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Abstract. Over the past decade, High Intensity Focused Ultrasound (HIFU) has
emerged as an important novel therapeutic modality in the treatment of cancers, that
avoids many of the associated negative side effects of more well-established cancer ther-
apies (eg chemotherapy and radiotherapy). In this paper, a coupled system of partial
differential equations is used to model the interaction of HIFU with biological tissue.
The mathematical model takes into account the effects of both diffusive and convective
transport on the temperature field, when acoustic (ultrasound) energy is deposited at
a particular location (focal point) in the biological tissue. The model poses significant
challenges in establishing existence and uniqueness of solutions, which we consider to be
a crucial first step in any realistic, applied mathematical study of HIFU therapy. In
this paper, we establish well-posedness of our model, using the Leray-Schauder principle,
together with a-priori estimates.
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Introduction

History records the constant struggles of mankind with cancer over many millenia. In fact,
the earliest documented evidence of cancer has been found in the fossilized bone tumours
of mummies of ancient Egypt, Chile, and Peru (see David et al.[3]). The term cancer is
used generically to describe many different diseases that arise as a result of the uncon-
trolled proliferation and accumulation of mutated cells in multicellular organisms. At the
cellular level, carcinogenesis is understood to be a multistep process involving mutation
and selection for cells with increasing capacity for proliferation, survival, invasion, and
metastasis. The first step in the process, tumour initiation, is believed to arise as a result
of genetic alterations leading to abnormal proliferation of a single cell. Cell proliferation
then leads to the outgrowth of a population of clonally derived tumour cells. Tumour pro-
gression continues, as additional mutations occur within cells of the tumour population -
some of these mutations confer a selective advantage to cells (e.g. more rapid growth) and
the offspring of cells bearing such mutations will consequently become dominant within a
tumour population. This process is known as clonal selection, since a new clone of tumour
cells has evolved with properties (such as survival, invasion, or metastasis) that confer
a selective advantage. Clonal selection continues throughout tumour development, so
that tumours are continuously evolving, becoming more rapid-growing and increasingly
malignant. A 2013 survey carried out by the American Medical Association showed that
cancer is poised to overtake cardiovascular diseases as the leading cause of mortality in
industrialized countries. Over the course of a year, roughly 15 million new individuals
will be diagnosed with cancer, and at least a further 8 million people will lose their battle
with cancer, and the numbers are increasing. Cancer continues to pose a major threat
to public health worldwide, and the rates of cancer incidences have increased in most
countries since 1990. As research continues to reveal more about the complex multi-scale
nature of cancer, new treatments, like High Intensity Focused Ultrasound (HIFU), are
emerging in an attempt to develop non-invasive therapies that have minimal side effects
but increased efficacy (see Bailey et al.[2] and references therein)

In the context of cancer therapies, HIFU is a relatively new development which has
yet to gain widespread acceptance in a clinical setting. While HIFU was conceptually
developed in the mid-1950s and was used (to various degrees of success) in treating some
neurological conditions, its uses remained few and far between. Two or three decades of
technological advances were necessary before the true potential of this technology became
apparent, for clinical applications (Hindley et al [5]). In recent years, HIFU has gained
significant traction as a therapeutic modality and is now routinely used in a number of
clinical applications (ranging from painless removal of uterine fibroids [5] to non-invasive
destruction of solid tumours [2])

In this paper, we study a mathematical model developed to capture the evolution
of the temperature field under HIFU heating at a focal point in a medium. The model
takes into consideration both the convective and diffusive transport of heat, together
with inhomogeneous initial and boundary conditions. The main purpose of this paper is
to establish the well-posedness of the system of coupled partial differential equations that
constitute our model. The proof of the existence and uniqueness of the solution is based
on the Leray-Schauder principle and the use of a priori estimates. In section 1, we briefly
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Figure 1: An MRI-guided HIFU apparatus.

introduce the function spaces, the Leray-Schauder principle and a priori estimates that
will subsequently be used to establish existence and uniqueness of solutions to our model.
In section 2, we formulate the problem that will be studied analytically. In section 3, we
use Leray-Schauder degree theory and a priori estimates to establish well-posedness of
our model. We conclude, in section 4, with some remarks and briefly discuss forthcoming
work (by us) on the existence of non-autonomous attractors, under suitable conditions,
for our problem, as well suggestions for future work.

