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Abstract. Sato-Aiki-Murase-Shirakawa [7, 16] proposed a free boundary problem in or-
der to describe water adsorption appearing in moisture transport of concrete carbonation
process. The problem is to find a pair of a curve and a function for given boundary
and initial functions. In this paper we consider that the boundary and initial functions
depend on some parameter. Kumazaki [9, 10] already proved the continuous and mea-
surable properties of solutions with respect to the parameter. The aim of this paper is
to establish differentiability of solutions with respect to the parameter as a new property.
This result will be applied to research of the multi-scale model to water adsorption in
concrete carbonation.
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1 Introduction and main result

A two-scale model for moisture transport in concrete carbonation process was proposed
n [6, 12]. The model is a system of a nonlinear diffusion equation in a macro domain
Q) C R? and free boundary problems in a micro domain (0, L) for a positive constant L.
Here, we note that boundary and initial data in the free boundary problem are given as
functions of a parameter A € ). In this paper we mainly deal with the free boundary
problem having the boundary and initial data which depend on the parameter varying in
an open interval (0,1). Also, a result for the case the parameter varies in €2 is provided
in the last section.

Accordingly, we consider the following free boundary problem {(1.1)-(1.6)} denoted
by P(X) for A € (0,1). Unknown functions of P()) are a curve x = s(A)(¢) on [0, 7] and
a function u(A) on the set Q) (T) :={(t,xz) : 0 <t < T, s(A\)(t) <z < L}, T >0, such
that

pots(A) — kug(X) =0 for t € [0,T] and x € (s(A)(¢), L), (1.1)
()\)(t L) =h(\t) fort € (0 T), (1.2)
BNt 5O)(0) = (9 — puu W)t sV for € 0.7), (1.3)
ON(E) = o), 50 sV for £ € (0.T), (1.4)
s(A)(0) = s0(A), (1.5)
(1.6)

u(AN)(0,z) = up(A, x) for = € [so(N), L],

where p,, pw, k and a are given positive constants and ¢ is a given continuous function
on R. Also, for each A € (0,1), h = h(\) = h(), ) is a given function on (0,7), so(A) is a
constant and ug(A) is a given function on [so(A), L].

The problem {(1.1) — (1.6)} is originally proposed by Sato-Aiki-Murase-Shirakawa
[7, 16] as a mathematical model describing water adsorption in concrete carbonation
process, and the two-scale problem containing the free boundary problem is also proposed
in [6]. Also, in case A is fixed, the existence of a solution locally in time and the uniqueness
were proved in [16], the global existence of the solution and a result on a large time
behavior were obtained in Aiki-Murase [5], and existence of periodic solutions in time was
shown in Aiki-Sato [8]. Moreover, in case \ is varying over €2 the problem P()\) was already
studied. In this case, continuous and measurable properties of s and u with respect to A
were investigated in Kumazaki [9, 10]. By applying these properties the local existence of
solutions in time and the uniqueness were obtained in Kumazaki-Aiki-Sato-Murase [12]
and the global existence was discussed in Kumazaki [11]. The aim of this paper is to
establish differentiability of solutions of P()) with respect to A under some conditions for
h, so and ug, when X varies in (0, 1).

In this paper, we proceed in the following way: In Section 2 we state our main theorem
concerned with the differentiability of s and u with respect to A € (0,1). In the proof of the
theorem we shall show convergence of differential quotients of s and v with denominator
0. In Section 3 we give some uniform estimates for the differential quotients with respect
to 0 and in Section 4 we infer that the quotients are Cauchy sequences. Due to the results
obtained in Sections 3 and 4 we prove the convergences and the pair of the limits of the
quotients satisfies a new system in Section 5. At the end of this paper we provide a
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corollary of our main theorem. The corollary implies some estimates for derivative of s
in case the parameter \ takes values in 2 C R3.

2 Main results

First, in order to recall the existence and the uniqueness result for P(\) we give a list of
assumptions as follows:

(A1) T, k and a are positive constants.

(A2) p € C](R)NW?2>®(R), o =0 on (—00,0], p < 1onR, ¢ > 0on (0,L]. Also, we
denote by ¢ the primitive function of ¢ with ¢(0) = 0 and put Cy, = [¢| o) + |¢"| Lo (r)-

(A3) h(:= h(\t)) € L*=(0,1;Wh2(0,T)) with 0 < h(\,-) < h* on (0,T) for any
A € (0,1), where h* is a positive constant satisfying h* < ¢(L).

(A4) Two positive constants p,, and p, satisfy

Pw > 200, puw > po(Cp+2), 9aLpl < kpy.

(A5) sg € L*(0,1) and 0 < so(A\) < L — £y for any A € (0,1), where ¢y is a positive
constant, and ug(A) € W'2(0, L) such that |ug(A)|wr2(son),) < Clug) for any A € (0,1),
where C'(ug) is a positive constant, ug(A)(L) = h(0, \) and 0 § up(A) < 1 on [so(N), L] for
A€ (0,1).

Here, we define a solution of P(X) for A € (0, 1).

Definiton 1. For 7" > 0 and A € (0,1) let s(\) and u(A) be functions on [0,7] and
Qs (T), respectively. We call that a pair (s(A), u())) is a solution of P(X) on [0, T if the
conditions (S1)-(S6) hold:

(S1) s(A) € Wh>(0,T), 0 < s(A) < L on [0,T], u(A) € L=(Qs)(T)), ur(N), uza(N) €
L2(Qs((T)) and |uz( )20y € L7(0,T).
(52) poue(A) = ke (A) = 0 a.e. on Qs (7).
(M)(t, L) = h(A,t

(S3) u , )\,)orae tE[OT]

(S4) kuz(A)(t, s(A) (1)) = (pw — pou(N)(t, s(N) (1)) s¢(A)(t) for a.e. t € [0,T].
(S5) se(A) (1) = a(u(A)(t, s(A )( )) ¢(s(A)(t))) for a.e. t €0, T].

(56) s(A)(0) = so(A), w(A)(0,z) = uo(A, z) for z € [s0(A), L].

Theorem 1 is concerned with the existence and the uniqueness of a solution of P(\)
on [0, 7.

Theorem 1. (c¢f. [5, Theorem 4.1]) Assume (A1)-(A5). Then, for any X\ € (0,1) there
exists a unique solution (s(\),u(N)) of P(\) on [0,T] such that

0<u(A) <1 ae onQsyn(T),0<s(AN) <s, on[0,T] and |s,(N)] < a a.e. on [0,T7,
(2.1)
where s, s a positive constant satisfying s, < L which does not depend on .
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In order to give a statement of our main result we introduce the following notation
and change of variables

AN (L y) = u(t, (1 — y)s(\) () + yL) for y € (0,T) x [0, 1]. (2.2)

Then, we transform P()) into the following problem on the cylindrical domain Q(7") :=
(0,7) < (0,1):

ks

pvut(/\) (L—S(A))z yy(A) L—S(/\) y<>‘) Q(T)v (23>
At 1) = h(\, 1) for t € [0, 7], (2.4)
o 60 = (= N 0D for t € 0.7, (2.5)
V() = a@N)(1,0) = ¢(s() W) for ¢ € [0,7], (26)
SO(0) = (), B0, 4) = (0, (1 = p)sulX) +T) = W)@ on 0,1, (27)

Remark 1. For 7" > 0 and A € (0,1), let s(\) and u(A) be functions on [0,7] and
Qs (T), respectively and define a function @(X\) on Q(7") by (2.2). The pair (s(X),u(\))
is a solution of P(\) if and only if (S’1) and (S’2) hold:

(S’1) s(A) € Wh*(0,7),0 < s(\) < La.e. on [0,T], a(\) € WH2(0,T; L*(0,1)) N
L>(0,T; H'(0,1)) N L>(Q(T)) N L*(0,T; H*(0,1)).

(S2) (2.3)-(2.7) hold.
Hence, if (A1) ~ (A5) hold, then for any A € (0, 1) it holds that 0 < a(\) <1 a.e. Q(T)
and 0 < s(A) < s, on [0,T], where s, is defined in Theorem 1.

Furthermore, we introduce notation to discuss differentiability of s and u. For A €
(0,1) let (s(A),u(N)) be a solution of P(A) on [0,7] and @(\) be a function decided from
u(A) by (2.2). Also, for § € I(A\) := {0’ € R; 0 < A+ 6" < 1} we define the following
differential quotients:

Ass(N)(t) = s(A+0)(t) — s(A)(?) AsiA)(E) = a(A +6)(t) — a(\)(t)

5 ’ ; ,
Agso(n) = 2T 5; “50)  p () e O 5§ — o))
Ashiag) o HOED t()s —hO)

Also, the symbol a% represents the derivative respect to A and we put

Dso(N) Duo(N) On(), ") & (Oh(\, )
= o = (A and o (T) = (-, ).

= soa(N), = upr(A),

ot
Now, we state our main theorem of this paper.

