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1 Introduction

This paper is concerned with the initial boundary value problem for the following
system of differential equations with nonlinear degenerate diffusion:

ut = βδw − γ(v)u− fu in Ω× (0,∞),

vt = fu− hv in Ω× (0,∞),

wt = ∆(wm)− βw + αv in Ω× (0,∞),

w = 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x) in Ω,

(1.1)

where Ω is a bounded domain in RN , N ≥ 1, with smooth boundary ∂Ω, ∆ =
∑N

i=1 ∂
2/∂x2

i

and u0, v0, w0 are nonnegative functions in L∞(Ω). This problem models the dynamics of
forest: u and v denote the tree densities of young and old age classes, respectively, and w
denotes the density of seeds. In (1.1) f, h, α, β are positive constants, 0 < δ < 1, m > 1,
and γ ∈ C1(R) is a quadratic function of the form γ(v) = a(v − b)2 + c with positive
constants a, b, c. Constants f, h, α, β, δ denote, respectively, aging rate, mortality of trees
of old age class, seed production rate, seed deposition rate and seed establishment rate
and, moreover, γ(v) represents the mortality of trees of young age class.

In order to discuss the case that seeds are carried by animals, we attempt to deal with
a simple nonlinear diffusion case ∆(wm) in (1.1). As stated in Okubo–Levin [13], if we
take a diffusion coefficient of the form mwm−1 (m > 1), then it implies that the fewer
seeds are, the smaller the diffusion coefficient is (conversely, the more seeds are, the larger
the diffusion coefficient is). In a forest, a lot of fruits, which ought to have a lot of seeds,
attract animals, and then it is easy for seeds to spread. So we consider that the problem
(1.1) seems to be more realistic for the forest kinematic model in the case that the seeds
are carried and spread by animals.

The following forest kinematic model was first proposed by Kuznetsov et al. [10]:
ut = βδw − γ(v)u− fu,

vt = fu− hv,

wt = ∆w − βw + αv,

(1.2)

and various studies have been conducted on this model (see [5, 6], [7], [12], [14, 15, 16],
[18] for (1.2) and see also [2], [17] for related models). In particular, Shirai, Chuan and
Yagi [14, 15, 16] discussed (1.2) under Dirichlet boundary condition. We should also state
that the stationary problem corresponding to (1.1) with nonlinear degenerate diffusion
case has been studied by Yamamoto and Yamada [18].

In the work of Shirai, Chuan and Yagi [14, 15], they studied (1.2) with Dirichlet
boundary condition w = 0 and initial conditions u(·, 0) = u0, v(·, 0) = v0 and w(·, 0) = w0

in the case that Ω is a two-dimensional bounded domain. It was shown that, if initial
functions satisfy u0, v0, w0 ≥ 0, u0, v0 ∈ L∞(Ω) and w0 ∈ L2(Ω), then there exists a unique
global solution (u, v, w) of (1.2) and that the solution is uniformly bounded in the sense
that u, v ∈ L∞(Ω× [0,∞)) and w ∈ L∞(0,∞;L2(Ω)). They also discussed the asymptotic
behavior of the solution as t → ∞.
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The purpose of the present paper is to study the global solvability of (1.1) under the
following conditions

u0, v0, w0 ≥ 0 (̸≡ 0), u0, v0, w0 ∈ L∞(Ω) and w0 ∈ H1
0 (Ω). (1.3)

In particular, this condition implies wm
0 ∈ H1

0 (Ω). We will look for solutions of (1.1) in
the following class.

Definition 1.1. For T > 0, (u, v, w) : Ω× [0, T ] → [0,∞)3 is called a weak solution of
(1.1) in [0, T ] if it possesses the following properties:

(i) u, v, w ∈ C([0, T ];L2(Ω)) ∩ L∞(Ω× (0, T )) and wm ∈ L2(0, T ;H1
0 (Ω)),

(ii) u and v satisfy the first and second equations of (1.1) for t ∈ [0, T ] in the sense
of L2(Ω),

(iii) w satisfies

−
∫
Ω

w0(x)φ(x, 0) dx−
∫ T

0

∫
Ω

wφt dx dt

=−
∫ T

0

∫
Ω

∇wm∇φdx dt+

∫ T

0

∫
Ω

(−βw + αv)φdx dt

for all φ ∈ C1([0, T ];C∞
0 (Ω)) satisfying φ(·, T ) ≡ 0.

Furthermore, (u, v, w) is called a global weak solution of (1.1) if (u, v, w) is a weak
solution of (1.1) in [0, T ] for any T > 0.

Our first main result concerns with the global existence of weak solutions.

Theorem 1.1. Suppose that (u0, v0, w0) satisfies (1.3). Then there exists a global weak
solution (u, v, w) of (1.1) such that

(i) u ∈ C1([0,∞);Lr(Ω)), v ∈ C2([0,∞);Lr(Ω)) for any r ≥ 1,

(ii) w ∈ C([0,∞);Lr(Ω)) for any r ≥ 1, wm ∈ L2
loc(0,∞;H1

0 (Ω)),

(iii) (u, v, w) satisfies

max{∥u(t)∥∞, ∥v(t)∥∞, ∥w(t)∥∞}
≤K exp{(αδ − (c+ f)h/f)µt}(∥u0∥∞ + ∥v0∥∞ + ∥w0∥∞)

(1.4)

for t ≥ 0, where K and µ are positive constants depending only on c, f, h, α, β, δ.
Here ∥ · ∥∞ denotes L∞(Ω)-norm.

Theorem 1.1 shows that, if αδ − (c+ f)h/f < 0, then (u, v, w) satisfies

lim
t→∞

u(·, t) = lim
t→∞

v(·, t) = lim
t→∞

w(·, t) = 0 in L∞(Ω).

Furthermore, even if αδ − (c + f)h/f > 0, we will show the uniform boundedness of
∥u(t)∥∞, ∥v(t)∥∞ and ∥w(t)∥∞ for the weak solution given in Theorem 1.1.
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Theorem 1.2. Suppose that (u0, v0, w0) satisfies (1.3). Let (u, v, w) be the weak solution
of (1.1) given in Theorem 1.1. Then it holds that

sup
t≥0

{∥u(t)∥∞ + ∥v(t)∥∞ + ∥w(t)∥∞}

≤ Cmax { 1, ∥u0∥∞ + ∥v0∥∞ + ∥w0∥∞ } ,
(1.5)

where C is a positive constant depending only on N,Ω, a, b, c, f, h,m, α and β.

In order to construct a weak solution of (1.1), we will consider approximate problems
with ∆wm replaced by ∆(w + ε)m, ε > 0; so that the diffusion coefficient becomes
non-degenerate. Our task is to estimate approximate solutions and derive their bounds
independent of ε. Then letting εn → 0 along some sequence {εn} we will show that
approximate solutions converge to a weak solution of (1.1).

The contents of the present paper are as follows. In Section 2, we prepare approximate
problems and establish some basic properties of approximate solutions. In Section 3, we
will prove the convergence of approximate solutions to show Theorem 1.1. Section 4 is
devoted to the proof Theorem 1.2. We will take an iterative method developed by Alikakos
[1] to obtain L∞ bounds of the weak solution. Finally, proofs of some auxiliary results
are given in Appendix.

