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1 Introduction

This paper is concerned with the initial boundary value problem for the following
system of differential equations with nonlinear degenerate diffusion:

(w, = Bow — y(v)u — fu in Q x (0,00),

v = fu—hv in Q x (0,00),

wy = A(w™) — fw + av in Q x (0,00), (1.1)
w=0 on 0 x (0, 00),

L u(z,0) = up(z), v(x,0)=wvo(x), w(z,0)="wo(z) in Q,

where Q is a bounded domain in RN, N > 1, with smooth boundary 9Q, A = SN 9? /92
and ug, vg, wy are nonnegative functions in L*°(£2). This problem models the dynamics of
forest: w and v denote the tree densities of young and old age classes, respectively, and w
denotes the density of seeds. In (1.1) f, h,a, 8 are positive constants, 0 < § < 1, m > 1,
and v € C*(R) is a quadratic function of the form v(v) = a(v — b)? + ¢ with positive
constants a, b, c. Constants f, h, «, 8, denote, respectively, aging rate, mortality of trees
of old age class, seed production rate, seed deposition rate and seed establishment rate
and, moreover, v(v) represents the mortality of trees of young age class.

In order to discuss the case that seeds are carried by animals, we attempt to deal with
a simple nonlinear diffusion case A(w™) in (1.1). As stated in Okubo-Levin [13], if we
take a diffusion coefficient of the form mw™™ ! (m > 1), then it implies that the fewer
seeds are, the smaller the diffusion coefficient is (conversely, the more seeds are, the larger
the diffusion coefficient is). In a forest, a lot of fruits, which ought to have a lot of seeds,
attract animals, and then it is easy for seeds to spread. So we consider that the problem
(1.1) seems to be more realistic for the forest kinematic model in the case that the seeds
are carried and spread by animals.

The following forest kinematic model was first proposed by Kuznetsov et al. [10]:

u = Bow —y(v)u — fu,
vy = fu— ho, (1.2)

w; = Aw — fw + aw,

and various studies have been conducted on this model (see [5, 6], [7], [12], [14, 15, 16],
[18] for (1.2) and see also [2], [17] for related models). In particular, Shirai, Chuan and
Yagi [14, 15, 16] discussed (1.2) under Dirichlet boundary condition. We should also state
that the stationary problem corresponding to (1.1) with nonlinear degenerate diffusion
case has been studied by Yamamoto and Yamada [18].

In the work of Shirai, Chuan and Yagi [14, 15], they studied (1.2) with Dirichlet
boundary condition w = 0 and initial conditions u(-,0) = ug, v(-,0) = vg and w(-,0) = wy
in the case that €2 is a two-dimensional bounded domain. It was shown that, if initial
functions satisfy ug, vo, wo > 0, ug, vy € L>=(N2) and wy € L*(€2), then there exists a unique
global solution (u,v,w) of (1.2) and that the solution is uniformly bounded in the sense
that u,v € L*(Qx[0,00)) and w € L>=(0, 00; L*(€2)). They also discussed the asymptotic
behavior of the solution as ¢ — oc.
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The purpose of the present paper is to study the global solvability of (1.1) under the
following conditions

ug, Vo, wo > 0 (Z0), up, v, wo € L(Q) and wy € Hy(N). (1.3)

In particular, this condition implies w§* € H} (). We will look for solutions of (1.1) in
the following class.

Definition 1.1. For T' > 0, (u,v,w) : Q x [0,T] — [0,00)? is called a weak solution of
(1.1) in [0, T if it possesses the following properties:

(i)  w,v,w e C([0,T); L3(2)) N L>®(2 x (0,7)) and w™ € L*(0,T; H(Q)),

(i)  w and v satisfy the first and second equations of (1.1) for ¢ € [0, 7] in the sense
of L*(Q),

(ili)  w satisfies

- [ wn)eta0) do— [ ' [ wedeat

T T
:—/ /Vmegodde—/ /(—ﬂw—irow)godxdt
0o Jao 0o Ja

for all o € C'([0,T]; C5°(2)) satisfying o(-,T) = 0.

Furthermore, (u,v,w) is called a global weak solution of (1.1) if (u,v,w) is a weak
solution of (1.1) in [0, 7] for any 7" > 0.

Our first main result concerns with the global existence of weak solutions.

Theorem 1.1. Suppose that (ug, vy, wo) satisfies (1.3). Then there exists a global weak
solution (u,v,w) of (1.1) such that

(i) we CH([0,00); L7()), v € C*([0,00); L"(?)) for any r > 1,
(i)  we O([0,00); L(Q)) for any r > 1, w™ € L, (0, 00; Hy(Q)),
(i) (u,0,w) satisfies
max{||u(t) (oo, [|0(t)llos, lw(t)]lo}
<K exp{(ad — (c+ f)h/ [)pt}(uolloc + [|volloo + [lwollo)

fort > 0, where K and p are positive constants depending only on c, f, h,«a, 3,9.
Here || + || denotes L*®(2)-norm.

(1.4)

Theorem 1.1 shows that, if ad — (¢ + f)h/f < 0, then (u,v,w) satisfies

lim u(-,t) = lim v(-,¢) = lim w(-,t) =0 in L>(Q).

t—o00 t—o0 t—o00

Furthermore, even if ad — (¢ + f)h/f > 0, we will show the uniform boundedness of
|(t)]|sos ||(t)]|o and |Jw(t)]|oo for the weak solution given in Theorem 1.1.
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Theorem 1.2. Suppose that (ug, vo, wo) satisfies (1.3). Let (u,v,w) be the weak solution
of (1.1) given in Theorem 1.1. Then it holds that

SUp {[[u(®)lloe + 0 Olloc + llw®)loo}

< Cmax {1, |luoll + llvollo + llwoll },

(1.5)

where C' is a positive constant depending only on N, a,b,c, f,h,m,a and (3.

