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1 Introduction

It is well known that the transport equation is involved in many mathematical mod-
els describing biological or physical phenomena, for instance: growing cell populations
(e.g. cells, bacteria) and transport of particles (e.g. neutrons, photons). The differences
between these phenomena are mainly due to their dynamics.

This work deals with an abstract mathematical model involving the first derivative of
an unknown density f(t) = f(t, x, y). We suppose that this model is governed by the
following partial differential equation

∂f

∂t
= −h(y)

∂f

∂x
+ Pf (x, y) ∈ Ω, t ⩾ 0 (1)

and equipped with the following boundary condition

f
(
t, α(y), y

)
= K

(
f
(
t, β(·), ·

))
(y), y ∈ (a, b), (2)

where h, α and β are given functions of the variable y, and K and P are linear operators
defined on suitable spaces (see the next section for more details).

The full model (1)–(2) appears as a linear perturbation of the unperturbed model (1)–(2)–
(with P = 0). We know that if the unperturbed model is well–posed then the full model
is well–posed too whenever P is a bounded linear operator. Accordingly, our attention
will be focused only on the unperturbed model.

In Section 2, we set suitable assumptions on the functions α, β and h, and we define
the spaces and mappings to investigate the unperturbed model (1)–(2)–(with P = 0). In
particular, in order to give a sense to the boundary condition (2), we prove that the traces,
at α(·) and β(·), are continuous mappings on suitable Banach spaces (see Lemma 1).

In Section 3, we prove that the unperturbed model (1)–(2)–(with P = 0) is governed by
a strongly continuous semigroup. We also give its growth inequality. Finally, according
to the boundedness of the linear operator P, the well–posedness of the full model (1)–(2)
can be inferred as a simple corollary.

Section 4 and Section 5 are devoted to some applications arising from population dynamic.
Section 6 is devoted to transport equation in slab geometry. We refer the reader to [7] for
the mathematical background used in this work.

In our knowledge, this study is new and has never been investigated.

2 Mathematical Background

We consider, until the end of this work a and b such that

−∞ ⩽ a < b ⩽ ∞.
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Let α and β be two continuous functions defined on (a, b) and subject to following as-
sumptions(
A1

α,β

)
: β(y) > α(y) ⩾ 0 for all y ∈ (a, b)(

A2
α,β

)
: β(y)− α(y) ⩾ m > 0 for all y ∈ (a, b).

Whenever the assumption
(
A1

α,β

)
is fulfilled, we set

Ω :=
{
(x, y) ∈ (0,∞)× R : α(y) < x < β(y) and a < y < b

}
and we consider the following Banach space

Xp := Lp(Ω) (p ⩾ 1) whose norm is ∥φ∥
p
:=

[∫
Ω

|φ(x, y)|p dxdy
] 1

p

.

Let h be a continuous function defined on (a, b) and subject to the following assumption

(Ah) : 0 < h(y) ⩽ M <∞ for all y ∈ (a, b).

Whenever (Ah) is fulfilled, we consider the following Banach spaces

Wp :=

{
φ ∈ Xp : h

∂φ

∂x
∈ Xp

}
with ∥φ∥

Wp
:=

[
∥φ∥

p
+

∥∥∥∥h∂φ∂x
∥∥∥∥
p

] 1
p

and

Yp := Lp
(
(a, b) , h

)
with ∥ψ∥

Yp
:=

[∫ b

a

|ψ(y)|p h(y)dy
] 1

p

.

Now we can give a sense to trace mappings involving in the boundary condition (2) as
follows

Lemma 1. Suppose that assumptions
(
A1

α,β

)
and

(
A2

α,β

)
, and (Ah) hold true. The fol-

lowing trace mappings

Φαφ(y) := φ
(
α(y), y

)
and Φ

β
φ(y) := φ

(
β(y), y

)
, y ∈ (a, b),

are linear and continuous from Wp (p ⩾ 1) into Yp. More precisely,

∥Φαφ∥Yp ⩽ max

{(
M

m
+ p− 1

) 1
p

, 1

}
∥φ∥

Wp
(3)

and ∥∥Φ
β
φ
∥∥
Yp

⩽ max

{(
M

m
+ p− 1

) 1
p

, 1

}
∥φ∥

Wp
(4)

for all φ ∈ Wp (p ⩾ 1).
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Proof. Suppose that assumptions
(
A1

α,β

)
and

(
A2

α,β

)
, and (Ah) hold true.

Step 1 (Φα is a continuous mapping).