Theorem 2. Assume (A1) ~ (A5) hold. Let A € (0,1) and (s(\),u(N)) be a solution of
P(X) on [0,T] and @(\) be a function decided from w(\) by (2.2). If h, so and ug satisfy
oh

on 2 L2
gy € L0, LW, 1)), (2.8)
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and

05 Ouyg
o L EX
then for a.e. X\ € (0,1) there exists a unique §(\) € W12(0,T) and

a(\) € C([0,T]; L*(0,1)) N L2(0,T; H*(0,1)) such that (i), (i1) and (iii):
(i) it holds that

0,1),up € L>®(0,1; W2(0, L)), € L*(0,1; L*(0, L)), (2.9)

Ass(A) = 3(N\) in WH2(0,T),
Asa(N) — a(X) in C([0,T]; L*(0,1)) N L*(0,T; H'(0,1)) as 6 — 0.
(11) There exists a positive constant C' which depends on py, py, k, a, L, C,, £y and C(uo)
and s independent of & such that
13(M) w20,y + (@A) eqom:z20,1)) + @A) | 220,781 0,1)
Clsoa(M] + [uox(M 20 0),2) + [ra (M) lwr20,1))-
(iii) (5(\),a(N)) is a unique weak solution of the following problem P(\) = {(2.10) —
(2.14)}:

pulir(A) — ﬁ@yyo\)

IV po(l = y)iy(A) . po(1 —y)si(N) .
(L) W)+ s(\) N+ =7 SOV y(A)
po(L—y)si(A) -\ \oyy
(L — s(\))2 y(A)3(A) in Q(T), (2.10)
W(N)(t, 1) = ha(\ t) for a.e. t €[0,T], (2.11)
S N N i E
L= W0 = @ RGO+ s )

- pvst(/\)( )@<)‘)(t O) pva(/\)(t>0)§t(t) fmn a.e. € [O,T(]é 12)
$e(N(t) = a(@(A)(t,0) — @' (s(A)(1))$(A)(1)) for a.e. t € [0,T],5(A)(0) = soa(A), (2.13)
ﬁ()‘>(07 y) - UO)\()VO-()W y)) + uOm()‘7U<)‘7 y))(l - y)SO)\(Aa y) fO’I” a.c.y e (07 1)7 (214>

where o(A,y) = (1 —y)so(A) + yL fory € (0,1).
Here, we define a weak solution of P()) on [0, 7] as follows:

Definiton 2. For T' > 0 and A € (0,1) let $(\) be a function on [0,T] and w(\) be a
function on Q(T). We call that the pair (5(\),4(\)) is a weak solution of P(\) on [0,T)]
if the following conditions hold:

(W1) 5(\) € WH2(0,T) and u(X\) € C([0,T); L*(0,1)) N L*(0,T; H'(0,1)).

(W2) For anyn € WY2(0,T; L*(0,1))NL%(0,T; H'(0,1)) withn(T) = 0 and n(t,1) =0
fort €[0,T], it holds that

/ / ot (H)dydt + / ' /0 1 maym(%mdm
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where Ug(N,y) = uon(A, 0(N,y)) + wox( A, a( A, ) (1 — y)soa(A, y) for a.e. y € (0,1).
(W3) (2.11) and (2.13) hold.

In the proof of Theorem 2 we shall show convergences of Ass(A) and Asa(\) only for
0 > 0, since we can prove the convergences similarly when § is negative.

Remark 2. (1) For ¢ the condition ¢ € C*(R) N WH(R) is sufficient to show the
measurability of solutions in [9, 10]. Here, in order to obtain more better regularities of
solutions we impose the stronger condition (A2) in Theorem 2.

(2) In Theorem 2 we say that the properties (i) ~ (iii) hold for a.e. A € (0,1). Namely,
it is necessary to show existence of a set N C (0, 1) such that meas(N) = 0 and (i) ~ (iii)
hold on (0,1) \ N, where "meas” indicates the Lebesgue measure in R. Choice of the set
N will be discussed in Lemma 2 in detail.

3 Uniform estimate with respect to ¢

First, we provide a lemma concerned with estimates for the solution (s(\),u(A)) of P(X)
with respect to A.

Lemma 1. Let A € (0,1) and (s(\),u(X)) be a solution of P(X) on [0,T] and u(X\) be
a function decided from u(\) by (2.2). If (A1) ~ (A5) hold then there exists a positive
constant K independent of X such that

|ﬂt()‘>’L2(0,t;L2(0,1)) =+ |1~Ly()\)(t>|L2(071) + ‘ayy(A)’LQ(O,t;LQ(OJ)) < K fOT’t € [0, T] and \ € (O, 1)
Proof. Let A € (0,1) and (s(\), u(\)) be a solution of P(\) on [0, T]. As showed in [5, The-
orem 2.4] and [12, Theorem 4.1] already, there exists a positive constant K; independent

of A € (0,1) such that

‘ut()\)’[g(Qs(A)(t)) + |uz<)\)‘L2(s()\)(t),L) < K forte [O,T] and )\ € (O, 1)
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By changing variable as in (2.2), we observe that

/ot /o1 (N (7, y)*dydr
) /Ot /su)m (#@)(T))

<9 /O t / ;(T) (—L _ sl(x) (T>> () (t, 2) [2dadt

u(A) (7, 2) + ug (N (7, x)

bt 1 L—=x 2
+ 2/0 /S(/\)(T) (TW) uz(N) (T, x>T(/\)<T>St(A)(T) dxdr for t € [0,T],
(3.1)
and
/1 |y, (M) (8)|*dy = /L ;m (AN (@)(L — s(\)(@))[2dxdt
o a sy L—=sN)@) "
= / (L — s(\)(t))|ug (M) (t)|*dzdt for t € [0,T]. (3.2)
s(A) (@)

Therefore, from (2.1), (3.1) and (3.2) we can find a positive constant K5 satisfying
|t (N) | 200,4:02(0,1)) + [Ty (N) ()| £200,1) < K for t € [0,T] and A € (0,1). (3.3)
Also, by (2.3), (3.3) and (2.1) we can infer that
| Ty (N)| 12004120,y < K3 for t € [0,T7,

where K3 is a positive constant depending on a, s,, L and K,. Therefore, by putting
K = Ky + K35 we see that Lemma 1 is true. O

Next, we give a lemma concerned with convergence for differential quotients of bound-
ary and initial functions.

Lemma 2. If (A5), (2.8) and (2.9) hold, then there exists a set N C (0,1) such that
meas(N) = 0 and for A € (0,1) \ N it holds that

Ash(\) = ha(X\) in WH2(0,T), (3.4)
Asso(N) = soa(A) in R, (3.5)
Astig(A,-) = uoa(A, (A, 2) + (1 = )sor(Nuge (A, a(A, -) in L*(0,1) as § — 0,  (3.6)
where o(A,y) = (1 —y)so(A) + yL for y € (0,1). Clearly, the sets {Ash(N)}scr (),

{Asso(N) ser, oy and {Asto(N)}ser, (v are bounded in L*(0,T), R and L*(0,1), respec-
tively, where I.(A\) :={6>0:6 € I(\)}.

Proof. By (2.8) we see that h()\, -) is differentiable as a function from (0, 1) to W2(0,T).
Accordingly, (3.4) holds for a.e. A € (0,1). Also, (3.5) holds for a.e. A € (0,1).
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Let A € (0,1) and 6 € I .(\) . Then, we have

Astig(A,y)
= <o\ + 8,000+ 8,9) = woA oA+ 8,9) + 5 (oA, o+ 6.9)) — wp(A, (1, 9))

=07 (A y) +Uy(A\y)  for (\,y) € (0,1) x (0,1).
For simplicity, we put

Ul ()‘7 y) = UO)\()\v 0-()‘7 y))v UQ()‘a y) = (1_y>80>\()\)u0x()‘7 U()‘7 y)) for (>\7 y) € (07 1) X (07 1)
By using these notation we infer that

|Uf<>‘a ) - Ul()" ')|L2(0,1)
<|UY (A, ) = woa (X, oA+ 6, )2 0.) + luoa(X, (A +6,-)) = Ur(A, 2oy = I + 1.

Here, by changing variable we see that

1 <[ 15000+ 8,00 +6.9) = w03+ 6.9) = uor(h oA+ 6Pl

1 oo

~ VL —so(A 1 9) (/ ) |5 (oA +0,2) —up(A, ) — upr (A, 0)Pda) 2. (3.7)

— 20 50(A+
The assumption (2.9) implies that

b

(/ |5(u0(/\ +0,2) — ug(\, ) — uoa(\, z)|?dz)/? = 0 as § — 0 for a.e. X € (0,1).
0

Accordingly, it holds that I? — 0 as § — 0. Similarly to (3.7), we have

13 <( / o\ (A + 8,9)) — o (h, o (A, ) Pdy) 2

_; L " o i s — 5 —u T 2 T 1/2
- L—SQ(/\) </SO()\)| O)\(/\’ * (L—So()\)>( 0()\+5) 0<)\))> OA(A? )| d ) .

: L .
Since fso(/\) luoa(\, 7)|?dz < oo for a.e. A € (0,1) and |(L_LSO(/\))(30()\ +6)—s0(A))| — 0 as
§ — 0, we obtain that I — 0 as § — 0.

Obviously, we have

1 A+
Ug()‘vy) = S\/ (1 - y)SO)\(T)UOz()HO-(n y))d’l" for ()‘7?/) € (07 ]-) X (07 1)7
A
and then,
U5 (A) = Uz (M) 22(0.1)

A+d
(1= y)(sor(r) = son(A))Juox (A, o (1, y))dr2(0.1)

S
>
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At
+ |5/A (1 = y)son(A\) (uoz(N, o (1, y)) — o (A, (X, 9)))dr|r201) = I3 + 3.

