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1 Introduction and main result

A two-scale model for moisture transport in concrete carbonation process was proposed
in [6, 12]. The model is a system of a nonlinear diffusion equation in a macro domain
Ω ⊂ R3 and free boundary problems in a micro domain (0, L) for a positive constant L.
Here, we note that boundary and initial data in the free boundary problem are given as
functions of a parameter λ ∈ Ω. In this paper we mainly deal with the free boundary
problem having the boundary and initial data which depend on the parameter varying in
an open interval (0, 1). Also, a result for the case the parameter varies in Ω is provided
in the last section.

Accordingly, we consider the following free boundary problem {(1.1)-(1.6)} denoted
by P(λ) for λ ∈ (0, 1). Unknown functions of P(λ) are a curve x = s(λ)(t) on [0, T ] and
a function u(λ) on the set Qs(λ)(T ) := {(t, x) : 0 < t < T, s(λ)(t) < x < L}, T > 0, such
that

ρvut(λ)− kuxx(λ) = 0 for t ∈ [0, T ] and x ∈ (s(λ)(t), L), (1.1)

u(λ)(t, L) = h(λ, t) for t ∈ (0, T ), (1.2)

kux(λ)(t, s(λ)(t)) = (ρw − ρvu(λ)(t, s(λ)(t)))st(λ)(t) for t ∈ (0, T ), (1.3)

st(λ)(t) = a(u(ξ)(t, s(λ)(t))− φ(s(λ)(t))) for t ∈ (0, T ), (1.4)

s(λ)(0) = s0(λ), (1.5)

u(λ)(0, x) = u0(λ, x) for x ∈ [s0(λ), L], (1.6)

where ρv, ρw, k and a are given positive constants and φ is a given continuous function
on R. Also, for each λ ∈ (0, 1), h = h(λ) = h(λ, ·) is a given function on (0, T ), s0(λ) is a
constant and u0(λ) is a given function on [s0(λ), L].

The problem {(1.1) − (1.6)} is originally proposed by Sato-Aiki-Murase-Shirakawa
[7, 16] as a mathematical model describing water adsorption in concrete carbonation
process, and the two-scale problem containing the free boundary problem is also proposed
in [6]. Also, in case λ is fixed, the existence of a solution locally in time and the uniqueness
were proved in [16], the global existence of the solution and a result on a large time
behavior were obtained in Aiki-Murase [5], and existence of periodic solutions in time was
shown in Aiki-Sato [8]. Moreover, in case λ is varying over Ω the problem P(λ) was already
studied. In this case, continuous and measurable properties of s and u with respect to λ
were investigated in Kumazaki [9, 10]. By applying these properties the local existence of
solutions in time and the uniqueness were obtained in Kumazaki-Aiki-Sato-Murase [12]
and the global existence was discussed in Kumazaki [11]. The aim of this paper is to
establish differentiability of solutions of P(λ) with respect to λ under some conditions for
h, s0 and u0, when λ varies in (0, 1).

In this paper, we proceed in the following way: In Section 2 we state our main theorem
concerned with the differentiability of s and u with respect to λ ∈ (0, 1). In the proof of the
theorem we shall show convergence of differential quotients of s and u with denominator
δ. In Section 3 we give some uniform estimates for the differential quotients with respect
to δ and in Section 4 we infer that the quotients are Cauchy sequences. Due to the results
obtained in Sections 3 and 4 we prove the convergences and the pair of the limits of the
quotients satisfies a new system in Section 5. At the end of this paper we provide a
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corollary of our main theorem. The corollary implies some estimates for derivative of s
in case the parameter λ takes values in Ω ⊂ R3.

2 Main results

First, in order to recall the existence and the uniqueness result for P(λ) we give a list of
assumptions as follows:

(A1) T , k and a are positive constants.

(A2) φ ∈ C2(R)∩W 2,∞(R), φ = 0 on (−∞, 0], φ ≤ 1 on R, φ′ > 0 on (0, L]. Also, we
denote by φ̂ the primitive function of φ with φ̂(0) = 0 and put Cφ = |φ′|L∞(R)+ |φ′′|L∞(R).

(A3) h(:= h(λ, t)) ∈ L∞(0, 1;W 1,2(0, T )) with 0 ≤ h(λ, ·) ≤ h∗ on (0, T ) for any
λ ∈ (0, 1), where h∗ is a positive constant satisfying h∗ < φ(L).

(A4) Two positive constants ρw and ρv satisfy

ρw > 2ρv, ρw ≥ ρv(Cφ + 2), 9aLρ2v ≤ kρw.

(A5) s0 ∈ L2(0, 1) and 0 ≤ s0(λ) ≤ L − ℓ0 for any λ ∈ (0, 1), where ℓ0 is a positive
constant, and u0(λ) ∈ W 1,2(0, L) such that |u0(λ)|W 1,2(s0(λ),L) ≤ C(u0) for any λ ∈ (0, 1),
where C(u0) is a positive constant, u0(λ)(L) = h(0, λ) and 0 ≤ u0(λ) ≤ 1 on [s0(λ), L] for
λ ∈ (0, 1).

Here, we define a solution of P(λ) for λ ∈ (0, 1).

Definiton 1. For T > 0 and λ ∈ (0, 1) let s(λ) and u(λ) be functions on [0, T ] and
Qs(λ)(T ), respectively. We call that a pair (s(λ), u(λ)) is a solution of P(λ) on [0, T ] if the
conditions (S1)-(S6) hold:

(S1) s(λ) ∈ W 1,∞(0, T ), 0 ≤ s(λ) < L on [0, T ], u(λ) ∈ L∞(Qs(λ)(T )), ut(λ), uxx(λ) ∈
L2(Qs(λ)(T )) and |ux(λ)(·)|L2(s(λ)(·),L) ∈ L∞(0, T ).

(S2) ρvut(λ)− kuxx(λ) = 0 a.e. on Qs(λ)(T ).

(S3) u(λ)(t, L) = h(λ, t) for a.e. t ∈ [0, T ].

(S4) kux(λ)(t, s(λ)(t)) = (ρw − ρvu(λ)(t, s(λ)(t))) st(λ)(t) for a.e. t ∈ [0, T ].

(S5) st(λ)(t) = a(u(λ)(t, s(λ)(t))− φ(s(λ)(t))) for a.e. t ∈ [0, T ].

(S6) s(λ)(0) = s0(λ), u(λ)(0, x) = u0(λ, x) for x ∈ [s0(λ), L].

Theorem 1 is concerned with the existence and the uniqueness of a solution of P(λ)
on [0, T ].

Theorem 1. (cf. [5, Theorem 4.1]) Assume (A1)-(A5). Then, for any λ ∈ (0, 1) there
exists a unique solution (s(λ), u(λ)) of P(λ) on [0, T ] such that

0 ≤ u(λ) ≤ 1 a.e. on Qs(λ)(T ), 0 ≤ s(λ) ≤ s∗ on [0, T ] and |st(λ)| ≤ a a.e. on [0, T ],
(2.1)

where s∗ is a positive constant satisfying s∗ < L which does not depend on λ.
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In order to give a statement of our main result we introduce the following notation
and change of variables

ũ(λ)(t, y) = u(t, (1− y)s(λ)(t) + yL) for y ∈ (0, T )× [0, 1]. (2.2)

Then, we transform P(λ) into the following problem on the cylindrical domain Q(T ) :=
(0, T )× (0, 1):

ρvũt(λ)−
k

(L− s(λ))2
ũyy(λ) =

ρv(1− y)st(λ)

L− s(λ)
ũy(λ) on Q(T ), (2.3)

ũ(λ)(t, 1) = h(λ, t) for t ∈ [0, T ], (2.4)

k

L− s(λ)(t)
ũy(λ)(t, 0) = (ρw − ρvũ(λ)(t, 0))st(λ)(t) for t ∈ [0, T ], (2.5)

st(λ)(t) = a(ũ(λ)(t, 0)− φ(s(λ)(t))) for t ∈ [0, T ], (2.6)

s(λ)(0) = s0(λ), ũ(λ)(0, y) = u(0, (1− y)s0(λ) + yL) =: ũ0(λ)(y) on [0, 1]. (2.7)

Remark 1. For T > 0 and λ ∈ (0, 1), let s(λ) and u(λ) be functions on [0, T ] and
Qs(λ)(T ), respectively and define a function ũ(λ) on Q(T ) by (2.2). The pair (s(λ), u(λ))
is a solution of P(λ) if and only if (S’1) and (S’2) hold:

(S’1) s(λ) ∈ W 1,∞(0, T ), 0 ≤ s(λ) < L a.e. on [0, T ], ũ(λ) ∈ W 1,2(0, T ;L2(0, 1)) ∩
L∞(0, T ;H1(0, 1)) ∩ L∞(Q(T )) ∩ L2(0, T ;H2(0, 1)).

(S’2) (2.3)-(2.7) hold.
Hence, if (A1) ∼ (A5) hold, then for any λ ∈ (0, 1) it holds that 0 ≤ ũ(λ) ≤ 1 a.e. Q(T )
and 0 ≤ s(λ) ≤ s∗ on [0, T ], where s∗ is defined in Theorem 1.

Furthermore, we introduce notation to discuss differentiability of s and u. For λ ∈
(0, 1) let (s(λ), u(λ)) be a solution of P(λ) on [0, T ] and ũ(λ) be a function decided from
u(λ) by (2.2). Also, for δ ∈ I(λ) := {δ′ ∈ R; 0 < λ + δ′ < 1} we define the following
differential quotients:

∆δs(λ)(t) :=
s(λ+ δ)(t)− s(λ)(t)

δ
, ∆δũ(λ)(t) :=

ũ(λ+ δ)(t)− ũ(λ)(t)

δ
,

∆δs0(λ) :=
s0(λ+ δ)− s0(λ)

δ
, ∆δũ0(λ) :=

ũ0(λ+ δ)− ũ0(λ)

δ
,

∆δh(λ, t) :=
h(λ+ δ, t)− h(λ, t)

δ
.

Also, the symbol ∂
∂λ

represents the derivative respect to λ and we put

∂s0(λ)

∂λ
:= s0λ(λ),

∂u0(λ)

∂λ
:= u0λ(λ),

∂h(λ, ·)
∂λ

:= hλ(λ, ·) and
∂

∂t

(
∂h(λ, ·)

∂λ

)
:= hλt(·, λ).

Now, we state our main theorem of this paper.

Theorem 2. Assume (A1) ∼ (A5) hold. Let λ ∈ (0, 1) and (s(λ), u(λ)) be a solution of
P(λ) on [0, T ] and ũ(λ) be a function decided from u(λ) by (2.2). If h, s0 and u0 satisfy

∂h

∂λ
∈ L2(0, 1;W 1,2(0, T )), (2.8)
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and
∂s0
∂λ

∈ L2(0, 1), u0 ∈ L∞(0, 1;W 1,2(0, L)),
∂u0

∂λ
∈ L2(0, 1;L2(0, L)), (2.9)

then for a.e. λ ∈ (0, 1) there exists a unique ŝ(λ) ∈ W 1,2(0, T ) and
û(λ) ∈ C([0, T ];L2(0, 1)) ∩ L2(0, T ;H1(0, 1)) such that (i), (ii) and (iii):
(i) it holds that

∆δs(λ) → ŝ(λ) in W 1,2(0, T ),

∆δũ(λ) → û(λ) in C([0, T ];L2(0, 1)) ∩ L2(0, T ;H1(0, 1)) as δ → 0.

(ii) There exists a positive constant C which depends on ρv, ρw, k, a, L, Cφ, ℓ0 and C(u0)
and is independent of δ such that

|ŝ(λ)|W 1,2(0,T ) + |û(λ)|C([0,T ];L2(0,1)) + |û(λ)|L2(0,T ;H1(0,1))

≤C(|s0λ(λ)|+ |u0λ(λ)|L2(s0(λ),L) + |hλ(λ)|W 1,2(0,T )).

(iii) (ŝ(λ), û(λ)) is a unique weak solution of the following problem P̂(λ) = {(2.10) −
(2.14)}:

ρvût(λ)−
k

(L− s(λ))2
ûyy(λ)

=
2kŝ(λ)

(L− s(λ))3
ũyy(λ) +

ρv(1− y)ũy(λ)

L− s(λ)
ŝt(λ) +

ρv(1− y)st(λ)

L− s(λ)
ûy(λ)

+
ρv(1− y)st(λ)

(L− s(λ))2
ũy(λ)ŝ(λ) in Q(T ), (2.10)

û(λ)(t, 1) = hλ(λ, t) for a.e. t ∈ [0, T ], (2.11)

k

L− s(λ)(t)
ûy(λ)(t, 0) = − k

(L− s(λ)(t))2
ŝ(λ)(t)ũy(λ)(t, 0) + ρwŝt(λ)(t)

− ρvst(λ)(t)û(λ)(t, 0)− ρvũ(λ)(t, 0)ŝt(t) for a.e. t ∈ [0, T ],
(2.12)

ŝt(λ)(t) = a(û(λ)(t, 0)− φ′(s(λ)(t))ŝ(λ)(t)) for a.e. t ∈ [0, T ], ŝ(λ)(0) = s0λ(λ), (2.13)

û(λ)(0, y) = u0λ(λ, σ(λ, y)) + u0x(λ, σ(λ, y))(1− y)s0λ(λ, y) for a.e. y ∈ (0, 1), (2.14)

where σ(λ, y) = (1− y)s0(λ) + yL for y ∈ (0, 1).