Let φ ∈ Wp (p ⩾ 1). For almost all (x, y) ∈ Ω we can write that

|Φαφ(y)|
p = |φ(x, y)|p −

∫ x

α(y)

∂ |φ|p

∂x
(s, y)ds

= |φ(x, y)|p − p

∫ x

α(y)

(sgnφ) (s, y) |φ(s, y)|p−1 ∂φ

∂x
(s, y)ds

⩽ |φ(x, y)|p + p

∫ β(y)

α(y)

|φ(s, y)|p−1

∣∣∣∣∂φ∂x (s, y)
∣∣∣∣ ds

and therefore

h(y) |Φαφ(y)|
p⩽h(y) |φ(x, y)|p+p

∫ β(y)

α(y)

|φ(s, y)|p−1

∣∣∣∣h(y)∂φ∂x (s, y)
∣∣∣∣ ds. (5)

Integrating (5) with respect to x and then with respect to y, we get that

∥Φαφ∥
p

Yp
⩽ M

m
∥φ∥p

p
+ p

∫
Ω

|φ(s, y)|p−1

∣∣∣∣h(y)∂φ∂x (s, y)
∣∣∣∣ dsdy. (6)

Now, if p = 1 then (6) becomes

∥Φαφ∥Y1 ⩽ M

m
∥φ∥

1
+

∥∥∥∥h∂φ∂x
∥∥∥∥
1

⩽ max

{
M

m
, 1

}
∥φ∥

W1

which proves (3)–(with p = 1) and by the way Φα is a continuous mapping from W1 into
Y1.

Next. Suppose that p > 1 and let q > 1 be its conjugate. The Young inequality yields
that ∫

Ω

|φ(s, y)|p−1

∣∣∣∣h(y)∂φ∂x (s, y)
∣∣∣∣ dsdy

⩽ 1

q

∫
Ω

|φ(s, y)|q(p−1) dsdy +
1

p

∫
Ω

∣∣∣∣h(y)∂φ∂x (s, y)
∣∣∣∣p dsdy

=
p− 1

p

∫
Ω

|φ(s, y)|p dsdy + 1

p

∫
Ω

∣∣∣∣h(y)∂φ∂x (s, y)
∣∣∣∣p dsdy

which can be written as∫
Ω

|φ(s, y)|p−1

∣∣∣∣h(y)∂φ∂x (s, y)
∣∣∣∣ dsdy ⩽ p− 1

p
∥φ∥p

p
+

1

p

∥∥∥∥h∂φ∂x
∥∥∥∥p
p

. (7)

Combining now (6) and (7) we get that

∥Φαφ∥
p

Yp
⩽
(
M

m
+ p− 1

)
∥φ∥p

p
+

∥∥∥∥h∂φ∂x
∥∥∥∥p
p

⩽ max

{(
M

m
+ p− 1

)
, 1

}
∥φ∥p

Wp
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which proves (3)–(with p > 1) and by the way Φα is a continuous mapping from Wp (p > 1)
into Yp.

Step 2 (Φ
β
is a continuous mapping).

Let φ ∈ Wp (p ⩾ 1). For almost all (x, y) ∈ Ω we can write that∣∣Φ
β
φ(y)

∣∣p = |φ(x, y)|p +
∫ β(y)

x

∂ |φ|p

∂x
(s, y)ds

= |φ(x, y)|p + p

∫ β(y)

x

(sgnφ) (s, y) |φ(s, y)|p−1 ∂φ

∂x
(s, y)ds

⩽ |φ(x, y)|p + p

∫ β(y)

α(y)

|φ(s, y)|p−1

∣∣∣∣∂φ∂x (s, y)
∣∣∣∣ ds

and therefore

h(y)
∣∣Φ

β
φ(y)

∣∣p ⩽ h(y) |φ(x, y)|p + p

∫ β(y)

α(y)

|φ(s, y)|p−1

∣∣∣∣h(y)∂φ∂x (s, y)
∣∣∣∣ ds. (8)

The rest of the proof follows from the step 1 because (5) and (8) have the same right hand
side.

3 The Well Posedness of the Model (1)–(2)

This section is devoted to the well posedness of the full model (1)–(2) in the sense of
the semigroup theory. Let then A

K
be the unbounded linear operator associated to the

unperturbed model (1)–(2)–(with P = 0), that is to say that,

A
K
φ := −h

∂φ

∂x
(9)

on the domain

D
K
:=
{
φ ∈ Wp : Φαφ = KΦ

β
φ
}

(10)

where K is a given linear operator acting from Yp (p ⩾ 1) into itself.

Due to Lemma 1, the unbounded linear operator (A
K
,D

K
) is well defined whenever K is

bounded from Yp (p ⩾ 1) into itself.

Before we state that (A
K
,D

K
) is an infinitesimal generator, we need to prove two propo-

sitions. The first one can be announced as follows

Proposition 1. Suppose that assumptions
(
A1

α,β

)
and

(
A2

α,β

)
, and (Ah) hold true. Sup-

pose also that K is a bounded linear operator from Yp (p ⩾ 1) into itself. Then the
following assertions hold true.

1. The resolvent set of A
K
contains a half line, namely,(

M

m
ln k , ∞

)
⊂ ρ (A

K
) (11)

where
k := max

{
1, ∥K∥

}
. (12)
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2. A
K
is closed and densely defined.

3. If K is positive, then so is (λ− A
K
)−1 for all λ > M

m
ln k

Proof. For convenience, we divide the proof in several steps.

Step I (First Auxiliary Operator).