Notation. In this paper we denote Lp(Ω)-norm of u ∈ Lp(Ω) by ∥u∥p for each p ∈ [1,∞].
For the sake of simplicity, we use the following set of parameters

Λ = {a, b, c, h, f, α, β, δ}.

2 Approximate Problem

In this section we consider the following approximate problem for any ε > 0,

∂tuε = βδwε − γ(vε)uε − fuε in Ω× (0,∞),

∂tvε = fuε − hvε in Ω× (0,∞),

∂twε = ∆(wε + ε)m − βwε + αvε in Ω× (0,∞),

wε = 0 on ∂Ω× (0,∞),

uε(x, 0) = u0ε(x), vε(x, 0) = v0ε(x), wε(x, 0) = w0ε(x) in Ω,

(2.1)

where ∂t = ∂/∂t and initial functions u0ε, v0ε, w0ε are assumed to satisfy the following
conditions

u0ε, v0ε ∈ C∞(Ω), w0ε ∈ C∞
0 (Ω), u0ε, v0ε, w0ε ≥ 0 (̸≡ 0) in Ω,

∥u0ε∥∞ ≤ ∥u0∥∞, ∥v0ε∥∞ ≤ ∥v0∥∞, ∥w0ε∥∞ ≤ ∥w0∥∞,

u0ε → u0, v0ε → v0, w0ε → w0 in Lr(Ω) as ε → 0 for any r ≥ 1,

∇w0ε → ∇w0 in L2(Ω) as ε → 0.

(2.2)

We begin with the local existence of a unique classical solution to (2.1).
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Proposition 2.1. Assume that (u0ε, v0ε, w0ε) satisfies (2.2). Then there exists a positive
number T such that (2.1) admits a unique nonnegative classical solution (uε, vε, wε) in
[0, T ].

Proof. By the well-known result of Ladyženskaja, Solonnikov and Ural’ceva [11], there
exists a unique classical solution (uε, vε, wε) of (2.1) in [0, T ] with some T > 0. We will
prove its positivity. For ξ ∈ R define

ξ+ = max {ξ, 0} , ξ− = max {−ξ, 0} ;

then ξ = ξ+ − ξ− and ξ+ξ− = 0. Since wε(x, 0) = w0ε(x) ≥ 0 in Ω and wε(t, x) is
continuous with respect to (t, x), there exists T0 ∈ (0, T ] such that wε(t, x) ≥ −ε for
(x, t) ∈ Ω× [0, T0]. Taking L2(Ω)-inner product of the third equation of (2.1) with −w−

ε ,
we obtain

1

2

d

dt
∥w−

ε (t)∥22 = ((wε)t,−w−
ε )2

= (∆(wε + ε)m,−w−
ε )2 − β(wε,−w−

ε )2 + α(vε,−w−
ε )2

=

∫
Ω

m(wε + ε)m−1∇wε · ∇w−
ε dx

− β∥w−
ε (t)∥22 − α(v+ε − v−ε , w

−
ε )2,

where (·, ·)2 denotes L2(Ω)-inner product. Then it follows that

1

2

d

dt
∥w−

ε (t)∥22 ≤−
∫
Ω

m(wε + ε)m−1|∇w−
ε |2 dx− β∥w−

ε (t)∥22

+ α

∫
Ω

v−ε w
−
ε dx

≤ α∥v−ε (t)∥2∥w−
ε (t)∥2.

(2.3)

Similarly, we obtain
1

2

d

dt
∥u−

ε (t)∥22 ≤ β∥w−
ε (t)∥2∥u−

ε (t)∥2,

1

2

d

dt
∥v−ε (t)∥22 ≤ f∥u−

ε (t)∥2∥v−ε (t)∥2.
(2.4)

Thus it follows from (2.3) and (2.4) that

d

dt

(
∥u−

ε (t)∥22 + ∥v−ε (t)∥22 + ∥w−
ε (t)∥22

)
≤ C

(
∥u−

ε (t)∥22 + ∥v−ε (t)∥22 + ∥w−
ε (t)∥22

)
with C = 2max{α, β, f}. Solving this inequality yields

∥u−
ε (t)∥22 + ∥v−ε (t)∥22 + ∥w−

ε (t)∥22 ≤
(
∥u−

0ε∥22 + ∥v−0ε∥22 + ∥w−
0ε∥22

)
eCt = 0,

which implies that uε(t), vε(t) and wε(t) are nonnegative for all t ∈ [0, T0] and, therefore,
for all t ∈ [0, T ].
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Lemma 2.1. Let (uε, vε, wε) be the solution of (2.1) in [0, T ]. Then it holds that

d

dt
∥uε(t)∥∞ ≤ βδ∥wε(t)∥∞ − (c+ f)∥uε(t)∥∞,

d

dt
∥vε(t)∥∞ ≤ f∥uε(t)∥∞ − h∥vε(t)∥∞,

d

dt
∥wε(t)∥∞ ≤ −β∥wε(t)∥∞ + α∥vε(t)∥∞

(2.5)

for a.e. t ∈ [0, T ].

Proof. By the strong maximum principle, wε(x, t) > 0 for x ∈ Ω and t ∈ (0, T ]. Set
Ωmax(t) = {x ∈ Ω̄ |wε(x, t) = ∥wε(t)∥∞}. It follows from Lemma A.1 that, for a.e.
t ∈ [0, T ], ∥wε(t)∥∞ is differentiable and

d

dt
∥wε(t)∥∞ =

∂wε

∂t
(xt, t), (2.6)

where xt is any point in Ωmax(t). Since wε(x, t) takes its maximum at x = xt ∈ Ω, it holds
that

∆wε(x
t, t) ≤ 0, and ∇wε(x

t, t) = 0.

Therefore,

∆(wε + ε)m(xt, t)

= m(wε(x
t, t) + ε)m−1∆wε(x

t, t) +m(m− 1)(wε(x
t, t) + ε)m−2|∇wε(x

t, t)|2

≤ 0.

(2.7)

By using (2.1), (2.6) and (2.7) it holds that

d

dt
∥wε(t)∥∞ = (∆(wε + ε)m − βwε + αuε)(x

t, t)

≤ −βwε(x
t, t) + αvε(x

t, t)

≤ −β∥wε(t)∥∞ + α∥vε(t)∥∞.

Other inequalities can be shown in a similar manner.

We will rewrite (2.5) with use of 3× 3 matrix M in the following form:

d

dt

∥uε(t)∥∞
∥vε(t)∥∞
∥wε(t)∥∞

 ≤ M

∥uε(t)∥∞
∥vε(t)∥∞
∥wε(t)∥∞

 , (2.8)

where

M =

−(c+ f) 0 βδ
f −h 0
0 α −β

 . (2.9)

Here t(u1, v1, w1) ≤ t(u2, v2, w2) means that u1 ≤ u2, v1 ≤ v2, w1 ≤ w2. We will derive
estimates of ∥u(t)∥∞, ∥v(t)∥∞, ∥w(t)∥∞ in terms of the largest real eigenvalue of M .
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Proposition 2.2. Assume that (u0ε, v0ε, w0ε) satisfies (2.2). Then (2.1) admits a unique
classical solution (uε, vε, wε) in [0,∞) and it satisfies

∥uε(t)∥∞ + ∥vε(t)∥∞ + ∥wε(t)∥∞
≤ Keλ0t(∥u0∥∞ + ∥v0∥∞ + ∥w0∥∞) for all t ≥ 0,

(2.10)

where K is a positive constant depending on Λ and λ0 is the largest real eigenvalue of M
which has the same sign as αδ − (c+ f)/f .