Function Spaces and Leray-Schauder Principle

In this section, we recall some theoretical concepts used in the formulation of our abstract
problem. This will include the definition of the Sobolev spaces which will be required in
addition to trace spaces, the Leray-Schauder principle, and embedding theorems used in
section 3 to establish existence and uniqueness of weak solutions to our model (see section
2 for the formulation of the model). We begin with the definition of the required function
spaces.

Definition 1.1. Let €2 be a domain in R™ and let p be a positive real number. Then
LP(€2) is a metric space < X, || - ||zr() > where the metric || - ||1r(q) is defined

l|w(z)|| e @) /|u )|[Pdx (1.1)
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For functions where ||u(z)||r@) < oo for all z € Q, the elements of set X are the
equivalence classes of these measurable functions, where two functions are equivalent if
they are equal almost everywhere in € (see Adams[1]).

Definition 1.2. Let 2 be a domain in R", let p be a positive real number, and let m
be a nonnegative integer. Then we define || - |[wmr) (see Adams[1]) such that, for the
weak partial derivative D,

l/p
o fullwms@) = { Sociasm 1Dl 0 - 1< p < 00

o ||uflwmee@) = maxo<iaj<m [[Du|| L= (0).
Then a Sobolev space W™(() is the metric space < X, || - [|wm»q) > such that
X ={uel?(Q): D e LP(Q) for 0 < |a| < m.} (1.2)
To study the equations of our model, we will also need Sobolev spaces with fractional

derivatives m € R, rather than only Z, .

Definition 1.3. Let 2 be a bounded domain in R” and let s and p > 1 be positive
real numbers. Then the norm in the fractional Sobolev space W*P(§2) can be defined as

(Triebel [11]).

Dru(x) ~ D*u(y)
P |
lellvri = by + 3 [ [ 02 e ety (19

|ar|=[s]

where [s] is the integer part of s and {s} is the decimal part of s.

Additionally, we will make use of parabolic Sobolev spaces, W1:2?([1, 5] x ), where
(t,x) € [1,m] x Q, which are defined as

WP ([7, 9] x Q) =

(T(t,2) L7 (fr) x ) - 2ot 2) € 12([rm) x ),

ot
AT (t, ) € LP(fr,n) x 2)} (1.4)
with metric
HUHW(Lw([T,n]xQ) = ||Opul|» + ||Axu||LP([T,n}xQ)

1/p 1/p
- (/ D) + (/ Agul?) (1.5)
([rn]x£) ([rn]x£)
for 1 <p < .

These spaces are useful for examining parabolic equations of second order.
We also recall the Leray-Schauder theorem (used in section 3) in the following (work-
ing) form:
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Let X be a Banach space and, for any A € [0, 1], ¢, : X — X be a family of nonlinear
operators of the form

or(0) = 2+ K(\2) (L6)

where for each A € [0,1], K, : X — X is a compact operator. (K is usually, but not
always, a nonlinear operator.)

Moreover, assume that the solutions x of ¢,(z,) = 0 are uniformly bounded (that is,
lzallx < C).
Then if for A = 0, ¢o(z) = 0 has at least one solution, say zf, then for A =1, ¢;(z) =0

has a solution z7. A rigorous formulation of the Leray-Schauder theorem is provided
below (see Nirenberg|7]):

Theorem 1.4 (Leray-Schauder principle). Let Q) be a bounded domain in a Banach
space X and let F : Q — X be a continuous and compact operator. Furthermore, let
q € Q be a point and let

r+ AF(x)#p

hold for all p € 0Q and X\ € [0,1]. Then the equation
r+ F(x) =¢q (1.7)
has at least one solution in Q.[4, 7]