Here, we define a weak solution of P̂(λ) on [0, T ] as follows:

Definiton 2. For T > 0 and λ ∈ (0, 1) let ŝ(λ) be a function on [0, T ] and û(λ) be a
function on Q(T ). We call that the pair (ŝ(λ), û(λ)) is a weak solution of P̂(λ) on [0, T ]
if the following conditions hold:

(W1) ŝ(λ) ∈ W 1,2(0, T ) and û(λ) ∈ C([0, T ];L2(0, 1)) ∩ L2(0, T ;H1(0, 1)).
(W2) For any η ∈ W 1,2(0, T ;L2(0, 1))∩L2(0, T ;H1(0, 1)) with η(T ) = 0 and η(t, 1) = 0

for t ∈ [0, T ], it holds that

−
∫ T

0

∫ 1

0

ρvû(λ)(t)ηt(t)dydt+

∫ T

0

∫ 1

0

k

(L− s(λ)(t))2
ûy(λ)(t)ηy(t)dydt
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−
∫ T

0

k

(L− s(λ)(t))2
ŝ(λ)(t)ũy(λ)(t, 0)η(0)dt+

∫ T

0

ρwŝt(λ)(t)η(t, 0)dt

−
∫ T

0

ρvst(λ)(t)û(λ)(t, 0)η(t, 0)dt−
∫ T

0

ρvũ(λ)(t, 0)ŝt(λ)(t)η(t, 0)dt

=

∫ 1

0

ρvû0(λ)η(0)dy +

∫ T

0

∫ 1

0

2kŝ(λ)(t)

(L− s(λ)(t))3
ũyy(λ)(t)η(t)dydt

+

∫ T

0

∫ 1

0

ρv(1− y)ũy(λ)(t)

L− s(λ)(t)
ŝt(λ)(t)η(t)dydt

+

∫ T

0

∫ 1

0

ρv(1− y)st(λ)(t)

L− s(λ)(t)
ûy(λ)(t)η(t)dydt

+

∫ T

0

∫ 1

0

ρv(1− y)st(λ)(t)

(L− s(λ)(t))2
ũy(λ)(t)ŝ(λ)(t)η(t)dydt,

where û0(λ, y) = u0λ(λ, σ(λ, y)) + u0x(λ, σ(λ, y))(1− y)s0λ(λ, y) for a.e. y ∈ (0, 1).
(W3) (2.11) and (2.13) hold.

In the proof of Theorem 2 we shall show convergences of ∆δs(λ) and ∆δũ(λ) only for
δ > 0, since we can prove the convergences similarly when δ is negative.

Remark 2. (1) For φ the condition φ ∈ C1(R) ∩ W 1,∞(R) is sufficient to show the
measurability of solutions in [9, 10]. Here, in order to obtain more better regularities of
solutions we impose the stronger condition (A2) in Theorem 2.

(2) In Theorem 2 we say that the properties (i) ∼ (iii) hold for a.e. λ ∈ (0, 1). Namely,
it is necessary to show existence of a set N ⊂ (0, 1) such that meas(N) = 0 and (i) ∼ (iii)
hold on (0, 1) \N , where ”meas” indicates the Lebesgue measure in R. Choice of the set
N will be discussed in Lemma 2 in detail.

3 Uniform estimate with respect to δ

First, we provide a lemma concerned with estimates for the solution (s(λ), u(λ)) of P(λ)
with respect to λ.

Lemma 1. Let λ ∈ (0, 1) and (s(λ), u(λ)) be a solution of P(λ) on [0, T ] and ũ(λ) be
a function decided from u(λ) by (2.2). If (A1) ∼ (A5) hold then there exists a positive
constant K independent of λ such that

|ũt(λ)|L2(0,t;L2(0,1)) + |ũy(λ)(t)|L2(0,1) + |ũyy(λ)|L2(0,t;L2(0,1)) ≤ K for t ∈ [0, T ] and λ ∈ (0, 1).

Proof. Let λ ∈ (0, 1) and (s(λ), u(λ)) be a solution of P(λ) on [0, T ]. As showed in [5, The-
orem 2.4] and [12, Theorem 4.1] already, there exists a positive constant K1 independent
of λ ∈ (0, 1) such that

|ut(λ)|L2(Qs(λ)(t)) + |ux(λ)|L2(s(λ)(t),L) ≤ K1 for t ∈ [0, T ] and λ ∈ (0, 1).
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By changing variable as in (2.2), we observe that∫ t

0

∫ 1

0

|ũt(λ)(τ, y)|2dydτ

=

∫ t

0

∫ L

s(λ)(τ)

(
1

L− s(λ)(τ)

) ∣∣∣∣ut(λ)(τ, x) + ux(λ)(τ, x)
L− x

L− s(λ)(τ)
st(λ)(τ)

∣∣∣∣2dxdτ
≤ 2

∫ t

0

∫ L

s(λ)(τ)

(
1

L− s(λ)(τ)

)
|ut(λ)(t, x)|2dxdt

+ 2

∫ t

0

∫ L

s(λ)(τ)

(
1

L− s(λ)(τ)

) ∣∣∣∣ux(λ)(τ, x)
L− x

L− s(λ)(τ)
st(λ)(τ)

∣∣∣∣2dxdτ for t ∈ [0, T ],

(3.1)

and ∫ 1

0

|ũy(λ)(t)|2dy =

∫ L

s(λ)(t)

1

L− s(λ)(t)
|ux(λ)(t)(L− s(λ)(t))|2dxdt

=

∫ L

s(λ)(t)

(L− s(λ)(t))|ux(λ)(t)|2dxdt for t ∈ [0, T ]. (3.2)

Therefore, from (2.1), (3.1) and (3.2) we can find a positive constant K2 satisfying

|ũt(λ)|L2(0,t;L2(0,1)) + |ũy(λ)(t)|L2(0,1) ≤ K2 for t ∈ [0, T ] and λ ∈ (0, 1). (3.3)

Also, by (2.3), (3.3) and (2.1) we can infer that

|ũyy(λ)|L2(0,t;L2(0,1)) ≤ K3 for t ∈ [0, T ],

where K3 is a positive constant depending on a, s∗, L and K2. Therefore, by putting
K = K2 +K3 we see that Lemma 1 is true.

Next, we give a lemma concerned with convergence for differential quotients of bound-
ary and initial functions.

Lemma 2. If (A5), (2.8) and (2.9) hold, then there exists a set N ⊂ (0, 1) such that
meas(N) = 0 and for λ ∈ (0, 1) \N it holds that

∆δh(λ) → hλ(λ) in W 1,2(0, T ), (3.4)

∆δs0(λ) → s0λ(λ) in R, (3.5)

∆δũ0(λ, ·) → u0λ(λ, σ(λ, ·)) + (1− ·)s0λ(λ)u0x(λ, σ(λ, ·)) in L2(0, 1) as δ → 0, (3.6)

where σ(λ, y) = (1 − y)s0(λ) + yL for y ∈ (0, 1). Clearly, the sets {∆δh(λ)}δ∈I+(λ),
{∆δs0(λ)}δ∈I+(λ) and {∆δũ0(λ)}δ∈I+(λ) are bounded in L2(0, T ), R and L2(0, 1), respec-
tively, where I+(λ) := {δ > 0 : δ ∈ I(λ)}.

Proof. By (2.8) we see that h(λ, ·) is differentiable as a function from (0, 1) to W 1,2(0, T ).
Accordingly, (3.4) holds for a.e. λ ∈ (0, 1). Also, (3.5) holds for a.e. λ ∈ (0, 1).
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Let λ ∈ (0, 1) and δ ∈ I+(λ) . Then, we have

∆δũ0(λ, y)

=
1

δ
(u0(λ+ δ, σ(λ+ δ, y))− u0(λ, σ(λ+ δ, y))) +

1

δ
(u0(λ, σ(λ+ δ, y))− u0(λ, σ(λ, y)))

=:U δ
1 (λ, y) + U δ

2 (λ, y) for (λ, y) ∈ (0, 1)× (0, 1).

For simplicity, we put

U1(λ, y) := u0λ(λ, σ(λ, y)), U2(λ, y) := (1−y)s0λ(λ)u0x(λ, σ(λ, y)) for (λ, y) ∈ (0, 1)×(0, 1).

By using these notation we infer that

|U δ
1 (λ, ·)− U1(λ, ·)|L2(0,1)

≤|U δ
1 (λ, ·)− u0λ(λ, σ(λ+ δ, ·))|L2(0,1) + |u0λ(λ, σ(λ+ δ, ·))− U1(λ, ·)|L2(0,1) =: Iδ1 + Iδ2 .

Here, by changing variable we see that

Iδ1 ≤(

∫ 1

0

|1
δ
(u0(λ+ δ, σ(λ+ δ, y))− u0(λ, σ(λ+ δ, y)))− u0λ(λ, σ(λ+ δ, y))|2dy)1/2

=
1√

L− s0(λ+ δ)
(

∫ L

s0(λ+δ)

|1
δ
(u0(λ+ δ, x)− u0(λ, x))− u0λ(λ, x)|2dx)1/2. (3.7)

The assumption (2.9) implies that

(

∫ L

0

|1
δ
(u0(λ+ δ, x)− u0(λ, x))− u0λ(λ, x)|2dx)1/2 → 0 as δ → 0 for a.e. λ ∈ (0, 1).

Accordingly, it holds that Iδ1 → 0 as δ → 0. Similarly to (3.7), we have

Iδ2 ≤(

∫ 1

0

|u0λ(λ, σ(λ+ δ, y))− u0λ(λ, σ(λ, y))|2dy)1/2

=
1√

L− s0(λ)
(

∫ L

s0(λ)

|u0λ(λ, x+ (
L− x

L− s0(λ)
)(s0(λ+ δ)− s0(λ)))− u0λ(λ, x)|2dx)1/2.

Since
∫ L

s0(λ)
|u0λ(λ, x)|2dx < ∞ for a.e. λ ∈ (0, 1) and |( L−x

L−s0(λ)
)(s0(λ+ δ)− s0(λ))| → 0 as

δ → 0, we obtain that Iδ2 → 0 as δ → 0.
Obviously, we have

U δ
2 (λ, y) =

1

δ

∫ λ+δ

λ

(1− y)s0λ(r)u0x(λ, σ(r, y))dr for (λ, y) ∈ (0, 1)× (0, 1),

and then,

|U δ
2 (λ)− U2(λ)|L2(0,1)

≤|1
δ

∫ λ+δ

λ

(1− y)(s0λ(r)− s0λ(λ))u0x(λ, σ(r, y))dr|L2(0,1)
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+ |1
δ

∫ λ+δ

λ

(1− y)s0λ(λ)(u0x(λ, σ(r, y))− u0x(λ, σ(λ, y)))dr|L2(0,1) =: Iδ3 + Iδ4 .

It is easy to see that

Iδ3 ≤
(
1

δ

∫ λ+δ

λ

∫ 1

0

|u0x(λ, σ(r, y))|2|s0λ(r)− s0λ(λ)|2dydr
)1/2

≤ 1√
L− ℓ0

(
1

δ

∫ λ+δ

λ

|s0λ(r)− s0λ(λ)|2
∫ L

s0(r)

|u0x(λ, x)|2dxdr
)1/2

≤ 1√
L− ℓ0

|u0x(λ)|L2(0,L)

(
1

δ

∫ λ+δ

λ

|s0λ(r)− s0λ(λ)|2dr
)1/2

.

Here, by applying Lebesgue’s density theorem it holds that

1

δ

∫ λ+δ

λ

|s0λ(r)− s0λ(λ)|2dr → 0 as δ → 0 for a.e. λ ∈ (0, 1). (3.8)

Indeed, for any rational number q the function r → |s0λ(r) − q|2 is integrable on (0, 1).
Then, Lebesgue’s density theorem implies that there exists Nq ⊂ (0, 1) with meas(Nq) = 0
such that

1

δ

∫ λ+δ

λ

|s0λ(r)− q|2dr → 0 as δ → 0 for λ ∈ (0, 1) \Nq.

Also, the set E1 := {λ ∈ (0, 1) : |s0λ(λ)| < ∞} satisfies meas((0, 1) \ E1) = 0. Moreover,
we put N = ((0, 1) \E1) ∪ (∪q∈QNq). Then, for any λ ∈ (0, 1) \N and ε > 0 we can take
q ∈ Q such that |s0λ(λ)− q| < ε. It clear that

(
1

δ

∫ λ+δ

λ

|s0λ(r)− s0λ(λ)|2dr)1/2 ≤ (
1

δ

∫ λ+δ

λ

|s0λ(r)− q|2dr)1/2 + ε.

This guarantees (3.8) and then, Iδ3 → 0 as δ → 0. The argument for Iδ4 is similar to that
for Iδ2 . Thus, we have proved (3.6).

Next, by using Lemma 1, we give uniform estimates for the differential quotient ∆δs(λ)
and ∆δũ(λ) with respect to δ.

Lemma 3. Assume (A1) ∼ (A5), (2.8) and (2.9) and for λ ∈ (0, 1) let (s(λ), u(λ)) be
a solution of P(λ) on [0, T ] and ũ(λ) be a function decided from u(λ) by (2.2). Then,
there exists a positive constant C which depends on ρv, ρw, k, a, Cφ, ℓ0, L, C(u0) and
|h|L∞(0,1;W 1,2(0,T )), and is independent of δ such that

|∆δs(λ)|W 1,2(0,T ) + |∆δũ(λ)|C([0,T ];L2(0,1)) + |∆δũ(λ)|L2(0,T ;H1(0,1))

≤C(|∆δs0(λ)|+ |∆δũ0(λ)|L2(0,1) + |∆δh(λ)|W 1,2(0,T )) for a.e. λ ∈ (0, 1) and δ ∈ I+(λ).
(3.9)

Moreover, the sets {∆δs(λ)}δ∈I+(λ) and {∆δũ(λ)}δ∈I+(λ) are bounded in W 1,2(0, T ) and
C([0, T ];L2(0, 1)) ∩ L2(0, T ;H1(0, 1)), respectively.
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Proof. Let λ ∈ (0, 1) \N and δ ∈ I+(λ), where N is the set obtained in Lemma 2. Then,
from Remark 1 and (2.4) ∼ (2.7) it follows that

ρv∆δũt(λ)−
k

(L− s(λ))2
∆δũyy(λ)

=
k(2L− s(λ+ δ)− s(λ))

(L− s(λ+ δ))2(L− s(λ))2
∆δs(λ)ũyy(λ+ δ) + ρv(1− y)

ũy(λ+ δ)

L− s(λ+ δ)
∆δst(λ)

+ ρv(1− y)

(
st(λ)

L− s(λ+ δ)
∆δũy(λ) +

st(λ)ũy(λ)

(L− s(λ+ δ))(L− s(λ))
∆δs(λ)

)
=:

4∑
i=1

Fiδ(λ) in Q(T ), (3.10)

∆δũ(λ)(t, 1) = ∆δh(λ, t) for t ∈ [0, T ], (3.11)

∆δst(λ)(t) = a

(
∆δũ(λ)(t, 0)−

φ(s(λ+ δ)(t))− φ(s(λ)(t))

δ

)
for t ∈ [0, T ], (3.12)

k

L− s(λ)(t)
∆δũy(λ)(t, 0) +

k

(L− s(λ+ δ)(t))(L− s(λ)(t))
∆δs(λ)(t)ũy(λ+ δ)(t, 0)

= ρw∆δst(λ)(t)− ρvst(λ+ δ)(t)∆δũ(λ)(t, 0)− ρvũ(λ)(t, 0)∆δst(λ)(t) for t ∈ [0, T ],
(3.13)

∆δs(λ)(0) = ∆δs0(λ), ∆δũ(λ)(0, y) = ∆δũ0(λ)(y) for y ∈ (0, 1). (3.14)

Moreover, we put Fδ(λ) :=
∑4

i=1 Fiδ(λ) and ∆δū(λ)(t, y) = ∆δũ(λ)(t, y) − ∆δh(λ, t) for
δ ∈ I+(λ), t ∈ [0, T ] and y ∈ [0, 1]. By multiplying (3.10) with ∆δū(λ)(t), we obtain

ρv
2

d

dt

∫ 1

0

|∆δū(λ)(t)|2dy −
k

(L− s(λ)(t))2

∫ 1

0

∆δũyy(λ)(t)∆δū(λ)(t)dy

=

∫ 1

0

(
Fδ(λ)(t)− ρv∆δht(t, λ)

)
∆δū(λ)(t)dy for a.e. t ∈ [0, T ]. (3.15)

Using the boundary condition (3.13), we can deal with the second term of the right hand
side of (3.15) as follows:

− k

(L− s(λ)(t))2

∫ 1

0

∆δũyy(λ)(t)∆δū(λ)(t)dy

=
k

(L− s(λ)(t))2

∫ 1

0

|∆δũy(λ)(t)|2dy +
k

(L− s(λ)(t))2
∆δũy(λ)(t, 0)∆δū(λ)(t, 0)

=
k

(L− s(λ)(t))2

∫ 1

0

|∆δũy(λ)(t)|2dy

+
1

L− s(λ)(t)
∆δū(λ)(t, 0)

(
− ∆δs(λ)(t)ũy(λ+ δ)(t, 0)

(L− s(λ+ δ)(t))(L− s(λ)(t))

)
+

1

L− s(λ)(t)
∆δū(λ)(t, 0)

(
ρw∆δst(λ)(t)− ρvst(λ+ δ)(t)∆δũ(λ)(t, 0)

)
+

1

L− s(λ)(t)
∆δū(λ)(t, 0)

(
−ρvũ(λ)(t, 0)∆δst(λ)(t)

)
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=:
5∑

i=1

Iiδ(λ)(t) for t ∈ [0, T ].