In order to construct a weak solution of (1.1), we will consider approximate problems
with Aw™ replaced by A(w + €)™, ¢ > 0; so that the diffusion coefficient becomes
non-degenerate. Our task is to estimate approximate solutions and derive their bounds
independent of €. Then letting ¢, — 0 along some sequence {e,} we will show that
approximate solutions converge to a weak solution of (1.1).

The contents of the present paper are as follows. In Section 2, we prepare approximate
problems and establish some basic properties of approximate solutions. In Section 3, we
will prove the convergence of approximate solutions to show Theorem 1.1. Section 4 is
devoted to the proof Theorem 1.2. We will take an iterative method developed by Alikakos
[1] to obtain L* bounds of the weak solution. Finally, proofs of some auxiliary results
are given in Appendix.

Notation. In this paper we denote L?(§2)-norm of u € LP(2) by ||u]|, for each p € [1, o0].
For the sake of simplicity, we use the following set of parameters

A:{aﬂb?c?h?f?a{’ﬂ?d}'

2 Approximate Problem

In this section we consider the following approximate problem for any ¢ > 0,

(dyu. = Bow. — y(v-)u. — fue in Q x (0,00),
e = fue — hve in Qx (0,00),
dwe = Alwe + &)™ — Pw. + av. in Qx(0,00), (2.1)
we =0 on 0L x (0, 00),
uE(IL’, 0) = u05($)7 Us($7 O) = U05($), ws('% 0) = wOs(x) in €,

\

where 0, = 0/0t and initial functions wg., vg., wo. are assumed to satisfy the following
conditions

Uoe, Vo € C7(Q), woe € C5°(Q), upe, Voe, woe >0 (F0) in Q,
[toelloe < [tollos,  [vocllos < [lvolloc,  [Jwoelloo < [lwol|oo,

Uge — Ug, Uge — Vo, Woe — wo in L'(2) as ¢ -0 forany r>1,
Vwe. = Vwy in L*(Q) as ¢ — 0.

(2.2)

We begin with the local existence of a unique classical solution to (2.1).
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Proposition 2.1. Assume that (uge, vo-, Wo:) satisfies (2.2). Then there exists a positive
number T' such that (2.1) admits a unique nonnegative classical solution (ue,ve,we) in

[0, 7.

Proof. By the well-known result of Ladyzenskaja, Solonnikov and Ural’ceva [11], there
exists a unique classical solution (u.,v., w,) of (2.1) in [0,7] with some 7" > 0. We will
prove its positivity. For £ € R define

T =max{{,0}, ¢ =max{-¢0};

then £ = &7 — ¢ and €7¢~ = 0. Since w.(x,0) = we(z) > 0 in Q and w.(¢, z) is
continuous with respect to (t,z), there exists Ty € (0,7] such that w.(t,z) > —e for
(z,t) € Q x [0, Ty]. Taking L?(Q)-inner product of the third equation of (2.1) with —w_,
we obtain

e O = () ),
= (A(wz + &)™, —w_ )2 — Blwe, —wy )2 + a(ve, —w_ )2
= /Qm(w€ + &)™ 'V, - Vw_ dx
= Bllws (0)ll; — (vl = o2 wy)s,
where (-, )2 denotes L?(Q2)-inner product. Then it follows that

1d

- m—1 2 -
5l O < = [ miw. +9" VP de = glu (0]

—|—oz/v€_w5_ dz (2.3)
Q
< alfus (1)llaflws (#)]l2-

Similarly, we obtain

thHu O3 < Bllwz @®)alluz (t)]l2,

th” SN2 < flluz @ll2llvz @)1l
Thus it follows from (2.3) and (2.4) that

(2.4)

d _ _ _ _ _
= (lhaz 013 + oz @13 + ez 01F) < ©(Iuz @ + oz 013 + oz (1)13)
with C' = 2max{«, §, f}. Solving this inequality yields
ez ()13 + oz ()13 + oz 13 < (Moo l13 + oG 3 + izl 13) e = 0,

which implies that u.(t),v.(t) and w.(t) are nonnegative for all ¢ € [0, Ty] and, therefore,
for all ¢t € [0, 7. O
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Lemma 2.1. Let (uc, v, w.) be the solution of (2.1) in [0,T]. Then it holds that

%Ilus(t)lloo < 6w (t)lloo = (¢ + Flue() oo,
%Hve(t)lloo < fllue®)lloo = hllve() oo, (2.5)
d

(Ol < —Blwe(t) o + allee(O)ll

for a.e. t €0,T].

Proof. By the strong maximum principle, w.(z,t) > 0 for x € Q and ¢t € (0,7]. Set
Onax(t) = {z € Q|w(z,t) = ||we(t)]|oo}. It follows from Lemma A.1 that, for a.e.
t € 10,7, [Jw:(t)|l,, is differentiable and

[

_ Ow.

d t
EHwa(t)HOO - ot (CL’ ’t)7 (26>

where 2! is any point in Quax(t). Since we(x,t) takes its maximum at x = a' € , it holds
that
Aw.(z",t) <0, and Vuw.(z",t) = 0.

Therefore,
A(w, + &)™ (a,t)
= m(w.(2",t) + &)™ T Aw. (2", t) + m(m — 1)(we (2!, 1) + &)™ | Vw. (2, t)? (2.7)
0.