Let λ > 0 and g ∈ Xp (p ⩾ 1). Let L
λ
be the following linear operator

L
λ
g(x, y) =

1

h(y)

∫ x

α(y)

e−λ
(x−z)
h(y) g(z, y)dz (x, y) ∈ Ω (13)

which is obviously a positive operator. Accordingly,

∥L
λ
g∥p

p
=

∫
Ω

∣∣∣∣ 1

h(y)

∫ x

α(y)

e−λ
(x−z)
h(y) g(z, y)dz

∣∣∣∣p dxdy
⩽
∫
Ω

[
1

h(y)

∫ x

α(y)

e−λ
(x−z)
h(y) |g(z, y)| dz

]p
dxdy

= ∥L
λ
|g|∥p

p

and therefore
∥L

λ
g∥

p
⩽ ∥L

λ
|g|∥

p
. (14)

Next, writing that

∥L
λ
|g|∥p

p
=

∫ b

a

g
λ
(y)dy (15)

where

g
λ
(y) :=

∫ β(y)

α(y)

[
e−

pλx
h(y)

] [ 1

h(y)

∫ x

α(y)

e
λz
h(y) |g(z, y)| dz

]p
dx, y ∈ (a, b).

Integrating by parts we get, for all y ∈ (a, b), that

g
λ
(y) =

[
−h(y)

pλ
e−

pλβ(y)
h(y)

][
1

h(y)

∫ β(y)

α(y)

e
λz
h(y) |g(z, y)| dz

]p

+
1

λ

∫ β(y)

α(y)

e−
(p−1)λx

h(y) |g(x, y)|
[

1

h(y)

∫ x

α(y)

eλ
z

h(y) |g(z, y)| dz
]p−1

dx

⩽ 1

λ

∫ β(y)

α(y)

|g(x, y)|
[

1

h(y)

∫ x

α(y)

e−λ
(x−z)
h(y) |g(z, y)| dz

]p−1

dx

which can be written as

g
λ
(y) ⩽ 1

λ

∫ β(y)

α(y)

|g(x, y)|
[
L

λ
|g|
]p−1

dx

and therefore (15) becomes

∥L
λ
|g|∥p

p
⩽ 1

λ

∫
Ω

|g(x, y)|
[
L

λ
|g|
]p−1

dxdy. (16)
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If p = 1 then (16) yields that

∥L
λ
|g|∥

1
⩽ 1

λ

∫
Ω

|g(x, y)| dxdy =
1

λ
∥g∥

1
. (17)

However, if p > 1 then Hölder inequality (with 1
p
+ 1

q
= 1) applied to (16) yields that

∥L
λ
|g|∥p

p
⩽ 1

λ

[∫
Ω

|g(x, y)|p dxdy
] 1

p
[∫

Ω

[
L

λ
|g|
]q(p−1)

dxdy

] 1
q

=
1

λ

[∫
Ω

|g(x, y)|p dxdy
] 1

p
[∫

Ω

[
L

λ
|g|
]p
dxdy

] p−1
p

=
1

λ
∥g∥

p
∥L

λ
|g|∥p−1

p

and therefore

∥L
λ
|g|∥

p
⩽ 1

λ
∥g∥

p
. (18)

Finally, combining (14) together with (17)–(for p = 1) and (18)–(for p > 1) we get, for
all g ∈ Xp (p ⩾ 1), that

∥L
λ
g∥

p
⩽ 1

λ
∥g∥

p
(19)

and therefore L
λ
is a bounded linear operator from Xp (p ⩾ 1) into itself.

Step II (Second Auxiliary Operator).

Let λ ⩾ 0 and let K
λ
be the following linear operator

K
λ
ψ := K

(
e−λ

(β−α)
h ψ

)
. (20)

For all ψ ∈ Yp (p ⩾ 1) we have

∥K
λ
ψ∥

Yp
=
∥∥∥K(e−λ

(β−α)
h ψ

)∥∥∥
Yp

⩽ ∥K∥ e−λm
M∥ψ∥

Yp

which proves that K
λ
is a bounded linear operator from Yp (p ⩾ 1) into itself and by the

way
∥K

λ
∥ ⩽ ∥K∥ e−λm

M .

So, if ∥K∥ ⩽ 1 then ∥K
λ
∥ < 1 for all λ > 0. However, if ∥K∥ ⩾ 1 then ∥K

λ
∥ < 1 for all

λ > M
m
ln ∥K∥. Accordingly, in both cases we can write that

∥K
λ
∥ < 1 for all λ >

M

m
ln k. (21)

Step III (Proof of Point 1).

Let λ > M
m
ln k and let g ∈ Xp (p ⩾ 1). Solving (λ− A

K
)φ = g means to find φ fulfilling

λφ = −h
∂φ

∂x
+ g (22)
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and

φ ∈ Wp (23)

and

Φαφ = KΦ
β
φ. (24)

Firstly, easy computations show that (22) admits the following solution

φ(x, y) = e−
λx
h(y)ψ(y) + L

λ
g(x, y) (x, y) ∈ Ω (25)

where ψ is an arbitrary function and L
λ
is defined by (13).