In the following calculations, we use (2.1) and ∆δū(λ)(·, 0) =
∫ 1

0
∆δũy(λ)(·, y)dy on [0, T ].

First, by (2.5) it holds that

|I2δ(λ)(t)| =
∣∣∣∣ ∆δū(λ)(t, 0)

(L− s(λ)(t))2
∆δs(λ)(t)

1

k

(
(ρw − ρvũ(λ+ δ)(t, 0))st(λ+ δ)(t)

)∣∣∣∣
≤ (ρw + ρv)a

k(L− s(λ)(t))2
|∆δū(λ)(t, 0)||∆δs(λ)(t)|

=
(ρw + ρv)a

k(L− s(λ)(t))2

∣∣∣∣∫ 1

0

∆δũy(λ)(t)dy

∣∣∣∣ |∆δs(λ)(t)|

≤ k

2η(L− s(λ)(t))2
|∆δũy(λ)(t)|2L2(0,1) +

η

2k

(
(ρw + ρv)a

k(L− s(λ)(t))

)2

|∆δs(λ)(t)|2

for a.e. t ∈ [0, T ],
(3.16)

where η is an arbitrary positive number. Similarly to (3.16), we can estimate I3δ(λ), I4δ(λ)
and I5δ(λ) in the following way:

|I3δ(λ)(t)| =
ρw

L− s(λ)(t)
|∆δū(λ)(t, 0)||∆δst(λ)(t)|

=
ρw

L− s(λ)(t)

∣∣∣∣∫ 1

0

∆δũy(λ)(t)dy

∣∣∣∣ |∆δst(λ)(t)|

≤ k

2η(L− s(λ)(t))2
|∆δũy(λ)(t)|2L2(0,1) +

ρ2wη

2k
|∆δst(λ)(t)|2, (3.17)

|I4δ(λ)(t)|

=
ρv

L− s(λ)(t)
|∆δū(λ)(t, 0)∆δũ(λ)(t, 0)||st(λ+ δ)(t)|

≤ ρva

L− s(λ)(t)

(
|∆δū(λ)(t, 0)|2 +∆δū(λ)(t, 0)∆δh(t, λ)

)
≤ ρva

L− s(λ)(t)

(∫ 1

0

∂

∂y
|∆δū(λ)(t)|2dy +

∣∣∣∣∫ 1

0

∆δũy(λ)(t)dy

∣∣∣∣ |∆δh(t, λ)|
)

≤ ρva

L− s(λ)(t)

(
2|∆δũy(λ)(t)|L2(0,1)|∆δū(λ)(t)|L2(0,1) + |∆δũy(λ)(t)|L2(0,1)|∆δh(t, λ)|

)
≤ k

2η(L− s(λ)(t))2
|∆δũy(λ)(t)|2L2(0,1) +

2η(ρva)
2

k
|∆δū(λ)(t)|2L2(0,1)

+
k

2η(L− s(λ)(t))2
|∆δũy(λ)(t)|2L2(0,1) +

η(ρva)
2

2k
|∆δh(t, λ)|2, (3.18)

and

|I5δ(λ)(t)| =
ρv

L− s(λ)(t)
|∆δū(λ)(t, 0)||ũ(λ)(t, 0)||∆δst(λ)(t)|
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≤ ρv
L− s(λ)(t)

|∆δū(λ)(t, 0)||∆δst(λ)(t)|

≤ k

2η(L− s(λ)(t))2
|∆δũy(λ)(t)|2L2(0,1) +

ηρ2v
2k

|∆δst(λ)(t)|2. (3.19)

Next, we give estimates for some terms in the right hand side of (3.15) as follows:

|
∫ 1

0

F1δ(λ)(t)∆δū(λ)(t)dy|

≤ 2kL

(L− s(λ+ δ)(t))2(L− s(λ)(t))2
|∆δs(λ)(t)|

∫ 1

0

|ũyy(λ+ δ)(t)||∆δū(λ)(t)|dy

≤ 2kL

(L− s∗)4
|∆δs(λ)(t)||ũyy(λ+ δ)(t)|L2(0,1)|∆δū(λ)(t)|L2(0,1)

≤η

2
|∆δs(λ)(t)|2|ũyy(λ+ δ)(t)|2L2(0,1) +

1

2η

(
2kL

(L− s∗)4

)2

|∆δū(λ)(t)|2L2(0,1), (3.20)

|
∫ 1

0

F2δ(λ)(t)∆δū(λ)(t)dy| ≤
ρv

L− s(λ+ δ)(t)
|∆δst(λ)(t)|

∫ 1

0

|ũy(λ+ δ)(t)||∆δū(λ)(t)|dy

≤ ρv
L− s∗

|∆δst(λ)(t)||ũy(λ+ δ)(t)|L2(0,1)|∆δū(λ)(t)|L2(0,1)

≤ η

2
|∆δst(λ)(t)|2 +

1

2η

(
ρvK

L− s∗

)2

|∆δū(λ)(t)|2L2(0,1), (3.21)

|
∫ 1

0

F3δ(λ)(t)∆δū(λ)(t)dy|

≤ ρv
L− s(λ+ δ)(t)

|st(λ)(t)|
∫ 1

0

|∆δũy(λ)(t)||∆δū(λ)(t)|dy

≤ ρva

L− s∗
|∆δũy(λ)(t)|L2(0,1)|∆δū(λ)(t)|L2(0,1)

≤ k

2η(L− s(λ)(t))2
|∆δũy(λ)(t)|2 +

ηL2

2k

(
ρva

L− s∗

)2

|∆δū(λ)(t)|2L2(0,1), (3.22)

and

|
∫ 1

0

F4δ(λ)(t)∆δū(λ)(t)dy|

≤ ρv
(L− s(λ+ δ)(t)(L− s(λ)(t))

|st(λ)(t)||∆δs(λ)(t)|
∫ 1

0

|ũy(λ)(t)||∆δū(λ)(t)|dy

≤ ρva

(L− s∗)2
|∆δs(λ)(t)||ũy(λ)(t)|L2(0,1)|∆δū(λ)(t)|L2(0,1)

≤η

2
|∆δs(λ)(t)|2 +

1

2η

(
ρvaK

(L− s∗)2

)2

|∆δū(λ)(t)|2L2(0,1), (3.23)
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where K is the same constant as in Lemma 1. Also, we estimate the last term of the right
hand side of (3.15) as follows:∫ 1

0

(−ρv∆δht(t, λ))∆δū(λ)(t)dy ≤ ρv
2
|∆δht(t, λ)|2 +

ρv
2
|∆δū(λ)(t)|2L2(0,1). (3.24)

Combining all estimates (3.16)-(3.24) with (3.15), we deduce that

ρv
2

d

dt

∫ 1

0

|∆δū(λ)(t)|2dy +
k

(L− s(λ)(t))2

(
1− 3

η

)
|∆δũy(λ)(t)|2L2(0,1)

≤C1(η)

(
1 + |ũyy(λ+ δ)(t)|2L2(0,1)

)
|∆δs(λ)(t)|2 + C2(η)|∆δst(λ)(t)|2

+ C3(η)|∆δū(λ)(t)|2L2(0,1) +
η(ρva)

2

2k
|∆δh(t, λ)|2 +

ρv
2
|∆δht(t, λ)|2 for a.e. t ∈ [0, T ],

(3.25)

where Ci(η)(1 ≤ i ≤ 3) is a positive constant depending on η. Here, by using (3.12) and
the derivation of (3.18) we have

|∆δst(λ)(t)|2

≤2a2

(
|∆δũ(λ)(t, 0)|2 +

∣∣∣∣φ(s(λ+ δ)(t))− φ(s(λ)(t))

δ

∣∣∣∣2
)

≤2a2
(
4|∆δũy(λ)(t)|L2(0,1)|∆δū(λ)(t)|L2(0,1) + 2|∆δh(t, λ)|2 + C2

φ|∆δs(λ)(t)|2
)

≤ k

2ε(L− s(λ)(t))2
|∆δũy(λ)(t)|2L2(0,1) +

ε(8a2L)2

2k
|∆δū(λ)(t)|2L2(0,1)

+ 4a2|∆δh(t, λ)|2 + 2a2C2
φ|∆δs(λ)(t)|2 for t ∈ [0, T ], (3.26)

where ε is an arbitrary positive number and Cφ is the same constant as in (A2). Similarly,
we can get

d

dt
|∆δs(λ)(t)|2

≤a

(
|∆δũ(λ)(t, 0)|2 +

∣∣∣∣φ(s(λ+ δ)(t))− φ(s(λ)(t))

δ

∣∣∣∣2
)

+ 2a|∆δs(λ)(t)|2

≤ k

2η(L− s(λ)(t))2
|∆δũy(λ)|2L2(0,1) +

η(4aL)2

2k
|∆δū(λ)(t)|2L2(0,1) + 2a|∆δh(t, λ)|2

+ a(C2
φ + 2)|∆δs(λ)(t)|2 for t ∈ [0, T ]. (3.27)

Therefore, by (3.25) ∼ (3.27) we obtain that

ρv
2

d

dt

∫ 1

0

|∆δū(λ)(t)|2dy +
d

dt
|∆δs(λ)(t)|2

+
k

(L− s(λ)(t))2

(
1− 7

2η
− C2(η)

2ε

)
|∆δũy(λ)(t)|2L2(0,1)
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≤
[
a(C2

φ + 2) + 2a2C2(η)C
2
φ + C1(η)

(
1 + |ũyy(λ+ δ)(t)|2L2(0,1)

)]
|∆δs(λ)(t)|2

+

(
C3(η) +

η(4aL)2

2k
+

ε(8a2L)2

2k
C2(η)

)
|∆δū(λ)(t)|2L2(0,1)

+

(
η(ρva)

2

2k
+ 4a2C2(η) + 2a

)
|∆δh(t, λ)|2 +

ρv
2
|∆δht(t, λ)|2 for a.e. t ∈ [0, T ].

By choosing a suitable ε after taking a suitable η, we see that there exist positive constants
C4, C5 and C6 such that

ρv
2

d

dt

∫ 1

0

|∆δū(λ)(t)|2dy +
d

dt
|∆δs(λ)(t)|2 +

k

2(L− s(λ)(t))2
|∆δũy(λ)(t)|2L2(0,1)

≤C4

(
1 + |ũyy(λ+ δ)(t)|2L2(0,1)

)
|∆δs(λ)(t)|2 + C5|∆δū(λ)(t)|2L2(0,1)

+ C6(|∆δh(λ, t)|2 + |∆δht(λ, t)|2) for a.e. t ∈ [0, T ]. (3.28)

Hence, by applying Gronwall’s lemma to (3.28) we see that

ρv
2

∫ 1

0

|∆ū(λ)(t)|2dy + |∆δs(λ)(t)|2 +
k

2L2

∫ t

0

|∆δũy(λ)(τ)|2L2(0,1)dτ

≤ exp(C4

∫ t

0

(1 + |ũyy(τ)|2L2(0,1))dτ + C5
2

ρv
t)

(
ρv
2

∫ 1

0

|∆δū(λ)(0)|2dy + |∆δs(λ)(0)|2

+C6

∫ t

0

(|∆δh(λ, t)|2 + |∆δht(λ, t)|2)dτ
)

for t ∈ [0, T ]. (3.29)

Here, we note that by from Lemma 1 ũyy(λ) ∈ L2(0, T ;L2(0, 1)) for any λ ∈ (0, 1) .
Also, by integrating (3.26) over [0, t] for t ∈ [0, T ] and using (3.29), we infer that∫ t

0

|∆δst(λ)(τ)|2dτ

≤C7(|∆δū(λ)(0)|2L2(0,1) + |∆δs(λ)(0)|2 + |∆δh(λ)|2W 1,2(0,t)) for t ∈ [0, T ],

where C7 is some positive constant independent of δ. Thus, we get (3.9).
Finally, the boundednesses of {∆δs(λ)}δ∈I+(λ) in W 1,2(0, T ) and {∆δũ(λ)}δ∈I+(λ) in

C([0, T ];L2(0, 1)) ∩ L2(0, T ;H1(0, 1)) are direct consequences of (3.9) and Lemma 2.

