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Abstract. Human crowds base most of their behavioral decisions upon anticipated
states of their walking environment. We explore a minimal version of a lattice model
to study lanes formation in pedestrian counterflow. Using the concept of horizon depth,
our simulation results suggest that the anticipation effect together with the presence of
a small background noise play an important role in promoting collective behaviors in a
counterflow setup. These ingredients facilitate the formation of seemingly stable lanes
and ensure the ergodicity of the system.
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1 Introduction

1.1 Lanes in counterflow

Very much like colloids or bacteria colonies, human crowds can be thought of as many—
particle interacting systems. From this perspective, the non—equilibrium statistical me-
chanics becomes the right language to study large crowds coming into play, where highly
complex situations giving rise to interesting collective phenomena, such as free flow, lanes*,
and gridlock or jamming (cf. [3, 10, 24, 22], e.g.), may arise.

This paper focuses on lane formation in pedestrian counterflow, i.e., a bidirectional
pedestrian movement. The novelty we bring into this context is linked to the ambition
to reproduce the rational behaviour of individuals forming lanes through the means of
anticipation, an old idea that can be traced back at least from Oresme’s time; see [21].
From this perspective, we are in line with some of the statements in [2] and complement
existing research on the lane formation topic in pedestrian counterflows.

1.2 A brief literature review on lane formation

There is no general consensus on which are the mechanisms yielding lane formation. Due
to this fact, research from both theoretical and experimental viewpoints is ongoing. From
the crowd management perspectives, one strongly believes that controlling in real time the
building up and the dissolution of lanes would be an efficient tool both for organization
matters as well as for what concerns the activity of responsible law enforcement agencies.
Regarding lane formation, we refer the reader to [19] for a review from the point of view
of self-organization, to [17] for a perspective from the transportation engineering side,
as well as to own previous research [11] where we attempted to investigate pedestrian
counterflows through heterogeneous domains. Lane formation has been observed in many
empirical studies (see the discussion in [14, Section 4.1]) and it has also been noted that
a certain degree of noise favors lane formation, whereas a too large noise amplitude lead
to a “freezing by heating” effect [15, 16]. It is worth also looking into the recent study
[18], where lanes are perceived as super—diffusive Lévy walks. The formation of lanes has
been quite well described in the framework of the social force model [13, 14], whereas it
has been considered a quite hard phenomenon to be described in the framework of more
elementary cellular automata models [7, 8. Related ideas are reported, for instance, also
in [1, 9]. The main drawback of the social force model is that it involves a large number
of parameters. An important breakthrough in this direction can be considered the paper
[4] in which the idea of the floor field cellular automaton has been firstly introduced. In
this model the floor field is constructed dynamically during the evolution of the system
and allows the coupling between the motion of the particles and a sort of trace left by

*One of the most efficient transport mechanisms in crowded situations — like those where active
colloidal particles are supposed to cross soft matter solutions — or when pedestrian counterflow in Tokyo’s
Shibuya and Shinjuku railways stations thrives for fluidization — are lanes. An average of 3.5 million
people per day use the Shinjuku station, making it the busiest station in the world in terms of passenger
numbers. Shibuya station is similarly busy.
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particles which moved before [19, 23]. The floor field is traditionally made of a static
and a dynamic component [4]. More recently a so called anticipation component has also
been taken into account [19, 23]. We refer the reader to [12] for an account of anticipation
effects in the context of deterministic dynamical system modeling pedestrian motion. The
static floor field is constant in time and not influenced by the presence of other particles,
it simply codes the preferential direction of motion of each particle. The dynamic floor
field, inspired by the motion of ants who leave pheromone traces which can be smelled
by other ants, evolve with time and codes the trace left by moving pedestrians. The
anticipation floor field allows pedestrian to estimate the route of pedestrians moving in
the opposite direction and try to avoid collisions.

