2(0,T ;H)T

1/10.
Here, by putting µ0 = min{ρv

2
, k
2L2} and C2 = (1 +K2)/µ0, we get (4.6).

Now, we give a proof of Theorem 2.3.

Proof of Theorem 2.3. First, we choose T1 > 0 such that

C2|f |L2(0,T ;H)T
1/10
1 ≤ 1

2
.
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By Lemma 4.3 it is clear that

|[û− j]+|V (T1) ≤ C3j(

∫ T1

0

|Aj(t)|dt)1/5 for j ≥ m0 + 1,

where C3 =
√
2C2.

Let m1 ≥ m0+1 and jq = (2− 2−q)m1 for q = 0, 1, 2, · · · . Accordingly, by Lemma 3.2
we see that

(jq+1 − jq)(

∫ T1

0

|Ajq+1(t)|dt)1/6 ≤(

∫
Q(T1)

|[û(t)− jq]
+|6dydt)1/6

≤|[û(t)− jq]
+|V (T1)

≤C3jq(

∫ T1

0

|Ajq(t)|dt)1/5 for q = 0, 1, 2, · · · , (4.7)

and

(

∫ T1

0

|Ajq+1(t)|dt)1/6 ≤ 4C3 · 2q(
∫ T1

0

|Ajq(t)|dt)1/5 for q = 0, 1, 2, · · · .

Here, we define a sequence {αq} by αq = (
∫ T1

0
|Ajq(t)|dt)1/6 for q = 0, 1, 2, · · · . Easily, we

obtain
αq+1 ≤ 4C3 · 2qα1+1/5

q for q = 0, 1, 2, · · · .

Similarly to (4.7), we have

(m1− (m0+1))(

∫ T1

0

|Am1(t)|dt)1/6 ≤ C3(m0+1)(

∫ T1

0

|Am0+1(t)|dt)1/5 ≤ C3(m0+1)T
1/5
1 ,

and

α0 ≤
C3(m0 + 1)

m1 −m0 − 1
T

1/5
1 .

For a positive number N we put m1 = N(m0 + 1) and obtain

α0 ≤
C3

N − 1
T

1/5
1 , αq+1 ≤ 4C3 · 2qα1+1/5

q for q = 0, 1, 2, · · · .

By applying [10, Lemma 5.6 in Chapter 2] we infer that if α0 ≤ (4C3)
−52−25, then αq → 0

as q → ∞. Hence, by taking N ≥ 1 + C3T
1/5
1 (4C3)

5225, we get
∫ T1

0
|A2m1|dt = 0, namely,

û ≤ 2m1 a.e. on Q(T1). Since the choice of T1 is independent of m0, by repeating the
argument above we can get an estimate for the maximum of û on Q(T ). Moreover, we
can get the same estimate for −û. Thus, we conclude that û ∈ L∞(Q(T )).

Finally, (3.4) guarantees that ŝ ∈ W 1,∞(0, T ).
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