4 Cauchy property of the differential quotients

In Section 3, we have obtained the uniform estimate for ∆δs(λ) and ∆δũ(λ) with re-
spect to δ. In this section, by using these uniform estimates we show that for a.e.
λ ∈ (0, 1), {∆δs(λ)}δ∈I(λ) and {∆δũ(λ)}δ∈I(λ) are Cauchy sequences in W 1,2(0, T ) and
in C([0, T ];L2(0, 1)) ∩ L2(0, T ;H1(0, 1)), respectively. Here, we note from Lemma 3 that
there exists a positive constant C̃ which is independent of δ such that

|∆δs(λ)|W 1,2(0,T ) ≤ C̃, (4.1)

|∆δũ(λ)|C([0,T ];L2(0,1)) + |∆δũ(λ)|L2(0,T ;H1(0,1)) ≤ C̃ for δ ∈ I+(λ).
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Lemma 4. Under the same assumption and notation as in Lemma 3 for λ ∈ (0, 1) \N ,
{∆δs(λ)}δ∈I+(λ) and {∆δũ(λ)}δ∈I+(λ) are Cauchy sequences in W 1,2(0, T ) and in
C([0, T ];L2(0, 1)) ∩ L2(0, T ;H1(0, 1)), respectively.

Proof. First, for λ ∈ (0, 1) \N and δ, δ′ ∈ I+(λ) and t ∈ [0, T ], we put

∆s(λ)(t) = ∆δs(λ)(t)−∆δ′s(λ)(t), ∆ũ(λ)(t) = ∆δũ(λ)(t)−∆δ′ũ(λ)(t),

∆h(t, λ) = ∆δh(t, λ)−∆δ′h(t, λ),

∆φ(s(λ)(t)) =
φ(s(λ+ δ)(t))− φ(s(λ)(t))

δ
− φ(s(λ+ δ′)(t))− φ(s(λ)(t))

δ′
.

Since (∆δs(λ),∆δũ(λ)) and (∆δ′s(λ),∆δ′ũ(λ)) satisfy (3.10)-(3.14), by using the notation
Fδ(λ) defined in the proof of Lemma 3, again, we see that

ρv(∆ũt(λ)−∆ht)−
k

(L− s(λ))2
∆ũyy(λ) = Fδ(λ)− Fδ′(λ)− ρv∆ht in Q(T ), (4.2)

∆ũ(λ)(t, 1) = ∆h(λ, t) for t ∈ [0, T ], (4.3)

∆st(λ)(t) = a (∆ũ(λ)(t, 0)−∆φ(s(λ)(t))) for t ∈ [0, T ], (4.4)

k

L− s(λ)(t)
∆ũy(λ)(t, 0)

= − k

L− s(λ)(t)

(
1

L− s(λ+ δ)(t)
− 1

L− s(λ+ δ′)(t)

)
∆δs(λ)(t)ũy(λ+ δ)(t, 0)

− k

(L− s(λ+ δ′)(t))(L− s(λ)(t))
∆s(λ)(t)ũy(λ+ δ)(t, 0)

− k

(L− s(λ+ δ′)(t))(L− s(λ)(t))
∆δ′s(λ)(t)

(
ũy(λ+ δ)(t, 0)− ũy(λ+ δ′)(t, 0)

)
+ ρw∆st(λ)(t)− ρv

(
st(λ+ δ)(t)− st(λ+ δ′)(t)

)
∆δũ(λ)(t, 0)

− ρvst(λ+ δ′)(t)∆ũ(λ)(t, 0)− ρvũ(λ)(t, 0)∆st(λ)(t)

=:
7∑

i=1

Giδ(λ)(t) for t ∈ [0, T ], (4.5)

∆s(λ)(0) = ∆s0(λ),∆ũ(λ)(0, y) = ∆ũ0(λ)(y) for y ∈ (0, 1). (4.6)

Put ∆ū(λ)(t, y) := ∆ũ(λ)(t, y) − ∆h(λ, t) for t ∈ [0, T ] and y ∈ [0, 1]. By elementary
calculation to (4.2) we have

ρv
2

d

dt

∫ 1

0

|∆ū(λ)(t)|2dy − k

(L− s(λ)(t))2

∫ 1

0

∆ũyy(λ)(t)∆ū(λ)(t)dy

=

∫ 1

0

(
Fδ(λ)(t)− Fδ′(λ)(t)− ρv∆ht(t, λ)

)
∆ū(λ)(t)dy for a.e. t ∈ [0, T ]. (4.7)

For the second term in the left hand side of (4.7), from (4.3) it follows that

− k

(L− s(λ)(t))2

∫ 1

0

∆ũyy(λ)(t)∆ū(λ)(t)dy
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=
k

(L− s(λ)(t))2

∫ 1

0

|∆ũy(λ)(t)|2dy +
k

(L− s(λ)(t))2
∆ũy(λ)(t, 0)∆ū(λ)(t, 0).

Then, by (4.5) we can rewrite (4.7) as

1

2

d

dt

∫ 1

0

|∆ū(λ)(t)|2dy + k

(L− s(λ)(t))2

∫ 1

0

|∆ũy(λ)(t)|2dy

=
1

L− s(λ)

7∑
i=1

Giδ(λ)(t)∆ū(λ)(t, 0) +

∫ 1

0

(
Fδ(λ)(t)− Fδ′(λ)(t)

)
∆ū(λ)(t)dy

−
∫ 1

0

ρv∆ht(t, λ)∆ū(λ)(t)dy for a.e. t ∈ [0, T ]. (4.8)

On the first term of the right hand side in (4.8), by using ∆ū(λ)(·, 0) =
∫ 1

0
∆ūy(λ)dy =∫ 1

0
∆ũy(λ)dy on [0, T ], we observe that

1

L− s(λ)(t)

7∑
i=1

Giδ(λ)(t)∆ū(λ)(t, 0)

≤ 1

L− s(λ)(t)
|

7∑
i=1

Giδ(λ)(t)||∆ũy(λ)(t)|L2(0,1)

≤ k

2(L− s(λ)(t))2
|∆ũy(λ)(t)|2L2(0,1) +

1

2k

( 7∑
i=1

|Giδ(λ)(t)|
)2

. (4.9)

Hence, by combining (4.8) and (4.9), we have

ρv
2

d

dt

∫ 1

0

|∆ū(λ)(t)|2dy + k

2(L− s(λ)(t))2

∫ 1

0

|∆ũy(λ)(t)|2dy

≤M1

7∑
i=1

|Giδ(λ)(t)|2 +
∫ 1

0

(
Fδ(λ)(t)− Fδ′(λ)(t)

)
∆ū(λ)(t)dy

−
∫ 1

0

ρv∆ht(t, λ)∆ū(λ)(t)dy for a.e. t ∈ [0, T ], (4.10)

where M1 is a positive constant independent of δ and δ′.
Now, we give the estimate for each |Giδ(λ)|2. On account of (2.1) and (2.5) we observe

that

|G1δ(λ)(t)|2

=

∣∣∣∣( 1

L− s(λ+ δ)(t)
− 1

L− s(λ+ δ′)(t)

)
∆δs(λ)(t)

k

L− s(λ)(t)
ũy(λ+ δ)(t, 0)

∣∣∣∣2
≤4((ρw + ρv)a)

2L2

(L− s∗)4
|s(λ+ δ)(t)− s(λ+ δ′)(t)|2|∆δs(λ)(t)|2 for a.e. t ∈ [0, T ]. (4.11)

Here, we note that

|s(λ+ δ)− s(λ+ δ′)|2
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=|∆δs(λ)δ −∆δ′s(λ)δ
′|2 ≤ 2(|∆δs(λ)|2|δ|2 + |∆δ′s(λ)|2|δ′|2) on [0, T ]. (4.12)

Accordingly, by (4.11) with (4.1) and (4.12) it follows that

|G1δ(λ)(t)|2 ≤
8((ρw + ρv)a)

2L2

(L− s∗)4

(
|∆δs(λ)(t)|2|δ|2 + |∆δ′s(λ)(t)|2|δ′|2

)
|∆δs(λ)(t)|2

≤ 8((ρw + ρv)a)
2L2

(L− s∗)4
C̃4(|δ|2 + |δ′|2) for a.e. t ∈ [0, T ]. (4.13)

Similarly to (4.11), the term G2δ(λ) can be estimated as follows:

|G2δ(λ)(t)|2 =
1

(L− s(λ+ δ′)(t))2
|∆s(λ)(t)|2

∣∣∣∣ k

L− s(λ)(t)
ũy(λ+ δ)(t, 0)

∣∣∣∣2
≤ ((ρw + ρv)a)

2L2

(L− s∗)4
|∆s(λ)(t)|2 for a.e. t ∈ [0, T ]. (4.14)

For G3δ(λ), by using (4.1), we have

|G3(λ)(t)|2 ≤
kC̃2

(L− s∗)4
|ũy(λ+ δ)(t, 0)− ũy(λ+ δ′)(t, 0)|2 for a.e. t ∈ [0, T ]. (4.15)

Here, by (2.5) we observe that

|ũy(λ+ δ)(t, 0)− ũy(λ+ δ′)(t, 0)|

=

∣∣∣∣L− s(λ+ δ)(t)

k

(
(ρw − ρvũ(λ+ δ)(t, 0))st(λ+ δ)(t)

)
− L− s(λ+ δ′)(t)

k

(
(ρw − ρvũ(λ+ δ′)(t, 0))st(λ+ δ′)(t)

)∣∣∣∣
≤1

k
|s(λ+ δ)(t)− s(λ+ δ′)(t)||(ρw − ρvũ(λ+ δ)(t, 0))st(λ+ δ)(t))|

+
ρw
k
|L− s(λ+ δ′)(t)||st(λ+ δ)(t)− st(λ+ δ′)(t)|

+
1

k
|L− s(λ+ δ′)(t)|

∣∣∣∣ρv(ũ(λ+ δ)(t, 0)− ũ(λ+ δ′)(t, 0)

)∣∣∣∣|st(λ+ δ)(t)|

+
1

k
|L− s(λ+ δ′)(t)||ρvũ(λ+ δ′)(t, 0)||st(λ+ δ)(t)− st(λ+ δ′)(t)|. (4.16)

Similarly to the derivation of (4.12), it holds that

|ũ(λ+ δ)(t, 0)− ũ(λ+ δ′)(t, 0)| ≤ |∆δũ(λ)(t, 0)||δ|+ |∆δ′ũ(λ)(t, 0)||δ′|, (4.17)

|st(λ+ δ)− st(λ+ δ′)| ≤ |∆δst(λ)(t)||δ|+ |∆δ′st(λ)(t)||δ′|. (4.18)

Hence, by substituting (4.17) and (4.18) into (4.16) and using (4.1), (4.12) and (2.1) we
deduce

|ũy(λ+ δ)(t, 0)− ũy(λ+ δ′)(t, 0)|
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≤C̃
(ρw + ρv)a

k
(|δ|+ |δ′|) + ρvaL

k

(
|∆δũ(λ)(t, 0)||δ|+ |∆δ′ũ(λ)(t, 0)||δ′|

)
+

(ρw + ρv)L

k

(
|∆δst(λ)(t)||δ|+ |∆δ′st(λ)(t)||δ′|

)
for a.e. t ∈ [0, T ]. (4.19)

From (4.15) and (4.19), we can deal with G3δ(λ) as follows:

|G3δ(λ)(t)|2 ≤M2

(
|δ|2 + |δ′|2 + |∆δũ(λ)(t, 0)|2|δ|2 + |∆δ′ũ(λ)(t, 0)|2|δ′|2

+ |∆δst(λ)(t)|2|δ|2 + |∆δ′st(λ)(t)|2|δ′|2
)

for a.e. t ∈ [0, T ], (4.20)

where M2 is a positive constant independent of δ and δ′. For G4δ(λ) ∼ G7δ(λ), thanks to
(4.18) and (2.1) we proceed as

|G4δ(λ)(t)|2 ≤ ρ2w|∆st(λ)(t)|2, (4.21)

|G5δ(λ)(t)|2 ≤ ρ2v|st(λ+ δ)(t)− st(λ+ δ′)(t)|2|∆δũ(λ)(t, 0)|2

≤ 2ρ2v(|∆δst(λ)|2|δ|2 + |∆δ′st(λ)|2|δ′|2)|∆δũ(λ)(t, 0)|2, (4.22)

|G6δ(λ)(t)|2 ≤ (ρva)
2|∆ũ(λ)(t, 0)|2, (4.23)

and

|G7δ(λ)(t)|2 ≤ ρ2v|∆st(λ)(t)|2. (4.24)

By all estimates (4.13), (4.14), (4.20) ∼ (4.24), we see that there exists a positive constant
M3 independent of δ and δ′ such that

7∑
i=1

|Giδ(λ)(t)|2

≤M3

(
|δ|2 + |δ′|2 + |∆δũ(λ)(t, 0)|2|δ|2 + |∆δ′ũ(λ)(t, 0)|2|δ′|2

+ (|∆δst(λ)(t)|2|δ|2 + |∆δ′st(λ)(t)|2|δ′|2)(1 + |∆δũ(λ)(t, 0)|2)

+ |∆s(λ)(t)|2 + |∆st(λ)(t)|2 + |∆ũ(λ)(t, 0)|2
)

for a.e. t ∈ [0, T ]. (4.25)

Next, we consider to estimate the second term in the right hand side of (4.8). First, it
holds that∫ 1

0

(F1δ(λ)(t)− F1δ′(λ)(t))∆ū(λ)(t)dy

= − k(2L− s(λ+ δ)(t)− s(λ)(t))

(L− s(λ+ δ)(t))2(L− s(λ)(t))2
∆δs(λ)(t)

∫ 1

0

ũy(λ+ δ)(t)∆ũy(λ)(t)dy

− k(2L− s(λ+ δ)(t)− s(λ)(t))

(L− s(λ+ δ)(t))2(L− s(λ)(t))2
∆δs(λ)(t)ũy(λ+ δ)(t, 0)∆ũy(λ)(t, 0)
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+
k(2L− s(λ+ δ′)(t)− s(λ)(t))

(L− s(λ+ δ′)(t))2(L− s(λ)(t))2
∆δ′s(λ)(t)

∫ 1

0

ũy(λ+ δ′)(t)∆ũy(λ)(t)dy

+
k(2L− s(λ+ δ′)(t)− s(λ)(t))

(L− s(λ+ δ′)(t))2(L− s(λ)(t))2
∆δ′s(λ)(t)ũy(λ+ δ′)(t, 0)∆ũy(λ)(t, 0).