Next, let ψ ∈ Yp (p ⩾ 1). Integrating (25) and then using (18) we obtain

∥φ∥
p
⩽
[∫ b

a

(∫ β(y)

α(y)

e−p λx
h(y)dx

)
|ψ(y)|p dy

] 1
p

+ ∥L
λ
g∥

p

=

[∫ b

a

h(y)

pλ

(
e−pλ

α(y)
h(y) − e−pλ

β(y)
h(y)

)
|ψ(y)|p dy

] 1
p

+ ∥L
λ
g∥

p

⩽
[
1

pλ

∫ b

a

|ψ(y)|p h(y)dy
] 1

p

+
1

λ
∥g∥

p

=
1

(pλ)
1
p

∥ψ∥
Yp

+
1

λ
∥g∥

p

which implies that φ ∈ Xp and by (22),∥∥∥∥h∂φ∂x
∥∥∥∥
p

= ∥−λφ+ g∥
p
⩽ λ∥φ∥

p
+ ∥g∥

p
<∞

and theretofore φ ∈ Wp.

Finally, φ fulfills (24) if ψ is solution of

ψ = K
λ
ψ +KΦ

β
(L

λ
g)

where K
λ
is defined by (20). Using (21) we get that

ψ =
(
I
Yp

−K
λ

)−1

KΦ
β
L

λ
g ∈ Yp

which we put in (25) to obtain

φ(x, y) = e−
λx
h(y)

(
I
Yp

−K
λ

)−1

KΦ
β
L

λ
g(y) + L

λ
g(x, y), (x, y) ∈ Ω. (26)

Now we can say that (26) is the unique solution of (λ−A
K
)φ = g which leads to λ ∈ ρ (A

K
)

and proves (11).

Step IV (Proof of Point 2).
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Let λ > M
m
ln k. Then (11) yields that (λ− A

K
)−1 is a bounded linear operator from

Xp (p ⩾ 1) into itself which implies that (λ − A
K
) is a closed operator and therefore

A
K
= λ− (λ− A

K
) is closed too.

A
K
is densely defined because Cc(Ω) ⊂ D

K
⊂ Xp (p ⩾ 1) (Cc(Ω) is the subspace of all

continuous functions with compact support in Ω).

Step IV (Proof of Point 3).

Let λ > M
m
ln k and let g ∈ Xp (p ⩾ 1) be such that g ⩾ 0. According to (11) and (26) we

get that

(λ− A
K
)−1 g(x, y) = e−

λx
h(y)

(
I
Yp

−K
λ

)−1

KΦ
β
L

λ
g(y) + L

λ
g(x, y), (x, y) ∈ Ω

which leads, by virtue of (21), to

(λ− A
K
)−1 g(x, y) = e−

λx
h(y)

∑
n⩾1

Kn
λ
KΦ

β
L

λ
g(y) + L

λ
g(x, y) (x, y) ∈ Ω.

All the terms in the right hand side are positive and therefore (λ− A
K
)−1 g is a positive

function.

The second proposition can be announced as follows

Proposition 2. Suppose that assumptions
(
A1

α,β

)
and

(
A2

α,β

)
, and (Ah) hold true. Sup-

pose also that K is a bounded linear operator from Yp (p ⩾ 1) into itself. Then∥∥(λ− A
K
)−n g

∥∥
p
⩽ k(

λ− M
m
ln k
)n∥g∥p , λ > M

m
ln k, n = 1, 2, 3, · · ·

for all g ∈ Xp (p ⩾ 1) where k is defined by (12).

Proof. For convenience, we divide the proof in several steps.

Step I. Let us define on Xp (p ⩾ 1) the following norm

|||φ|||
p
:=

[∫
Ω

|φ(x, y)|p fp(x, y)dxdy
] 1

p

where
f(x, y) := k

x−α(y)
β(y)−α(y) (x, y) ∈ Ω.

Both norms |||φ|||
p
and ∥·∥

p
are equivalent because of

∥φ∥
p
⩽ |||φ|||

p
⩽ k∥φ∥

p
(27)

for all φ ∈ Xp (p ⩾ 1).

Step II. Let λ > M
m
ln k and let g ∈ Xp (p ⩾ 1). According to (11) we can say that

φ := (λ− A
K
)−1 g (28)
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is the unique solution of

λφ = −h
∂φ

∂x
+ g (29)

satisfying

Φαφ = KΦ
β
φ. (30)

So multiplying (29) by ((sgnφ) |φ|p−1 fp) and then integrating it over Ω we get that

λ|||φ|||p
p
= −1

p

∫
Ω

h(y)
∂ |φ|p

∂x
(x, y)fp(x, y)dxdy

+

∫
Ω

(sgnφ)(x, y) |φ(x, y)|p−1 fp(x, y)g(x, y)dxdy

:= Ip + Jp . (31)

Firstly, integrating Ip by parts,

Ip = −1

p

∫ b

a

[∫ β(y)

α(y)

∂ |φ|p

∂x
(x, y)fp(x, y)dx

]
h(y)dy

=
1

p
∥Φαφ∥

p

Yp
− 1

p
kp
∥∥Φ

β
φ
∥∥p
Yp

+
1

p
(p ln k)

∫ b

a

[∫ β(y)