Model and Problem Formulation

The use of mathematical modelling to predict the effects of HIFU for thermal ablation has
facilitated the implementation of this therapeutic modality for certain disorders such as
osteoid osteomas, essential tremors and prostate ablation. The further development and
generalization of mathematical models for soft tissue lesions, cavitation and disruption of
the blood brain barrier, suggest significant opportunities for mathematics to contribute to
the development of HIFU as the “gold standard” treatment modality for cancer therapy.
One approach to modelling the effects of HIFU (see Bailey et al.[2] and references therein)
has been through a system of coupled partial differential equations: a linear wave equation
for the propagation of the ultrasound through the tissue, coupled to the Pennes bio-heat
equation (a linear heat equation with a source term for the the acoustic energy deposition
obtained from the solution to the wave equation), and a thermal dose model (to control
the acoustic energy deposition of ultrasound exposure). The acoustic pressure derived
from the acoustic wave model, ¢(t, z), is used to determine the heat source term, h(¢, x)in
the Pennes bio-heat equation. The heating caused by focused ultrasound is a result of the
energy absorption from the acoustic wave passing through the tissue. This is reflected in
the heat source term by defining an absorption coefficient, «, for each tissue to correlate
the tissue heat with the acoustic intensity. It is possible to show that

7 Oéq2<t, ZL’)

h(t,z) =al = o (2.1)
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where [ is the acoustic intensity, p is the tissue density, and ¢ is the speed of the acoustic
wave in the tissue.[2]

The tissue temperature, T'(¢, z), resulting from HIFU heating is determined from the
Pennes bioheat equation, with source term given by (1.1),

pcp% =V - (kVT(t,2)) + wpcpp(Tu — T(t,2)) + h(t, z) (2.2)

The third term in (1.2), the blood perfusion term can be heuristically justified on the
basis of Newton’s Law of cooling (see Pennes|8| for a more detailed discussion of the Pennes
bioheat equation). The Pennes bioheat equation has been the subject of criticism, as it is
less justified physically, and we refer the reader to Wissler[12] for further discussion of more
physically justifiable extensions of this equation. Thus, using a common approximation
to treat the soft tissue as an incompressible fluid, we may use a more standard term that
takes fluid flow into account in the heat source term.

Let © be a bounded domain of z in R?. In our application, d = 3, but the following
proofs work in general. As a consequence of the assumption that the soft tissue behaves
like an incompressible fluid, we have

V.-t z) =0 (2.3)

for fluid velocity of the biological tissue, ¢ and for ¢ > 7 for some 7 € R. The velocity
and temperature are related by Darcy’s Law in the following manner:

U(t,x) =V, - P(t,x) —7-T(t,x) (2.4)

where P is the fluid pressure in the biological tissue and 7 is a constant parameter to match
the scalar temperature with the other vector terms. Finally, using this fluid velocity, we
arrive at a modified heat equation where the ad hoc blood perfusion term is replaced with
a more theoretically sound convection term,

aa—f(t,x) =A,T(t,x) —0(t,x)V, - T(t,z) + h(t,x) (2.5)

The system of nonautonomous equations (2.3-2.5) defines the fluid velocity in terms of
tissue temperature and fluid pressure, which means that, to solve this system of nonau-
tonomous equations, we need to find (P, T"). We assume that we know the initial distribu-
tion of the functions in {2 and that we may define nonhomogeneous boundary conditions
such that

P(t=71,z) = P(2); P(t,2")|pcon = Pua(z') (2.6)
T(t=r1x) =T (x); T(t,x")|weon = Tpa(x") (2.7)

The following compatability conditions need to be imposed:

/ /

P(z )|ac’eaQ = Pbd(x,) T (z )|x/€89 = de(x,) (2.8)

Without loss of generality, we assume Pyg(z') = 0.
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However, it is possible to define the fluid pressure P in terms of the temperature T'
by applying the gradient operator to equation 2.5. Using equation 2.4, we obtain