=:
4∑

i=1

Jiδ(t). (4.26)

It is easy to see that

J1δ + J3δ

=− k(2L− s(λ+ δ)− s(λ))

(L− s(λ+ δ))2(L− s(λ))2
∆δs(λ)

∫ 1

0

(
ũy(λ+ δ)− ũy(λ+ δ′)

)
∆ũy(λ)dy

−
(

k(2L− s(λ+ δ)− s(λ))

(L− s(λ+ δ))2(L− s(λ))2

)
(∆δs(λ)−∆δ′s(λ))

∫ 1

0

ũy(λ+ δ′)∆ũy(λ)dy

− k

(L− s(λ))2

(
−s(λ+ δ) + s(λ+ δ′)

(L− s(λ+ δ))2

)
∆δ′s(λ)

∫ 1

0

ũy(λ+ δ′)∆ũy(λ)dy

− k

(L− s(λ))2

(2L− s(λ+ δ)− s(λ))

(
(L− s(λ+ δ′))2 − (L− s(λ+ δ))2

)
(L− s(λ+ δ))2(L− s(λ+ δ′))2

∆δ′s(λ)

×
∫ 1

0

ũy(λ+ δ′)∆ũy(λ)dy.

Following (4.12) and |ũy(λ+ δ)− ũy(λ+ δ′)| ≤ |∆δũy(λ)||δ|+ |∆δ′ũy(λ)||δ′|, we infer that

|J1δ + J3δ|

≤ 2kL

(L− s∗)4
|∆δs(λ)|

(
|∆δũy(λ)|L2(0,1)|δ|+ |∆δ′ũy(λ)|L2(0,1)|δ′|

)
|∆ũy(λ)|L2(0,1)

+
2kL

(L− s∗)4
|∆s(λ)||ũy(λ+ δ′)|L2(0,1)|∆ũy(λ)|L2(0,1)

+
k

(L− s∗)4

(
|∆δs(λ)||δ|+ |∆δ′s(λ)||δ′|

)
|∆δ′s(λ)||∆ũy(λ)|L2(0,1)|ũy(λ+ δ′)|L2(0,1)

+
4kL2

(L− s∗)6

(
|∆δs(λ)||δ|+ |∆δ′s(λ)||δ′|

)
|∆δ′s(λ)||∆ũy(λ)|L2(0,1)|ũy(λ+ δ′)|L2(0,1).

Using the fact that |ũy(λ)|L2(0,1) ≤ K on [0, T ] in Lemma 1 and |∆δs(λ)|C([0,T ]) ≤ C̃ for
any λ ∈ (0, 1) in (4.1), we deduce that there exists a positive constant M4 independent of
δ and δ′ such that

|J1δ + J3δ| ≤
k

4(L− s(λ))2
|∆ũy(λ)(t)|2L2(0,1)

+M4

(
|∆δũy(λ)(t)|2L2(0,1)|δ|2 + |∆δ′ũy(λ)(t)|2L2(0,1)|δ′|2 + |∆s(λ)(t)|2 + |δ|2 + |δ′|2

)
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for a.e. t ∈ [0, T ].
(4.27)

On J2δ + J4δ, it holds that

J2δ + J4δ

=− k(2L− s(λ+ δ)− s(λ))

(L− s(λ+ δ))2(L− s(λ))2
(∆δs(λ)ũy(λ+ δ)(t, 0)−∆δ′s(λ)ũy(λ+ δ′)(t, 0))∆ũy(λ)(t, 0)

+

(
k(2L− s(λ+ δ′)− s(λ))

(L− s(λ+ δ′))2(L− s(λ))2
− k(2L− s(λ+ δ)− s(λ))

(L− s(λ+ δ))2(L− s(λ))2

)
×∆δ′s(λ)ũy(λ+ δ′)(t, 0)∆ũy(λ)(t, 0)

=− k(2L− s(λ+ δ)− s(λ))

(L− s(λ+ δ))2(L− s(λ))2

(
∆δs(λ)−∆δ′s(λ)

)
ũy(λ+ δ)(t, 0)∆ũy(λ)(t, 0)

− k(2L− s(λ+ δ)− s(λ))

(L− s(λ+ δ))2(L− s(λ))2
∆δ′s(λ)

(
ũy(λ+ δ)(t, 0)− ũy(λ+ δ′)(t, 0)

)
∆ũy(λ)(t, 0)

+

(
k(2L− s(λ+ δ′)− s(λ))

(L− s(λ+ δ′))2(L− s(λ))2
− k(2L− s(λ+ δ)− s(λ))

(L− s(λ+ δ))2(L− s(λ))2

)
×∆δ′s(λ)ũy(λ+ δ′)(t, 0)∆ũy(λ)(t, 0).

By (4.12) and (4.17) we get

|J2δ + J4δ|

≤ 2kL

(L− s∗)4
|∆s(λ)||ũy(λ+ δ)(t, 0)||∆ũy(λ)(t, 0)|

+
2kL

(L− s∗)4
|∆δ′s(λ)|

(
|∆δũy(λ)(t, 0)||δ|+ |∆δ′ũy(λ)(t, 0)||δ′|

)
|∆ũy(λ)(t, 0)|

+
k

(L− s∗)4

(
|∆δs(λ)||δ|+ |∆δ′s(λ)||δ′|

)
|∆δ′s(λ)||ũy(λ+ δ′)(t, 0)||∆ũy(λ)(t, 0)|

+
4kL2

(L− s∗)6

(
|∆δs(λ)||δ|+ |∆δ′s(λ)||δ′|

)
|∆δ′s(λ)||ũy(λ+ δ′)(t, 0)||∆ũy(λ)(t, 0)|.

(4.28)

Here, by (2.1) and (2.5) we see that

|ũy(λ+ δ)(t, 0)| = L− s(λ+ δ)(t)

k
|(ρw − ρvũ(λ+ δ)(t, 0))st(λ+ δ)(t)|

≤ L

k
(ρw + ρv)a for a.e. t ∈ [0, T ]. (4.29)

Due to (4.1) and (4.29) we obtain from (4.28) that

|J2δ + J4δ|

≤ 2kL

(L− s∗)4
L

k
(ρw + ρv)a|∆s(λ)(t)||∆ũy(λ)(t, 0)|
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+
2kLC̃

(L− s∗)4

(
|∆δũy(λ)(t, 0)||δ|+ |∆δ′ũy(λ)(t, 0)||δ′|

)
|∆ũy(λ)(t, 0)|

+
kC̃2

(L− s∗)4
L

k
(ρw + ρv)a

(
|δ|+ |δ′|

)
|∆ũy(λ)(t, 0)|

+
4kL2C̃2

(L− s∗)6
L

k
(ρw + ρv)a

(
|δ|+ |δ′|

)
|∆ũy(λ)(t, 0)| for a.e. t ∈ [0, T ]. (4.30)

By (4.5), it holds that for t ∈ [0, T ],

|∆ũy(λ)(t, 0)| =
L− s(λ)(t)

k

k

L− s(λ)(t)
|∆ũy(λ)(t, 0)| ≤

L

k

7∑
i=1

|Gi(λ)(t)|. (4.31)

From (4.30), (4.31) and (4.25), we can find a positive constant M5 which does not depend
on δ and δ′ such that

|J2δ + J4δ|

≤M5

(
|δ|2 + |δ′|2 + |∆δũ(λ)(t, 0)|2|δ|2 + |∆δ′ũ(λ)(t, 0)|2|δ′|2

+ |∆δũy(λ)(t, 0)|2|δ|2 + |∆δ′ũy(λ)(t, 0)|2|δ′|2

+ (|∆δst(λ)(t)|2|δ|2 + |∆δ′st(λ)(t)|2|δ′|2)(1 + |∆δũ(λ)(t, 0)|2)

+ |∆s(λ)(t)|2 + |∆st(λ)(t)|2 + |∆ũ(λ)(t, 0)|2
)

for a.e. t ∈ [0, T ]. (4.32)

Hence, by substituting (4.27) and (4.32) into (4.26), we infer that∫ 1

0

(F1δ(λ)(t)− F1δ′(λ)(t))∆ū(λ)(t)dy

≤ k

4(L− s(λ)(t))2
|∆ũy(λ)(t)|2L2(0,1) +M6

(
|δ|2 + |δ′|2 + |∆δũy(λ)(t)|2L2(0,1)|δ|2

+ |∆δ′ũy(λ)(t)|2L2(0,1)|δ′|2 + |∆δũ(λ)(t, 0)|2|δ|2 + |∆δ′ũ(λ)(t, 0)|2|δ′|2

+ (|∆δst(λ)(t)|2|δ|2 + |∆δ′st(λ)(t)|2|δ′|2)(1 + |∆δũ(λ)(t, 0)|2)

+ |∆s(λ)(t)|2 + |∆st(λ)(t)|2 + |∆ũ(λ)(t, 0)|2
)
, (4.33)

where M6 is a positive constant depending on M4 and M5.
Next, for the difference F2δ − F2δ′ it follows that∫ 1

0

(F2δ(λ)(t)− F2δ′(λ)(t))∆ū(λ)(t)dy

=
ρv∆st(λ)(t)

L− s(λ+ δ)(t)

∫ 1

0

(1− y)ũy(λ+ δ)(t)∆ū(λ)(t)dy

+
ρv(−s(λ+ δ′)(t) + s(λ+ δ)(t))∆δ′st(λ)(t)

(L− s(λ+ δ)(t))(L− s(λ+ δ′)(t))

∫ 1

0

(1− y)ũy(λ+ δ)(t)∆ū(λ)(t)dy
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+
ρv∆δ′st(λ)(t)

L− s(λ+ δ′)(t)

∫ 1

0

(1− y)(ũy(λ+ δ)(t)− ũy(λ+ δ′)(t))∆ū(λ)(t)dy. (4.34)

On account of the result that |ũy(λ)(t)|L2(0,1) ≤ K for t ∈ [0, T ] in Lemma 1, we deduce
from (4.34) that∫ 1

0

(F2δ(λ)(t)− F2δ′(λ)(t))∆ū(λ)(t)dy

≤ ρvK

L− s∗
|∆st(λ)(t)||∆ū(λ)(t)|L2(0,1)

+
ρvK

(L− s∗)2
|s(λ+ δ)(t)− s(λ+ δ′)(t)||∆δ′st(λ)(t)||∆ū(λ)(t)|L2(0,1)

+
ρv

L− s∗
|∆δ′st(λ)(t)||ũy(λ+ δ)(t)− ũy(λ+ δ′)(t)|L2(0,1)||∆ū(λ)(t)|L2(0,1). (4.35)

In the similar way to the derivation of (4.27), using the result that |∆δs(λ)|C([0,T ]) ≤ C̃ in
(4.1) and Young’s inequality, we derive from (4.35) that∫ 1

0

(F2δ(λ)(t)− F2δ′(λ)(t))∆ū(λ)(t)dy

≤M8

(
|∆st(λ)(t)|2 + |δ|2 + |δ′|2 + |∆δũy(λ)(t)|2|δ|2 + |∆δ′ũy(λ)(t)|2|δ′|2

)
+ (1 + |∆δ′st(λ)(t)|2)|∆ū(λ)(t)|2L2(0,1) for a.e. t ∈ [0, T ], (4.36)

where M8 is a positive constant independent of δ and δ′.
Also, the difference on F3δ − F3δ′ can be written as∫ 1

0

(F3δ(λ)(t)− F3δ′(λ)(t))∆ū(λ)(t)dy

≤ ρvst(λ)(t)

L− s(λ+ δ)(t)

∫ 1

0

(1− y)∆ũy(λ)(t)∆ū(λ)(t)dy

+
ρvst(λ)(t)(−s(λ+ δ′)(t) + s(λ+ δ)(t))

(L− s(λ+ δ)(t))(L− s(λ+ δ′)(t))

∫ 1

0

(1− y)∆δ′ũy(λ)(t)∆ū(λ)(t)dy. (4.37)

By (2.1), (4.1) and (4.37) we see that∫ 1

0

(F3δ(λ)(t)− F3δ′(λ)(t))∆ū(λ)(t)dy

≤ k

8(L− s(λ)(t))2
|∆ũy(λ)(t)|2L2(0,1) +

2L2

k

(
ρva

L− s∗

)2

|∆ū(λ)(t)|2L2(0,1)

+

(
ρvaC̃

(L− s∗)2

)2

(|δ|2 + |δ′|2)|∆δ′ũy(λ)(t)|2L2(0,1) +
1

2
|∆ū(λ)(t)|2L2(0,1). (4.38)

Moreover, we give the estimate on the following difference F4δ − F4δ′ :∫ 1

0

(F4δ(λ)(t)− F4δ′(λ)(t))∆ū(λ)(t)dy
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=
ρvst(λ)(t)∆s(λ)(t)

(L− s(λ+ δ)(t))(L− s(λ)(t))

∫ 1

0

(1− y)ũy(λ)(t)∆ū(λ)(t)dy

+
ρvst(λ)(t)

L− s(λ)(t)

∆δ′s(λ)(t)(−s(λ+ δ′)(t) + s(λ+ δ)(t))

(L− s(λ+ δ)(t))(L− s(λ+ δ′)(t)

∫ 1

0

(1− y)ũy(λ)(t)∆ū(λ)(t)dy.