It is easy to see that

1 Mool 1/2
B2 (5[] lotataPlon() - sokd
A 0

1 1 [ , L ) 1/2
<— | = |sox() — sox(N)] / [t (A, )| dxdr)
T (5/)\ 0A 0A - 0

1 | o 1/2
sﬁ\u%(k)lmo,m (g/A |soa(r) — 50A(>‘)’2dr>

Here, by applying Lebesgue’s density theorem it holds that

1 A6
5/ 1sox(T) — Soa(A)|Pdr — 0 as 6 — 0 for a.e. A € (0,1). (3.8)
A

Indeed, for any rational number ¢ the function r — |sgx(r) — ¢|? is integrable on (0, 1).
Then, Lebesgue’s density theorem implies that there exists N, C (0, 1) with meas(N,) =0

such that

1 A+
5/ ls0n(r) — g[2dr — 0 as 6 — 0 for A € (0,1)\ N,
A

Also, the set Ey := {\ € (0,1) : |soa(N)| < oo} satisfies meas((0,1) \ £1) = 0. Moreover,
we put N = ((0,1) \ E1) U (UgeVy). Then, for any A € (0,1) \ N and € > 0 we can take
q € Q such that [sgr(\) — ¢| < e. It clear that

1 A+46 1 ALS
(5/ [50(r) = soa(N)[Pdr)'? < (5/ [sox(r) — q*dr)"/? +&.
A A

This guarantees (3.8) and then, I§ — 0 as § — 0. The argument for I? is similar to that
for I3. Thus, we have proved (3.6). O

Next, by using Lemma 1, we give uniform estimates for the differential quotient Ass(\)
and Asa(\) with respect to 6.

Lemma 3. Assume (A1) ~ (A5), (2.8) and (2.9) and for A € (0,1) let (s(\),u(X)) be
a solution of P(\) on [0,T] and @(\) be a function decided from u(\) by (2.2). Then,
there exists a positive constant C' which depends on p,, py, k, a, Cy, €y, L, C(uy) and
\h| oo 0,1;w12(0,1)), and is independent of 0 such that

|Ass(N)lwrzom) + [As@(A)|com;20,0)) + |AsU(A)| 220,101 (0,1))
SCO(|Asso(N)| + [Astio(N)] 22(0,1) + [Ash(N)lwr20,m)) for a.e. A€ (0,1) and § € I.(N).
(3.9)

Moreover, the sets {Ass(N)}ser, v and {Asa(N)}ser, (v are bounded in WH2(0,T) and
C([0,T); L*(0,1)) N L*(0,T; H'(0,1)), respectively.



256

Proof. Let A € (0,1)\ N and ¢ € I,(\), where N is the set obtained in Lemma 2. Then,
from Remark 1 and (2.4) ~ (2.7) it follows that

k

PosT(N) — [(E

Aéayy()‘)

k(L —s(A+0) —s(N)) _ Uy(A+0)
T (L —sOh+ )L — S(A))QAés()‘)uyy(A +0) + pu(l — ?/)L (A 1 0) 55¢(A)
s1(A) _ s1(A) iy ()
Trl=y) (L s wrs S LG e sy wr v S(A))A‘;SW)
= 3 Falh) i Q) (3.10)
AsiN)(E 1) = Ash(M 1) for ¢ € [0,T], (3.11)
Assi(N) () = a (Aaa(x)@, 0) - P8O+ 5)(”; - SO(S(A)“))) forte[0,7],  (3.12)

k Astiy (N)(t,0) + i

Ass(N) (1), (A + 8)(¢,0)

L —s(A)(t) (L —s(A+0)(t)(L ( )(t))
= e Ban(0)0) = o0+ OASTONE) = ATV 0255000 o € 0.7,
3.13
As5(A)(0) = Agso(A), Asu(A)(0,y) = Astio(A)(y) for y € (0,1). (3.14)

Moreover, we put Fs(\) = Zf L Fis(A) and Asa(N)(t,y) = Asa(N)(t,y) — Ash(A,t) for
dely(N),te€[0,7] and y € [0, 1]. By multiplying (3.10) with Asu(\)(t), we obtain

k b _
5 dt/ |Ast(N)(t)Pdy — W/o Agtiy, (N) () Asu(N)(t)dy
/0 <F5()\)( ) — pulshy(t, )\)) Asu(N)(t)dy  for a.e. t €[0,T]. (3.15)

Using the boundary condition (3.13), we can deal with the second term of the right hand
side of (3.15) as follows:

k ! .
- / Aty (V) () Asii(N) ()dy

5 k i i
T / 1, () 0y + o s Ast (00 At (V) 1)

_ W / | Agit, () (2)[2dy
1

( Ass(\ a/\+5)(t,0)>

i L= s+ 0)(E) (L — sV (@)

L—s)\

+

T8 )\ Puwlssi(AN)(t) — ppsi( N+ ) (t) Ast(N)(t, 0))

(
+L_S(A (pv (£, 0) Ay )())
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=) Lis(\)(t) fort e [0,T].

In the following calculations, we use (2.1) and Asu(N)(-,0) = fol Astiy(N) (-, y)dy on [0, T1.
First, by (2.5) it holds that

[ L2s(A)(8)| = %Aasu)(ﬂ% ((pw — poit(A + 8)(t,0))s,(\ + 0) (t)) ’
(pw + pv)CL _
R — sy @)z NGO 1Rss () @)
(pw + Pv)a ! -
k(L = s(A)(1))? / Aé“ymwy\ [Ass(A)(2)]
k
<

A5y () (02201 + om ( : <(pr_ *; (p;;(i))) [Ass(\) ()2

for a.e. t € [0, 77,

2n(L — s(M\)(1)) 2%k

(3.16)

where 7 is an arbitrary positive number. Similarly to (3.16), we can estimate I35(), I45(\)
and I55(\) in the following way:

O] = 7= 25T E 0l ()(O)
= pw
L— s\
< k
= L= sN)

/O Asiy (V) (£)dy

|[As5:(A)(2)]

2
- Pl
3185ty (N ()] 1201 + S 1Ass N (O, (3.17)

[L45(A)(2)]
P ) )
=T sy I E O ATNE 0)lse(A + 9)(2)]

Pol
R0
Dol Lo _ 9
Sm(/{) a—y’Aéu(A)(t)’ dy +

Pova ~ — ~
< = (A AT Ol + 1858 (0 | Ash(2, V) )

(]Agﬂ()\)(t, 0)% + Asa(A)(t, 0)Ash(t, A))

/ 1 Agaywwdy\ 2400,

o

. 2n(poa)’ \
S5, )0 0 + 2P AN B2

SonL —sN@)

k ~ 2 n(pva)2 2
T 2@ — sty oW Olzeen) + = 1AhE A (3.18)

and

1O = 57 A5G OE) ¢ 0) | AssN) 1)
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Pu _
<77 SOV [As(A)(t, 0)[|Assi(A) ()]

< k
— 29(L = s(A)(1))?

Next, we give estimates for some terms in the right hand side of (3.15) as follows:

2
~ NPy
A5ty (N ()] 720.0) + 5 [ Ass M (O (3.19)

| / Fis(A)(t)Asu(N)(t)dy|

2kL b )
T R Ol [ 0+ Ol 0l
<t A Ol O+ 900 AT Oz
<A OPln O+ DORson + 5 (e ) 8N (320
| /0 Fas(N)(#) Asu(N) (t)dy| < L_S(§”+ 5)(t)|Agst<A)(t)| /0 |y (A + 8)(£)]| Ast(N) (2)|dy
< 71 8ss N iy (A + 0) (1) 120 | 85N (8) 20
< Dass O + 5 (L2 18N O, (321
|| Pumasa) ol
< Tl [ 1A @A) ©ldy
< 71, ) (O] 2] AsE N () 0.
< o S OP + B () 18N, (322
and
|/ Fis(AN) () Asu(N)(t)dy|
Po
<= NS0 [ OOy

< (Lp” 2 1858 Ol (V) Bl z200.0 52N Bl 201

<P + 5 ((L’)”_“f E ) A5\ (D)]F2(0.) (3.23)
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where K is the same constant as in Lemma 1. Also, we estimate the last term of the right
hand side of (3.15) as follows:

1
/ (—pulishi(t, ) A5V (Bdy < E|Ashi(t, NP + 2B BlF20  (3:24)
0
Combining all estimates (3.16)-(3.24) with (3.15), we deduce that

k 3 . 9
5 dt/ | Asu(A)(t)[Pdy + =MD (1 - 5) | Aty (A) ()| 7200.1)

<Ci(n) (1 T ity (A +0) <t>r%m,n) Ass()O + Caln)] Agsy (V) (D)

2
’Ua’ v
+@WM&QM%mM+m%)Mm@MP+%MmﬁAWEMﬁtEMﬂ
(3.25)

where C;(n)(1 < i < 3) is a positive constant depending on 7. Here, by using (3.12) and
the derivation of (3.18) we have
| Asse(A) ()]
2 (maa(x)(t, o)+ |ZEAED) = A 2)
<20” (41 5ty () (D) 20| AT D) 20y + 21 Ash (2 VI + CAgs(V) (1))

k N ) £(8a?L)? )
—25( sOh )(t))g|A6“y()‘)(t)|L2(o,1) + —|A U(A)()]72(01)
t

+ 4a2|A5 (t, N)° +2a*C2Ass(A)(8)|* for t € [0,T7, (3.26)

where ¢ is an arbitrary positive number and C,, is the same constant as in (A2). Similarly,
we can get

d 2
125N (1)

a <|Aafb()\)(t,0)|2 p(s(A+0)(1)

p(s(M) (1)

; > + 2a|Ass(A)(2)?

k n(4al)?
SQU(L_S(/\)< )) ‘A(;’U,y< )’LQ(OI)_'_ 2%

+ a(C2 4 2)|Ass(N) ()]? for t € [0,T]. (3.27)

| Ast(A)(t)[12(0.1) + 20| Ash(t, A)[?

Therefore, by (3.25) ~ (3.27) we obtain that

2
Qﬁ/ﬁgu (B dy -+ 1 255(3) (1)

_ 7 _ G )) | Aty (X) ()| 72(01)

= s(A)(t))Q (1 2
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< [awz 1 2) 4+ 20Ca(n)C2 + Caln) (1 T iy (3 + 5><t>|%2(0,1))} AssV)(D)P
+ (Cg(n) + ndal)” + 6(8“2L)202(7,)) | Asa(N) (1) |72(0.0)

2k 2k

U(Pua)2 2 2, P 9
+ o + 4a°Cy(n) + 2a | |Ash(t, )| + E|A5ht(t, A)|” for a.e. t € [0,T].