This leads to the full system of nonautonomous equations which constitute our model,
and take the form

A P(t,z) =7V, - T(t, ) (2.9)
U(t,z) = (Vo (—A) 77 (V. T)+ T) (2.10)
%—f(t,x) =A,T(t,x) —0(t,x)V, - T(t,z) + h(t,x) (2.11)
P(t=71,x) = P(v);  P(t,2")|wesn = Poua(r') (2.12)
) (2.13)

—_ =

(
Tt=1x)="T(x); T2 weon = Toa(z)
We seek a solution of (2.9-2.13) as a pair
(T'(t,z), P(t,x)) € W(1’2)’p([r, n] x Q) x W(1’3)’p([7', nl x Q) (2.14)

for t > 7, which satisfy the equations in the sense of distributions. Note that u €
W2 ([r, 9] x Q), by definition, means that

we LX([r,n) x Q)), e L([r,n] x Q), D*u e L([r,n] x Q)

for 0 < |a| < 2. The value of p = p(n) (where n is the dimension of the space 2 € R")
can be chosen “a posteriori” to guarantee compact embedding[10].

W2e([7,9] x Q) € C([r,n],C*(2)) for some € € (0,2]. It is known that for suffi-
ciently large p = p(n) >> 1, dependent on dimension n, this compact embedding holds
(see Simon[10]). From (2.14), it follows

T.(z) € WH702(Q),  Pi(z) € WPP(Q)
Toa(c) € W37(Q),  Pyle') € W*r7(Q) (2.15)
As already indicated, we seek a solution
(T(t,z), P(t,z)) € WE2P([r,] x Q) x W(1’3)’p([7', nl x Q)

that satisfies (2.9-2.11) in a weak sense. To that end, we will assume the following
compatibility conditions are satisfied:

To(z) = Tha(z),  Py(z) = Pul) (2.16)

Lemma 2.1. Let (P(t,z), T(t,z)) be a solution of (2.9-2.11), with Poy(z') := 0. Then
for every fired t > 0 and for every 1 < p < 0o, we have

PG s 30y < CITED o 30y

>P(Q
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Proof Indeed, this implies that P(t, z) satisfies

(2.17)

A, P(t,x) =7V,T, z €
Plopo =0

From assumptions of Lemma 2.1, it follows that YV, T € WieP (©). Then, by elliptic
regularity (see Renardy & Rogers[9]), the assertion of Lemma 2.1 follows.

Corollary 2.1. Let (P(t,z),T(t,z)) be a solution of (2.9-2.13). Then the following
holds:

[1P(t @) lwassrajxey < CNTE ) llwoos(rxa)

Thus, it is sufficient to prove all “a priori” estimates for the temperature component
of (P(t,x),T(t,x)) of the solution to (2.9-2.13).

The following Corollary 2.2 will be used in the proof of uniqueness of solutions. How-
ever, to formulate Corollary 2.2, some preliminary work is necessary. From

A P(t,x)=7-V,T
P(t,2) | = 0 (2.18)
v=V,P—~7T
It follows that
U= _('7 + Va:(_Am)_L? : v:ﬂ)T(t7 ZE)

where the inverse (—A,) ™! is taken with homogeneous Dirichlet boundary conditions. We
denote by
U(z, D)T(t,x) = — (T + Va(=Ay) 15 - V)T (t, z) (2.19)

Corollary 2.2. The operator V(x, D) defined by (2.19) acts from L*(Q) to L*(Q?) and
satisfies for each fixed t > 0

W (2, D)E()]2(0) < ClIE(@) 220 (2.20)
for all {(z) € L*(9).