(4.39)

Referring to the derivation of (4.38), we obtain from (4.39) that∫ 1

0

(F4δ(λ)(t)− F4δ′(λ)(t))∆ū(λ)(t)dy

≤1

2

(
ρvaK

(L− s∗)2

)2

|∆s(λ)(t)|2 +

(
ρvaKC̃2

(L− s∗)3

)2

(|δ|2 + |δ′|2) + |∆ū(λ)(t)|2L2(0,1). (4.40)

Combining (4.10), (4.25), (4.33), (4.36), (4.38) and (4.40), we have

ρv
2

d

dt
|∆ū(λ)(t)|2L2(0,1) +

k

8(L− s∗)2
|∆ũy(λ)(t)|2L2(0,1)

≤M9

(
(|δ|2 + |δ′|2)(1 + |∆δũy(λ)(t)|2L2(0,1) + |∆δ′ũy(λ)(t)|2L2(0,1)) + |∆δũ(λ)(t, 0)|2|δ|2

+ |∆δ′ũ(λ)(t, 0)|2|δ′|2 + (|∆δst(λ)(t)|2|δ|2 + |∆δ′st(λ)(t)|2|δ′|2)(1 + |∆δũ(λ)(t, 0)|2)

+ |∆s(λ)(t)|2 + |∆st(λ)(t)|2 + |∆ũ(λ)(t, 0)|2
)

+M10

(
(1 + |∆δ′st(λ)(t)|2)|∆ū(λ)(t)|2L2(0,1) + |∆ht(λ, t)|2

)
for a.e. t ∈ [0, T ], (4.41)

where M9 and M10 are positive constants independent of δ and δ′. The estimate for
∆ũ(λ)(t, 0) can be given as follows:

|∆ũ(λ)(t, 0)|2

≤2|∆ũ(λ)(t, 0)−∆h(t, λ)|2 + 2|∆h(λ, t)|2

≤4|∆ũy(λ)(t)|L2(0,1)|∆ũ(λ)(t)−∆h(λ, t)|L2(0,1) + 2|∆h(λ, t)|2

≤ ηk

2(L− s∗)2
|∆ũy(λ)(t)|2L2(0,1) +

8L2

ηk
|∆ū(λ)(t)|2L2(0,1) + 2|∆h(λ, t)|2 for t ∈ [0, T ], (4.42)

where η is an arbitrary positive number. Also, ∆st(λ) can be rewritten by

∆st(λ)(t)

=a∆ũ(λ)(t, 0)− a

(
φ(s(λ+ δ)(t)− φ(s(λ)(t))

δ
− φ(s(λ+ δ′)(t)− φ(s(λ)(t))

δ′

)
=a∆ũ(λ)(t, 0)− aφ′(s(λ)(t) + ξδδ∆δs(λ)(t))∆δs(λ)(t)

+ aφ′(s(λ)(t) + ξδ′δ
′∆δ′s(λ)(t))∆δ′s(λ)(t)

=a∆ũ(λ)(t, 0)− aφ′(s(λ)(t) + ξδδ∆δs(λ)(t))∆s(λ)(t)

− a

(
φ′(s(λ)(t) + ξδδ∆δs(λ)(t))− φ′(s(λ)(t) + ξδ′δ

′∆δ′s(λ)(t))

)
∆δ′s(λ)(t), (4.43)
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where 0 < ξδ < 1 and 0 < ξδ′ < 1. With the help of (A2), (4.1) and (4.12), we get

|∆st(λ)(t)|

≤a|∆ũ(λ)(t, 0)|+ aCφ|∆s(λ)(t)|+ aCφ

(
|∆δs(λ)(t)||δ|+ |∆δ′s(λ)(t)||δ′|

)
|∆δ′s(λ)(t)|

≤a|∆ũ(λ)(t, 0)|+ aCφ|∆s(λ)(t)|+ aCφC̃
2(|δ|+ |δ′|) for a.e. t ∈ [0, T ]. (4.44)

By (4.42) and (4.44), we have

|∆st(λ)(t)|2

≤4a2|∆ũ(λ)(t, 0)|2 + 4(aCφ)
2|∆s(λ)(t)|2 + 4(aCφC̃

2)2(|δ|2 + |δ′|2)

≤ 4a2ηk

2(L− s∗)2
|∆ũy(λ)(t)|2L2(0,1) +

32(aL)2

ηk
|∆ū(λ)(t)|2L2(0,1) + 8a2|∆h(t, λ)|2

+ 4(aCφ)
2|∆s(λ)(t)|2 + 4(aCφC̃

2)2(|δ|2 + |δ′|2) for a.e. t ∈ [0, T ]. (4.45)

Using (4.42), (4.45) and (4.41), we infer that

ρv
2

d

dt
|∆ū(λ)(t)|2L2(0,1) +

k

8(L− s∗)2
(1−M9(4η + 16a2η))|∆ũy(λ)(t)|2L2(0,1)

≤M9(1 + 4(aCφ)
2)|∆s(λ)(t)|2

+M9

(
1 + 4(aCφC

2)2 + |∆δũy(λ)(t)|2L2(0,1) + |∆δ′ũy(λ)(t)|2L2(0,1) + |∆δũ(λ)(t, 0)|2

+ |∆δ′ũ(λ)(t, 0)|2 + (|∆δst(λ)(t)|2 + |∆δ′st(λ)(t)|2)(1 + |∆δũ(λ)(t, 0)|2)
)
(|δ|2 + |δ′|2)

+

(
M9

4L2

ηk
(2 + 8a2) +M10(1 + |∆δ′st(λ)(t)|2)

)
|∆ū(λ)(t)|2L2(0,1)

+M10|∆ht(t, λ)|2 + (2 + 8a2)M9|∆h(t, λ)|2 for a.e. t ∈ [0, T ]. (4.46)

In addition, it holds that for l = δ, δ′

|∆lũ(λ)(t, 0)|2 ≤ 2|∆lũ(λ)(t, 0)−∆lh(t, λ)|2 + 2|∆lh(t, λ)|2

≤ 2|∆lũy(λ)(t)|2L2(0,1) + 2|∆lh(t, λ)|2 for t ∈ [0, T ], (4.47)

and by (A2) and (4.1) we have

|∆lst(λ)(t)|2 =
∣∣∣∣a∆lũ(λ)(t, 0)− a

(
φ(s(λ+ l)(t))− φ(s(λ)(t))

l

)∣∣∣∣2
≤ 2a2|∆lũ(λ)(t, 0)|2 + 2(aCφ)

2|∆ls(λ)(t)|2

≤ 2a2|∆lũ(λ)(t, 0)|2 + 2(aCφ)
2C̃2 for a.e. t ∈ [0, T ]. (4.48)

Furthermore, by (4.47) and (4.48) we observe that

(|∆δst(λ)(t)|2 + |∆δ′st(λ)(t)|2)|∆δũ(λ)(t, 0)|2

≤(2a2|∆δũ(λ)(t, 0)|2 + 2a2|∆δ′ũ(λ)(t, 0)|2 + 4(aCφC̃)2)|∆δũ(λ)(t, 0)|2
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≤3a2|∆δũ(λ)(t, 0)|4 + a2|∆δ′ũ(λ)(t, 0)|4

+ 8(aCφC̃)2(|∆δũy(λ)(t)|2L2(0,1) + |∆δh(t, λ)|2) for a.e. t ∈ [0, T ], (4.49)

and that for l = δ, δ′,

|∆lũ(λ)(t, 0)|4 ≤ 8|∆lũ(λ)(t, 0)−∆lh(t, λ)|4 + 8|∆lh(t, λ)|4

≤ 32|∆lũ(λ)(t)−∆lh(t, λ)|2L2(0,1)|∆lũy(λ)(t)|2L2(0,1) + 8|∆lh(t, λ)|4. (4.50)

Using (4.1) it follows that |∆lũ(λ)(t)−∆lh(t, λ)|2L2(0,1) ≤ 2(C̃2+ |∆lh(t, λ)|2) for t ∈ [0, T ]

so that (4.49) and (4.50) lead to

(|∆δst(λ)(t)|2 + |∆δ′st(λ)(t)|2)|∆δũ(λ)(t, 0)|2

≤3a2(64(C̃2 + |∆δh(t, λ)|2)|∆δũy(λ)(t)|2L2(0,1) + 8|∆δh(t, λ)|4)
+ a2(64(C̃2 + |∆δ′h(t, λ)|2)|∆δ′ũy(λ)(t)|2L2(0,1) + 8|∆δ′h(t, λ)|4)
+ 8(aCφC)2(|∆δũy(λ)(t)|2L2(0,1) + |∆δh(t, λ)|2) for a.e. t ∈ [0, T ]. (4.51)

From (4.46), (4.47) and (4.51) it yields that

ρv
2

d

dt
|∆ū(λ)(t)|2L2(0,1) +

k

8(L− s∗)2
(1−M9(4η + 16a2η))|∆ũy(λ)(t)|2L2(0,1)

≤M9(1 + 4(aCφ)
2)|∆s(λ)(t)|2

+M11

(
1 + (1 + |∆δh(t, λ)|2)|∆δũy(λ)(t)|2L2(0,1) + (1 + |∆δ′h(t, λ)|2)|∆δ′ũy(λ)(t)|2L2(0,1)

+ |∆δh(t, λ)|2 + |∆δ′h(t, λ)|2 + |∆δh(t, λ)|4 + |∆δ′h(t, λ)|4
)
(|δ|2 + |δ′|2)

+

(
M9

4L2

ηk
(2 + 8a2) +M10(1 + |∆δ′st(λ)(t)|2)

)
|∆ū(λ)(t)|2L2(0,1)

+M10|∆ht(t, λ)|2 + (2 + 8a2)M9|∆h(t, λ)|2 for a.e. t ∈ [0, T ], (4.52)

where M11 is a positive constant depending on a, Cφ, C̃ and M9. Recalling (4.42), (4.43)
and (4.44), it can be guaranteed that

1

2

d

dt
|∆s(λ)(t)|2

≤a2|∆ũ(λ)(t, 0)|2 + (aCφ)
2|∆s(λ)(t)|2 + (aCφC̃

2)2(|δ|2 + |δ′|2) + |∆s(λ)(t)|2

≤ a2ηk

4(L− s∗)2
|∆ũy(λ)(t)|2L2(0,1) +

4(aL)2

ηk
|∆ū(λ)(t)|2L2(0,1) + a2|∆h(t, λ)|2

+ (aCφ)
2|∆s(λ)(t)|2 + (aCφC̃

2)2(|δ|2 + |δ′|2) + |∆s(λ)(t)|2 for a.e. t ∈ [0, T ]. (4.53)

Adding (4.53) to (4.52) we have

ρv
2

d

dt
|∆ū(λ)(t)|2L2(0,1) +

1

2

d

dt
|∆s(λ)(t)|2
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+
k

8(L− s∗)2

(
1−M9(4η + 16a2η)− 2a2η

)
|∆ũy(λ)(t)|2L2(0,1)

≤
[
M9(1 + 4(aCφ)

2) + (aCφ)
2 + 1

]
|∆s(λ)(t)|2

+

[
M11

(
1 + (1 + |∆δh(t, λ)|2)|∆δũy(λ)(t)|2L2(0,1) + (1 + |∆δ′h(t, λ)|2)|∆δ′ũy(λ)(t)|2L2(0,1)

+ |∆δh(t, λ)|2 + |∆δ′h(t, λ)|2 + |∆δh(t, λ)|4 + |∆δ′h(t, λ)|4
)
+ (aCφC̃

2)2
]
(|δ|2 + |δ′|2)

+

(
M9

4L2

ηk
(2 + 8a2) +M10(1 + |∆δ′st(λ)(t)|2) +

4(aL)2

ηk

)
|∆ū(λ)(t)|2L2(0,1)

+M10|∆ht(t, λ)|2 +
[
(2 + 8a2)M9 + a2

]
|∆h(t, λ)|2 for a.e. t ∈ [0, T ]. (4.54)

For simplicity, in (4.54) we set the coefficients of |δ|2+ |δ′|2 and |∆ū(λ)(t)|2 by f1(δ, δ
′)(t)

and f2(δ, δ
′)(t), respectively. Also, by taking a suitable η > 0 we can rewrite (4.54) as

follows:

ρv
2

d

dt
|∆ū(λ)(t)|2L2(0,1) +

1

2

d

dt
|∆s(λ)(t)|2 + k

16(L− s∗)2
|∆ũy(λ)(t)|2L2(0,1)

≤M12|∆s(λ)(t)|2 + f1(δ, δ
′)(t)(|δ|2 + |δ′|2) + f2(δ, δ

′)(t)|∆ū(λ)(t)|2L2(0,1)

+M10|∆ht(t, λ)|2 +M13|∆h(t, λ)|2 for a.e. t ∈ [0, T ], (4.55)

where M12 and M13 are positive constants independent of δ and δ′.
By applying Gronwall’s lemma to (4.55), we obtain

ρv
2
|∆ū(λ)(t)|2L2(0,1) +

1

2
|∆s(λ)(t)|2 + k

16(L− s∗)2

∫ t

0

|∆ũy(λ)(τ)|2L2(0,1)dτ

≤M14(exp(

∫ t

0

f2(δ, δ
′)(τ)dτ)×

×
(
|∆ũ0(λ)−∆h(0, λ)|2L2(0,1) + |∆s0(λ)|2 + (|δ|2 + |δ′|2)

∫ t

0

f1(δ, δ
′)(τ)dτ

+

∫ t

0

(|∆ht(τ, λ)|2 + |∆h(τ, λ)|2)dτ
)

for t ∈ [0, T ], (4.56)

where M14 is a positive constant independent of δ and δ′.
Now, we can show that {f1(δ, δ′)}δ,δ′∈I+(λ) and {f2(δ, δ′)}δ,δ′∈I+(λ) are bounded in

L1(0, T ). Indeed, by Lemma 3 the set {∆lũy(λ)(t)}l∈I+(λ) is bounded in L2(0, T ;L2(0, 1))
for l = δ, δ′. Also, we see that

|∆lh(λ, t)|2 ≤ 2

(∫ t

0

|∆lht(λ, τ)|dτ
)2

+ 2|∆lh(λ, 0)|2

≤ 2t

∫ t

0

|∆lht(λ, τ)|2dτ + 2|∆lh(λ, 0)|2 for t ∈ [0, T ] and l = δ, δ′.
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Since it is obvious that |∆lh(0, λ)| ≤ C ′|∆lh(λ)|W 1,2(0,T ) for some positive constant C ′, by
Lemma 2 the set {∆lh(0, λ)}l∈I+(λ) is bounded in R for l = δ, δ′. Then, |∆lh(t, λ)|2 and
|∆lh(t, λ)|4 are bounded in R on [0, T ] with respect to l ∈ I+(λ) and t ∈ [0, T ] so that
{f1(δ, δ′)}δ,δ′∈I+(λ) is bounded in L1(0, T ). Also, by Lemma 3 {∆δst(λ)}δ∈I+(λ) is bounded
in L2(0, T ), and we see that {f2(δ, δ′)}δ,δ′∈I+(λ) is bounded in L1(0, T ).

At the end of this proof, thanks to Lemma 2 it is clear that ∆ũ0(λ) → 0 in L2(0, 1),
∆h(0, λ), ∆s0(λ) → 0 in R and ∆ht(·, λ), ∆h(·, λ) → 0 in L2(0, T ) as δ, δ′ → 0. Therefore,
by (4.56) we conclude that {∆δũ(λ)}δ∈I(λ) is a Cauchy sequence in C([0, T ];L2(0, 1)) ∩
L2(0, T ;H1(0, 1)). Finally, by (4.44) it is easy to see that {∆δs(λ)}δ∈I(λ) is a Cauchy
sequence in W 1,2(0, T ).

5 Proof of Theorem 2

We prove Theorem 2 in the following steps:

1. (Section 5.1) The differential quotients {∆δs(λ)}δ∈I+(λ) and {∆δũ(λ)}δ∈I;(λ) converge
to some functions ŝ(λ) and û(λ), respectively.

2. (Section 5.2) The pair (ŝ(λ), û(λ)) of limit functions is a weak solution of P̂(λ).