By choosing a suitable € after taking a suitable 7, we see that there exist positive constants
Cy, C5 and Cg such that

ot [+ ISP + 5o At (O

<C, (1 T ity (A + 6) <t>|iz<o,1>) Ass(YOF + 5l AsaN) (1) Loy
+ Cs(JAsh(N, 1) 2 + |Ashy(N, 1)]?) for ace. t € [0, T). (3.28)

Hence, by applying Gronwall’s lemma to (3.28) we see that
2 [ 1ATNOPdy + 120008 + 555 [ 18N onyin

< exp(Cs / (Ul )i + o) (2 / AT (O)Fdy +A55()(O)F

+C / t(|A5h()\, B2+ |A5ht()\,t)]2)d7> for ¢ € [0, 7). (3.29)

Here, we note that by from Lemma 1 t,,()\) € L*(0,T; L*(0,1)) for any A € (0,1) .
Also, by integrating (3.26) over [0,¢] for ¢ € [0,T] and using (3.29), we infer that

/ |Assi(A ] dr

<C7(|Asu(A)(0 )!Lzml +1Ass(N)(0)]* + [Ash(N)[fy12(0,4) for t € [0, 7],

where C7 is some positive constant independent of §. Thus, we get (3.9).
Finally, the boundednesses of {Ass(A)}ser, vy in W2(0,T) and {Asa(A)}ser, () in
C([0,T]; L*(0,1)) N L*(0,T; H'(0,1)) are direct consequences of (3.9) and Lemma 2. [

4 Cauchy property of the differential quotients

In Section 3, we have obtained the uniform estimate for Ags(\) and Asa(A) with re-
spect to 6. In this section, by using these uniform estimates we show that for a.e.

A€ (0,1), {Ass(N)}serpy and {Asa(A)}sern) are Cauchy sequences in WH2(0,T) and
in C([0,7]; L*(0,1)) N L*(0,T; H*(0, 1)), respectively. Here, we note from Lemma 3 that
there exists a positive constant C' which is independent of § such that
|Ass(Mlwr20,r) < C, (4.1)
|AsT(N)|eormc200,1)) + [As@(AN) | r200,mm10,1)) < C for § € I.(N).
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Lemma 4. Under the same assumption and notation as in Lemma 3 for A € (0,1) \ N,

{Ass(N)}ser, o and {Asu(N) }ser, (v are Cauchy sequences in W2(0,T) and in
C([0,T]; L*(0,1)) N L*(0,T; H'(0,1)), respectively.

Proof. First, for A € (0,1) \ N and ¢, ' € I, (\) and ¢ € [0,T], we put

As(A)(t) = Ass(A)(t) — As s(A) (1), Au(A)(t) = Asu(A)(t) — Asa(A)(D),
A

AR(t,\) = Ash(t,\) — Agh(t,
_ pls(A+ 5)( ) —e(sN) @) p(s(A+ ) () — p(s(A)(?))
Ap(s(N)() = . - .

6/

Since (Ass(A), Asa(N)) and (Ags(N), Aga(N)) satisfy (3.10)-(3.14), by using the notation
Fs(\) defined in the proof of Lemma 3, again, we see that

pu(iiy(A) — Ahy) — (L_%Aayym — Fy(\) — Fy(\) — pu by in Q(T),  (4.2)

Aa(M\)(t, 1) = AR(A, ) for ¢ € [0,T], (4.3)

Asi(N) (1) = a(AdA)(t,0) — Ap(s(A)(1)) for ¢ € [0,T], (4.4)
k -

I, — S()\)(t Auy()‘)(t70)

1 1 i
L —s(A)(t) (L —s(A+0)t) L—s(A+ 5/)(t)) Ass(A) )iy (A + 6)(¢,0)
k

T 0L — s N OEA+9)(¢0)

RSSO S()\)(t))Ag/:S()\)(t) (ay(A +0)(t,0) — @, (A + 8')(t, 0))
+ puAs (N (E) = po (st()\ +0)(t) — s; (N + 5’)@)) Asii(N)(¢,0)

- pvst(A +8")()AUN)(2,0) — puti(A)(t, 0)Asy(A)(2)
= ZGM; ) for t € [0,T7,

AS(A)(O) Aso(A), Au(A)(0,y)
Put Aa(MN)(t,y) = Aa(N)(t,y) —

calculation to (4.2) we have

(4.5)
= Aty(M)(y) for y € (0,1). (4.6)

Ah(At) for t € [0,7] and y € [0,1]. By elementary

k Lo -
9 dt/ |Au(N)(t)|*dy — W/o Ay, (V) () Au(N)(t)dy
/0 (Fa(A)U Fy(M\)(t) — vaht(t,A))Au(A)(t)dy for a.e. t € [0,7]. (4.7)

For the second term in the left hand side of (4.7), from (4.3) it follows that

ki b .
- TR /O Adiy, (\) (AT (D) dy
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/ |Ad, (M) () Pdy + WA%(A)(LO)AH(A)(@O).
Then, by (4. 5) we can rewrite (4.7) as
2dt/ |Aa(\ 2dy+ / |Ad, (M) () 2y
Z Gu(N(DHN)(10) + / (F5<A>< )= ) (0) a0y
— /1 po ARy (t, \)Au(N)(t)dy  for a.e. t € [0,T]. (4.8)

On the first term of the right hand side in (4.8), by using Au(A)(+,0) = f01 Aty (N)dy =
[} A, (\)dy on [0, T}, we observe that

1 7

5000 D Gis(M) (B Au(N)(t,0)

=1

1
<T@ 2 CNOIAL WDl

k 1 /< 2
< Aty (N)(1)|75 - Gis(\ ()] ) - 4.9
—2(L - ()\)(,;))2’ iy (A)(8)|z2(0,1) + ok (;’ 5(A( )’) (4.9)
Hence, by combining (4.8) and (4.9), we have
ppd ' ) /

<MY GO + [ (F5<A><t> - F5,<A><t>) Aa(\)()dy

- / 1vaht(t,)\)Aﬂ()\)(t)dy for a.e. t € [0,77, (4.10)

where M, is a positive constant independent of § and ¢'.
Now, we give the estimate for each |G5(\)[%. On account of (2.1) and (2.5) we observe
that

Gis(N) ()]
1 1 k ) 2
- ‘ <L —s(A+0)(t) L—s(A+ 5/)@)) A(SS(A)“)W%(A +6)(t,0)
A((pw + po)a)*L?
- (L—so)t

Is(A 4+ 8) (1) — s(A+ &) (B2 Ass(\) (D)2 for ace. t € [0,T].  (4.11)

Here, we note that

|s(A+0) —s(A+ )|
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=|Ass(N\)d — Ags(N)I']* < 2(1Ass(N)|?[8] + |Ass(N)[2[6'])?) on [0,T]. (4.12)
Accordingly, by (4.11) with (4.1) and (4.12) it follows that

G < XL LIEL (a0 0)PIoF + [Bas 01 ) s 0

8(<pw + pv)a)2L2
T (L=s)t

CH([6)> +10"?)  for a.e. t €[0,T). (4.13)

Similarly to (4.11), the term Ggs(A) can be estimated as follows:

1 2

= spt o I
((pw + po)a)®L?
(L —s.)t

Gas(N) ()] =

Uy (A +0)(t,0)

ke
L—=s(M)(®)

IN

|As(\)(t)]?  for ae. t € [0,T]. (4.14)
For G'35(\), by using (4.1), we have

IG5V (1))? < (Lk_—ézylmy(x +8)(£,0) — @y (A + 8)(£, 0)? for ace. t € [0,T].  (4.15)

Here, by (2.5) we observe that

|y (A 4 8)(t,0) — @y (A + 8")(t,0)|

:‘ L— s(Ak+ d)(t) (w — poti(A + 8)(£,0))s: (A + 5)(t))

L- S(Ak-F o')(t) ((pw — poii( A+ 0')(t,0)) s (N + 5/)(t)) ‘

< 21O 8)(8) = 5O+ 8)0) (o — oA+ 8)(1,0)) (A -+ 6)(0)
+ L2 = s+ )l seA + 9)(2) = st (A + ) (0)

+ %|L —s(A+ ) ()] po (a(/\ +0)(t,0) — a(X+ 5)(¢, 0)) |se(A+0)(t)]
+ %lL — s(A+8)(@)||poa(X+8") (¢, 0)]|s:(A 4+ ) (t) — s (A + ") (F)]. (4.16)
Similarly to the derivation of (4.12), it holds that
|a(A+8)(t,0) —a(XA+ 8)(t,0)| < |Asa(N)(E,0)]]0] + |Asa(N)(E,0)]]d], (4.17)
[51(A 4 6) = se(A + )] < [Asse (M) (E)10] + [Dgrse (A (£)]]6]- (4.18)

Hence, by substituting (4.17) and (4.18) into (4.16) and using (4.1), (4.12) and (2.1) we
deduce

|Gy (A4 8)(t,0) — @y (A + 8")(¢,0)|
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Sé(pw _;pv)a(|5| + ’6’|) pvaL (|A5u( )(t,0)||5| + |A5/ﬂ<)\)(t,0)||5,|)
+@%%£QMMMMWHMwW®WO@ﬁﬁmmjl (4.19)

From (4.15) and (4.19), we can deal with G35(\) as follows:
|Gas(\)(1)[* <M (|5|2 + 1017+ [Asu(A) (£, 0)[*[0]* + [Aga(A) (¢, 0) ||
+ [Ass: (N (D)]?]6]* + |A5/st()\)(t)|2|5’|2) for a.e. t € (0,77, (4.20)

where M, is a positive constant independent of § and §'. For Gys(\) ~ Grs(A), thanks to
(4.18) and (2.1) we proceed as