IN

By using (2.1), (2.6) and (2.7) it holds that

e (B)loe = (Aluws + 2™ — Bu, + o) (', 1)

dt
< —pw.(z',t) + av.(x',t)
< —Bllwe(t)[loo + flve ()] oo-
Other inequalities can be shown in a similar manner. O

We will rewrite (2.5) with use of 3 x 3 matrix M in the following form:

d e () lloo [Jue () [l oo
pr [ve()lloo | <M | flve®)]lo | (2.8)
[[we ()] oo [[we ()] oo
where
—(c+f) 0 po
M = f —-h 0 ]. (2.9)
0 a —f

Here *(u1, vy, w1) < “(ug,ve, ws) means that u; < ug,v1 < v, wy; < wo. We will derive
estimates of ||u(%)]|oo, [|V(f)||0o, ||w(t)]|eo in terms of the largest real eigenvalue of M.
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Proposition 2.2. Assume that (uoe, voe, woe) satisfies (2.2). Then (2.1) admits a unique
classical solution (uc,ve,w.) in [0,00) and it satisfies

[ (@)oo + [lve (oo + [lwe ()]l oo

2.10
< Ke’\ot(HuoHoo + ||vo]loo + ||wol|so) for all t >0, ( )

where K 1is a positive constant depending on A and Xy is the largest real eigenvalue of M
which has the same sign as ad — (¢ + f)/f.

Proof. Let (ue,v.,w.) be a classical solution of (2.1) in [0,7]. We will derive a priori L*
estimate of the solution.

Let Ay be the largest real eigenvalue of M. On account of Lemma A.3 we can take a
left eigenvector of M corresponding to Ag in the form of (ky, ko, 1) with k; > 0,7 = 1,2.
Multiplying the first inequality of (2.5) by k; and the second inequality by ko one can
derive

[[w(t)e|oo [[w(t)e|oo

(b ke 1) 2 (oWl | < (8 ke 1) 0 [ J(t)l
[[w(t)elloo [[w(t)elloo

()l

= Ao (kl ko 1) [v(®)elloo

[[w(t)elloo

for a.e. t € [0,7]. This implies that

d, _
e allue (oo + Fallv-(®)lloo + lwe(B)loe) } <0 for ae. t € [0,77;

so that
ke (8) [l oo + Fallve(t) lloo + [[w02(8) ][00 < € (kal|ttoe oo + E2|voelloo + [[woe]so)
< e (kx fluolloo + Kallvollos + [Jwollo)-

Therefore, by putting K = max{ky, ko, 1}/ min{ky, k2, 1}, we obtain (2.10).

In order to complete the proof, we combine (2.10) and regularity theory for parabolic
equations with Proposition 2.1. Then it is possible to extend the local solution (u., v., w;)
in [0, 7] to the whole interval [0, 00) and prove (2.10) for all ¢ > 0. O

3 Convergence of Approximate Solutions

In this section we will show that a family of approximate solutions {(u., v, w.)}es0
has a subsequence which is convergent in a suitable topology.

Lemma 3.1. Fore € (0,1) and (uge, voe, Woe) satisfying (2.2), the solution (ue,ve, w.) of
(2.1) satisfies that for every T > 0

2

+ sup [|[V(w.(t) + &)™z < C(1+ (T + 1)e”T), (3.1)
L2(Qx(0,T))  0<t<T

9 m
H&(we + 5)

where C' is a positive constant depending only on A, m, ug, vy, wo, Vwg, 2, and p is a
nonnegative constant depending only on A, m.
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Proof. Taking L?(€2)-inner product of the third equation of (2.1) with 2 (w. 4+ €)™, we
get

4m d ma || m||2 mp d m+1
T [0 +2) 2——muv<w€< )+ ™I = S () + <l
0
+65 ||w5( Jt+e|m+a | ve—(w. +¢)"dx
q Ot

for t € [0,T)]. Integrating the above identity with respect to t we have

2

4m tHl o + 1
o — 3 5 d - et m||2
o (|Gt + | s GV n) + 27
1 m mp m
< IV e + )" B + e + <

¢
0
+B€||wa(t)+€||m+oz/ /UE—(wE—I—s)mdxds. (3.2)
o Jo Ot

Integration by parts together with the second equation of (2.1) leads us to

//vgatwg%—s drds = — //avE (w. + &)™ dx ds

+ [ vt + ey do = [ nclun+ 2" do
/ / Fute — ho)(we + )™ da ds (3.3)
+ [ vt + ey do = [ nclun+ 2" do
< [ [otwereydnds+ [t + o ds
for all ¢ € [0, 7). In (3.2)

IV (woe + €)™ l2 < mllwos + el [ Vawoe |2 (3-4)

so that the right-hand side is bounded from above by a positive constant depending only
on m, ||wo|lee and ||Vwg||2 because ||woe|lso < ||wolloo and lim. g ||Vwee|l2 = [[Vwgll2 (see
(2.2)). Therefore, it follows from (2.2), (3.2), (3.3) and (3.4) that

), 2

<G (1  l[we®)lI5 + [loe(@)lloo (Bl + sup. IIUE(S)Iloollwa(S)IIL”o) :

2

a m+1

O s+ ds + LIV + 23

where C; a positive constant depending only on A, m, ug, vy, wy, Vwy and €. By applying
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m+1

Proposition 2.2 to this inequality, we obtain
0 m+1 2 1 m||2
5 (wels) He) 2| ds + S V(we(t) + )"

4m /t
(m+1)* Jy ||0t 2

< CZ (1 + em)\ot + e(m+1))\ot + Zfe(erl)/\art)

< Cy (1 + (t+ 1)e(m+m3t) :

where Cy and C3 are positive constants depending only on A, m, ug, vy, wy, Vwy and €.
In view of the following identity

(‘3 m| 2m —1
‘a(’ws—l—s) = (we + €)

we obtain (3.1). O

Lemma 3.2. Under the same assumption as Lemma 3.1, there exists a sequence {e,},
with lim,, 00 €, = 0 such that {(w., +€,)™ }n is convergent in C([0,T]; L*(Q)) and {we, }»
is convergent in C([0,T]; L*™(Q)) for any T > 0.