1.3 Aim of this research

In this framework, we propose an elementary model as well as a different mechanism for
lane formation. The main idea behind this mechanism is mildly related to the anticipation
floor field just discussed previously. The aim of our study is to bring evidence that
the elementary mechanism yielding lane formation is the pedestrian’s attitude to avoid
collisions with pedestrians moving in the opposite direction, i.e. the anticipation.

To keep as simple as possible the modeling level, we use a lattice model approach. We
define a discrete time dynamics on a lattice with an exclusion rule, namely, each site can
be occupied by a single particle at time. The formation of lanes at stationarity is studied
by means of the order parameter proposed in [19]. We demonstrate that, provided the
attitude to avoid collisions is relevant enough, lanes naturally appear in the system. This
is in our view the main mechanism leading to the formation of lanes.

The rest of the paper is organized as follows. In Section 2.1 we describe in more detail
the crowd dynamics scenarion we have in mind. The model is presented in Section 2.2.
The results of our simulations are discussed in Section 3, whereas our conclusions are
finally summarized in Section 4.

2 The model

In this section, we present the crowd dynamics scenario we have in mind. Here we define
the chosen modeling strategy and briefly explain the main observables that will be closely
followed in our simulations. These observables are our main tools to explore the internal
coherent crowd structures which are expected to form in pedestrian counterflows.

2.1 Pedestrian counterflow as a (Gedankenexperiment

Our crowd dynamics setup is as follows: Two different types of pedestrians enter a ver-
tical strip: those moving upward (“red particles”) and those moving downward (“blue
particles”). At each time the pedestrians move mostly forward with respect to their pref-
erential direction, but they will have a small probability r, called the background noise, to
do something different, namely, stepping laterally or even moving backward. This noise
mimics the presence of irregularities (small obstacles) in the strip, or simply, the pedes-
trian’s loss of visual focus due to interactions with the surrounding ambient as it is often
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promoted in environmental psychology reports. The reason for such a background noise is
also technical. Indeed, the mathematical model turns to be a discrete time Markov Chain.
In the case r = 0, the model would exhibit many absorbing varieties made of those con-
figurations in which particles are perfectly in—lane. In other words, set of configurations
in which columns are occupied either by red or blue particles would be absorbing varieties
of the state space. Considering r > 0 simply ensures the ergodicity’ of the model.

Pedestrians do not move simultaneously, but sequentially; namely, the new position
reached by a particular pedestrian has to be taken into account when moving the following
one. For this reason, we refer to our model as lattice model rather than cellular automaton.

The distinguishing feature we introduce in this context is the idea of horizon: if one
pedestrian spots another one moving in the opposite direction in front of him within an
a priori fixed distance (i.e., the horizon depth), then she/he will try to step laterally
with the probability h. The correlation between the lateral motion of a particle and the
approaching of an opposing one will yield lane formation as we see in Section 3. The
model will be explored by numerical simulations for different values of the parameters.
Having in view the application to pedestrian motions, the relevant parameter regime is
r < 1 (low noise background) and h > 0 (large avoiding tendency).

2.2 Definition of the model

The model is very much inspired by the one proposed by the authors in [5, 6]. The walking
space is chosen to be the strip A = {1,..., L} x {1,..., Ly} C Z*. Each site or cell in A
can be either empty or occupied by a single particle (hard core repulsion).

Each particle is either red or blue. For red particles, the forward direction is downward,
whereas for blue particles the forward direction is upward. We let N, and Ny be the
number of red and blue particles at the initial time t = 0, respectively. We let N := N,+ N,
be total number of particles at the initial time and n(t) be the total number of particles
at time ¢.

Particles are labelled. At each step of the dynamics, we choose sequentially at random
with uniform probability one of the N particles. If the particle lies in the lattice, then we
displace it with the probabilities specified below: if the cell where the particle should be
moved to is occupied, then the particle is not moved (hard core repulsion acts accordingly
to the simple exclusion rule). Time is increased by one after N particles have been selected
and possibly moved.