α(y)

|φ(x, y)|p fp(x, y)dx

]
h(y)

β(y)− α(y)
dy

⩽ 1

p
∥Φαφ∥

p

Yp
− 1

p
kp
∥∥Φ

β
φ
∥∥p
Yp

+

(
M

m
ln k

)
|||φ|||p

p

which leads, by virtue of (30), to

Ip ⩽ 1

p

∥∥KΦ
β
φ
∥∥p
Yp

− 1

p
kp
∥∥Φ

β
φ
∥∥p
Yp

+

(
M

m
ln k

)
|||φ|||p

p

⩽ 1

p
(∥K∥p − kp)

∥∥Φ
β
φ
∥∥p
Yp

+

(
M

m
ln k

)
|||φ|||p

p

and therefore

Ip ⩽
(
M

m
ln k

)
|||φ|||p

p
. (32)

Next, for the term Jp , Hölder inequality (with 1
p
+ 1

q
= 1) yields that

Jp ⩽
∫
Ω

|φ(x, y)|p−1 fp(x, y) |g(x, y)| dxdy

=

∫
Ω

(|φ(x, y)| f(x, y))p−1 (|g(x, y)| f(x, y)) dxdy

⩽
[∫

Ω

(|φ(x, y)| f(x, y))q(p−1) dxdy

] 1
q
[∫

Ω

(|g(x, y)| f(x, y))p dxdy
] 1

p

=

[∫
Ω

|φ(x, y)|p fp(x, y)dxdy
] p−1

p
[∫

Ω

|g(x, y)|p fp(x, y)dxdy
] 1

p
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and therefore
Jp ⩽ |||φ|||p−1

p
|||g|||

p
. (33)

Combining now (31) together with (32) and (33) we obtain

λ|||φ|||p
p
⩽
(
M

m
ln k

)
|||φ|||p

p
+ |||φ|||p−1

p
|||g|||

p

which leads to (
λ− M

m
ln k

)
|||φ|||

p
⩽ |||g|||

p

and by (28), ∣∣∣∣∣∣(λ− A
K
)−1 g

∣∣∣∣∣∣
p
⩽ 1(

λ− M
m
ln k
) |||g|||

p
.

By induction on the integer n ⩾ 1 we get that∣∣∣∣∣∣(λ− A
K
)−n g

∣∣∣∣∣∣
p
⩽ 1(

λ− M
m
ln k
)n |||g|||p n = 1, 2, 3, · · ·

Finally (27) yields that∥∥(λ− A
K
)−n g

∥∥
p
⩽ k(

λ− M
m
ln k
)n∥g∥p n = 1, 2, 3, · · ·

which ends the proof.

Now the main result of this section can be formulated as follows

Theorem 1. Suppose that assumptions
(
A1

α,β

)
and

(
A2

α,β

)
, and (Ah) hold true. Suppose

also that K is a bounded linear operator from Yp (p ⩾ 1) into itself. Then the unbounded
linear operator (A

K
,D

K
) generates, on Xp (p ⩾ 1), a strongly continuous semigroup A

K
=

(A
K
(t))t⩾0 satisfying,

∥A
K
(t)φ∥

p
⩽ k(1+

M
m
t)∥φ∥

p
t ⩾ 0 (34)

for all φ ∈ Xp (p ⩾ 1) where k is defined by (12). Furthermore, if K is positive then so is
the generated semigroup A

K
= (A

K
(t))t⩾0.

Proof. Proposition 1 and Proposition 2 yield that all the required conditions of Hille–
Yosida Theorem (see [7, Thm. II.3.8]) are fulfilled. Accordingly, (A

K
,D

K
) generates, on

Xp (p ⩾ 1), a strongly continuous semigroup A
K
= (A

K
(t))t⩾0 satisfying

∥A
K
(t)φ∥

p
⩽ ket(

M
m

ln k) = k(1+
M
m
t)∥φ∥

p
t ⩾ 0

for all φ ∈ Xp (p ⩾ 1). Finally, the positivity of A
K
= (A

K
(t))t⩾0 follows from that of

(λ− A
K
)−1 (See Proposition 1 (3)) because of [5, Prop. 7.1].

About the full model (1)–(2), an immediate consequence of Theorem 1 can be formulated
as follows
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Corollary 1. Suppose that assumptions
(
A1

α,β

)
and

(
A2

α,β

)
, and (Ah) hold true. Suppose

also that K is a bounded linear operator from Yp (p ⩾ 1) into itself. If P is a bounded
linear operator from Xp (p ⩾ 1) into itself then the full model (1)–(2) is well-posed in Xp

(p ⩾ 1).

Proof. The full model (1)–(2) is governed by the unbounded linear operator (A
K
+ P,D

K
).

The boundeness of P yields that (A
K
+ P,D

K
) is a linear bounded perturbation of the

infinitesimal generator (A
K
,D

K
) (Theorem 1). Now [7, Thm. III.1.3] ends the proof.

Remark 1. Assumptions
(
A1

α,β

)
and

(
A2

α,β

)
, and (Ah) were crucial to our computations.