Proof. Let (uε, vε, wε) be a classical solution of (2.1) in [0, T ]. We will derive a priori L∞

estimate of the solution.
Let λ0 be the largest real eigenvalue of M . On account of Lemma A.3 we can take a

left eigenvector of M corresponding to λ0 in the form of (k1, k2, 1) with ki > 0, i = 1, 2.
Multiplying the first inequality of (2.5) by k1 and the second inequality by k2 one can
derive

(
k1 k2 1

) d

dt

∥u(t)ε∥∞
∥v(t)ε∥∞
∥w(t)ε∥∞

 ≤
(
k1 k2 1

)
M

∥u(t)ε∥∞
∥v(t)ε∥∞
∥w(t)ε∥∞


= λ0

(
k1 k2 1

)∥u(t)ε∥∞
∥v(t)ε∥∞
∥w(t)ε∥∞


for a.e. t ∈ [0, T ]. This implies that

d

dt

{
e−λ0t(k1∥uε(t)∥∞ + k2∥vε(t)∥∞ + ∥wε(t)∥∞)

}
≤ 0 for a.e. t ∈ [0, T ];

so that

k1∥uε(t)∥∞ + k2∥vε(t)∥∞ + ∥wε(t)∥∞ ≤ eλ0t(k1∥u0ε∥∞ + k2∥v0ε∥∞ + ∥w0ε∥∞)

≤ eλ0t(k1∥u0∥∞ + k2∥v0∥∞ + ∥w0∥∞).

Therefore, by putting K = max{k1, k2, 1}/min{k1, k2, 1}, we obtain (2.10).
In order to complete the proof, we combine (2.10) and regularity theory for parabolic

equations with Proposition 2.1. Then it is possible to extend the local solution (uε, vε, wε)
in [0, T ] to the whole interval [0,∞) and prove (2.10) for all t ≥ 0.

3 Convergence of Approximate Solutions

In this section we will show that a family of approximate solutions {(uε, vε, wε)}ε>0

has a subsequence which is convergent in a suitable topology.

Lemma 3.1. For ε ∈ (0, 1) and (u0ε, v0ε, w0ε) satisfying (2.2), the solution (uε, vε, wε) of
(2.1) satisfies that for every T > 0∥∥∥∥ ∂

∂t
(wε + ε)m

∥∥∥∥2
L2(Ω×(0,T ))

+ sup
0≤t≤T

∥∇(wε(t) + ε)m∥22 ≤ C(1 + (T + 1)eµT ), (3.1)

where C is a positive constant depending only on Λ,m, u0, v0, w0,∇w0,Ω, and µ is a
nonnegative constant depending only on Λ,m.
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Proof. Taking L2(Ω)-inner product of the third equation of (2.1) with ∂
∂t
(wε + ε)m, we

get

4m

(m+ 1)2

∥∥∥∥ ∂

∂t
(wε(t) + ε)

m+1
2

∥∥∥∥2
2

=− 1

2

d

dt
∥∇(wε(t) + ε)m∥22 −

mβ

m+ 1

d

dt
∥wε(t) + ε∥m+1

m+1

+ βε
d

dt
∥wε(t) + ε∥mm + α

∫
Ω

vε
∂

∂t
(wε + ε)m dx

for t ∈ [0, T ]. Integrating the above identity with respect to t we have

4m

(m+ 1)2

∫ t

0

∥∥∥∥ ∂

∂t
(wε(s) + ε)

m+1
2

∥∥∥∥2
2

ds+
1

2
∥∇(wε(t) + ε)m∥22

≤ 1

2
∥∇(w0ε + ε)m∥22 +

mβ

m+ 1
∥w0ε + ε∥m+1

m+1

+ βε∥wε(t) + ε∥mm + α

∫ t

0

∫
Ω

vε
∂

∂t
(wε + ε)m dx ds. (3.2)

Integration by parts together with the second equation of (2.1) leads us to∫ t

0

∫
Ω

vε∂t(wε + ε)m dx ds = −
∫ t

0

∫
Ω

∂vε
∂t

(wε + ε)m dx ds

+

∫
Ω

vε(t)(wε(t) + ε)m dx−
∫
Ω

v0ε(w0ε + ε)m dx

=−
∫ t

0

∫
Ω

(fuε − hvε)(wε + ε)m dx ds

+

∫
Ω

vε(t)(wε(t) + ε)m dx−
∫
Ω

v0ε(w0ε + ε)m dx

≤ h

∫ t

0

∫
Ω

vε(wε + ε)m dx ds+

∫
Ω

vε(t)(wε(t) + ε)m dx

(3.3)

for all t ∈ [0, T ]. In (3.2)

∥∇(w0ε + ε)m∥2 ≤ m∥w0ε + ε∥m−1
∞ ∥∇w0ε∥2; (3.4)

so that the right-hand side is bounded from above by a positive constant depending only
on m, ∥w0∥∞ and ∥∇w0∥2 because ∥w0ε∥∞ ≤ ∥w0∥∞ and limε→0 ∥∇w0ε∥2 = ∥∇w0∥2 (see
(2.2)). Therefore, it follows from (2.2), (3.2), (3.3) and (3.4) that

4m

(m+ 1)2

∫ t

0

∥∥∥∥ ∂

∂t
(wε(s) + ε)

m+1
2

∥∥∥∥2
2

ds+
1

2
∥∇(wε(t) + ε)m∥22

≤ C1

(
1 + ∥wε(t)∥m∞ + ∥vε(t)∥∞∥wε(t)∥m∞ + t sup

0≤s≤t
∥vε(s)∥∞∥wε(s)∥m∞

)
,

where C1 a positive constant depending only on Λ,m, u0, v0, w0,∇w0 and Ω. By applying
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Proposition 2.2 to this inequality, we obtain

4m

(m+ 1)2

∫ t

0

∥∥∥∥ ∂

∂t
(wε(s) + ε)

m+1
2

∥∥∥∥2
2

ds+
1

2
∥∇(wε(t) + ε)m∥22

≤ C2

(
1 + emλ0t + e(m+1)λ0t + te(m+1)λ+

0 t
)

≤ C3

(
1 + (t+ 1)e(m+1)λ+

0 t
)
,

where C2 and C3 are positive constants depending only on Λ,m, u0, v0, w0,∇w0 and Ω.
In view of the following identity∣∣∣∣ ∂∂t(wε + ε)m

∣∣∣∣ = 2m

m+ 1
(wε + ε)

m−1
2

∣∣∣∣ ∂∂t(wε + ε)
m+1

2

∣∣∣∣ ,
we obtain (3.1).

Lemma 3.2. Under the same assumption as Lemma 3.1, there exists a sequence {εn}n
with limn→∞ εn = 0 such that {(wεn+εn)

m}n is convergent in C([0, T ];L2(Ω)) and {wεn}n
is convergent in C([0, T ];L2m(Ω)) for any T > 0.