Gas(\) ()7 < pi | As (V) (1], (4.21)
|Gss(N)()]* < pilsi(A+0)(t) — se(A+ &) () P| Asa(N)(t, 0) [
< 2021 AssVPIOP + |8 VRITPIAEN G O, (4.22)
|Ges(N)(1)]* < (poa)?|Aa(N)(E,0)]%, (4.23)
and
|Grs(N)(1)]* < P As (M) (1) (4.24)

By all estimates (4.13), (4.14), (4.20) ~ (4.24), we see that there exists a positive constant
M3 independent of § and ¢’ such that

316

<Ms (|5|2 10+ 1A5a(A) (8, 0)*[8] + | Aga(N)(t, 0)[*|0"?
+ ([ A5 (N ([0 + [Agse (A () ]0"1*) (1 + [Asa(A) (£, 0))
+ [As(A) (@)|* + [As (N (1)]* + |Aa(N)(¢, 0)|2) for a.e. t € [0,T]. (4.25)

Next, we consider to estimate the second term in the right hand side of (4.8). First, it
holds that

A(ﬂx><>ﬂu»<» a(\)(t)dy

k(2L — s(A+0)(t) — s(\)(@)) b N
T =500t ) @2(L — s MO /0 ity (X + 8)(6) Adiy (V) (t)dy
5)(t

_ HRD = SO OO~ sNW) o )
(L= O+ P — s AT EELNE0)
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KL — 50+ 9)(0) = s (1) L A
e S A () [+ 8)0) A%, () 1)y
t

k2L — s(A +0')(t) = s(A)(1)) - / -
T T O DR s VO A+ ) 0 A, () (E,0).

=) Tis(t). (4.26)

=1

It is easy to see that

Jis + Jss
L k(2L — s(A+9) — s(A\)) ) 1 . , .
=T LSO ONAL s W/( y(A+9) y(Hé))A y(N)dy
_( k’(QL—s()\—i-é)—s( )
(L —s(A+6))*(L —s(N))?

)(Ags()\) Agrs(A ))/ Uy (A + ") Ay, (N)dy

k —s(A +6) + s A+5’
‘<L—s<A>>2( L—s(A+0)) )Aés W+5>A%<A>d

! (2L — s(A+6d) — s(N)) (( —s(A+08))*— (L —s(A+ 5))2)
(=) (L s+ 0)2(L —s(A+ 0))2 Ays(V)

1
« / iy () + 8)Aiiy (V) dy.
0
Following (4.12) and |, (A +0) — @y, (A +6")| < |Asty, (N)||] + |Astiy (X)[|0'], we infer that

| J15 + Jss]
< 2kL
S5
b A+ )0 A8, W0
" ﬁ <'A58<A>”5i + |Aw<A>||6'r) 8558 (W) 20 iy (A + ) 201
4kL?

Ty

Using the fact that |i,(\)|z201) < K on [0,7] in Lemma 1 and |Ass(\)|cqor < C for
any A € (0,1) in (4.1), we deduce that there exists a positive constant My independent of
9 and ¢’ such that

kK
L= s
. M4(maay(»(wﬁm,nwﬁ gty () () oo |5+ [As) B + 3 + |5'|2)

A5V (|Aaay<A>|Lz<o,l>|5| i |A5’ﬁy(/\)|L2(o,1)|5'|) A, (Vo)

<|A55< Jlis] + |A5fs<x>||6’|) A5y (N 2000 |y A+ &) 220

| J15 + Jas| < ’Aﬁy()‘)(t)&?(o,l)
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for a.e. t € [0,7.
(4.27)

On Jos + Jys, it holds that

Jos + Jus
B E(2L — s(A+9) — s(N)) ~ ~ ) ~
=— T —s0nt 0L — 50\ (Ass(N)ay (A +0)(t,0) — Agrs(A)ay, (A +6)(t,0)) A, (N)(t,0)

( k(2L — s(A+ ") — s(N)) k(2L — s(A+6) — s(N)) )
(

L—s(A+0))2(L—5N)? (L—s(A+0))*(L—s(N))?
X Ay s(N)iiy (A + 8') (£ 0)Adiy (A)(£, 0)
kL —=s(A+9) —s(V) SO0 — A a .
T L= s+ 0)2(L —s(\)2 (A5 (A) = As ()\)) y(A+0)(t,0)Aay (A)(Z,0)
_ k@RL—=s(A+9) —s(V) " i . , a
e = s (0 + 9)(10) = 3+ 9)(1,0) Ay (),

( KL — s+ 6) —s(\) k2L — s(A +8) — s(\)) )
(

L— s+ 0))2(L—s(\))?  (L—sh+0)2(L —s(\)?
% Agrs(N)iy (A + 8')(t, 0)Adiy (\)(t, 0).

By (4.12) and (4.17) we get

| Jos + Jas]
< A+ B 0147, ()1, 0)
2kL N - / _
+ m!AW(}\)! <|A6Uy()\)(t70)||5\ + A5y (A)(,0)]]0 \) Ay (A)(2,0)]
k: ! ~ / ~
7A=Y <|A55(A)||5| + [Ags(A)]]6 |> [Asrs(M)[y (A + 0 (2, 0)[| Aty (A) (L, 0)]
s (185s8 + 1855V |85V 3,0+ )8, 08, ()1 0L
(4.28)
Here, by (2.1) and (2.5) we see that
i, 0)(1.0) = 2O i )k 0)s(3+ )0

< %(,Ow + py)a  fora.e. t €10,T). (4.29)

Due to (4.1) and (4.29) we obtain from (4.28) that

| Jas + Jus|
2kL L

Smg(ﬂw

+ po)alAs(A) (B[] Ady (A)(2,0)]
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+ —(L%_LSC) (IA(suy( )(£, 0)[[0] + |Agrity, (M) (2, 0)||5'|) | Adi, (M) (t,0)]
kC? L
VA
4kL2C? L

+ (L — s,)8 k

(0o + ma(\ar n |5’|) Ad, (A)(1.0)
(pw + pﬁa(\éy + |5’|) |Ad, (N)(¢,0)] for a.e. t € [0,7]. (4.30)

By (4.5), it holds that for ¢ € [0, 77,

|My(A)<t’0)|:L_S,SA)(t)L—sk(: ARG < 3 Z|G . (431)

From (4.30), (4.31) and (4.25), we can find a positive constant M5 which does not depend
on § and ¢’ such that

| Jas + Jus|
<M; (|5!2 + 10" + |Asa(N)(t, 0)2[6]? + [Aga(X) (¢, 0)]*]6"|?

+ [ A5ty (A) (£, 0)P|0]* + [ Aty (A) (2, 0) 0]
+ (| A5 (N ([0 + [Agse (A () ]0"*) (1 + [Asa(A) (£, 0))

+ [As(A)(@)|* + [As (N (1)]* + |Aa(N)(¢, 0)|2> for a.e. t € [0,T]. (4.32)

Hence, by substituting (4.27) and (4.32) into (4.26), we infer that

/O (Fis(A)(t) = Fio (A)(8) Au(A) () dy

k . , .
< TR SO0 + Mo (198 + 0 + 1852, 000 007
By V) ()30 |8 + AT (L OIS + [Ag (M), 0) P15

)
+ (1855 (M) (101 + [Ag s (N 101 (1 + [Asa(A) (¢, 0)[*)
+IAs) ()] + A5, (A (@) + [Au(A) (2, 0)] ) (4.33)

where Mg is a positive constant depending on My and Msj.
Next, for the difference Fys — Fhs it follows that

/O (Fas(A)(1) — Fasr (A)(8)) Au(A) (t)dy

_pBsNO :
—Ls [ w0+ aun) 0

Po(—s(A+0")(t) + s(A+ ) (1)) Asrs (N (2)
(L —s(A+)(t))(L—s(A+)(t))

/0 (1= )ity (A + 0) () AG(N) (t)dy
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* Lpiii/;tfg'(;()t) /o (1 =) (i, (A +0)(t) — @y (A + &) () Aa(N) (D)dy.  (4.34)

On account of the result that |, (\)(t)]|2¢0,1) < K for t € [0,7] in Lemma 1, we deduce
from (4.34) that

[ )0~ R Y0270 01

L AsO)O AN Ol

+ s+ (0 = s+ Ol OIIATN 020

P s Ol A+ 9)0) = 1A+ )DLzl AT Olazon.  (435)

<

+

L

In the similar way to the derivation of (4.27), using the result that [Ass(A)|cqo,r7) < C in
(4.1) and Young’s inequality, we derive from (4.35) that

/0 (Fus(\) () — Far (N (£) Aa(A)(t)dy

<M; (IAS,:(A)O#)I2 + 1617 4+ 1012 + | Astay (A) ()P0 + IAafﬂy(A)(t)IQI(S’IZ)
+ (14 855N (O AGN) (1) 220, for ace. t € [0,7], (4.36)

where My is a positive constant independent of § and ¢'.
Also, the difference on F35 — F35 can be written as

/0 (Fus(\) () — Far(\)(6) Aa(A)(t)dy
t

pos () [ ,
<L [ - nanmoan o

postN) () (=s(A + &) (1) + s(A +)(1) [ ) )
(L= s(A+8)(1))(L = s(A+0)(1)) /0 (1= 9)Asa,(\) () AT (t)dy.  (4.37)

By (2.1), (4.1) and (4.37) we see that

/0 (F3s(A)(1) = Fasr (A)(8)) Au(A) () dy

k . : 2L [ pa o 9
<o AN O + 2 (25 ) 18100l

~ 2
praC , - 1. .
+ ((L — )2) (161 + 16"1*) | As iy () () 7201y + §|AU(>\)(t)I2Lz(o,1>- (4.38)