We let r € [0, 1] be the background noise and h € [0, 1] be the lateral move probability.
Moreover, given a particle, its horizon is the vertical slab made of the first H > 0 cells (up
or down to the last cell of the strip) the selected particle would visit during its forward
motion. The integer number H will be called horizon depth.

Either a red particle moves to one of the four neighboring cells with probabilities
1—3r/4 (down), r/4 (left), r/4 (right), and r/4 (up) if H = 0, or the horizon is empty, or
the closest particle in the horizon is red. Otherwise, it moves to one of the four neighboring
cells with probabilities 1 — h (down), h/2 (left), h/2 (right), and 0 (up), see Figure 1.

"Ergodicity is lost for instance when an horizontal line with blue particles opposing red particles is
formed.
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Figure 1: Schematic representation of the model for horizon H = 3. Arrows denote
possible moves and the related probabilities are reported in the cell.

Similarly, either a blue particle moves to one of the four neighboring cells with prob-
abilities 1 — 3r/4 (up), /4 (left), r/4 (right), and r/4 (down) if H = 0, or the horizon is
empty, or the closest particle in the horizon is blue. Otherwise, the particle moves to one
of the four neighboring cells with probabilities 1 — h (up), h/2 (left), h/2 (right), and 0
(down).

The fact that the jumping probabilities change when an opposing particle is spotted
inside the horizon will be addressed as anticipation mechanism. The parameter r is called
background noise. The model aims to describe two families of pedestrians one heading
down and the other heading up. This is precisely what happens in our model with the red
and blue particles if » = 0. However, when r is positive, different moves are allowed in the
system as it happens to real pedestrian crowds in motion — sometimes they displace not
following their prescribed best trajectory, but with random shifts due to external noise,
such as sounds, light flashes, images, or obstacles. Note that if r is small, red and blue
particles experience an important downward and, respectively, an upward drift, which
becomes smaller when r increases and finally disappears at » = 1, when the walk becomes
perfectly symmetric.

We introduced the parameter r not only to mimic random real world shifts, but also
for a technical reason. Indeed, in the case H = 0, namely, when the anticipation effect
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is not considered, for r = 0 our model would be completely trivial, indeed, red and
blue particles would move one against the other and eventually would stop each others.
A residual trivial motion will be present only in those columns populated by particles
moving all in the same direction.

In the following, we study the model for a wide choice of the parameters; the reader
should always keep in mind that the values relevant for pedestrian flow scenarios are r < 1
and h > 0. Indeed, a walker will change his direction of motion only in the presence of
an opposing pedestrian (or other obstacle) and in such a case he will do it almost surely.

The vertical boundaries are considered as occupied sites, that is to say, reflecting
boundary conditions are imposed on those vertical boundaries of the strip A. On the
other hand, the horizontal boundaries are considered filled with empty spots, so that a
particle on the first row trying to jump up will exit the system and, similarly, a particle
on the Lo—th row trying to jump down will exit. Particles which did exit the lattice,
when selected for a move, will re—enter the strip with the same horizontal coordinate at
row one if own color red, and at row L if the particle is blue, provided the target site is
empty. We have not considered strictly imposed vertical periodic boundary conditions —
the upper and the lower rows of the strip mimick the presence of doors at the end of the
corridor (see, also, Appendix A).

2.3 Observables

Quantitative investigations of the model will be performed by means of the following
observables. We call upward current at time t, the ratio between the total number of
blue particles which exited the system through the top boundary and time. Similarly,
we call downward current at time ¢, the ratio between the total number of red particles
which exited the system through the bottom boundary and time. Note that both these
currents are defined as positive numbers. The currents will be used to detect the presence
of jamming in the system. More precisely, since the upward and the downward current
will be approximatively equal in all the simulations, we will focus on the average current,
namely, the average between the upward and the downward currents.