It is then legitimate to ask what happens if m = 0 or M = ∞?

4 Application 1

In this application we are concerned with a mathematical model describing a structured
cell population. Each cell is distinguished by its cell cycle length l and by its age a. If
f = f(t, a, l) denotes, at time t, the cell density with respect to age a and cell cycle length
l, the cell population is then governed by the following equation

∂f

∂t
= −∂f

∂a
− µf +

∫ l

0

∫ a

0

η(a, l, a′, l′)f(t, a′, l′)da′dl′ (35)

where µ = µ(a, l) stands for the cell mortality rate and η(a, l, a′, l′) denotes the transition
rate at which cells change their cell cycle length from l′ to l and its age from a′ to a.

The cell cycle length l is the time between cell birth and cell division. As no cell can be
rejuvenated, then the cell cycle length l must be positive and therefore 0 < l1 < l < l2 ⩽ ∞
where l1 and l2 denote the minimum and the maximum cell cycle lengths. The age a of
each cell is null (a = 0) at birth and equals to its cell cycle length l (a = l) at division.
Between birth and division, we have then 0 ⩽ a ⩽ l.

During each mitosis, there may be a positive correlation τ = τ(l, l′) between the cell cycle
length of a mother cell l′ and that of a daughter cell l. This correlation, called Transition
Biological Rule, is mathematically described by

f(t, 0, l) = δ

∫ l2

l1

τ(l, l′)f(t, l′, l′)dl′ (36)

where δ ⩾ 0 is the average number of daughter cells viable per mitosis. To ensure the
continuity of the cell flux for δ = 1, the kernel of correlation τ must fulfill the following
normalization condition, ∫ l2

l1

k(l, l′)dl = 1 for all l′ ∈ (l1, l2). (37)

There also may be a total inheritance of the cell cycle length l between a mother cell and
its daughters, which leads to Perfect Memory Rule

f(t, 0, l) = γf(t, l, l). (38)
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where γ ⩾ 0 is the average number of daughter cells viable per mitosis.

Actually, at each mitosis, the cell population is divided into two distinct subpopulation
in most observed cases. The first one obeys to the Transition Biological Rule described
by (36) while the second one obeys to the Perfect Memory Rules described by (38). In
other words, both Biological Rules cohabit, at each mitosis, and lead to a third one,
mathematically described by the following boundary condition

f(t, 0, l) = δ

∫ l2

l1

τ(l, l′)f(t, l′, l′)dl′ + γf(t, l, l) (39)

where δ ⩾ 0 and γ ⩾ 0 denote the average number of daughter cells viable per mitosis
into the corresponding cell subpopulation.

The model (35)–(36)–(with η = 0) has been introduced for the first time in [8] and
mathematically studied in [10, 11] and then in [3]. We have then proved that this model
is governed by a strongly continuous semigroup.

In order to give a general study, we have recently considered the full model described by
both equations (35) and (39). We have then proved that this model is governed by a
strongly continuous semigroup (see [1]).

Now we can say that

Lemma 2. Let l1 and l2 and, δ and γ be such that

0 < l1 < l2 ⩽ ∞ and 0 ⩽ δ , γ <∞. (40)

Suppose that the kernel τ(v, v′) is positive and fulfills (37).

The unperturbed model (35),(39)–(with η = 0) is governed by a strongly continuous semi-
group A

δ,γ
= (A

δ,γ
(t))t⩾0 satisfying,

∥∥A
δ,γ
(t)φ

∥∥
1
⩽
(
max

{
1, δ + γ

})(1+ 1
l1
t
)
∥φ∥

1
t ⩾ 0

for all φ ∈ X1. Furthermore, A
δ,γ

= (A
δ,γ
(t))t⩾0 is a positive semigroup.

Proof. In order to apply Theorem 1 we firstly put

a := l1 and b := l2.

Next, we define the functions

α(l) := 0 and β(l) := l l ∈ (a, b)

and then
h(l) := 1 l ∈ (a, b).

Finally, let K
δ,γ

be such that

K
δ,γ
ψ(l) := δ

∫ l2

l1

τ(l, l′)ψ(l′, l′)dl′ + γψ(l) l ∈ (a, b).
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The operator K
δ,γ

is obviously positive. Furthermore (37) leads to

∥∥K
δ,γ
ψ
∥∥
Y1

= δ

∫ l2

l1

[∫ l2

l1

τ(l, l′)dl

]
ψ(l′)dl′ + γ

∫ l2

l1

ψ(l)dl

= (δ + γ)

∫ l2

l1

ψ(l)dl

= (δ + γ) ∥ψ∥
Y1

for all nonnegative ψ ∈ Y1 and therefore
∥∥K

δ,γ

∥∥ = δ + γ.

Due to (40), assumptions
(
A1

α,β

)
and

(
A2

α,β

)
–(with m = l1), and (Ah)–(with M = 1)

hold true. The linear operator K := K
δ,γ

is bounded from Y1 into itself whose norm is
∥K∥ = δ + γ.