Proof. Tt follows from Lemma 3.1 and Poincaré’s inequality that {(w.+¢)™}. is uniformly
bounded in C([0,T]; H3(2)) for any T > 0. It also follows from Lemma 3.1 that, for
0<s<t<T,

dr
2

D () o)

lwet) + 2" = (ws) + 2"l < [ |5

g(/;

with some M7 > 0 independent of e. This fact implies that {(w.+¢)™}. is equicontinuous
in L?(2). Since {(w. + €)™} is unifomly bounded in C([0,T] : H3 () for any T > 0 by
(3.1) and the embedding of H} () into L?*(€2) is compact, it follows from Ascoli-Arzela’s
theorem that {(w. + €)™} is compact in C([0,T]; L*(2)) for any T' > 0. Hence one can
choose a sequence {e, },, with lim,,_,. £, = 0 such that {(w., +&,)™}, is convergent with
respect to L*(Q2)-norm in [0, 7] for any T > 0. If we use the following inequality

2

O (welr) + o)™

1/2
5 dT) it — s|Y/2 < Myp|t — s|'/?

2

la — b]*™ < |a™ — b™? for all a,b >0,

we can also show that {w., + &,}, is convergent in C([0,T]; L*™(2)}.
Finally, note

lwe = wyllzm < | (we + €) = (wy +n0)ll2m + e = 7] Q"

for all ,m > 0; then it is easy to see that {w., }, is also convergent in C([0,T]; L*™(Q)}
for any T > 0. [



196

Lemma 3.3. Under the same assumption as Lemma 3.1, let {u.,v.,w.} be the solution
of (2.1) in [0,00). For anye, n, T >0 and r € [1,00), it holds that

sup [|uc(t) — uy(t)[l» + sup [loz(t) — vy ()],

0<t<T 0<t<T

(3.5)
<c (HuoE oy + lltos — volls + sup wa(t) — wn<t>||r) ,
0<t<T

where C' is a positive constant depending only on A, ug, v, wy and T'.

Proof. For simplicity, set U = u. — u,, V = v. — v, and W = w. — w,. Then U and V
satisfy the problem

U = BIW —~v(v)U —+' ((ve + vy)/2) u,V — fU in Q x (0,00),
oV = fU—-hV in Q x (0,00),
U(z,0) = upe(x) — ugy(z), V(z,0) = vo(x) — vo,(z) in Q.

Multiplying the first equation of the above system by U|U|"~2 and integrating the resulting
expression over 2, we see from Proposition 2.2 that

1d . . ,
* oy = 6o / WU do — / (o) |U]" da
Q Q

- / o (e + 09)/2) wyVUUP 2 — FIU(E)]1
< BSIW IO + VOGO I — AU

for t € [0, 7] with some C; > 0 depending only on A, ug, vy, wo and 7. Similarly,

ld r r— r
S IVl = f/ UVIVI"=2dx — L[V (t)]];
rdt Q

< U@V @I =RV
for t € [0,T]. It follows from the above inequalities that

Lo, < ssIw O, + vl — FU @l
SV < T~ bV

so that, for t € [0, T,
LAU Ol + 1Vl < IOl + v,

for all ¢ € [0,7]. Hence

t
TN+ IV Ol < e (luos — uoylls + lvoe — voyllr) + 55/0 eI W (s)|, ds

< (uuo&—uoﬂuw||vo€—v0nur+ sup |rw<s>||T>
0<s<T

for all t € [0,7] with positive constant Cy = max{e“T, 5e“1T/C,}. Thus we obtain
(3.5). O
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We can now establish the following lemma by the same argument as Ishida and Yokota

3].

Lemma 3.4. Under the same assumption as Lemma 3.1, let (ue, v, w.) be the solution of
(2.1). Then there esist a sequence {e,}, with lim, . €, = 0 and functions u,v,w such
that, for anyr > 1 and T > 0,

Ue, — U strongly in C([0,T]; L™ (%)), (3.6)
Ve, —> U strongly in C([0,T]; L™ (2)), (3.7)
W, —> W strongly in C([0,T]; L™ (2)), (3.8)
V(we,+€,)™ = V™ weakly in L*(0,T; L*(9)), (3.9)

as €, — 0.

Proof. 1t follows from Lemma 3.2 that there exist a subsequence {w., },, and a function
w € C([0,00); L*™(£2)) such that

(we, + &)™ = w™ strongly in C([0,7]; L*(Q2) for any T >0 (3.10)
and that
We, —> W strongly in C([0,T]; L*™(Q)) for any T > 0. (3.11)

Therefore, Lemma 3.3 allows us to show that both {u.,} and {v., } are Cauchy sequences
in C([0,T]; L*™(€)) for any T > 0. So there exist u,v € C([0,00); L*™(f2)) such that

u., —u  strongly in C([0,T]; L*™(£2)), (3.12)
v., — v strongly in C([0,T]; L*™(2)) '
for any 7" > 0. Here it should be noted that u,v and w satisfy
0 < u(z,t),v(z, 1), w(z,t) < Ke'([Juglloo + [[volloc + lwolloc) (3.13)

for a.e. € Q and ¢ > 0. Indeed, for each ¢ > 0, there exist subsequences {u. }, {v- },
{we } such that uu (x,t) = u(x,t), ver (x,1) = v(x,t), wer (x,1) = w(x,t) for a.e. x € Q
as €], — 0. Since (ug ,ver ,we ) satisfy (2.10), it is easy to see that (3.13) holds ture.