Proof. It follows from Lemma 3.1 and Poincaré’s inequality that {(wε+ε)m}ε is uniformly
bounded in C([0, T ];H1

0 (Ω)) for any T > 0. It also follows from Lemma 3.1 that, for
0 ≤ s ≤ t ≤ T ,

∥(wε(t) + ε)m − (wε(s) + ε)m∥2 ≤
∫ t

s

∥∥∥∥ ∂

∂t
(wε(τ) + ε)m

∥∥∥∥
2

dτ

≤

(∫ t

s

∥∥∥∥ ∂

∂t
(wε(τ) + ε)m

∥∥∥∥2
2

dτ

)1/2

|t− s|1/2 ≤ MT |t− s|1/2

with some MT > 0 independent of ε. This fact implies that {(wε+ε)m}ε is equicontinuous
in L2(Ω). Since {(wε + ε)m}ε is unifomly bounded in C([0, T ] : H1

0 (Ω) for any T > 0 by
(3.1) and the embedding of H1

0 (Ω) into L2(Ω) is compact, it follows from Ascoli–Arzela’s
theorem that {(wε + ε)m}ε is compact in C([0, T ];L2(Ω)) for any T > 0. Hence one can
choose a sequence {εn}n with limn→∞ εn = 0 such that {(wεn + εn)

m}n is convergent with
respect to L2(Ω)-norm in [0, T ] for any T > 0. If we use the following inequality

|a− b|2m ≤ |am − bm|2 for all a, b ≥ 0,

we can also show that {wεn + εn}n is convergent in C([0, T ];L2m(Ω)}.
Finally, note

∥wε − wη∥2m ≤ ∥(wε + ε)− (wη + η)∥2m + |ε− η| |Ω|1/2m

for all ε, η > 0; then it is easy to see that {wεn}n is also convergent in C([0, T ];L2m(Ω)}
for any T > 0.
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Lemma 3.3. Under the same assumption as Lemma 3.1, let {uε, vε, wε} be the solution
of (2.1) in [0,∞). For any ε, η, T > 0 and r ∈ [1,∞), it holds that

sup
0≤t≤T

∥uε(t)− uη(t)∥r + sup
0≤t≤T

∥vε(t)− vη(t)∥r

≤ C

(
∥u0ε − u0η∥r + ∥v0ε − v0η∥r + sup

0≤t≤T
∥wε(t)− wη(t)∥r

)
,

(3.5)

where C is a positive constant depending only on Λ, u0, v0, w0 and T .

Proof. For simplicity, set U = uε − uη, V = vε − vη and W = wε − wη. Then U and V
satisfy the problem

∂tU = βδW − γ(vε)U − γ′ ((vε + vη)/2)uηV − fU in Ω× (0,∞),

∂tV = fU − hV in Ω× (0,∞),

U(x, 0) = u0ε(x)− u0η(x), V (x, 0) = v0ε(x)− v0η(x) in Ω.

Multiplying the first equation of the above system by U |U |r−2 and integrating the resulting
expression over Ω, we see from Proposition 2.2 that

1

r

d

dt
∥U(t)∥rr = βδ

∫
Ω

WU |U |r−2 dx−
∫
Ω

γ(vε)|U |r dx

−
∫
Ω

γ′ ((vε + vη)/2)uηV U |U |r−2 dx− f∥U(t)∥rr

≤ βδ∥W (t)∥r∥U(t)∥r−1
r + C1∥V (t)∥r∥U(t)∥r−1

r − f∥U(t)∥rr
for t ∈ [0, T ] with some C1 > 0 depending only on Λ, u0, v0, w0 and T . Similarly,

1

r

d

dt
∥V (t)∥rr = f

∫
Ω

UV |V |r−2 dx− h∥V (t)∥rr

≤ f∥U(t)∥r∥V (t)∥r−1
r − h∥V (t)∥rr

for t ∈ [0, T ]. It follows from the above inequalities that

d

dt
∥U(t)∥r ≤ βδ∥W (t)∥r + C1∥V (t)∥r − f∥U(t)∥r,

d

dt
∥V (t)∥r ≤ f∥U(t)∥r − h∥V (t)∥r;

so that, for t ∈ [0, T ],

d

dt
(∥U(t)∥r + ∥V (t)∥r) ≤ βδ∥W (t)∥r + C1∥V (t)∥r

for all t ∈ [0, T ]. Hence

∥U(t)∥r + ∥V (t)∥r ≤ eC1T (∥u0ε − u0η∥r + ∥v0ε − v0η∥r) + βδ

∫ t

0

eC1(t−s)∥W (s)∥r ds

≤ C2

(
∥u0ε − u0η∥r + ∥v0ε − v0η∥r + sup

0≤s≤T
∥W (s)∥r

)
for all t ∈ [0, T ] with positive constant C2 = max{eC1T , βδeC1T/C1}. Thus we obtain
(3.5).
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We can now establish the following lemma by the same argument as Ishida and Yokota
[8].

Lemma 3.4. Under the same assumption as Lemma 3.1, let (uε, vε, wε) be the solution of
(2.1). Then there esist a sequence {εn}n with limn→∞ εn = 0 and functions u, v, w such
that, for any r ≥ 1 and T > 0,

uεn → u strongly in C([0, T ];Lr(Ω)), (3.6)

vεn → v strongly in C([0, T ];Lr(Ω)), (3.7)

wεn → w strongly in C([0, T ];Lr(Ω)), (3.8)

∇(wεn+ εn)
m ⇀ ∇wm weakly in L2(0, T ;L2(Ω)), (3.9)

as εn → 0.

Proof. It follows from Lemma 3.2 that there exist a subsequence {wεn}n and a function
w ∈ C([0,∞);L2m(Ω)) such that

(wεn + εn)
m → wm strongly in C([0, T ];L2(Ω) for any T > 0 (3.10)

and that

wεn → w strongly in C([0, T ];L2m(Ω)) for any T > 0. (3.11)

Therefore, Lemma 3.3 allows us to show that both {uεn} and {vεn} are Cauchy sequences
in C([0, T ];L2m(Ω)) for any T > 0. So there exist u, v ∈ C([0,∞);L2m(Ω)) such that{

uεn → u strongly in C([0, T ];L2m(Ω)),

vεn → v strongly in C([0, T ];L2m(Ω))
(3.12)

for any T > 0. Here it should be noted that u, v and w satisfy

0 ≤ u(x, t), v(x, t), w(x, t) ≤ Keλ0t(∥u0∥∞ + ∥v0∥∞ + ∥w0∥∞) (3.13)

for a.e. x ∈ Ω and t ≥ 0. Indeed, for each t ≥ 0, there exist subsequences {uε′n}, {vε′n},
{wε′n} such that uε′n(x, t) → u(x, t), vε′n(x, t) → v(x, t), wε′n(x, t) → w(x, t) for a.e. x ∈ Ω
as ε′n → 0. Since (uε′n , vε′n , wε′n) satisfy (2.10), it is easy to see that (3.13) holds ture.

Making use of Hölder’s iniquality, (2.10) and (3.13) we can see that convergence prop-
erties (3.11) and (3.12) in C([0, T ];L2m(Ω)) yield assertions of convergence (3.6), (3.7)
and (3.8) in C([0, T ];Lr(Ω)) for any r ≥ 1.