Now, all the required conditions of Theorem 1 are fulfilled. Accordingly,
(
A

δ,γ
,D

δ,γ

)
:=

(A
K
,D

K
)–(with K := K

δ,γ
) generates a strongly continuous semigroup A

δ,γ
= (A

δ,γ
(t))t⩾0

satisfying (34)–(with ∥K∥ = δ+γ). The positivity of A
δ,γ

= (A
δ,γ
(t))t⩾0 follows from that

of K
δ,γ
.

Suppose now that the cell mortality rate µ = µ(a, l) and the transition rate η(a, l, a′, l′)
are subject to following assumptions(
Aµ

)
: µ := ess sup

(a,l)∈Ω
|µ(a, l)| <∞

(
Aη

)
: η := ess sup

(a′,l′)∈Ω

∫
Ω

|η(a, l, a′, l′)| dadl <∞.

Corollary 2. Let l1 and l2 and, δ and γ be such that (40) holds true and let τ(v, v′) be a
positive kernel fulfilling (37). If both assumptions

(
Aµ

)
and

(
Aη

)
hold true then the full

model (35), (39) is well-posed on X1.

Proof. According to Lemma 2 and [7, Thm. III.1.3], it suffices to prove that

Pφ(a, l) := −µ(a, l)φ(a, l) +
∫ l

0

∫ a

0

η(a, l, a′, l′)φ(a′, l′)da′dl′

is a bounded linear operator from X1 into itself. This is true because of ∥Pφ∥
1
⩽

(µ+ η) ∥φ∥
1
for all φ ∈ X1.

5 Application 2

We consider a structured bacterial population in which each individual is distinguished
by its degree of maturity µ and its maturation velocity v. If f = f(t, µ, v) denotes the
bacterial density with respect to the degree of maturity µ and the maturation velocity v,
at time t, then

∂f

∂t
= −v∂f

∂µ
−
[∫ vmax

vmin

r(µ, v′, v)dv′
]
f+

∫ vmax

vmin

r(µ, v, v′)f(t, µ, v′)dv′ (41)
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where r(µ, v, v′) stands for the transition rate at which bacteria change their velocities
from v′ to v.

The degree of maturity of a daughter bacteria is µ = 0 while that of a mother bacteria is
µ = 1. Between birth and division, the degree of maturity of each bacteria is 0 < µ < 1.
As each bacteria may not become less mature, its maturation velocity v must be positive
and thus 0 ⩽ vmin < v < vmax <∞ where vmin is the minimum velocity while vmax is the
maximum velocity.

During mitosis, there may be a correlation k := k(v, v′) between the maturation velocity
v′ of a mother bacteria and that of its daughter v. If p ⩾ 0 denotes the average number
of bacteria daughter viable per mitotic, then this correlation (called Transition Rule) is
described by

vf(t, 0, v) = p

∫ vmax

vmin

k(v, v′)f(t, 1, v′)v′dv′. (42)

To ensure the continuity of the bacterial flux for p = 1, the kernel of correlation k must
fulfils the following normalization condition∫ vmax

vmin

k(v, v′)dv = 1 for all v′ ∈ (vmin, vmax). (43)

There also may be a total inheritance of the maturation velocity v between a mother
bacteria and its daughters. If q ⩾ 0 denotes the average number of bacteria daughter
viable per mitotic, then this inheritance (called Perfect Memory Rule) is mathematically
described by

f(t, 0, v) = qf(t, 1, v). (44)

In most observed mitosis, the bacterial population is divided into two distinct subpopu-
lation. The first one obeys to the Transition Rule described by (42) while the second one
obeys to the Perfect Memory Rules described by (44). At each mitosis, both Biological
Rules cohabit and lead obviously to a third one, mathematically described by

f(t, 0, v) =
p

v

∫ vmax

vmin

k(v, v′)f(t, 1, v′)v′dv′ + qf(t, 1, v) (45)

where p ⩾ 0 and q ⩾ 0 denote the average number of daughter bacteria viable per mitosis
into the corresponding bacterial subpopulation.

The model (41)–(42) has been introduced and numerically studied for the first time in
[9]. The first theoretical studies of the model (41)-(42) were given in [4]. We have then
proved that this model is governed by a strongly continuous semigroup.

Recently, we have proved in [2] that the full model (41), (45) is governed by a strongly
continuous semigroup (see also [6] for a different method).

Now we can say that

Lemma 3. Let vmin and vmax and, p and q be such that

0 ⩽ vmin < vmax <∞ and 0 ⩽ p , q <∞. (46)
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Suppose that the kernel k(v, v′) is positive and fulfills (43).

The unperturbed model (41)–(45)–(with r = 0) is governed by a strongly continuous semi-
group A

p,q
= (A

p,q
(t))t⩾0 satisfying,

∥∥A
p,q
(t)φ

∥∥
1
⩽
(
max

{
1, p+ q

})(1+vmaxt)

∥φ∥
1

t ⩾ 0 (47)

for all φ ∈ X1. Furthermore, A
p,q

= (A
p,q
(t))t⩾0 is a positive semigroup.

Proof. In order to apply Theorem 1 we firstly put

a := vmin and b := vmax.