Indeed, the linear pseudodifferential operator W(x, D) defined by (2.19) is order zero
and, as a consequence, satisfies (2.20). Thus, ¥(t,z) = V(x, D)T'(t,z) and we rewrite the
equation for T(t,x), (2.11), as follows:

0T (t,x) — AT =—-VT -V(x,D)T(t,x) + h(t, x) (2.21)

with
T(t, z)|=r = T-(2), T(t, x/)|3Q = de(:p’) (2.22)

In the next section, we establish existence and uniqueness of solutions in W22 ([r, ] x Q).
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Well-posedness of the Model (2.9-2.13)

We work in the L” space of the domain of this family of equations with p = p(n) >> 1
(we will choose a concrete value for p later). Let Q- be

Qry = [1,m] X Q (3.1)

where 7 is sufficiently large to include the time interval of interest.

We assume that the heat source term, h(t,x) is known a priori and that h €LP(Q,,).
Then our problem can be stated as follows:

Find T € W322(Q, ) such that

%—Z(t, ) =AT(t,x) — V(z,D)T(t,x)  V,T(t, z)+ h(t,z) (3.2)

where ) )

To(z) € W0P(Q); Tha(a!) € WP P(0Q) (3.3)

To prove the existence of a solution under these conditions, we connect equation (3.2)
to a simpler linear equation using the Leray-Schauder principle (see Section 1).

In this case, if for A = 0, ¢(0;x) = 0 has at least one solution, say zf, then by the
Leray-Schauder principle, it follows that for A = 1, ¢(1;z) = 0 has a solution z7. In this
manner, we establish existence of a weak solution to (3.2-3.3).

In order to apply the Leray-Schauder principle to equations (2.9-2.13), we form a
family of equations where the velocity, #(t, z) in equation (2.4) is replaced by U(\;t, z),
where

v\ t,z) =V, - P(\t,x) —4 - AXT(\;t,x)
By the same methods used in the derivation of (2.9-2.10), it is possible to show that
v\t x) = M(t, o)

which in turn makes the family of equations, equivalent to equation (2.11), take the form

aa—f()\; t,x) = AT (Nt x) — MNi(t, )V, - TN\ t, x) + h(t, z)
(2)_17;0\; t,x) = AT (Nt x) — ANV (t,2)T (N t,z) - VT (A t,x) + h(t, z) (3.4)
For A = 0, the equation in the family (3.4) becomes
88—{;(0; t,x) = AT(0;t,x) + h(t, x) (3.5)
T(0;7,7) = T (2) € W27 (Q);
T((0:t, 2" |wreon = Tya(z)) € W2 22(09) (3.6)

It is well known (see Ladyzenskaja, Solonnikov, & Ural’ceva[6]) that the initial boundary
value problem (equs (3.4)-(3.6)) has a unique solution. When A\ = 1, the equation is
the same as equation (2.11). Therefore, it remains to bring the initial boundary value
problem (eqns (3.3)-(3.6)) to the form (3.4) and prove the uniform a priori estimates with
respect to A in the space W12P(Q, ).
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Reduction of our model to Leray-Schauder form

Let T be a solution to (3.4) with the given initial and boundary conditions (2.13). Because
of our choice of spaces for these conditions, (3.3), it is possible to show that 7" exists and
that T € WE22(Q,.,) (see Ladyzenskaja et al.[6]). Then we can choose the family of
solutions T'()\; ) from (3.5) as the sum of 7' and an unknown function 7*(\;-): T(\;-) =
T*(X\;-) + T(-). From equations (3.5) and (3.6), it follows that if T*()\;-) exists, it will
satisfy the family of equations

T*
a—(kt z) = AT (Nt x)

ot
— AU (z, D)(T* (Nt ) + T(t, ) - Vol T* (N t,2) + T(t, 7))
T*(\;7,t) = 0; T*(Nit,2")|wrean =0
As a result of the homogeneous initial and boundary conditions, H := (9; — A,)™?,

H: LP(Q,,) = WEDP(Q, ,)[6], which in turn leads to
T*(\it,x) = —H(AU(z, D)(T* (Mt 2) + T(t,x)) - Vo (T (Nt z) + Tt @
T* (At @) + MH (U (z, D)(T* (N t,2) + T(t,2)) - Vo (T (Nt x) + T(t, 7))
T*(\;t, ) + MK (T*(\;t,z))

)
0
0

where K is defined as
K(u(t,z)) = H(\If(x, D)(u(t,x) + T(t,x)) - Vae(u(t,z) + T(t,az)))

To apply the Leray-Schauder principle, we have to show that:
a) the operator K is a compact operator in Wt2).p (Q+,,) and
b) T*(\;t, z) satisfies the uniform a priori estimate ||T*(A; ¢, 2)|lwa2.0q,,) < C*.