Moreover, we give the estimate on the following difference Fys — Fys:

/O (FisN)(0) — Far (N)(0) Aa(A)(H)dy
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= ! ) -y a
RECEDL >><L—s<A><t>>/o ORI

t A+ + s\ +0)(t) [ )
L0 (@ =0T 0O =500 /0 (1= 9, (A () AaA) ()jzg)

—
>
N—
~
S~—
/'\
03
—~

Referring to the derivation of (4.38), we obtain from (4.39) that

/0 (Fis(M)(t) — Fur(\) () Aa(N) (H)dy

<5 (255 s +<<’JEG_K§>) (1617 + 15'2) + |AT)O) a0y (4-40)

Combining (4.10), (4.25), (4.33), (4.36), (4.38) and (4.40), we have

k

po d 2 ~ 2
5£|A u(A)()] 72001 +m|Auy(A)(t)|L2(0,l)

SMg((W F10"P) X+ [Asty (N ()] T20,1) + Doty (M) () T20,1)) + [As(A)(E,0)*]]”
+ A5 a(N) (&, 0)]*[0* + (| Ass: (A B0 + [Agsi (A (O)PI07) (1 + [Asa(A) (£, 0) )
+IAsN) @)+ [Asy (N @) + [Aa(A)(t, O)IQ)

+ M10<(1 + 1Az s (M) ()P AG(N) (1) 72(0.1) + !Aht()\,t)|2> for a.e. t € [0,T], (4.41)

Where My and M, are positive constants independent of § and ¢’. The estimate for
Aw(N)(t,0) can be given as follows:

[AG(A)(t,0)[?
<2|AG(N)(t,0) — Ah(t, N2 + 2| AR\ 1)
<4| Ay (N) (1) 220, |ATA) (8) = AN, )] 12(0,1) + 2| AR(N, 1)

k 5 8L?
_ﬁmuy@)(t)ﬁ?(m) +— \AU( J(B)|Z200.0) + 21AR(N 1)]? for t € 0,T), (4.42)

where 7 is an arbitrary positive number. Also, As;(A) can be rewritten by

As,(\)(1)

_ p(s(A+0)(t) —p(s(N)(1)  @(s(A+)(t) — p(s(N) (@)
—aAa(N)(t,0) — ( 5 - 5 )
=aAu(N)(t,0) — ap'(s(N)(t) + §0As5(N)(1)) Ass(A)(1)

+ ap'(s(A\)(t) + &s &' Ays(A)(t)Asrs(N)(2)
=aAu(N)(t,0) — a@'(s(A)(t) + E0055(N) (1)) As(A)(t)
- a(w’(S( )(t) + &0 855(A) (1) — @' (s(A)(#) + &5 A S(A)(t)))Aa/S(A)(t), (4.43)
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where 0 < &5 < 1 and 0 < &y < 1. With the help of (AQ), (4.1) and (4.12), we get
A5 (V) (0)
<al A0, 0]+ aC A0 + o, (AN O1B] + 1205111 ) [B5(3))
<alA(N)(t,0)] + aC|As(\)(t)| + aC,C*(|6] + |8'|)  for a.e. t € [0,T]. (4.44)
By (4.42) and (4.44), we have

|As (A)(#)]*
<4a’|ATN)(, 0)[* + 4(aC,)*| As(N) (1) + 4(aCy C?)*([0]* + |6')

4a’nk ~ ) 32(aLl)?, . , ) )
S—z(L_S*)2|Auy<)\)(t)|j;2(071)—i— R [AGN) (1) 22(0,1) + 8a?|Ah(t, )]

+4(aCL)? | As(N) (1)]? 4 4(aC,C** (|6 + |0'*)  for ae. t € [0,T). (4.45)

Using (4.42), (4.45) and (4.41), we infer that

%%mu@)@)y;m,l) - ﬁ(l — My(4n + 16a”n)) | Ady (A) (1) 2011
<My(1 +4(aCy)?)|As(N)(t)]?

8 (14 40, €+ 18 Oy + 1B, O+ AT O
FIAGEN) O + (A (O + 1855 WO+ AN 0P ) (57 + 197

412
+ (Mgn—k(Q + 8a%) + Myo(1 + |A5/st()\)(t)|2)) |AG(N) (1|70,

+ Mig|Ahy(t, N)|? + (2 + 8a?) Mo| Ah(t, \)[*  for a.e. t € [0,T). (4.46)
In addition, it holds that for [ =9, ¢’

< 2| Aty (M) () [F20.0) + 2| A0h(E, NP for ¢ € [0,T7, (4.47)

and by (A2) and (4.1) we have

2

A O = |ada)(.0) — a (so(su +00) - ¢<s<A><t>>>

< 2a%|Aa(N)(t, 0)* + 2(aCy )| Ars(N) (1)]
< 2a®| AN (t,0)* + 2(aC,)*C*  for ae. t €[0,T]. (4.48)

Furthermore, by (4.47) and (4.48) we observe that

(1 Ass M) (O + Qg s (M) (@) Asa(A)(t, 0)
<(2a®| Asa(N)(t, 0)* + 2a%| Ay a(A) (2, 0)* + 4(aC, C)%) | Asa(N) (¢, 0)
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<3a®|Asu(N)(t,0)|* + a®|Asa(N)(t,0)[*
+8(aCyC)? (|85t (A) () 7201y + [Ash(t, N)[?)  for ae. t € [0,T7, (4.49)

and that for [ = 6, ¢,

|A () (2, 0)[* < 8]AG(N) (£, 0) — Ah(t, N)|* + 8| Ah(t, V)]*
< 32| A0a(A) () — Arh(t, M| Z20.0)| Aty (V) (1) 72(0.1) + 8| Ak (t, N[ (4.50)

Using (4.1) it follows that [Aya(N)(t) — Ah(t, N)]? 1200 S < 2(C? + |Ah(t, \)|?) for t € [0,T)
so that (4.49) and (4.50) lead to

(1855t V@) + 1Ay s (M) (1)) A5t (M) (£, 0)
<3a%(64(C + | Ash(t, N)[?)| Aty (A) () F2(0,1) + 8l AsA(E N[
+a(64(C% + | Agh(t, \) )| Agrity (\) ()| 72(0,1) + 8l 20t M)
+ 8(aC,C)2 (| Asiiy (A (1) (o) + [Ash(t, N)2)  for ae. ¢ € (0,7, (4.51)

From (4.46), (4.47) and (4.51) it yields that

k N
5 dt'A a(N) () [72(0,1) + m(l — My (4n + 16a°n))| Aty (N) (1) 7201

<My(1 + 4(aCy)?)| As(N) ()
s (1 (L A )P sty ()0 Raon + (11 1Ash(t, )P Asity () (6 s,
AN+ 1Akt NP + AN + | Aght, A>|4) (167 +15'7%)
. (Mgﬂe 8a?) 4 M1+ \Ayst@)(t)r?)) IO

nk
+ M| Ahy(t, M| + (2 + 8a?) Mo|Ah(t, \)|*  for a.e. t € [0,T], (4.52)

where M, is a positive constant depending on a, C, C and My. Recalling (4.42), (4.43)
and (4.44), it can be guaranteed that

1d )
S A

<a®|Aa(A)(t,0) + (aC,)*|As(N) (1) + (aC,C??(|8] + [3'*) + [As(A) (2)]?

o @ Znk 4(aL)

_WIA yN) () [T201) +
+ (aC, )| As(N) (B)]* + (aC'@éQ) (\(5!2 +16'1%) + |As(N)(¢)|? for a.e. t € [0,T]. (4.53)

AT (1) [L20,0) + a*|AR(E A)|*

Adding (4.53) to (4.52) we have

0o CINTN) (1) o) + 5 AP
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k _
T S(L — s.)? (1 — My(4n + 16a’n) — 2a277) | Aty (M) (1) 220,

< {Mgu T 4(aC,)%) + (aC,) + 1} A
' [Mn (1 (L ()P sty ) aon + (11 1Ash(t, )P Asity () (6)Eaon,
+ | Ash(t, N2 + |Ash(t, M) 4 | Ash(t, A)[* + |As h(t, A)y‘*) + (aqoé?)?} (16]% + 10")%)

(Mo 24 802) 4 M1+ 12N OF) + 2 ) AT O

+ Mol Ahy(t, N)]* + [(2 + 8a*) My + a2] |AR(t, \)[*  for a.e. t € [0,T]. (4.54)

For simplicity, in (4.54) we set the coefficients of |§|> + |§'|? and |[Au(N)(¢)|? by f1(d,0")(t)
and fo(d,0")(t), respectively. Also, by taking a suitable > 0 we can rewrite (4.54) as
follows:

G AT o)+ 3 ANOF + Tz AR Ol

*

<Mua| As(N)(@)” + f1(8,0) @) (101" + 181%) + f2(8,0) (D) Au(A) () 20,1
+ MlOlAht(tu >\>|2 + M13|Ah(t, A)|2 for a.e. t € [O T], (455)

where My and M3 are positive constants independent of ¢ and ¢'.
By applying Gronwall’s lemma to (4.55), we obtain

28BN O + 5 SNOF + 1oy [ 18BN i
<Mra(enal [ 106,071
< (18003 = AMO N + 1850 + (3 + 1517 [ (6.8 r)ar
+ /0 t(|Aht(7', A%+ |Ah(r, >\)|2)d7) for t € [0, 7], (4.56)

where M, is a positive constant independent of 6 and ¢'.