Next, we define the functions

α(v) := 0 and β(v) := 1 v ∈ (a, b)

and then
h(v) := v v ∈ (a, b).

Finally, let K
p,q

be such that

K
p,q
ψ(v) :=

p

v

∫ vmax

vmin

k(v, v′)ψ(v′)v′dv′ + qψ(v) y ∈ (a, b).

The operator K
p,q

is obviously positive. Using (43) we get that

∥∥K
p,q
ψ
∥∥
Y1

= p

∫ vmax

vmin

[∫ vmax

vmin

k(v, v′)dv

]
ψ(v′)v′dv′ + q

∫ vmax

vmin

ψ(v)vdv

= (p+ q)

∫ vmax

vmin

ψ(v)vdv

= (p+ q) ∥ψ∥
Y1

for all nonnegative ψ ∈ Y1 and therefore
∥∥K

p,q

∥∥ = p+ q.

Due to (46), assumptions
(
A1

α,β

)
and

(
A2

α,β

)
–(with m = 1), and (Ah)–(with M = vmax)

hold true. The linear operator K := K
p,q

is bounded from Y1 int itself whose norm is
∥K∥ = p+ q.

Now, all the required conditions of Theorem 1 are fulfilled and therefore
(
A

p,q
,D

p,q

)
:=

(A
K
,D

K
)–(with K := K

p,q
) generates a strongly continuous semigroup A

p,q
= (A

p,q
(t))t⩾0

satisfying (34)–(with ∥K∥ = p+q). The positivity of A
p,q

= (A
p,q
(t))t⩾0 follows from that

of K
p,q
.

Suppose now that the transition rate r(µ, v, v′) is subject to the following assumption

(Ar) : r := ess sup
(µ,v)∈Ω

∫ vmax

vmin

|r(µ, v′, v)| dv′ <∞.
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Corollary 3. Let vmin and vmax and, p and q be such that (46) holds true and let k(v, v′)
be a positive kernel fulfilling (43). If the assumption (Ar) holds true then the full model
(41), (45) is well-posed on X1.

Proof. According to Lemma 3 and [7, Thm. III.1.3], it suffices to prove that

Pφ(µ, v) := −
[∫ vmax

vmin

r(µ, v′, v)dv′
]
φ(µ, v) +

∫ vmax

vmin

r(µ, v, v′)φ(µ, v′)dv′

is a bounded linear operator from X1 into itself. This is true because of ∥Pφ∥
1
⩽ 2r∥φ∥

1

for all φ ∈ X1.

6 Application 3

This application deals with the following one-dimensional transport equation

∂f

∂t
= −y∂f

∂x
(48)

where f = f(t, x, y) stands for the particles density having at time t the position x ∈(
− xmax, xmax

)
(0 < xmax < ∞) and the velocity y ∈

(
0, ymax

)
(0 < ymax < ∞). This

equation describes the transport of particles (e.g. neutrons, photons, molecules of gas) in
a plane parallel domain with a width of 2xmax mean free paths. We endow (48) with the
following boundary condition

f
(
t,−xmax, y

)
= ξf

(
t, xmax, y

)
y ∈

(
0, ymax

)
(49)

where ξ ⩾ 0 is a given real. Boundary condition (49) is periodic (or vacuum) whenever
ξ = 1 (or ξ = 0).

Now we can say that

Lemma 4. Let xmax and ymax and ξ be such that

0 < xmax <∞ and 0 < ymax <∞ and 0 ⩽ ξ <∞. (50)

The model (48)–(49) is governed by a positive strongly continuous semigroup A
ξ
= (A

ξ
(t))t⩾0

satisfying, ∥∥A
ξ
(t)φ

∥∥
p
⩽
(
max

{
1, ξ
})(1+ ymax

2xmax
t)
∥φ∥

p
t ⩾ 0

for all φ ∈ Xp (p ⩾ 1).

Proof. In order to apply Theorem 1 we firstly put

a := 0 and b := ymax.

Next, we define the functions

α(y) := −xmax and β(y) := xmax y ∈ (a, b)
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and then

h(y) := y y ∈ (a, b).

Finally, let K
ξ
:= ξI

Yp
where I

Yp
is the identity operator into Yp (p ⩾ 1). Obviously, K

ξ
is

a bounded linear operator from Yp (p ⩾ 1) into itself whose norm is ∥K∥ = ξ.

Due to (50), assumptions
(
A1

α,β

)
and

(
A2

α,β

)
–(with m = 2xmax), and (Ah)–(with M =

ymax) hold true. The linear operator K := K
ξ
is bounded from Yp (p ⩾ 1) into itself whose

norm is ∥K∥ = ξ.

Now, all the required conditions of Theorem 1 are fulfilled. Accordingly,
(
A

ξ
,D

ξ

)
:=

(A
K
,D

K
)–(with K := ξI

Yp
) generates a strongly continuous semigroup A

ξ
= (A

ξ
(t))t⩾0

satisfying (34)–(with ∥K∥ = ξ). The positivity of A
ξ
= (A

ξ
(t))t⩾0 follows from that of

K := ξI
Yp

because of ξ ⩾ 0.
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