If a) and b) are satisfied, the Leray-Schauder principle may be used to prove that
T*(1;t,z) and hence T'(t,z) = T*(1;t,z) + T(t, ) exist. The proof of the existence of a
solution for component T of our model is based on the dissipative estimates in W (12)-P-
spaces.

Theorem 4.1. Let T*(\;t,z) be a solution of the family of equations

O (ta) = AT (i1,
— AU (z, D)(T*(\;t, ) + T(t,z)) - Vo (T*(\;t, x) + T(t, z)) (4.1)
T*(\;7,t) = 0; T*(\;t,2") | rean = 0

where t > 7, t, T € R, and p = p(n) >> 1 is sufficiently large to guarantee compactness
of embedding

D7(Qry) €C C([r ], C()) (4.2)

for some € € (0, %] Then the following estimate holds:

[T™(\st, 55)||W<1»2>m([7,7+1}x9) + ||P*(>\(t75U)\|W<173)7p([7,r+1]x9)
S C*("Tq-(x)’|W2(17%),p(9))6_a(t—7)

C* (|| Tyala) + | Pra(a)] s (4.3)

W25 (90) W W(ag))
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wheret > 71, 7T € R, a > 0, and C* is a constant that is independent of \.

Proof: A proof of Theorem 4.1 is based on the following lemma.

Lemma 4.2. Let u(t,x) be a solution of

{atu(t, z) — Agu(t, z) = h(t, z) (4.4)

u(t, z)|t=0 = uo(); u(t, z') oo = ua(z)

where @ CC R". We set R, = [n,1 + 1] x Q for every n > 0. Let h € LP(R,), u,(z) €
W2(17%)’p(§2), and upg € W27%’p(8§2), assuming the compatibility condition u,(z)|,/cpq =
upg(z') as in (2.8). Then,

n+1
[ (0t )l + e, 2l o)t
n

< C(lluo(x) e+ |lwsa(@)|| 2.

HW“*%)*P(Q) w2 (aQ))

n+1
+C / e~ =D (¢, 2)|| 1o (et (4.5)
0

Here, a > 0 and depends on the first eigenvalue of the Laplacian on €. This is called the
dissipative version of the parabolic maximal regularity (o = 0 is the classical parabolic
maximal regularity, see LSU [6], page 342). Due to the trace theorem, it is sufficient to
prove (4.4) only for uy(x) = 0, upg(z') = 0, as the general case can be reduced to this case
(see Remark 4.3 below).

For a proof of (4.5), we recall the classical interior estimate for the case u,(x) =0 in
Q and upg(z') = 0 on 9. It reads as follows:

ooy < COIE D gy + 06t 2Lz (46)
where R; = [max{n —1,0},n + 1] x Q and the constant C' is independent of 7.

Assume for a moment that (4.6) holds. Multiplying (4.4) by u and integrating by
parts we obtain

10
5 g Uz 0) + [ Veullzag) = / h(t, x)u(t, v)dz (4.7)
Q

From the Poincare inequality

0
illulleey + 2allulio) =2 | At a)ut.a)de (45

0 wn [0,
= _HUH%Q(Q) + @||U|\%2(Q) < OHh(tvﬂf)HL%Q)@ n/ —(6 tH“H%?(Q))
ot o Ot
< Ce™|[h(t, 2)] 720 (4.9)
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Integrating (4.8) over [0, 7], we obtain
2 2 Tt 2
e“Mullz20) < [uo(@)|[72(0) + C/ e |[h(t, )[|72(q)dt
0
0
[lu(t, 2)[L20) < lluo(@)|[22 e ™" + C/O e~ O |h(t, 2)| |72y dt (4.10)
Inserting (4.10) into (4.6) we obtain
n
lullwaar,) < C>IRE D)o e +/ SOln(t )| [fa@dt); a >0 (4.11)