Making use of Holder’s iniquality, (2.10) and (3.13) we can see that convergence prop-
erties (3.11) and (3.12) in C([0,T]; L*™(2)) yield assertions of convergence (3.6), (3.7)
and (3.8) in C([0,T]; L"(Q2)) for any r > 1.

Finally it remains to prove (3.9). From Lemma 3.1 there exists a subsequence of
{w,, }n, which is still denoted by {w., },, such that {V(w., +¢&,)™} is weakly convergent
in L*(0,T; L*(Q)) for every T' > 0. Thus there exists a function £ € L(0,00; L*(Q2))
satisfying

V(we, +e,)™ — & weakly in L*(0,T; L*(Q)) (3.14)
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for every T' > 0. Hence, by using (3.10) and (3.14), it holds that

/ /&pdxdt lim (/ /Vw€ +en) wdxdt)
0 [¢) n—oo

= — lim / /(wen +e,)"Vpdzdt
Q

n—oo 0

T
——/ /megod:L‘dt
o Jo

for any ¢ € C§°(€2 x (0,7)). The above relation implies that w™ is weakly differentiable
with respect to x, and £ = Vw™. Thus we complete the proof. O

Proof of Theorem 1.1. First we will prove that (1.1) has a weak solution. For ¢ € (0, 1),
let (ue,v.,w.) be the solution of (2.1) and let {u.,,v.,,w., }, be the subsequence given
in Lemma 3.4. Let (u,v,w) satisfy convergence (3.6), (3.7), (3.8) and (3.9). Then
(Ue, , Ve, , We, ) satisfies

Ue, (x,t) = uge, (x / {Bowe, (z,s) — vy(ve, (x, $))ue, (z,8) — fue, (x,s)}ds,

ve, (2, 1) = v, (T) + /0 {fue, (z,s) — hv., (z,s)} ds,

/wogn( (x,0) dm—/ /wangotdxdt
T T
—/ /V(wgn+€)ngpd:vdt—5/ /wgngodatdt+a/ /vgngpdxdt
o Jo o Jo o Jo

for all ¢ € C([0,T]; C5°(Q)) satisfying o(-,T) = 0. Letting &, — 0 in the the above
identities we find that (u,v,w) satisfies the properties of Definition 1.1. Indeed, for
t €10,7],

and

t

() (5) ds / +(0(s))u(s) ds

< [ 100006 = 2D, e ()] s+ / D o e ) = ), s
<Cr{ s, [100.(5) = o9l + sup, e, (5) - u<s>||r}

with some Cr > 0. Here we have used (2.10) and (3.13). Note that the right-hand side
of the above inequalities tends to zero as €, — 0 by Lemma 3.4.
Finally, in order to prove (1.4), we use Proposition 2.2 to derive

0 < ue, (2, 1), ve, (2, 1), we, (2, 8) < Ke'(Jfuofl o + [[volloc + [fwollc)

forallz € Qand t > 0. For each t > 0, it is possible to show with use of Lemma 3.4 that a
suitable subsequence of {u., (x,t),v., (z,t),w., (x,t)} converges to (u(x,t),v(x, t), w(x,t))
at a.e. € Q. Hence (1.4) can be derived from the above estimate. [
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4 Uniformly bounded solutions

In this section we will show that the weak solution in the previous section is uniformly
bounded with respect to L>°(£2)-norm for all ¢ > 0. For this purpose we will derive various
estimates for approximate solutions (u., ve,w.) of (2.1).

4.1 Uniform L? estimate

The first result asserts the uniform boundedness of (u.,v.,w.) with respect to L*(Q)-
normnu.

Proposition 4.1. Let (u., v, w.) be the solution of (2.1). Then it holds that

supd [[ue()llz, [[ve(O)llz, we(®)ll2} < Ka(1+ Jluolloc + [[volloo + [lwolloc), — (4.1)
Zp

where Ky 1s a positive constant depending only on €2 and A.

Proof. We will employ the standard energy method as in the work of Chaun and Yagi [7,
Proposition 5.1] or Shirai, Chuan and Yagi [14, Proposition 5.1]. For the sake of simplicity,
we write (u,v,w) in place of (u.,v., w.) for the solution of (2.1).

There exists a > 0 such that

v(v) > av® for all v eR. (4.2)

By taking L?*(2)-inner product of the first equation of (2.1) with w, it holds that

Ld u dm—ﬁé/wudx—/W(U)Ude—f/qux

4.3)
2,52 (
Sﬁ dex—d/(uv)zdx—i/uzdx,
2f Ja Q 2 Jo
where Young’s inequality is used. Similarly,
Ld v *dw = f/uvd:c— /vzd:c (4.4)
2dt Q ' '

Taking L?(2)-inner product of the third equation of (2.1) with w leads to

1d

wdx— /Vw+6) dem—ﬂ/w dx+a/vwdm
2dt Q

Note that

V(w+e)™ - Vwdr = m/(w + &)™ Vw|?* dz > 0.
Q Q

Then

1d 6] o?
< < —= . 4.
dt/dex B/wd$~|—a/ﬂvwda: Q/deijQB v? da (4.5)
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Let ky and ko be positive numbers to be determined later. Multiply (4.3) by k;, (4.4) by
ko and add the resulting expressions to (4.5):

ki d ko d 1d
5 w3+ 5 = o) + 52 lw®]3
p 2 252k
< B - (k- 55 ) o - (5 - 5572 ) o

+ / {—ka(uv)?® + ke fuv} dz.
Q

Here it should be noted that

k2 2
—kldU2 + kaU S Cl(kl,kg) = %f for all U € R.
4&]{31
If we take k; and ko satisfying
f a’
O<k1§26(52 and k’QZE,

we can prove from the above considerations

d 2 2 2
T (Bl[u®)I3 + ka1 + [lw(@)]13)