Finally it remains to prove (3.9). From Lemma 3.1 there exists a subsequence of
{wεn}n, which is still denoted by {wεn}n, such that {∇(wεn + εn)

m} is weakly convergent
in L2(0, T ;L2(Ω)) for every T > 0. Thus there exists a function ξ ∈ L2

l0c(0,∞;L2(Ω))
satisfying

∇(wεn + εn)
m ⇀ ξ weakly in L2(0, T ;L2(Ω)) (3.14)
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for every T > 0. Hence, by using (3.10) and (3.14), it holds that∫ T

0

∫
Ω

ξφ dx dt = lim
n→∞

(∫ T

0

∫
Ω

∇(wεn + εn)
mφdx dt

)
= − lim

n→∞

∫ T

0

∫
Ω

(wεn + εn)
m∇φdx dt

= −
∫ T

0

∫
Ω

wm∇φdx dt

for any φ ∈ C∞
0 (Ω× (0, T )). The above relation implies that wm is weakly differentiable

with respect to x, and ξ = ∇wm. Thus we complete the proof.

Proof of Theorem 1.1. First we will prove that (1.1) has a weak solution. For ε ∈ (0, 1),
let (uε, vε, wε) be the solution of (2.1) and let {uεn , vεn , wεn}n be the subsequence given
in Lemma 3.4. Let (u, v, w) satisfy convergence (3.6), (3.7), (3.8) and (3.9). Then
(uεn , vεn , wεn) satisfies

uεn(x, t) = u0εn(x) +

∫ t

0

{βδwεn(x, s)− γ(vεn(x, s))uεn(x, s)− fuεn(x, s)} ds,

vεn(x, t) = v0εn(x) +

∫ t

0

{fuεn(x, s)− hvεn(x, s)} ds,

and

−
∫
Ω

w0εn(x)φ(x, 0) dx−
∫ T

0

∫
Ω

wεnφt dx dt

= −
∫ T

0

∫
Ω

∇(wεn + ε)m∇φdx dt− β

∫ T

0

∫
Ω

wεnφdx dt+ α

∫ T

0

∫
Ω

vεnφdx dt

for all φ ∈ C1([0, T ];C∞
0 (Ω)) satisfying φ(·, T ) ≡ 0. Letting εn → 0 in the the above

identities we find that (u, v, w) satisfies the properties of Definition 1.1. Indeed, for
t ∈ [0, T ],∥∥∥∥∫ t

0

γ(vεn(s))uεn(s) ds−
∫ t

0

γ(v(s))u(s) ds

∥∥∥∥
r

≤
∫ t

0

∥γ(vεn(s))− γ(v(s))∥r ∥uεn(s)∥∞ ds+

∫ t

0

∥∥γ(v(s))∥∥∞ ∥uεn(s)− u(s)∥r ds

≤CT

{
sup

0≤s≤T
∥vεn(s)− v(s)∥r + sup

0≤s≤T
∥uεn(s)− u(s)∥r

}
with some CT > 0. Here we have used (2.10) and (3.13). Note that the right-hand side
of the above inequalities tends to zero as εn → 0 by Lemma 3.4.

Finally, in order to prove (1.4), we use Proposition 2.2 to derive

0 ≤ uεn(x, t), vεn(x, t), wεn(x, t) ≤ Keλ0t(∥u0∥∞ + ∥v0∥∞ + ∥w0∥∞)

for all x ∈ Ω and t ≥ 0. For each t > 0, it is possible to show with use of Lemma 3.4 that a
suitable subsequence of {uεn(x, t), vεn(x, t), wεn(x, t)} converges to (u(x, t), v(x, t), w(x, t))
at a.e. x ∈ Ω. Hence (1.4) can be derived from the above estimate.



199

4 Uniformly bounded solutions

In this section we will show that the weak solution in the previous section is uniformly
bounded with respect to L∞(Ω)-norm for all t ≥ 0. For this purpose we will derive various
estimates for approximate solutions (uε, vε, wε) of (2.1).

4.1 Uniform L2 estimate

The first result asserts the uniform boundedness of (uε, vε, wε) with respect to L2(Ω)-
norm.

Proposition 4.1. Let (uε, vε, wε) be the solution of (2.1). Then it holds that

sup
t≥p

{∥uε(t)∥2, ∥vε(t)∥2, ∥wε(t)∥2} ≤ K1(1 + ∥u0∥∞ + ∥v0∥∞ + ∥w0∥∞), (4.1)

where K1 is a positive constant depending only on Ω and Λ.

Proof. We will employ the standard energy method as in the work of Chaun and Yagi [7,
Proposition 5.1] or Shirai, Chuan and Yagi [14, Proposition 5.1]. For the sake of simplicity,
we write (u, v, w) in place of (uε, vε, wε) for the solution of (2.1).

There exists ã > 0 such that

γ(v) ≥ ãv2 for all v ∈ R. (4.2)

By taking L2(Ω)-inner product of the first equation of (2.1) with u, it holds that

1

2

d

dt

∫
Ω

u2 dx = βδ

∫
Ω

wudx−
∫
Ω

γ(v)u2 dx− f

∫
Ω

u2 dx

≤ β2δ2

2f

∫
Ω

w2 dx− ã

∫
Ω

(uv)2 dx− f

2

∫
Ω

u2 dx,

(4.3)

where Young’s inequality is used. Similarly,

1

2

d

dt

∫
Ω

v2 dx = f

∫
Ω

uv dx− h

∫
Ω

v2 dx. (4.4)

Taking L2(Ω)-inner product of the third equation of (2.1) with w leads to

1

2

d

dt

∫
Ω

w2 dx = −
∫
Ω

∇(w + ε)m · ∇w dx− β

∫
Ω

w2 dx+ α

∫
Ω

vw dx

Note that ∫
Ω

∇(w + ε)m · ∇w dx = m

∫
Ω

(w + ε)m−1|∇w|2 dx ≥ 0.

Then

1

2

d

dt

∫
Ω

w2 dx ≤ −β

∫
Ω

w2 dx+ α

∫
Ω

vw dx ≤ −β

2

∫
Ω

w2 dx+
α2

2β

∫
Ω

v2 dx. (4.5)
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Let k1 and k2 be positive numbers to be determined later. Multiply (4.3) by k1, (4.4) by
k2 and add the resulting expressions to (4.5):

k1
2

d

dt
∥u(t)∥22 +

k2
2

d

dt
∥v(t)∥22 +

1

2

d

dt
∥w(t)∥22

≤− k1f

2
∥u(t)∥22 −

(
k2h− α2

2β

)
∥v(t)∥22 −

(
β

2
− β2δ2k1

2f

)
∥w(t)∥22

+

∫
Ω

{
−k1ã(uv)

2 + k2fuv
}
dx.

Here it should be noted that

−k1ãU
2 + k2fU ≤ C1(k1, k2) :=

k2
2f

2

4ãk1
for all U ∈ R.

If we take k1 and k2 satisfying

0 < k1 ≤
f

2βδ2
and k2 ≥

α2

βh
,

we can prove from the above considerations

d

dt
(k1∥u(t)∥22 + k2∥v(t)∥22 + ∥w(t)∥22)

+ k1f∥u(t)∥22 +
α2

β
∥v(t)∥22 +

β

2
∥w(t)∥22 ≤ 2C1(k1, k2)|Ω|.

(4.6)

Choose ρ = min{f, α2/k1β, β/2} and set

X(t) = k1∥u(t)∥22 + k2∥v(t)∥22 + ∥w(t)∥22 :

then it follows from (4.6) that

d

dt
X(t) + ρX(t) ≤ 2C1|Ω| for all t ≥ 0.