HuHW(m)pRn ::/ /\&u\pdxdt—l—/ HuHWQP t (4.12)

Hence, it remains to prove (4.6). To this end, we recall that we have
st ) lwaz ey < ClAE ) Lo ir) (4.13)

for the solution s(t,x) of

Os(t,x) = Ags(t,x) + h(t, x) (4.14)
S(t, I)lt:max{nfl,O} = 07 S(t, x>|8Q =0
(4.13-4.14) can be found in Ladyzhenskaja et al. [6], pages 342-355.
For n <1, we have
Oys(t, ) = Ags(t, ) + h(t, x) (4.15)
S(O,ZE) = 0; S|aQ =0
and from (4.13), we have
st )l lwo2emy < CllAE )| R ) (4.16)
=|Is(t, 2)|lwa20g) < CURE D) o) + 150 2) | or,)) (4.17)

n
15t )l rngagy < CIRED gy + [ T ONhE Dt (415)
0

It remains to prove (4.6) for n > 1, where R;? = [n—1,n+1] x Q. In order to deduce
(4.6) for n > 1, consider

r(t,x) == (t—(n— 1)) ult, z),

where N can be chosen later in connection with p. Obviously 7 (¢, z) satisfies

or(t,x) = Agr(t, ) + h(t, x), (4.19)

Tl=n-1=0, v]ogn =0

where
N-1

h(t,z) == (t—(n— 1)) h(t,z) + N(t = (n = 1)) u(t, z)
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Consequently,
Ir(t, ) llwa ey < ClAE ) o) (4.20)
From (4.20), it follows that
~ ’ N
1t 2| oy < ClRCE ) oy + CHI(E = (0= 1)) " ult, ) Lo (4.21)

It remains to estimate the last term in (4.21). To this end, we will also use the following
embedding:

WP (R ) cC Lo(R,) (4.22)

for sufficiently large p = p(n) >> 1. Indeed,

(t, 2)| ¥ dadt

/R/ = (n—l))N_lu(t,x)\pdxdt—/R, (t— (= 1)V u(t,z)| "~

» p(N—-1)

< t Ndxdt - t N

</ lult ) et [,

% I?(]\]fv—l)
o e P e o o (4.23)
From (4.23), it follows that
(0= = 1)t 0))) e < 1t 2) 1 - Nt ) ¥ (424)
» " L°°(R BREALY % ato)! '

n

1
p
< (I o Nty )

N—-1

= 11(t = (0= D) ult, )| oy < Cullr(t D)1,

2t

1
womny Tt o (225)
n

Choosing p = 2N (N >> 1) and a := %, we obtain

N-1 —« «
1t = =1)" " ult, o)l < Cillr(t, )l 2y " Ut :c)HLQ(R,)
< el|r(t, 2)l[wa2er +C [|ult, )] 2 (r: (4.26)

Here we have used the inequality x!~“y® < ex + C.y for each ¢ > 0 and for every x > 0,
y > 0. Thus we obtain from (4.20).