3. (Section 5.3) The uniqueness of weak solutions of P̂(λ) on [0, T ] holds.

In this section the same conditions as in Theorem 2 is assumed and all notation in the
previous sections will be used.

5.1 Convergence of differential quotients

Proposition 1. For λ ∈ (0, 1) \ N there exist functions ŝ(λ) ∈ W 1,2(0, T ) and û(λ) ∈
C([0, T ];L2(0, 1)) ∩ L2(0, T ;H1(0, 1)) such that

∆δũ(λ) → û(λ) in C([0, T ];L2(0, 1)) ∩ L2(0, T ;H1(0, 1)), (5.1)

∆δũ(λ)(·, 0) → û(λ)(·, 0) in L2(0, T ), ∆δũ(λ)(·, 1) → û(λ)(·, 1) in L2(0, T ), (5.2)

∆δs(λ) → ŝ(λ) in W 1,2(0, T ) as δ → 0. (5.3)

Proof. (5.1) and (5.3) are direct consequences of Lemma 4. Also, it is easy to see that
(5.1) implies (5.2).

In the next lemma we show some convergences of s(λ) and ũ(λ).

Lemma 5. For λ ∈ (0, 1) \N there exists a subsequence {δn} of {δ} such that

ũy(λ+ δn) → ũy(λ) weakly-* in L∞(0, T ;L2(0, 1)), (5.4)

ũyy(λ+ δn) → ũyy(λ) weakly in L2(0, T ;L2(0, 1)), (5.5)

ũy(λ+ δn)(·, 0) → ũy(λ)(·, 0) weakly in L2(0, 1), (5.6)

s(λ+ δn) → s(λ) in C([0, T ]), (5.7)

st(λ+ δn) → st(λ) in L2(0, T ) as n → ∞. (5.8)
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Proof. First, by Lemma 3 {∆δũ(λ)}δ∈I+(λ) is bounded in L2(0, T ;L2(0, 1)). Then, from

|ũ(λ+ δ)(t)− ũ(λ)(t)|L2(0,1) ≤ |∆δũ(λ)(t)|L2(0,1)|δ| for t ∈ [0, T ]

it follows that

ũ(λ+ δ) → ũ(λ) in L2(0, T ;L2(0, 1)) as δ → 0. (5.9)

Also, by Lemma 1 {ũy(λ+δ)}δ∈I+(λ) and {ũyy(λ+δ)}δ∈I+(λ) are bounded in L2(0, T ;L2(0, 1)).
Accordingly, there exist a subsequence {δn} ⊂ {δ} and ū1(λ) ∈ L∞(0, T ;L2(0, 1)) and
ū2(λ) ∈ L2(0, T ;L2(0, 1)) such that ũy(λ+δn) → ū1(λ) weakly-* in L∞(0, T ;L2(0, 1)) and
ũyy(λ+ δn) → ū2(λ) weakly in L2(0, T ;L2(0, 1)) as n → ∞. From (5.9), we easily see that
ū1(λ) = ũy(λ) in L2(0, T ;L2(0, 1)) and ū2(λ) = ũyy(λ) in L2(0, T ;L2(0, 1)), namely, (5.4)
and (5.5) hold. Obviously, (5.4) and (5.5) imply (5.6).

Next, since {∆δns(λ)}n∈N and {∆δnst(λ)}n∈N are bounded in C([0, T ]) and in L2(0, T ),
respectively, we have

|s(λ+ δn)(t)− s(λ)(t)| = |∆δns(λ)(t)||δn| for t ∈ [0, T ],

|st(λ+ δn)− st(λ)|L2(0,T ) ≤ |∆δnst(λ)|L2(0,T )|δn| for t ∈ [0, T ].

Thus, we get (5.7) and (5.8).

5.2 Existence of a weak solution of P̂(λ)

In this section, we show that the pair (ŝ(λ), û(λ)) of limit functions satisfies Definition 2.

Proof of Theorem 2(existence). Let fix λ ∈ (0, 1)\N . Recalling (3.10)-(3.14), we see that
for each n ∈ N, it holds that

ρv∆δnũt(λ)−
k

(L− s(λ))2
∆δnũyy(λ)

=
k(2L− s(λ+ δn)− s(λ))

(L− s(λ+ δn))2(L− s(λ))2
∆δns(λ)ũyy(λ+ δn) + ρv(1− y)

ũy(λ+ δn)

L− s(λ+ δn)
∆δnst(λ)

+ ρv(1− y)

(
st(λ)

L− s(λ+ δn)
∆δnũy(λ) +

st(λ)ũy(λ)

(L− s(λ+ δn))(L− s(λ))
∆δns(λ)

)
in Q(T ),

(5.10)

∆δnũ(λ)(t, 1) = ∆δnh(t, λ) for t ∈ [0, T ], (5.11)

∆δnst(λ)(t) = a

(
∆δnũ(λ)(t, 0)−

φ(s(λ+ δn)(t))− φ(s(λ)(t))

δn

)
for t ∈ [0, T ], (5.12)

k

L− s(λ)(t)
∆δnũy(λ)(t, 0) +

k

(L− s(λ+ δn)(t))(L− s(λ)(t))
∆δns(λ)(t)ũy(λ+ δn)(t, 0)

= ρw∆δnst(λ)(t)− ρvst(λ+ δn)(t)∆δnũ(λ)(t, 0)− ρvũ(λ)(t, 0)∆δnst(λ)(t) for t ∈ [0, T ],
(5.13)

∆δns(λ)(0) = ∆δns0(λ), ∆δnũ(λ)(0, y) = ∆δnũ0(λ)(y) for y ∈ (0, 1). (5.14)
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Then, for any η ∈ W 1,2(0, T ;L2(0, 1)) ∩ L2(0, T ;H1(0, 1)) with η(T ) = 0 and η(t, 1) = 0
on [0, T ], from (5.10) it holds that for n ∈ N,

−
∫ T

0

∫ 1

0

ρv∆δnũ(λ)(t)ηt(t)dydt−
∫ 1

0

ρv∆δnũ0(λ)η(0)dy

+

∫ T

0

∫ 1

0

k

(L− s(λ)(t))2
∆δnũy(λ)(t)ηy(t)dydt+

∫ T

0

k

L− s(λ)(t)
∆δnũy(λ)(t, 0)η(t, 0)dt

=

∫ T

0

∫ 1

0

k(2L− s(λ+ δn)(t)− s(λ)(t))

(L− s(λ+ δn)(t))2(L− s(λ)(t))2
∆δns(λ)(t)ũyy(λ+ δn)(t)η(t)dydt

+

∫ T

0

∫ 1

0

ρv(1− y)ũy(λ+ δn)(t)

L− s(λ+ δn)(t)
∆δnst(λ)(t)η(t)dydt

+

∫ T

0

∫ 1

0

ρv(1− y)st(λ)(t)

L− s(λ+ δn)(t)
∆δnũy(λ)(t)η(t)dydt

+

∫ T

0

∫ 1

0

ρv(1− y)st(λ)(t)ũy(λ)(t)

(L− s(λ+ δn)(t))(L− s(λ)(t))
∆δns(λ)(t)η(t)dydt. (5.15)

Now, we proceed the limiting process n → ∞ in (5.15). First, by the strong conver-
gence (5.1) for ∆δnũ(λ) it is easy to see that

−
∫ T

0

∫ 1

0

ρv∆δnũ(λ)(t)ηt(t)dydt → −
∫ T

0

∫ 1

0

ρvû(λ)(t)ηt(t)dydt as n → ∞, (5.16)

and∫ T

0

∫ 1

0

k∆δnũy(λ)(t)

(L− s(λ)(t))2
ηy(t)dydt →

∫ T

0

∫ 1

0

kûy(λ)(t)

(L− s(λ)(t))2
ηy(t)dydt as n → ∞. (5.17)

On the third term of the left hand side of (5.15), by (5.13) we have∫ T

0

k

L− s(λ)(t)
∆δnũy(λ)(t, 0)η(t, 0)dt

=−
∫ T

0

k

(L− s(λ+ δn)(t))(L− s(λ)(t))
∆δns(λ)(t)ũy(λ+ δn)(t, 0)η(t, 0)dt

+

∫ T

0

ρw∆δnst(λ)(t)η(0)dt−
∫ T

0

ρvst(λ+ δn)(t)∆δnũ(λ)(t, 0)η(t, 0)dt

−
∫ T

0

ρvũ(λ)(t, 0)∆δnst(λ)(t)η(t, 0)dt. (5.18)

Accordingly, from (5.2), (5.3), (5.6), (5.7) and (5.8), the right hand side of (5.18) converges
to the following (5.19) as n → ∞:

−
∫ T

0

k

(L− s(λ)(t))2
ŝ(λ)(t)ũy(λ)(t, 0)η(t, 0)dt+

∫ T

0

ρwŝt(λ)(t)η(t, 0)dt

−
∫ T

0

ρvst(λ)(t)û(λ)(t, 0)η(t, 0)dt−
∫ T

0

ρvũ(λ)(t, 0)ŝt(λ)(t)η(t, 0)dt. (5.19)
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Next, by recalling the notation of Fiδ(λ), i = 1, 2, 3, 4, we rewrite the right hand side
of (5.15) as follows:

4∑
i=1

∫ T

0

∫ 1

0

Fiδn(λ)(t)η(t)dydt

Here, we note that ũy, ũyy ∈ L∞(0, 1;L2(0, T ;L2(0, 1)). Also, by Lemma 3, {∆δns(λ)}n∈N
is bounded in C([0, T ]), {∆δnst(λ)}n∈N is bounded in L2(0, T ) and {∆δnũy(λ)}n∈N is
bounded in L2(0, T ;L2(0, 1)). Then, by (5.3), (5.5) and (5.7), we see that

F1δn(λ) →
2k(L− s(λ))

(L− s(λ))4
ŝ(λ)ũyy(λ) weakly in L2(0, T ;L2(0, 1)) as n → ∞. (5.20)

Also, from the strong convergences (5.3) and (5.7) and the weakly convergence (5.4), it
follows that

F2δn(λ) →
ρv(1− y)ũy(λ)

L− s(λ)
ŝt(λ) weakly in L2(0, T ;L2(0, 1)) as n → ∞. (5.21)

Moreover, on account of (5.1), (5.3) and (5.7) we have

F3δn(λ) →
ρv(1− y)st(λ)

L− s(λ)
ûy(λ) weakly in L2(0, T ;L2(0, 1)) as n → ∞, (5.22)

F4δn(λ) →
ρv(1− y)st(λ)ũy(λ)

(L− s(λ))2
ŝ(λ) weakly in L2(0, T ;L2(0, 1)) as n → ∞. (5.23)

Consequently, by all convergences (5.16), (5.17), (5.19), (5.20)-(5.23) and Lemma 2 we
obtain from (5.15) that

−
∫ T

0

∫ 1

0

ρvû(λ)(t)ηt(t)dydt+

∫ T

0

∫ 1

0

k

(L− s(λ)(t))2
ûy(λ)(t)ηy(t)dydt

−
∫ T

0

k

(L− s(λ)(t))2
ŝ(λ)(t)ũy(λ)(t, 0)η(t, 0)dt+

∫ T

0

ρwŝt(λ)(t)η(t, 0)dt

−
∫ T

0

ρvst(λ)(t)û(λ)(t, 0)η(t, 0)dt−
∫ T

0

ρvũ(λ)(t, 0)ŝt(λ)(t)η(t, 0)dt

=

∫ T

0

∫ 1

0

2kŝ(λ)(t)

(L− s(λ)(t))3
ũyy(λ)(t)η(t)dydt+

∫ T

0

∫ 1

0

ρv(1− y)ũy(λ)(t)

L− s(λ)(t)
ŝt(λ)(t)η(t)dydt

+

∫ T

0

∫ 1

0

ρv(1− y)st(λ)(t)

L− s(λ)(t)
ûy(λ)(t)η(t)dydt

+

∫ T

0

∫ 1

0

ρv(1− y)st(λ)(t)ũy(λ)(t)

(L− s(λ)(t))2
ŝ(λ)(t)η(t)dydt+ ρv

∫ 1

0

û0(λ)η(0)dy.

To accomplish the proof we remain to show (2.11) and (2.13). By Lemma 2, (5.2) and
(5.11), we infer that (2.11) holds. Next, since φ′ is Lipschitz continuous, we observe that∣∣∣∣φ(s(λ+ δn))− φ(s(λ))

δn
− φ′(s(λ))ŝ(λ)

∣∣∣∣
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=

∣∣∣∣φ′
(
s(λ) + ξn(s(λ+ δn)− s(λ))

)
∆δns(λ)− φ′(s(λ))ŝ(λ)

∣∣∣∣
≤Cφ

(
|s(λ+ δn)− s(λ)||∆δns(λ)|+ |∆δns(λ)− ŝ(λ)|

)
on [0, T ], (5.24)

where 0 < ξn < 1. From (5.24), (5.3) and (5.7) it is proved that

φ(s(λ+ δn))− φ(s(λ))

δn
→ φ′(s(λ))ŝ(λ) in C([0, T ]) as n → ∞. (5.25)

Therefore, with the help of (5.2), (5.3) and (5.25), by letting n → ∞ in (5.12) we get the
first equation in (2.13). Finally, from the convergences in Lemma 2, (5.14) we wee the
second equation in (2.13). Thus, (ŝ(λ), û(λ)) is the weak solution of P̂(λ).

5.3 Uniqueness of weak solutions of P̂(λ)

The aim of this part is to establish uniqueness of solutions to P̂(λ) on [0, T ].