Solving this differential inequality yields

X(t) ≤ X(0)e−ρt + 2C1|Ω|(1− e−ρt)/ρ for all t ≥ 0. (4.7)

Since (2.2) implies
X(0) ≤ |Ω|(k1∥u0∥2∞ + k2∥v0∥2∞ + ∥w0|2∞),

(4.1) comes from (4.7).

4.2 Uniform L∞ estimate

Since we have established uniform L2(Ω)-bounds for approximate solutions (uε, vε, wε)
in Proposition 4.1, we will employ an iterative method developed by Alikakos [1] in order to
derive their L∞(Ω)-estimates. The following inequality plays a key role in this subsection.
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Lemma 4.1. Suppose that Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω and
let m > 1. For each µ > 0, set λ = κµ+m− 1 with

κ = 2 if N = 1,

1 < κ < 2 if N = 2,

κ = 1 + 2/N if N ≥ 3,

where κ can be taken as an arbitrary number in (1, 2) for the case N = 2. For every
nonegative function w ∈ C1(Ω) with w = 0 on ∂Ω, it holds that∥∥wλ

∥∥
1
≤ C1

∥∥∥∇w
λ+m−1

2

∥∥∥
2

∥∥wµ
∥∥κ

2

1
, (4.8)

where C1 is a positive constant depending only on N,Ω and κ.

Proof. Let w be any C1(Ω) function satisfying w|∂Ω = 0. We begin with the case N ≥ 3.
Since λ = λ+m−1

2
+ N+2

2N
µ = λ+m−1

2
+ κ

2
µ, it follows from Hölder’s inequality that

∥wλ∥1 ≤
∥∥∥w λ+m−1

2

∥∥∥
2N
N−2

∥∥∥wN+2
2N

µ
∥∥∥

2N
N+2

=
∥∥∥w λ+m−1

2

∥∥∥
2N
N−2

∥wµ∥
κ
2
1 .

By the Gagliardo–Nirenberg–Sobolev inequality (see, e.g., [3] or [4])∥∥∥w λ+m−1
2

∥∥∥
2N
N−2

≤ C1

∥∥∥∇w
λ+m−1

2

∥∥∥
2
,

where C1 is a positive constant depending on N and Ω. Hence combining the above
inequalities we get (4.8).

We next consider the case N = 2. Let κ be an arbitrary number in the interval (1, 2).
In view of λ = λ+m−1

2
+ κ

2
µ, it is seen from Hölder’s inequality that∥∥wλ

∥∥
1
≤
∥∥∥w λ+m−1

2

∥∥∥
2

2−κ

∥∥w κ
2
µ
∥∥

2
κ

=
∥∥∥w λ+m−1

2

∥∥∥
2

2−κ

∥wµ∥
κ
2
1 .

In order to show (4.8), it is sufficient to use the Gagliardo–Nirenberg–Sobolev inequality
for the case N = 2: ∥∥∥w λ+m−1

2

∥∥∥
2

2−κ

≤ C2

∥∥∥∇w
λ+m−1

2

∥∥∥
2
,

where C2 is a positive constant depending on N and Ω
Finally, in the case N = 1, note that κ = 2 and λ = λ+m−1

2
+ µ. Therefore,∥∥wλ

∥∥
1
≤
∥∥∥w λ+m−1

2

∥∥∥
∞

∥∥wµ
∥∥κ

2

1
.

Then one can show (4.8) with use of Morrey’s inequality (see Brezis [3, Theorem 9.12])∥∥∥w λ+m−1
2

∥∥∥
∞

≤ C3

∥∥∥∇w
λ+m−1

2

∥∥∥
2
,

where C3 is a positive constant depending only on Ω.
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In what follows, we assume h = 1 without loss of generality. Indeed, if we introduce
new variables (y, s) by x = y/

√
h, t = s/h and define (ũ, ṽ, w̃) by

ũ(y, s) = u

(
y√
h
,
s

h

)
, ṽ(y, s) = v

(
y√
h
,
s

h

)
, w̃(y, s) = w

(
y√
h
,
s

h

)
,

then it follows from (1.1) that (ũ, ṽ, w̃) satisfies
ũt = δβ̃w̃ − γ̃(ṽ)ũ− f̃ ũ,

ṽt = f̃ ũ− ṽ,

w̃t = ∆y(w̃
m)− β̃w̃ + α̃ṽ

with f̃ = f/h, α̃ = α/h, β̃ = β/h and γ̃(v) = γ(v).

We will intend to estimate general Lp(Ω)-norms of approximate solutuins (uε, vε, wε).
Hereafter, we sometimes write (u, v, w) in place of (uε, vε, wε) as in the proof of Proposition
4.1.

Lemma 4.2. Let (uε, vε, wε) be the solution of (2.1) and let p be any number satisfying
p ≥ 2. Then it holds that

d

dt
∥fuε(t)∥pp ≤ f∥βwε(t)∥pp − f∥fuε(t)∥pp, (4.9)

d

dt
∥vε(t)∥pp ≤ ∥fuε(t)∥pp − ∥vε(t)∥pp, (4.10)

d

dt
∥βwε(t)∥pp ≤ −cmβ

p
∥∥∥∇w

p+m−1
2

ε (t)
∥∥∥2
2
+ β(α− 1)p∥βwε(t)∥pp + αβ∥vε(t)∥pp (4.11)

for all t ≥ 0, where cm is a positive number depending only on m.

Proof. Let p ≥ 2 be any number. We will begin with the proof of (4.11). Multiplying the
third equation of (2.1) by wp−1 and integrating the resulting expression over Ω, we have

1

p

d

dt

∫
Ω

wp dx = −
∫
Ω

∇(w + ε)m · ∇wp−1 dx+

∫
Ω

(
−βwp + αvwp−1

)
dx.

Here it should be noted that∫
Ω

∇(w + ε)m · ∇wp−1 dx = m(p− 1)

∫
Ω

(w + ε)m−1wp−2|∇w|2 dx

≥m(p− 1)

∫
Ω

wm+p−3|∇w|2 dx =
4m(p− 1)

(p+m− 1)2

∫
Ω

∣∣∣∇w
p+m−1

2

∣∣∣2 dx

(see [8]). By Young’s inequality

vwp−1 ≤ 1

p

(
v

β
p−1
p

)p

+
p− 1

p

(
β

p−1
p wp−1

) p
p−1 ≤ β

pβp
vp + βwp. (4.12)
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Therefore,

d

dt

∫
Ω

wp dx ≤− 4mp(p− 1)

(p+m− 1)2

∫
Ω

∣∣∣∇w
p+m−1

2

∣∣∣2 dx

+ β(α− 1)p

∫
Ω

wp dx+
αβ

βp

∫
Ω

vp dx.

(4.13)

Since 4mp(p − 1)/(p +m − 1)2 is strictly increasing with respect to p ≥ 2, it should be
noted that

4mp(p− 1)

(p+m− 1)2
≥ 8m

(m+ 1)2
=: cm for all p ≥ 2.

Hence we get (4.11) by multiplying (4.13) by βp.
Multiplying the first equation of (2.1) by up−1 and integrating the result over Ω one

can see

1

p

d

dt

∫
Ω

up dx =

∫
Ω

(δβw − γ(v)u− fu)up−1 dx ≤ β

∫
Ω

wup−1 dx− f

∫
Ω

up dx,

where we have used 0 < δ < 1 and γ(v) > 0. By Young’s inequality

βwup−1 ≤ f

p

(
βw

f

)p

+
p− 1

p
fup

in the same way as (4.12). Therefore,

d

dt

∫
Ω

up dx ≤ f

fp

∫
Ω

(βw)p dx− f

∫
Ω

up dx;

which implies (4.9).
Finally, the proof of (4.10) can be carried out in the same way as above; so we omit

it.