. a? , B ; (4.6)
+hufllu®llz + Zllo@llz + 5w ®lz < 2GR k).
Choose p = min{ f,a?/k:/3,3/2} and set
X(t) = kallu)[l; + Eallo ()3 + w®)]]3 -
then it follows from (4.6) that
d
EX@) + pX(t) <2C,|Q] forall ¢>0.
Solving this differential inequality yields
X(t) < X(0)e " +2C1|Q(1 —e ) /p for all t>0. (4.7)
Since (2.2) implies
X(0) < 19 (kn[luoll + Kallvoll3 + llwols).
(4.1) comes from (4.7). O

4.2 Uniform L estimate

Since we have established uniform L?(2)-bounds for approximate solutions (u., v, w.)
in Proposition 4.1, we will employ an iterative method developed by Alikakos [1] in order to
derive their L>°(Q)-estimates. The following inequality plays a key role in this subsection.
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Lemma 4.1. Suppose that Q C RY is a bounded domain with smooth boundary OS2 and
let m > 1. For each >0, set A = ku+m — 1 with

k=2 if N =1,
1<k<2 if N =2,
k=1+2/N if N >3,

where k can be taken as an arbitrary number in (1,2) for the case N = 2. For every
nonegative function w € C*(Q) with w = 0 on 99, it holds that

Adm—1

], < € ||[Fw™ 52| I, (48)

|
where C is a positive constant depending only on N,Q and k.

Proof. Let w be any C'(2) function satisfying w|sq = 0. We begin with the case N > 3.

: _ Am—1 N+2 ,, _ Atm—1 K : IR ‘o ] :
Since \ = 29— + = = 90— + Sp, it follows from Holder’s inequality that
Atm—1 N2 Am—1 5
oty < [l win =[5, e
2N 2N 2N
N—2 T2 )

By the Gagliardo—Nirenberg—Sobolev inequality (see, e.g., [3] or [4])

At+m—1

Vw 2

At+m—1
2

<

| 7

2N 2

N-2

where (' is a positive constant depending on N and 2. Hence combining the above
inequalities we get (4.8).

We next consider the case N = 2. Let x be an arbitrary number in the interval (1, 2).
In view of A = 22=L 4 £, it is seen from Hélder’s inequality that

Adm—1 Adtm—1
2 2

o, < [

® 5
I e P e R T 8
2—k r —K

In order to show (4.8), it is sufficient to use the Gagliardo—Nirenberg—Sobolev inequality
for the case N = 2:

At+m—1

YVw 2

At+m—1
2

Hw oSG

2—K

)

2

where (5 is a positive constant depending on N and €2
Finally, in the case N = 1, note that k =2 and A = % + p. Therefore,

At+m—1
], < [l

uls
-
o 1

Then one can show (4.8) with use of Morrey’s inequality (see Brezis [3, Theorem 9.12])

Adtm—1 A+m—1
2

<af

J :

where C} is a positive constant depending only on (2.
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In what follows, we assume h = 1 without loss of generality. Indeed, if we introduce
new variables (y,s) by = = y/v/h, t = s/h and define (4,9, @) by

(). o). -
wy,s)=u|—7—=,—~ |, 0y,s)=v|——=,—), w(y,s)=w|—=—-]),
then it follows from (1.1) that (@, 0, @) satisfies

iy = 6fw —5(v)a — fa,
Uy = f’fb - 777
Wy = A (0™) — b + av

with f = f/h,& = a/h, 3 = B/h and 7(v) = y(v).

We will intend to estimate general LP(§2)-norms of approximate solutuins (u., ve, w;).
Hereafter, we sometimes write (u, v, w) in place of (ue, ve, w.) as in the proof of Proposition
4.1.

Lemma 4.2. Let (u.,v.,w.) be the solution of (2.1) and let p be any number satisfying
p > 2. Then it holds that

d
SNl < 6wl — Fl )l (49)
d
Sz < I fu Ol — o, (410)
Cpun) < et [0l 0+ Ba— Vel B + 0Bl (410)

for all t > 0, where ¢, is a positive number depending only on m.

Proof. Let p > 2 be any number. We will begin with the proof of (4.11). Multiplying the
third equation of (2.1) by wP~! and integrating the resulting expression over ), we have

1d

yr wp dr = /V w4+ e)™ - Vuwl™! d +/ (—Buw” + avw?™") da.
p

Q

Here it should be noted that

/ V(w+e)™ - Vuw!™ de =m(p—1) /(w + 5)m*1wp’2|Vw\2 dx
Q

Zm(p—l)/wm+p_3\Vw]2 dm— +m e /‘V
o _

(see [8]). By Young’s inequality

P
1 — 1 p—1 p%
vwPt < - (ﬁf_l> 42 <ﬁ7wp_1> ' < ]%vp + Bu?. (4.12)

+m1

dx

b



203

Therefore,

dx

i/wpdazg Amp(p—1) /)V pimot
+ fla—1)p /wpdx+—/vpdx

Since 4mp(p — 1)/(p + m — 1)? is strictly increasing with respect to p > 2, it should be
noted that

(4.13)

4 —1 8
mp(p ) > mn =:Cn for all p > 2.
(p+m—1) " (m+1)
Hence we get (4.11) by multiplying (4.13) by SP.
Multiplying the first equation of (2.1) by w?~! and integrating the result over ) one
can see

1d
pdt

updx—/(éﬁw y(v)u — fu)uP~ 1dx<ﬂ/wup Ldr — f/updx
Q

where we have used 0 < § < 1 and (v) > 0. By Young’s inequality

5wup_1 < i (ﬁ_w)p + p;lfup
p\f p

in the same way as (4.12). Therefore,

—/updx_ f/ﬁwpdx f/updx
which implies (4.9).