Proof of Theorem 2(uniqueness). Let λ ∈ (0, 1) and (ŝ1(λ), û1(λ)) and (ŝ2(λ), û2(λ)) be
weak solutions of P̂(λ) on [0, T ]. Put ŝ(λ) = ŝ1(λ) − ŝ2(λ) and û(λ) = û1(λ) − û2(λ).
Then, for any η ∈ W 1,2(0, T ;L2(0, 1)) ∩ L2(0, T ;H1(0, 1)) with η(T ) = 0 and η(t, 1) = 0,
it holds that

−
∫ T

0

∫ 1

0

ρvû(λ)(t)ηt(t)dydt+

∫ T

0

∫ 1

0

k

(L− s(λ)(t))2
ûy(λ)(t)ηy(t)dydt

−
∫ T

0

k

(L− s(λ)(t))2
ŝ(λ)(t)ũy(λ)(t, 0)η(t, 0)dt+

∫ T

0

ρwŝt(λ)(t)η(t, 0)dt

−
∫ T

0

ρvst(λ)(t)û(λ)(t, 0)η(t, 0)dt−
∫ T

0

ρvũ(λ)(t, 0)ŝt(λ)(t)η(t, 0)dt

=

∫ T

0

∫ 1

0

2kŝ(λ)(t)

(L− s(λ)(t))3
ũyy(λ)(t)η(t)dydt+

∫ T

0

∫ 1

0

ρv(1− y)ũy(λ)(t)

L− s(λ)(t)
ŝt(λ)(t)η(t)dydt

+

∫ T

0

∫ 1

0

ρv(1− y)st(λ)(t)

L− s(λ)(t)
ûy(λ)(t)η(t)dydt

+

∫ T

0

∫ 1

0

ρv(1− y)st(λ)(t)ũy(λ)(t)

(L− s(λ)(t))2
ŝ(λ)(t)η(t)dydt,

and

û(λ)(t, 1) = 0 for a.e. t ∈ [0, T ], (5.26)

ŝt(λ) = a(û(λ)(t, 0)− φ′(s(λ))ŝ(t)) for a.e. t ∈ [0, T ], (5.27)

û(λ)(0) = 0, ŝ(λ)(0) = 0. (5.28)

By applying the classical theory for weak solutions of linear parabolic equations, for
instance [13, Chapter 3] we obtain

ρv
2
|û(λ)(t1)|2L2(0,1) +

∫ t1

0

∫ 1

0

k

(L− s(λ)(t))2
|ûy(λ)(t)|2dydt
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=

∫ t1

0

k

(L− s(λ)(t))2
ŝ(λ)(t)ũy(λ)(t, 0)û(λ)(t, 0)dt+

∫ t1

0

ρwŝt(λ)(t)û(λ)(t, 0)dt

+

∫ t1

0

ρvst(λ)(t)|û(λ)(t, 0)|2dt−
∫ t1

0

ρvũ(λ)(t, 0)ŝt(λ)(t)û(λ)(t, 0)dt

+

∫ t1

0

∫ 1

0

2kŝ(λ)(t)

(L− s(λ)(t))3
ũyy(λ)(t)û(λ)(t)dydt

+

∫ t1

0

∫ 1

0

ρv(1− y)ũy(λ)(t)

L− s(λ)(t)
ŝt(λ)(t)û(λ)(t)dydt

+

∫ t1

0

∫ 1

0

ρv(1− y)st(λ)(t)

L− s(λ)(t)
ûy(λ)(t)û(λ)(t)dydt

+

∫ t1

0

∫ 1

0

ρv(1− y)st(λ)(t)ũy(λ)(t)

(L− s(λ)(t))2
ŝ(λ)(t)û(λ)(t)dydt

=:
8∑

i=1

Ii(t1) for any t1 ∈ [0, T ]. (5.29)

First, by (4.29) and (5.26) it is obvious that |ũy(λ)(t, 0)| ≤ L
k
(ρw + ρv)a for t ∈ [0, T ] and

û(λ)(t, 0) =
∫ 1

0
ûy(λ)(t)dy for t ∈ [0, T ]. Then, we see that

|I1(t1)| ≤
L(ρw + ρv)a

(L− s∗)2

∫ t1

0

|ŝ(λ)(t)||û(λ)(t, 0)|dt

≤ L(ρw + ρv)a

(L− s∗)2

∫ t1

0

|ŝ(λ)(t)||ûy(λ)(t)|L2(0.1)dt

≤ η

2

∫ t1

0

|ûy(λ)(t)|2L2(0,1)dt+
1

2η

(
L(ρw + ρv)a

(L− s∗)2

)2 ∫ t1

0

|ŝ(λ)(t)|2dt, (5.30)

where η is an arbitrary positive number. Similarly to (5.30), by Remark 1 we infer that

|I2(t1)| ≤
η

2

∫ t1

0

|ûy(λ)(t)|2L2(0,1)dt+
ρ2w
2η

∫ t1

0

|ŝt(λ)(t)|2dt, (5.31)

and

|I4(t1)| ≤
η

2

∫ t1

0

|ûy(λ)(t)|2L2(0,1)dt+
ρ2v
2η

∫ t1

0

|ŝt(λ)(t)|2dt. (5.32)

Also, by standard calculations and (2.1) we obtain

|I3(t1)| ≤ ρva

∫ t1

0

|û(λ)(t, 0)|2dt

≤ ρvaCe

∫ t1

0

|û(λ)(t)|L2(0,1)|û(λ)(t)|H1(0,1)dt

≤ η

2

∫ t1

0

|ûy(λ)(t)|2L2(0,1)dt+

(
ρvaCe +

(ρvaCe)
2

2η

)∫ t1

0

|û(λ)(t)|2L2(0,1)dt, (5.33)
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where Ce is some positive constant. Because of ũy(λ) ∈ L∞(0, T ;L2(0, 1)), we can deal
with the terms Ii(t1) for 5 ≤ i ≤ 8 as follows:

|I5(t1)| ≤
k

(L− s∗)3

(∫ t1

0

|û(λ)(t)|2L2(0,1)dt+

∫ t1

0

|ũyy(λ)(t)|2L2(0,1)|ŝ(λ)(t)|2dt
)
, (5.34)

|I6(t1)| ≤
ρv

L− s∗

∫ t1

0

|ŝt(λ)(t)||ũy(λ)(t)|L2(0,1)|û(λ)(t)|L2(0,1)

≤ ρvK

2(L− s∗)

(∫ t1

0

|ŝt(λ)(t)|2dt+
∫ t1

0

|û(λ)(t)|2L2(0,1)dt

)
, (5.35)

|I7(t1)| ≤
η

2

∫ t1

0

|ûy(λ)(t)|2L2(0,1)dt+
1

2η

(
ρva

(L− s∗)

)2 ∫ t1

0

|û(λ)(t)|2L2(0,1)dt, (5.36)

and

|I8(t1)| ≤
ρvaK

2(L− s∗)2

(∫ t1

0

|û(λ)(t)|2L2(0,1)dt+

∫ t1

0

|ŝ(λ)(t)|2dt
)
, (5.37)

where K is the positive constant defined in Lemma 1. Therefore, by combining (5.29)
with (5.30)-(5.37), we obtain that

ρv
2
|û(λ)(t1)|2L2(0,1) + (

k

2L2
− 5

2
η)

∫ t1

0

∫ 1

0

|ûy(λ)(t)|2dydt

≤M̃1

(∫ t1

0

(1 + |ũyy(λ)(t)|2L2(0,1))|ŝ(λ)(t)|2dt+
∫ t1

0

|ŝt(λ)(t)|2dt+
∫ t1

0

|û(λ)(t)|2L2(0,1)dt

)
,

(5.38)

where M̃1 is a positive constant depending on ρv, ρw, a, s∗, Ce, K, L and η. Here, by
recalling (5.27) and (5.33) it holds that

d

dt
|ŝ(λ)(t)|2 ≤ 2a|û(λ)(t, 0)||ŝ(λ)(t)|+ 2aCφ|ŝ(λ)(t)|2

≤ 2a|ûy(λ)(t)|L2(0,1)|ŝ(λ)(t)|+ 2aCφ|ŝ(λ)(t)|2

≤ η

2
|ûy(λ)(t)|2L2(0,1) +

(
2a2

η
+ 2aCφ

)
|ŝ(λ)(t)|2 for t ∈ [0, T ], (5.39)

and

|ŝt(λ)(t)|2

≤2a2(|û(λ)(t, 0)|2 + C2
φ|ŝ(λ)(t)|2)

≤2a2Ce|û(λ)(t)|L2(0,1)|û(λ)(t)|H1(0,1) + 2a2C2
φ|ŝ(λ)(t)|2

≤η

2
|ûy(λ)(t)|2L2(0,1) +

(
2(a2Ce)

2

η
+ 2a2Ce

)
|û(λ)(t)|2L2(0,1) + 2a2C2

φ|ŝ(λ)(t)|2 for a.e. t ∈ [0, T ].

(5.40)
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We integrate (5.39) over [0, t1], substitute (5.40) into (5.38) and add them. Then, by
taking a suitable η we have

ρv
2
|û(λ)(t1)|2L2(0,1) + |ŝ(λ)(t1)|2 +

k

4L2

∫ t1

0

∫ 1

0

|ûy(λ)(t)|2dydt

≤M̃2

(∫ t1

0

(1 + |ũyy(λ)(t)|2L2(0,1))|ŝ(λ)(t)|2dt+
∫ t1

0

|û(λ)(t)|2L2(0,1)dt

)
, (5.41)

where M̃2 is a positive constant. Consequently, by applying Gronwall’s lemma to (5.41)
with help of (5.28), we conclude that ŝ(λ) = 0 and û(λ) = 0 in L2(0, 1) on [0, T ]. Thus,
P̂(λ) has at most one solution. Hence, Theorem 2 is completely proved.

6 Application

In this section we apply Theorem 2 to the case the parameter varies in Ω ⊂ R3, that
is, the boundary and initial functions depend on ξ = (ξ1, ξ2, ξ3) ∈ Ω. For this case we
establish estimates for the partial derivative of s with respect to ξi for i = 1, 2, 3.

Let Ω ⊂ R3 be a bounded domain. For ξ ∈ Ω we consider the following free boundary
problem P(ξ) := {(6.1)-(6.6)} is to find a pair of a curve x = s(ξ)(t) on [0, T ] and a
function u(ξ) on the set Qs(ξ)(T ) := {(t, x) : 0 < t < T, s(ξ)(t) < x < L}, T > 0, such
that

ρvut(ξ)− kuxx(ξ) = 0 for t ∈ [0, T ] and x ∈ (s(ξ)(t), L), (6.1)

u(ξ)(t, L) = h(t, ξ) for t ∈ (0, T ), (6.2)

kux(ξ)(t, s(ξ)(t)) = (ρw − ρvu(ξ)(t, s(ξ)(t)))st(ξ)(t) for t ∈ (0, T ), (6.3)

st(ξ)(t) = a(u(ξ)(t, s(ξ)(t))− φ(s(ξ)(t))) for t ∈ (0, T ), (6.4)

s(ξ)(0) = s0(ξ), (6.5)

u(ξ)(0, x) = u0(ξ, x) for x ∈ [s0(ξ), L], (6.6)

where h, s0 and u0 are given functions on QΩ := Ω× (0, T ), Ω and Ω(s0) := {(ξ, x) : ξ ∈
Ω, s0(ξ) < x < L}, respectively.

Here, we provide assumptions for h, s0 and u0.

(A3’) h(:= h(t, ξ)) ∈ W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)) and ht ∈ L∞((0, T ) × Ω) ∩
L2(0, T ;H1(Ω)) with 0 ≤ h(t, ξ) ≤ h∗ for t ∈ (0, T ) and ξ ∈ Ω, where h∗ is a positive
constant satisfying h∗ < φ(L).

(A5’) s0(:= s0(ξ)) ∈ H1(Ω) with 0 ≤ s0(ξ) ≤ L − ℓ0 for any ξ ∈ Ω, where ℓ0 is
a positive constant, and u0(:= u0(ξ, x)) ∈ L∞(Ω;W 1,2(0, L)), ∂u0

∂ξi
∈ L2(Ω;L2(0, L)) for

i = 1, 2, 3, u0(ξ)(L) = h(0, ξ) and 0 ≤ u0(ξ) ≤ 1 on [s0(ξ), L] for ξ ∈ Ω.

Here, we give estimates for the partial derivative of s as a corollary of Theorem 2.

Corollary 1. If (A1), (A2), (A4), (A3’) and (A5’) hold, then for a.e. ξ = (ξ1, ξ2, ξ3) ∈ Ω
there exists a solution (s(ξ), u(ξ)) of P(ξ) on [0,T] such that s is differentiable with respect
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to ξi for each i = 1, 2, 3. Moreover, there exists a positive constant C∗ such that for each
i = 1, 2, 3∣∣∣∣ ∂s∂ξi

∣∣∣∣
W 1,2(0,T )

≤ C∗(

∣∣∣∣∂s0∂ξi

∣∣∣∣+ ∣∣∣∣∂u0

∂ξi

∣∣∣∣
L2(s0(ξ),L)

+

∣∣∣∣ ∂h∂ξi
∣∣∣∣
W 1,2(0,T )

) a.e. on Ω, (6.7)∫
Ω

∣∣∣∣ ∂s∂ξi
∣∣∣∣2
W 1,2(0,T )

dξ ≤ C∗

∫
Ω

(

∣∣∣∣∂s0∂ξi

∣∣∣∣2 + ∣∣∣∣∂u0

∂ξi

∣∣∣∣2
L2(s0(ξ),L)

+

∣∣∣∣ ∂h∂ξi
∣∣∣∣2
W 1,2(0,T )

)dξ. (6.8)

Proof. By (A3’) and (A5’) for a.e. ξ = (ξ1, ξ2, ξ3) ∈ Ω there exists an open interval
(a1, b1) such that (a1, b1)×{ξ2}× {ξ3} ⊂ Ω, and ĥ(ξ1, t) := h(t, ξ1, ξ2, ξ3) and û0(ξ1, x) :=
u0(ξ1, ξ2, ξ3, x) satisfy

ĥ ∈ L∞(a1, b1;W
1,2(0, T )),

∂ĥ

∂ξ1
∈ L2(a1, b1;L

2(0, T )),
∂2ĥ

∂ξ1∂t
∈ L2(a1, b1;L

2(0, T )),

s0 ∈ H1(a1, b1), û0 ∈ L∞(a1, b1;W
1,2(0, L)),

∂û0

∂ξ1
∈ L2(a1, b1;L

2(0, L)).

Namely, all assumptions of Theorem 2 hold. Hence, Theorem 2 implies (6.7). By inte-
grating it, we get (6.8) for i = 1. Similarly, we can prove (6.7) and (6.8) for i = 2, 3.
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(2012), 99–107.

[3] T. Aiki and K. Kumazaki, Uniqueness of solutions to a mathematical model describ-
ing moisture transport in concrete materials, Netw. Heterogeneous media, 9 (2014),
no. 4,

[4] T. Aiki and K. Kumazaki, Well-posedness of a mathematical model for moisture
transport appearing in concrete carbonation process, Adv. Math. Sci. Appl., 21
(2011), 361–381.

[5] T. Aiki and Y. Murase, On a large time behavior of a solution to a one-dimensional
free boundary problem for adsorption phenomena, J. Math. Anal. Appl., 445 (2017),
837-854.

[6] T. Aiki, Y . Murase, N . Sato and K . Kumazaki, A two scale model for con-
crete carbonation process in a three dimensional domain, RIMS, Kyoto Univ.,
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