Lemma 4.3. Let (uε, vε, wε) be the solution of (2.1). For each q ≥ 2, set p = κq+m−1,
where κ is the number defined in Lemma 4.1. Then it holds that, for any L > 0,

d

dt
∥βwε(t)∥pp ≤− L∥βwε(t)∥pp + αβ∥vε(t)∥pp

+K2(L+ β(α− 1)+p)2βm−1∥(βwε(t))
q∥κ1 ,

(4.14)

where K2 is a positive constant depending only on Ω, N and m.

Proof. For q ≥ 2, set p = κq +m − 1. Applying Lemma 4.1 and Young’s inequality we
see that, for any ρ > 0,

ρ∥w∥pp = ρ∥wp∥1 ≤ C1ρ∥∇w(p+m−1)/2∥2∥wq∥κ/21

≤ cm∥∇w(p+m−1)/2∥22 + C2ρ
2∥wq∥κ1

with C2 = C2
1/(4cm). With use of this result one can see from (4.11) that

d

dt
∥βw(t)∥pp ≤− {ρ− β(α− 1)p}∥βw(t)∥pp + αβ∥vε(t)∥pp

+ C2ρ
2βm−1∥(βw(t))q∥κ1 .

(4.15)

By taking ρ = L+β(α−1)+p with any L > 0 in (4.15), it is possible to obtain (4.14).
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Take any L > αβ and fix it. As in Section 2, we rewrite (4.9),(4.10),(4.14) with use
of 3× 3 matrix M1 in the following form

d

dt

∥fu(t)∥pp
∥v(t)∥pp
∥βw(t)∥pp

 ≤ M1

∥fu(t)∥pp
∥v(t)∥pp
∥βw(t)∥pp

+

 0
0

K3p
2∥βw(t)∥qκq

 (4.16)

with p = κq +m− 1 and

M1 =

−f 0 f
1 −1 0
0 αβ −L

 .

Here K3 is a positive constant depending on Ω, N,m, α and β.

Remark 4.1. On account of (4.14) , it is possible to repalce K3p
2∥βw(t)∥pκq in (4.16) by

K3∥βw(t)∥pκq in the case α ≤ 1. In this case, subsequent arguments will become simpler.

By virtue of L > αβ, the largest real eigenvalue of M1 is negative; so it is given by −σ
with σ > 0. Moreover, as in the proof of Lemma A.3, one can prove that a left eigenvector
(k1, k2, 1) of M1 corresponding to −σ satisfies k1 > 0 and k2 > 0. If we apply (k1, k2, 1)
to (4.16) and set

Xp(t) = k1∥fu(t)∥pp + k2∥v(t)∥pp + ∥βw(t)∥pp, (4.17)

then we get
d

dt
Xp(t) ≤ −σXp(t) +K3p

2∥βw(t)∥qκq , (4.18)

where we have used (k1, k2, 1)M1 = −σ(k1, k2, 1). By solving (4.18) it follows that

Xp(t) ≤ Xp(0)e
−σt +

K3p
2

σ

(
sup
t≥0

∥βw(t)∥qq
)κ

(1− e−σt)

≤ max

{
Xp(0),

K3p
2

σ

(
sup
t≥0

∥βw(t)∥qq
)κ}

for all t ≥ 0.

(4.19)

Note that, on accout of (2.2),

Xp(0) ≤ |Ω|max{k1, k2}(∥fu0∥∞ + ∥v0∥∞ + ∥βw0∥∞)p.

Therefore, if we set A = ∥fu0∥∞ + ∥v0∥∞ + ∥βw0∥∞ + 1, we see from (4.19) that

Xp(t) ≤ max

{
K4A

p,
K3p

2

σ

(
sup
t≥0

∥βw(t)∥qq
)κ}

for all t ≥ 0 (4.20)

with K4 = |Ω|max{k1, k2}.
We will derive Lp(Ω) bounds from (4.20) combined with Proposition 4.1 by an iterative

method as in the work of [1].

Proposition 4.2. Let (uε, vε, wε) be the solution of (2.1). Define a sequence {pℓ} by

p1 = 2, pℓ = κpℓ−1 +m− 1, ℓ = 2, 3, 4, · · · , (4.21)

where κ is the number defined in Lemma 4.1. If Xp is defined by (4.17), then there exists
a positive constant K2, depending only on Λ,m,N and Ω, such that

sup
t≥0

Xpℓ(t) ≤ {K2(∥u0∥∞ + ∥v0∥∞ + ∥w0∥∞ + 1)}pℓ for all ℓ ≥ 1. (4.22)
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Proof. By the definition (4.21)

pℓ = κℓ−1

(
p1 +

m− 1

κ− 1

)
− m− 1

κ− 1
< a∗κℓ (4.23)

with a∗ = 2/κ+ (m− 1)/κ(κ− 1) and

pℓ = κpℓ−1 +m− 1 > κpℓ−1 > κ2pℓ−2 > · · · > κℓ−1p1 = 2κℓ−1 ≥ κℓ. (4.24)

It follows from (4.20) and (4.23) that

sup
t≥0

Xpℓ(t) ≤ C∗max{Apℓ , κ2ℓ(sup
t≥0

Xpℓ−1
(t))κ} (4.25)

with C∗ = max{K4, K3(a
∗)2/σ}. Then we can deduce from (4.24)that

sup
t≥0

Xpℓ(t) ≤ max

{
C∗A

pℓ , C1+κ
∗ κ2ℓAκpℓ−1 , C1+κ+κ2

∗ κ2ℓ+2(ℓ−1)κAκ2pℓ−2 , . . . ,

C1+κ+κ2+···+κℓ−2

∗ κ2ℓ+2(ℓ−1)κ+2(ℓ−2)κ2+···+2·3κℓ−3

Aκℓ−2p2 ,

C1+κ+···+κℓ−2

∗ κ2Sℓ(sup
t≥0

Xp1(t))
κℓ−1

}
,

(4.26)

where
Sℓ = ℓ+ (ℓ− 1)κ+ (ℓ− 2)κ2 + · · ·+ 2κℓ−2. (4.27)

We use the following result whose proof can be found in Appendix:

Sℓ ≤ γκκ
ℓ for all ℓ ≥ 1 (4.28)

with a positive number γκ depending only on κ. In (4.26), recall Proposition 4.1, which
gives

sup
tge0

Xp1(t) = sup
t≥0

X2(t) ≤ K̃A

with a positive constant K̃ depending only on Λ and Ω. Moreover, A > 1 and we may
assume C∗ > 1 in (4.26). Setting K∗ = max{1, K̃} we see from (4.26) that

sup
t≥0

Xpℓ(t) ≤ Cκℓ−1/(κ−1)
∗ κ2Sℓ max{Apℓ , Aκpℓ−1 , Aκ2pℓ−2 , . . . , Aκℓ−2p2 , (K̃A)κ

ℓ−1}

≤ Cκℓ−1/(κ−1)
∗ κ2SℓKpℓ

∗ Apℓ

(4.29)

Here we have used (4.24) in the last inequality. By virtue of (4.24) and (4.28), the right-

hand side of (4.29) is bounded from above by C
pℓ/κ(κ−1)
∗ κ2γκpℓKpℓ

∗ Apℓ . Thus we complete
the proof.