Additionally, to give a quantitative estimate of the presence of lanes in the system, we
define a suitable order parameter following closely the ideas proposed in [19] and based
on developments from [20] done in the framework of colloidal systems.

Fix the time ¢ and consider a particle labelled by k € {1,..., N} such that it lies in the
lattice at time t. Let n,,(t) the total number of red particles occupying cells belonging
to the same column as the particle k. Furthermore, let ny x(t) the total number of blue
particles occupying cells belonging to the same column as the particle k. Then set

n(t)

o) = o 3 [ ] 1)

—1 nnk(t) + nb,k(t)

Note that in a state in which blue and red particles moved perfectly in separate lanes,
the order parameter would be equal to one. For disordered states, we expect ¢(t) to be
small, though strictly positive. In the next sections, we shall use the expression ordered
configurations when referring to configurations in which red and blue particle occupy
different columns.



177

3 Numerical simulations

We simulate the model introduced in Section 2.2 posed on the strip with side lengths
Ly = 50 and Ly, = 100. We fix a parameter p, called density, and the total number of
particles will then be N = pL;Ls. The numbers of red and blue particles, N, and Ny,
will differ at most by one and will be such that N, + Ny, = N. The values of H, h, r, and
p will be specified both in the forthcoming discussion of the numerical results and in the
caption of the figures.

All simulations are run for 8 x 10° time steps: remember that at each time step N
particles are randomly selected for motion. The order parameter is computed by averaging
its value each 10% time steps starting from the thermalization time 10°. The currents are
computed by applying the definition (given in Section 2.3) at the end of the simulation.
The computed observables are very stable and the statistical errors are not significative,
hence they are not reported in the pictures.

Aiming to a good vizualization of the effects, the results will be presented by means
of two different kind of graphs: configuration pictures and scatter plots. In configuration
pictures, each point represents the position of a particle: red points stand for red particles
and blue points stand for blue particles. In scatter plots, either the current or the order
parameter are reported for approximatively 20 x 20 different values of the considered
parameters evenly spaced in the intervals specified in the graphs. No data interpolation is
performed, each measured value corresponds to a square pixel in the picture. The colors
shown in scatter plots are adapted to picture data, but in all the pictures blue corresponds
to the half of the maximum value in the plot. Moreover, for the values below such half
value we use gray tones, whereas for the values above it, we use the following brilliant
colors: magenta, red, orange, yellow, and green.

3.1 Preliminary simulations

As we already pointed out in Section 2.3, the order parameter ¢ is a positive number
close to one for ordered configurations. On the other hand, it is not clear how small such
a parameter will be for disordered configurations. Particularly, we cannot infer that ¢
will be close to zero. Indeed, cf. (1), ¢ is defined as a sum of positive numbers, so that
fluctuations in random configurations will add up and not cancel. Mainly for this reason,
we perform a first study of the system for a wide choice of the parameter r. Obviously, we
expect that for an 7 not small, the system will be essentially disordered. In this way, we
will give a quantitative measure of the values that the order parameter ¢ should exhibit
for disordered states.

In Figure 2, we plot the average current in a scatter plot as a function of the background
noise r and the density p for different choices of the horizon depth H and of the lateral
move probability h. As expected, the highest values of the average current are found for
low values of the background noise. Indeed, as already noted, when r is small, particles
experience an important forward drift. Nevertheless, seeing the left diagram in the picture,
we realize that when H = 0 for some intermediate value of the density (focus, for instance,

to the case p = 0.15), the current, which is negligible for r small, becomes important
if r is mildly increased, but it eventually becomes zero for even larger values of the
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background noise. This effect is due to the fact that, for small values of the background
noise, the dynamics is trapped in blocked (clogged) configurations, whereas a larger value
of randomness in the dynamics helps particles to avoid blocking opponents restoring the
global current to not zero values.

|
0
0.05 0.35 0.65 1 0.05 0.35 0.65 1 0.05 0.35 0.65 1
background noise background noise background noise

Figure 2: Scatter plot of the average current in the plane r—p for r € [0.05,1], p €
[0.05,0.5], H =0 (left), H =5 and h = 0.1 (center), H =5 and h = 0.7 (right).