Finally, the proof of (4.10) can be carried out in the same way as above; so we omit
it. O

Lemma 4.3. Let (u.,v.,w.) be the solution of (2.1). For each ¢ > 2, setp = kg+m —1,
where k is the number defined in Lemma 4.1. Then it holds that, for any L > 0,

d
1Bl < = Ll Bw-@)I7 + abllv- ()]l
+ KoL+ Bla = 1)p)* B[ (Bw: (1)) |17,

where Ky is a positive constant depending only on €, N and m.

(4.14)

Proof. For ¢ > 2, set p = kg + m — 1. Applying Lemma 4.1 and Young’s inequality we
see that, for any p > 0,

pllwlh = pllwr|ly < Capl[Vw® =072 w12
< e[ VD2 4 Cop? [l
with Cy = C%?/(4c,,). With use of this result one can see from (4.11) that

%Ilﬁw(t)llp < —{p— Bla=D)p}Bw(®)|[} + apllv= (D)}

+ Cop® B H|(Bw(t)) |7
By taking p = L+ (o —1)"p with any L > 0 in (4.15), it is possible to obtain (4.14). [

(4.15)
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Take any L > af and fix it. As in Section 2, we rewrite (4.9),(4.10),(4.14) with use
of 3 x 3 matrix M in the following form

[fu(®)l} [ fu(®)} 0
2 | le@Ip | <M lo@ll |+ 0 (4.16)
[Bw ()]} [Bw(®)I5 Kap?|| Bw(t)[|2"
with p = kg +m — 1 and
-f 0
Mi=1 -1 0
0 af —L

Here K3 is a positive constant depending on 2, N, m,a and f.

Remark 4.1. On account of (4.14) , it is possible to repalce Ksp?||Sw(t)||P* in (4.16) by
Ks||Bw(t)[[P* in the case o < 1. In this case, subsequent arguments will become simpler.

By virtue of L > a3, the largest real eigenvalue of M; is negative; so it is given by —o
with ¢ > 0. Moreover, as in the proof of Lemma A.3, one can prove that a left eigenvector
(k1, k2, 1) of M, corresponding to —o satisfies k; > 0 and ke > 0. If we apply (ki, ko, 1)
to (4.16) and set

Xp(t) = kal[ fu)[l} + K2llv@)[I + [[Bw (@[5, (4.17)
then we get ;
SX () < —aX, (1) + Kop? |Bu(t) |2 (4.18)

where we have used (ky, ko, 1) My = —0(ky, k2, 1). By solving (4.18) it follows that

X,0) < X0 + 5 (sup uol) (1)
=0 (4.19)

K3p? "
< max ¢ X,(0), sup || Bw(t)]|? for all ¢ > 0.
g t>0

Note that, on accout of (2.2),
Xp(0) < [ max{ky, k2 } (|| fuolloe + [lvolloo + [[Bewollso)”-
Therefore, if we set A = || fuo|l + [|v0lloo + || Swol|oo + 1, we see from (4.19) that

Kap? g
3P (Sup||ﬁw(t)||g) } for all >0 (4.20)
>0

X,(t) < max {K4Ap,

with Ky = |Q] max{ky, k2 }.
We will derive LP(2) bounds from (4.20) combined with Proposition 4.1 by an iterative
method as in the work of [1].

Proposition 4.2. Let (u.,v.,w.) be the solution of (2.1). Define a sequence {p;} by
P1=2, pi=~kpe1+m-—1, €:273a4>"'7 (421>

where K is the number defined in Lemma 4.1. If X, is defined by (4.17), then there exists
a positive constant Ky, depending only on A,m, N and €2, such that

sgg X,, (1) < {Ks(JJuolloo + llvolleo + [|wolloo + 1)} for all ¢>1. (4.22)
t>
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Proof. By the definition (4.21)

-1 -1
e = K1 (p1 + 7: ) _n < a*k (4.23)

with a* =2/k + (m —1)/k(k — 1) and
Do = Kpo_1+m — 1> kpi_1 > K2pp_s > -+ > k' Ipy = 2671 > KE (4.24)
It follows from (4.20) and (4.23) that

sup X,,, (t) < C, max{ AP k*(sup X, ,(t))"} (4.25)

£>0 t>0

with C, = max{Ky, K3(a*)*/o}. Then we can deduce from (4.24)that

2 _ 2
sup X,,(t) < max {C’*Ap", ClHrg2E Arpe-y ClARAR" D21k gRpe—2

>0

Ci+n+52+-~~+ne_2K2Z+2(Z—1)/1+2(€—2)/£2+-~~+2~3/£e_3AH[_QpQ7 (4.26)

Ol 4m 20250 (qup X, (8)" }>

>0

where

Sp=0+ -1+ (0 —2)K%+ -+ 22 (4.27)
We use the following result whose proof can be found in Appendix:

Sy < ekt forall £>1 (4.28)

with a positive number ~, depending only on k. In (4.26), recall Proposition 4.1, which
gives

sup X, (t) = sup Xo(t) < KA

tge0 t>0
with a positive constant & depending only on A and Q. Moreover, A > 1 and we may
assume C, > 1 in (4.26). Setting K, = max{1, K} we see from (4.26) that

sup X,,(t) < C’fhl/(’{_1)&25‘Z max{ AP, APt ARPe2 AR
>0 (4.29)
< Cme’l/(ﬁ—l)KQSnggApg