It @) lwa2mmy < CUIRE D) o) + Tult )| 2 m) (4.27)
In order to finish the proof of (4.6), it remains to note that
lult, 2)llwozm) < Colllhlt, @) o) + It )| 2a)) (4.28)

where C5 does not depend on 7. Q.E.D.
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Remark 4.3. The general case, that is T'(t, z)|,—, = T-(x) and T'(t, z)|sq = Tpa(x') can
be reduced to the case of
T (x) =Th(z ) =0
in the following way: let (7;(z), Tra(z')) # 0 and T.(z) be a solution of
AT (x) =0, x €S}
T.|on = Tra(s') € W?™#7(99)
It is well-known that T, € WP ([r,¢] x ). Let
T.(t,2) = (t — 7)(T(t,z) — Ti(2))
Obviously, T,(t, ) satisfies
I = ATt ) + (t = 7) (h(t,2) + 0t 2) - VLT (1, 7))
T.(t,x)|i=r = 0; T.(t,x)]|o0 =0

As a corollary of Lemma 4.2 with standard LP-estimates (see Ladyzenskaja[6]), we obtain
the assertion of Theorem 4.1.

Uniqueness

Now that we have established existence of a solution to (2.11), it remains to prove that
this solution is unique.

Theorem 5.1.  Let (T(t,z), P(t,x)) be a solution of (2.9 - 2.13) belonging to W :P(Q,, ) x

W(l’g)’p(Qm), as shown to exist via the Leray-Schauder method. Then such a solution is
unique.

Proof: Let (Tl (t,z), Pi(t,z)) and (Tu(t,z), Pa(t,z)) be two solutions of (2.9 - 2.13)
belonging to W 12)p(Qr ) x WEDP(Q_ ) respectively and w(t, z) = Ti(t, z) — Ty(t, z),
then

dw = Ayw + (V,T1(t,2))¥(z, D)w(t, z) + (Vow(t, ) U(z, D)T(t, )
(5.1)
w(t, z)|sq = w(t,x)|=r =0
Note that, due to the embedding (4.2), we have ||V, T1(t, 2)|| ) < Cy and ||¥(z, D)T5(t, )|| 1) =
||va(t, 2)|| Lo () < Cs. Multiplying (5.1) by w(t, x) and integrating over x € £ we obtain
1
§6t||w(t,:v)||%2(m + | Vaw(t, 2)]172q)
< Cul[Vaw(t, o) |20 + Cul[¥ (z, D)w(t, ©)l| 2 - [Jw(t, z)]] L2 @)
1
< Cillw(t, 2)l[32a) + 5lIVawt, 7)1 (5-2)
Here we used Corollary 2.2, that is
[[W (i, D)w(t, 2)||20) < Cllw(t, 2)][ 2@

Integrating the last line of (5.2) over [7,t] and using Gronwall’s inequality [9], we obtain
w(t,x) = 0. This establishes the uniqueness of the solution.
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Conclusion

In this paper, we have considered a mathematical model that attempts to accurately model
the effects of HIFU on biological tissue, and have established existence and uniqueness
of weak solutions to this model. In related forthcoming work, we also consider a dynam-
ical approach to this non-autonomous HIFU model and prove existence of attractors to
this non-autonomous system. We consider this to be the first step in the mathematical
modelling continuum, to be shortly followed by the next step in our modelling efforts,
the numerical exploration of the problem, which we consider to be an equally important
step, since:

(a) it can provide guidance as to where further development and refinement of math-
ematical tools and techniques (analytical and/or computational) are required,

(b) it can identify shortcomings in existing models, and

(c) it can shed light on the interplay of various subprocesses and therefore might provide
important insight into a particular application.

As evident from the surge in interest in HIFU (both experimental and theoretical) over
the past two decades, it has emerged as a novel, non-invasive, therapeutic modality with a
myriad of potential applications. HIFU provides a non-invasive, non-ionizing, treatment
modality that can be used to thermally ablate tissue at a target location while minimally
affecting the surrounding tissue. The use of mathematical modelling to predict the ef-
fects of HIFU for thermal ablation has facilitated its use for certain disorders such as
osteoid osteomas, essential tremors and prostate tumour ablation. The development of
mathematical models for soft tissue lesions, cavitation and disruption of the blood brain
barrier (to facilitate the delivery of high molecular drugs to treat brain tumours), suggest
significant opportunities for mathematics to contribute to the development of HIFU as
the "gold standard” for cancer therapy.
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