Proof of Theorem 1.2. Take a sequence {εn}n with limn→∞ εn = 0, which is given in
Lemma 3.4, such that for every r ≥ 2 and every T > 0

lim
εn→0

uεn = u, lim
εn→0

vεn = v, lim
εn→0

wεn = w in C([0, T ];Lr(Ω)),
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where (u, v, w) is the weak solution of (1.1) given in Theorem 1.1. By Proposition 4.2,
(uεn , vεn , wεn) satisfies

∥fuεn(t)∥pℓpℓ + ∥vεn(t)∥pℓpℓ + ∥βwεn(t)∥pℓpℓ < (K2A)
pℓ , ℓ = 1, 2, 3, · · · ,

for all t ≥ 0 with A = ∥u0∥∞+∥v0∥∞+∥w0∥∞+1. Letting εn → 0 in the above inequality
leads us to

∥fu(t)∥pℓpℓ + ∥v(t)∥pℓpℓ + ∥βw(t)∥pℓpℓ < (K2A)
pℓ for t ≥ 0,

which implies

∥u(t)∥pℓ ≤ K2A/f, ∥v(t)∥pℓ ≤ K2A, ∥w(t)∥pℓ ≤ K2A/β for t ≥ 0.

Therefore, we see

∥u(t)∥∞ = lim
pℓ→∞

∥u(t)∥pℓ ≤ K2A/f,

∥v(t)∥∞ = lim
pℓ→∞

∥v(t)∥pℓ ≤ K2A,

∥w(t)∥∞ = lim
pℓ→∞

∥w(t)∥pℓ ≤ K2A/β

for t ≥ 0.

A Appendix

Lemma A.1. For T > 0, let u ∈ C1([0, T ];C(Ω̄)). Then ∥u(t)∥∞ is differentiable at a.e.
t ∈ [0, T ] and satisfies

d

dt
∥u(t)∥∞ = ut(x

t, t) for a.e. t ∈ [0, T ],

where xt is any point in {x ∈ Ω̄ |u(x, t) = ∥u(t)∥∞}.

To prove this lemma, we recall the definition of the duality map and its related prop-
erties (see, e.g., Kato [9]).

Definition A.1. Let X be a real Banach space. The duality map F on X is a multi-
valued map from X to its dual space X∗, defined by

v 7→ F (v) =
{
g ∈ X∗ | ⟨g, v⟩ = ∥v∥2, ∥g∥ = ∥v∥

}
,

where ⟨g, v⟩ denotes the pairing between g ∈ X∗ and v ∈ X.

Remark A.1. We consider the case X = C(Ω̄). For each v ∈ C(Ω̄) take any x∗ ∈ {x ∈
Ω̄ | v(x) = ∥v∥∞} and define a linear functional gv : C(Ω̄) → R by

⟨gv, w⟩ = ∥v∥∞w(x∗) for all w ∈ C(Ω̄).

Clearly, gv ∈ X∗ and it satisfies

⟨gv, v⟩ = ∥v∥∞v(x∗) = ∥v∥2∞, | ⟨gv, w⟩ | = ∥v∥∞|w(x∗)| ≤ ∥v∥∞∥w∥∞;

so that ∥gv∥ = ∥v∥∞. These facts imply g ∈ F (v).
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Lemma A.2. Let X be a real Banach space and let u be an X-valued function in [0,∞)
such that u(t) has a weak derivative at t = t0 and that ∥u(t)∥ is differentiable at t = t0.
Then it holds that

∥u(t0)∥
d

dt
∥u(t)∥

∣∣∣∣
t=t0

= ⟨ g, ut(t0) ⟩

for any g ∈ F (u(t0)), where F is the duality map on X.

Proof. For the proof, see, for instance, [9, Lemma 1.3].

Proof of Lemma A.1. Note that∣∣∥u(t)∥∞ − ∥u(s)∥∞
∣∣ ≤ ∥u(t)− u(s)∥∞ =

∥∥∥∥∫ t

s

ut(τ) dτ

∥∥∥∥
∞

≤
∫ t

s

∥ut(τ)∥∞ dτ ≤ L |t− s|

for t ≥ s ≥ 0 with L = max0≤t≤T ∥ut(t)∥∞. Then ∥u(t)∥∞ is Lipschitz continuous in
[0, T ]; so that ∥u(t)∥∞ is absolutely continuous and differentiable for a.e. t ∈ [0, T ]. Let
t = τ ∈ [0, T ] be a point where ∥u(t)∥∞ is differentiable. Since x 7→ u(x, τ) is continuous
in Ω̄, there exists a point xτ ∈ Ω̄ such that

∥u(τ)∥∞ = u(xτ , τ).

For such u(τ) ∈ C(Ω̄), define gu(τ) ∈ C(Ω̄)∗ by⟨
gu(τ), w

⟩
= ∥u(τ)∥∞ w(xτ ) for all w ∈ C(Ω̄).

By Remark A.1, gu(τ) ∈ F (u(τ)). It follows from Lemma A.2 that

∥u(τ)∥∞
d

dt
∥u(τ)∥∞ =

⟨
gu(τ), ut(τ)

⟩
= ∥u(τ)∥∞ ut(x

τ , τ).

This fact yields d
dt
∥u(τ)∥∞ = ut(x

τ , τ) and completes the proof.

Lemma A.3. Let M be a 3×3 matrix defined by (2.9) Then the largest real eigenvalue λ0

is expressed as λ0 = (αδ− (c+f)h
f

)µ with µ > 0. Moreover, any left eigenvector (k1, k2, k3)
corresponding to λ0 can be chosen as k1, k2, k3 > 0.

Proof. If we put p(λ) = (λ + c + f)(λ + h)(λ + β)/fβ, then the eigenvalues λ of M are
given by solving

p(λ) = αδ.

Since zeros of p are all negative, the largest real eigenvalue λ0 of M has the same sign as
αδ− c+f

f
h (see Figure 1). So λ0 can be expressed as λ0 = (αδ− c+f

f
h)µ with µ > 0. Any

left eigenvector (k1, k2, k3) corresponding to λ0 satisfies
(λ0 + (c+ f)) k1 = fk2,

(λ0 + h)k2 = αk3,

(λ0 + β)k3 = βδk1.

Note that λ0 satisfies λ0 > max {−(c+ f),−h,−β}; then we can choose (k1, k2, k3) satis-
fying k1, k2, k3 > 0.
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Figure 1: The largest real eigenvale λ0

Proof of (4.28). In view of

Sℓ =
ℓ∑

j=2

jκℓ−j = κℓ

ℓ∑
j=2

j

(
1

κ

)j

, (A.1)

we consider

ℓ∑
j=2

jxj = x
d

dx

(
ℓ∑

j=2

xj

)
= x

d

dx

(
x2(1− xℓ−1)

1− x

)
= x

{
2x− (ℓ+ 1)xℓ

1− x
+

x2(1− xℓ−1)

(1− x)2

}
.

Therefore,
ℓ∑

j=2

jxj <
2

1− x
+

1

(1− x)2
for 0 < x < 1;

so that
ℓ∑

j=2

(
1

κ

)j

<
2κ

κ− 1
+

κ2

(κ− 1)2
=: γκ

Thus (4.28) comes from (A.1).
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