Now, we can show that {fi(0,¢")}sser, vy and {f2(0,6")}s5er,(n) are bounded in
LY(0,T). Indeed, by Lemma 3 the set {Ai, (A)(¢) hier, () is bounded in L?(0,T; L*(0, 1))
for | =6, §'. Also, we see that

t 2
|AR(N )] < 2(/ |Alht()\,7)|d7) + 2|AR(N, 0)]?
0

t
< Qt/ |Ahy(N, T) dT + 2| AR(N,0))? for t € [0,T] and | = 6, 6.
0
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Since it is obvious that |A;h(0, A)| < C'|Ajh(A) w120, for some positive constant C”, by
Lemma 2 the set {A;h(0, A) }ier, (n) is bounded in R for | =6, 0. Then, |[Ajh(t,\)|* and
|Ayh(t, N)]* are bounded in R on [0 T with respect to [ € ]+(/\) and t € [0,7] so that
{f1(6,8") }s,57er, () is bounded in L*(0,T). Also, by Lemma 3 {Ass¢(A)}ser, (») is bounded
in L?(0,T), and We see that {f2(8,8")}sser, (v is bounded in L(0,T).

At the end of this proof, thanks to Lemma 2 it is clear that Adg(\) — 0 in L*(0,1),
AR(0, ), Asg(A) — 0in R and Ahy(-, \), Ah(-,\) — 0in L?(0,T) as 6, &' — 0. Therefore,
by (4.56) we conclude that {Asa(A)}ser(n) is a Cauchy sequence in C([0,T7]; L*(0,1)) N
L*(0,T;H'(0,1)). Finally, by (4.44) it is easy to see that {Ass(\)}sern) is a Cauchy
sequence in W12(0,T).

[

5 Proof of Theorem 2

We prove Theorem 2 in the following steps:

1. (Section 5.1) The differential quotients {Ass(A) }ser, (n) and {As@(A) }ser, (n) converge
to some functions §(\) and u(\), respectively.

2. (Section 5.2) The pair (5()\),4(\)) of limit functions is a weak solution of P(\).

3. (Section 5.3) The uniqueness of weak solutions of P(\) on [0, 7] holds.

In this section the same conditions as in Theorem 2 is assumed and all notation in the
previous sections will be used.

5.1 Convergence of differential quotients

Proposition 1. For A € (0,1) \ N there exist functions §(\) € W20, T) and u()\) €
C([0,T]; L*(0,1)) N L*(0,T; H(0,1)) such that

50) = l3) in COTHA0.1) 0 L0 T (0 1) (5.1)
Agss(A ) §( ) in W”(O T) as (5 — O (5.3)
Proof. (5.1) and (5.3) are direct consequences of Lemma 4. Also, it is easy to see that
(5.1) implies (5.2).
[
In the next lemma we show some convergences of s(A) and @(\).

Lemma 5. For A € (0,1) \ N there exists a subsequence {3,,} of {0} such that
Ty (X + 6,) = @, (\) weakly-* in L>(0,T; L*(0,1)), (5.4)
Ty (A + 0,) — Ty, (N) weakly in L*(0,T; L*(0, 1)), (5.5)
Ty (A + 6,)(+,0) = @, (\)(+,0) weakly in L*(0,1), (5.6)
s(A 4+ 0,) = s(A) in C([0,T]), (5.7)
st(A+8,) = s:(N) in L*(0,T) as n — oo. (5.8)
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Proof. First, by Lemma 3 {Asa(\)}ser, (o) is bounded in L*(0,T; L?(0,1)). Then, from
[a(A +0)(t) — a(N)(D)|r20.1) < [Dsu(A)(B)|r20nl0]  for t € [0,T]
it follows that
A\ +6) = a(N) in L2(0,T; L2(0,1)) as 6 — 0. (5.9)

Also, by Lemma 1 {, (A+0) }ser, (n) and {ay, (A+8) }ser, () are bounded in L*(0, T'; L*(0,1)).
Accordingly, there exist a subsequence {d,} C {0} and u;(\) € L>(0,T; L*(0,1)) and
uz(A\) € L*(0,T; L*(0,1)) such that @, (A+d,) — u1(N) weakly-* in L>(0,T; L*(0,1)) and
TUyy (A +0,) — Ua(\) weakly in L*(0,7; L*(0,1)) as n — co. From (5.9), we easily see that
u1(N) = w4, () in L*(0,T; L*(0,1)) and @a(A) = Gy, (N) in L2(0,T; L*(0,1)), namely, (5.4)
and (5.5) hold. Obviously, (5.4) and (5.5) imply (5.6).

Next, since {As, s(A) bnen and {As, 5¢(A\) }nen are bounded in C([0, 7)) and in L?(0,T),
respectively, we have

|s(A+8,)(t) — s(N) ()] = |As,s(A)(E)]|6,]  for t € [0,T],
15¢(A + 0n) = 5e(N)|2200,1) < 1A6,5:(N)|12001)[0n|  for ¢t € [0,T].

Thus, we get (5.7) and (5.8).

5.2 Existence of a weak solution of P())
In this section, we show that the pair ($(A), @(A)) of limit functions satisfies Definition 2.

Proof of Theorem 2(existence). Let fix A € (0,1)\ N. Recalling (3.10)-(3.14), we see that
for each n € N, it holds that

k

=0
k(2L = s(A+0,) — 5(N)) . Ty (A + 6y)
T a0 (L s A O

—s(A+4y)
st(A) ~ St(/\)~y()\) .
== (e O+ T a = ) D)
(5.10)
As @(N)(E,1) = Ag. h(t,\) for ¢ € [0,T], (5.11)

AssiN)(E) = a (Agna(x)@, o) — PR+ 5”)“2: - WS(AW”) for t € 0,7],  (5.12)

k N k _
mAgnuy(/\)(t,O) + (L — s+ o) ()L — s(n )(t))AénS(/\)<t)Uy(/\ +0,)(t,0)
= e nOV() =P+ BOBTON0) = P D)) for £ € 071
5.13
A5,5(A)0) = As,50(A), A5, 0(A)(0,y) = As,0(M)(y) for y € (0,1). (5.14)

P, Ur(A) — As, Uy (M)

As, St(/\)
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Then, for any n € W2(0,T; L*(0,1)) N L*(0,T; H(0,1)) with n(T) = 0 and n(¢,1) = 0
on [0, 7], from (5.10) it holds that for n € N,

/ / o TN () () dydt — / oD o (N(0)dy

o[ L_S’(“ B0 ) OOyt + [ s (0 Ot 0

—s(A)(?)
k(2L — s /\+5 )(t) — s(M\)(t)) )
/ / —s(A+0,)(t))2(L — s()\)(t))Q Ns, S(A) () Uyy (A + 6,) (E)n(t)dydt
/ / f;f)j} ((f))A SN (0 (t)dydr
po(l —y)s (A ) ( )(?)
/ / (A + 0, sy e s () dydt. (5.15)

Now, we proceed the limiting process n — oo in (5.15). First, by the strong conver-
gence (5.1) for As, a(N) it is easy to see that

/ / Pols, W) () (¢)dydt — — / / Pull (t)dydt as n — oo,  (5.16)
kA
/ / on uy 2 n,(t)dydt — / / kuy (t)dydt as n — co. (5.17)

On the third term of the left hand side of (5.15), by (5.13) we have

T k i
/0 mAgnuy(A)(t, 0)n(t,0)dt
k

L
/0 (L= s(A+0,) () (L = s(A\)(2))

_ As, s (), (A + 6,)(¢, 0) (¢, 0)dt
[ ol si(N)(©)n(0)dt — /0 pusth+ 6.2)(8)As, @) (¢, 0)n(t, 0)dt
_ /O pui(N)(t,0)Ag, s:(N)(t)n(t, 0)dt. (5.18)

Accordingly, from (5.2), (5.3), (5.6), (5.7) and (5.8), the right hand side of (5.18) converges
to the following (5.19) as n — oc:

_/O (L+ SO ()i, (V) (¢, 0)n(t, O)dt+/ puwsi(N)()n(t, 0)dt
—/Tpvst()\)(t) n(t, 0)dt — /T (£, 003N (On(t, 0)dt.  (5.19)
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Next, by recalling the notation of Fis(\), i = 1,2,3,4, we rewrite the right hand side

of (5.15) as follows:
Z / / s, (N ()n(t)dydt

Here, we note that 1, a,, € L>(0,1; L*(0,T; L*(0,1)). Also, by Lemma 3, {As, s(A) }nen
is bounded in C([0,T]), {As,s:(A\)}nen is bounded in L?(0,7) and {As, iy (A) bnen is
bounded in L?(0,7; L?(0,1)). Then, by (5.3), (5.5) and (5.7), we see that

k(L — s(\))

Fis. ) = 500

3(N) @iy, () weakly in L*(0,7; L*(0,1)) as n — oco. (5.20)

Also, from the strong convergences (5.3) and (5.7) and the weakly convergence (5.4), it
follows that

po(1 = y)iy(A)

Fys, (A) — L= s\ 3,(\) weakly in L*(0,T; L*(0,1)) as n — oo. (5.21)
Moreover, on account of (5.1), (5.3) and (5.7) we have
v 1- A ~ .
Fs5,(\) — 'O(L_—zzj\t)()uy()\) weakly in L*(0,7T; L*(0,1)) as n — oo, (5.22)

po(l — ?/)StO‘)ﬂy()‘) A . 2 )
Fis, (A) — L= sV $(\) weakly in L=(0,7; L*(0,1)) as n — oc. (5.23)

Consequently, by all convergences (5.16), (5.17), (5.19), (5.20)-(5.23) and Lemma 2 we
obtain from (5.15) that

//pv (N) () (¢ dydt—i—// L= s u()\)(t)ny(t)dydt

_/E__UYW””@“”“)“@ﬁ+ADMMWMWWﬁ

= [ s O 0.0t = [ i) (e 005 (0 e, 0)

C2R5(N)() po(1 = )iy (N)(t) .
/ / (L —s(\)(t)? Uyy(N) dydt+/ / NG 5:(N)(t)n(t)dydt

Lpu(1 = y)si(N) ()
// L—s\V() Uy (N) () (t)dydt

Pvl—y)st A)(#)tay (M)(F) . L
/ / ()2 5(/\)<t>77(t)dydt+;0v/0 Uo(A)n(0)dy.