Here we have used (4.24) in the last inequality. By virtue of (4.24) and (4.28), the right-

hand side of (4.29) is bounded from above by CP*/*"~ 2wt ipe APe . Thus we complete
the proof. n

Proof of Theorem 1.2. Take a sequence {e,}, with lim, .., = 0, which is given in
Lemma 3.4, such that for every » > 2 and every 7' > 0

lim u,, =u, limv, =v, limw, =w in C([0,T7; L™(£2)),
en—0 en—0 en—0
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where (u,v,w) is the weak solution of (1.1) given in Theorem 1.1. By Proposition 4.2,
(e, , Ve, , We, ) satisfies

[ fue, @15, + [[oe, OIF; + 15w, (Bl < (KoA)™, £=1,2,3,---,

for all t > 0 with A = ||ug||eo + ||volloo + ||wo||eo + 1. Letting ,, — 0 in the above inequality
leads us to
[fu@p; + lo@ll5; + 18w @)5; < (KA for >0,

which implies

[u@)llpe < K2 A/, v(@)llpe < KA, (Jw(®)lp, < K24/ for > 0.

Therefore, we see
Ju®)llc = Jim O, < KaA/ S
Pe—>00
[0()[|se = Lim Ju(t)][, < K24,
Pp—00
[w()lloe = lim [[w(t)]],, < K2A/B
Pp—00

for t > 0. ]

A Appendix

Lemma A.1. For T >0, let u € C*([0,T];C(Q)). Then ||u(t)||« is differentiable at a.e.
t €10,T] and satisfies

%Hu(t)“oo = (2", 1) for a.e. t €10,T],

where z* is any point in {x € Qlu(z,t) = [|[u(t)||e}-

To prove this lemma, we recall the definition of the duality map and its related prop-
erties (see, e.g., Kato [9]).

Definition A.1. Let X be a real Banach space. The duality map F on X is a multi-
valued map from X to its dual space X*, defined by

v F(v) = {g € X[ {g,0) = [[o]1%, llgll = [lv[l},
where (g, v) denotes the pairing between g € X* and v € X.

Remark A.1. We consider the case X = C(€2). For each v € C() take any z* € {z €
Q|v(x) = ||v||o} and define a linear functional g, : C(2) — R by

(v, w) = ||v]|ccw(z") for all w € C(Q).
Clearly, g, € X™ and it satisfies

(90, 0) = Wlloov(@) = 0I5 [{ge, w) | = [0llsolw(@™)] < [[v]locflwlloc;

so that ||gy|| = ||v]|e- These facts imply g € F(v).
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Lemma A.2. Let X be a real Banach space and let u be an X-valued function in [0, 00)
such that u(t) has a weak derivative at t = to and that ||u(t)|| is differentiable at t = t.
Then it holds that

luto)ll - HU( ) = (g, u(to))

for any g € F(u(ty)), where F is the dualzty map on X.

Proof. For the proof, see, for instance, [9, Lemma 1.3]. m

Proof of Lemma A.1. Note that
t
/ u () dt

t
< [ luldr < it

for t > s > 0 with L = maxo<i<r ||ut(t)]|oo. Then ||u(t)|le is Lipschitz continuous in
[0, T7; so that ||u(t)|| is absolutely continuous and differentiable for a.e. t € [0,7]. Let
t =71 € [0, 7] be a point where ||u(t)|| is differentiable. Since x +— wu(z,7) is continuous
in O, there exists a point 27 € € such that

[u(7) oo = (T, 7).
For such u(7) € C(R), define g,y € C(Q)* by
<gu(7),w> = ||u(T)||oow(:vT) for all w € C(Q).
By Remark A.1, gy) € F(u(7)). It follows from Lemma A.2 that

)l 0o = { Gy, (7))

= [[u(7)]loo ws(a7, 7).

This fact yields 4|ju(7)||s = u; (27, 7) and completes the proof. O

Lemma A.3. Let M be a 3 x 3 matriz defined by (2.9) Then the largest real eigenvalue \g
is expressed as \g = (ad — C+ff ) i with > 0. Moreover, any left eigenvector (ky, ko, k3)
corresponding to \g can be chosen as ki, ko, k3 > 0.

Proof. 1f we put p(A\) = (A+c+ f)(A+ h)(A+ B)/fB, then the eigenvalues A of M are
given by solving

[lu@®)llo — ||u(3)||oo‘SHU(t)—u(s)HOO:’

[e.e]

p(A) = ad.
Since zeros of p are all negative, the largest real eigenvalue \y of M has the same sign as
ad — C?[h (see Figure 1). So A\ can be expressed as A\g = (ad — CJJZf h) p with ¢ > 0. Any
left eigenvector (ki, ks, k3) corresponding to \g satisfies

(Ao +(c+ )k = [k,
(AO + h)k’g = Oékg,
(Ao + B)ks — B5k,.

Note that A satisfies A\g > max{—(c+ f), —h, —(}; then we can choose (k1, k2, k3) satis-
fying k1, ko, k3 > 0. 0
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Figure 1: The largest real eigenvale A

Proof of (4.28). In view of

~
VRS
I
~_
.

14
Se= gk =) ]
j=2

=2

we consider

l l
, d ; d (2%(1—271)
i) — r— J | = p— ( —— 7
> jal =g (;x> xdx( 1—x >

=2 . {21; _1(514;: 1)t N xQ((l — xé‘l)} |

Therefore,

¢
L 2 1

EJSBJ< + for 0 <x<1;

= l—z (1—x)?

so that

é 1\’ - 2K n K> .
, K k—1 (li—l)Q_'%
=2

J
Thus (4.28) comes from (A.1).
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