To accomplish the proof we remain to show (2.11) and (2.13). By Lemma 2, (5.2) and
(5.11), we infer that (2.11) holds. Next, since ¢’ is Lipschitz continuous, we observe that

A ) = ) _ 0
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’ (sm s+ 8 s<A>>)A5ns<A> - w’(S(M)é(A)'

<C, <|s(/\ +0n) — s(A)[|As, s(A)| + |As, s(A) — §(/\)|) on [0, 77, (5.24)
where 0 < &, < 1. From (5.24), (5.3) and (5.7) it is proved that
P(5(A + O (2) Py is(A)30) in C(0,T]) as 1 — oo, (5.25)

Therefore, with the help of (5.2), (5.3) and (5.25), by letting n — oo in (5.12) we get the
first equation in (2.13). Finally, from the convergences in Lemma 2, (5.14) we wee the
second equation in (2.13). Thus, (5(\),a(N)) is the weak solution of P(A). O

5.3 Uniqueness of weak solutions of P()\)

The aim of this part is to establish uniqueness of solutions to f’()\) on [0,T7.

Proof of Theorem 2(uniqueness). Let A € (0,1) and (51(A), 41(A)) and (S3(N), ug(A)) be
weak solutions of P(A) on [0,7]. Put (\) = 8 (A) — 82(A) and a()\) = y(N) — ().
Then, for any n € W2(0,7T; L?(0,1)) N L*(0,T; H'(0,1)) with n(T) = 0 and n(¢,1) = 0,
it holds that

/ / Pol(A) ()n: () dydt + / / R Ty (N) (), (t)dydt

/O mé@)(t) SV (&, (2, 0)dt + / e () (D(t, 0)d

)
— [ s RO 00— [ a0 0N e, 0
VO T a0,
[ [ 2 a o+ [ [ PO ) ey

(
T L= y)s @)
i /0 /0 L— s\ Uy (N) (t)n(t)dydt

v [ P I sy )
and
w(A)(t,1) =0 for a.e. t € (0,77, (5.26)
5:(N) = a(u(N)(t,0) — ¢'(s(N))8(¢)) for a.e. t € [0,T], (5.27)
w(N)(0) =0, $(N\)(0) =0. (5.28)

By applying the classical theory for weak solutions of linear parabolic equations, for
instance [13, Chapter 3] we obtain

o+ [ [ ol Py



278

t1 kf A ~ . t1 A A
= | s MmO 0RO, ) + /O Pwd (V) (DN (2, 0)dt
fépﬁuwmuwoWﬁ—A;muwomux>m@md

=: i[i(tl) for any ¢; € [0,7]. (5.29)

Flrst by (4.29) and (5 26) it is obvious that |i,(A)(¢,0)] < %(pw + py)a for ¢ € [0,T] and
fo tiy(N)(t)dy for t € [0, T]. Then, we see that

umMS—&ng()w»@mmmmw
Lo 000 [ a0l 0
<2 [ O+ o (R0 M sopa, a0
where 7 is an arbitrary positive number. Similarly to (5.30), by Remark 1 we infer that
L(t)| < 2 / [y () (1) 2201yt + 22 Pu / 15\ (8)[2dt, (5.31)
and
[I,(t)| < = / [y (M) (8)] 20,1y + —/ |13:(\) ()2 dt. (5.32)

Also, by standard calculations and (2.1) we obtain
t1
\vawv/ra )(t.0)d

<vaLC / |U |L2 0,1) )( )’Hl Ol)dt
pvaC’
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where C, is some positive constant. Because of @,()\) € L*>(0,T; L*(0,1)), we can deal
with the terms I;(¢;) for 5 < i < 8 as follows:

1) < s ([ OB+ [N ORonls0@Fd ) 531

()] < 72— [T SOOI, Ol [H) Ol 20

e ([ o [Caoo ). 6)

n (" 2 1 Po 2 2
I(t)] < 2 Ty (N) ()52 1t + — u / AN ()22 11 dL, 5.36
el < 2 [ 000kt o (255) [ @Rt (530)

IN

and
el < 5 ([ @B+ [ @Ra), e

where K is the positive constant defined in Lemma 1. Therefore, by combining (5.29)
with (5.30)-(5.37), we obtain that

P o+ (g~ 30 [ 10OV P

<1, ( / (1 [y V) (0) oo SO ()2t + / 5N (6) Pt + / 1 |a<A><t>|%2(o,1>dt)7
(5.38)

where M, is a positive constant depending on p,, py, @, S, Ce, K, L and 7. Here, by
recalling (5.27) and (5.33) it holds that

jt SN < 2ala(N) (8, 0)[[3(N)(1)] + 2aC, |3(N)(1)]*
< 2altiy (V) (1) 220,18 ()] + 2aC, [3(N) (1)
< gmy(A)(t)ﬁQ(O,l) + (2% + 2a0@) 15(\) ()| for t € [0, T], (5.39)
and
[3:(N) ()

<2a*([a(A)(t, 0) + C2|5(\) (1))

<2a”Ce|a(N) ()] 20,0 [ (N) (B) 10, + 20°CE3(N) (1)

2
M- C X .
<2y O + (2L 42020 100 + 22N OP for e, ¢ € 0.7]

(5.40)
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We integrate (5.39) over [0, ¢;], substitute (5.40) into (5.38) and add them. Then, by
taking a suitable n we have

S0 on) + BN+ 15 [ [ 000t
gMQ( [ @ ) O P+ / ()t >\ia(0,l)dt), (5.41)

where M, is a positive constant. Consequently, by applying Gronwall’s lemma to (5.41)
with help of (5.28), we conclude that (\) = 0 and a(A\) = 0 in L*(0,1) on [0, T]. Thus,
P(A) has at most one solution. Hence, Theorem 2 is completely proved. O]

6 Application

In this section we apply Theorem 2 to the case the parameter varies in Q C R3, that
is, the boundary and initial functions depend on £ = (&;,&s,&3) € €. For this case we
establish estimates for the partial derivative of s with respect to &; for i = 1,2, 3.

Let Q C R? be a bounded domain. For £ € Q we consider the following free boundary
problem P(&) := {(6.1)-(6.6)} is to find a pair of a curve z = s(£)(t) on [0,7] and a
function u(&) on the set Que)(T) == {(t,z) : 0 <t < T, s(§)(t) <z < L}, T > 0, such
that

pottr (&) — kug,(§) =0 for t € [0,T] and = € (s(§)(t), L), (6.1)
uw(&)(t, L) = h(t, &) for t € (0,7T), (6.2)
kg (§)(t, s(§)(8) = (pw — poul§)(t, s(§)(1)))se(€)(t) for t € (0,T), (6.3)
se(§)(t) = a(u(§)(t, s(§)(1)) — ¢(s(§)(1))) for ¢ € (0,T), (6.4)
s(£)(0) = s0(§), (6.5)
w(§)(0, ) = up(&, ) for x € [s0(¢), L], (6.6)

where h, so and g are given functions on Qq := Q2 x (0,7), Q2 and Q(sg) := {(§,z) : £ €
Q,s0(€) < & < L}, respectively.

Here, we provide assumptions for h, s and wuy.

(A3) h(:= h(t,£)) € WH2(0,T; L*(2)) N L*(0,T; H*(Q)) and hy € L>®((0,T) x Q) N
L*(0,T; HY(Q)) with 0 < h(t,€) < h* for t € (0,T) and ¢ € , where h* is a positive
constant satisfying h* < ¢(L).

(AB) so(:= s0(£)) € HY(Q) with 0 < s¢(§) < L — 4y for any & € Q, where £, is
a positive constant, and ug(:= uo(&,x)) € L>®(;WH2(0, L)), %ZO e L*(; LQ(O L)) for
i=1,2,3, up(&)(L) = h(0,€) and 0 < up(§) < 1 on [s(&), L] for & € Q.

Here, we give estimates for the partial derivative of s as a corollary of Theorem 2.

Corollary 1. If (A1), (A2), (A4), (A3’) and (A5’) hold, then for a.e. £ = (&1,&9,&3) € Q
there ezists a solution (s(€),u(&)) of P(§) on [0,T] such that s is differentiable with respect
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to & for each i = 1,2,3. Moreover, there exists a positive constant C, such that for each
1=1,2,3

0s 050 Oug ' oh
< O ) a.e. on €, (6.7)
‘8& W12(0,T) 0% 0&i L2(s0(€),L) O&; WL2(0,T)
Os |? 0dsp 2 Oug 2 oh |?
de < C, / ( )dE. (6.8)
/sz & i) o |06 0% [r2(so0)n)  19Gi lwrom)

Proof. By (A3’) and (A5’) for a.e. & = (£1,62,83) € (2 there exists an open interval
(ay,by) such that (ay,by) x {&} x {&} C Q, and h(&y,t) == h(t, &, &, &) and Go(&, x) =
U0(£1,€2,§3,I) satisfy

. oh d2h
h € Loo(ala bl; W1’2(07T))7 8_51 S LZ(ala bl; L2(07T))7 051815 S LZ(ala bl; L2(07T))7
.
so € H'(a1,by), it € L™ (ay, by; WH(0, L)), a—zo e (a1, by; L2(0, L)).
1

Namely, all assumptions of Theorem 2 hold. Hence, Theorem 2 implies (6.7). By inte-
grating it, we get (6.8) for ¢ = 1. Similarly, we can prove (6.7) and (6.8) for i =2,3. O
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