Figure 3: From the left to the right it is depicted the final configuration of the simulations
for the cases H = 0, r = 0.1, and p = 0.15 (first graph), H = 0, r = 0.5, and p = 0.15
(second graph), H =0, r = 0.7, and p = 0.15 (third graph), H =5, h = 0.1, r = 0.5, and
p = 0.15 (fourth graph), H =5, h = 0.7, r = 0.5, and p = 0.15 (fifth graph), and H = 5,
h =0.7, r = 0.8, and p = 0.45 (sixth graph).

This is illustrated in Figure 3 where it is reported the final configuration of the system
in the simulations for the values of the parameters specified in the caption. The first three
panels on the left show that considering larger values of r, in absence of the anticipation
mechanism, allows to avoid blocking configurations. In this respect, randomness favors
transport. It is interesting to remark that a similar phenomenon was found by the authors
in [5, Figures 6.14 and 6.15], where it was remarked that the so called residence time it
is a not monotonic function of the lateral displacement probability. We recall that the
residence time was defined in loc. cit. as the typical time that a particle started at one
side of the strip needs to cross the whole strip and exit from the opposite boundary.
Consequently, the residence time and the current are closely related quantities.
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Another interesting phenomenon can be observed comparing the second, the fourth
and the fifth panels in Figure 3. In these three cases, the values of background noise and
density are not changed, but the anticipation effect is introduced and the lateral move
probability is changed. The pictures show that adding the anticipation mechanism with
a sufficiently large lateral move probability blocking configurations can be avoided. The
fact that anticipation helps transport in a wide region of the parameter space is also
evident from the current graphs in Figure 2, but the configurations reported in Figure 3
provide a striking evidence. The sixth configuration in Figure 3 shows that for very large
values of the density, even a large lateral move probability is not sufficient to the restore
current, and consequently, the dynamics is eventually trapped in a blocked configuration.
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Figure 4: Scatter plot of the order parameter ¢ in the plane r—p for the same case
considered in Figure 2.

In Figure 4, we finally come to the main target of this section, namely, the graph of
the order parameter in the plane r—p. The scatter plot is reported for the same cases
considered in Figure 2. In all the cases, we do not expect lane formation, due to the
rather high values of the background noise considered in the pictures. Indeed, the graphs
in Figure 4 show that the order parameter is approximatively constant in the whole region
considered in the simulations. Moreover, the stationary value of the order parameter
ranges between 0.1 and 0.3. Hence, in the sequel of our discussion we will consider
such a value as the reference point of the order parameter for completely disordered
configurations. The small islands in the central and right panel corresponding to higher
values of the order parameter can be neglected since they are observed in correspondence
of blocked configurations. The relative high value of ¢ is just a random value depending
on the random initial condition, for instance in the case illustrated in the sixth panel
in Figure 3. This is due to the fact that, in the final configuration, many red particles
remained blocked outside the lattice, hence in each column a majority of red particles is
present. This yields in a rather high value of the order parameter.

3.2 Small background noise

We now focus on the most interesting part of the parameter space, namely, the region
with small background noise.
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In Figure 5, we have reported the results of our simulations at r = 0, namely, when
no background noise is present so that the sole mechanism present in the dynamics is
anticipation: particles move in their prescribed forward direction unless an opposing
particle is spotted inside the horizon region. In the picture, we show scatter plots in the

plane h—p for both the average current and the order parameter ¢.

0.05 0.5 0.95 0. . 0.95 0.05 0.5 0.95 0. . 0.95
lateral move probability lateral move probability lateral move probability lateral move probability

Figure 5: Scatter plot of the current (first and third panel) and order parameter ¢
(second and fourth panel) in the plane h—p for zero background noise, h € [0.05,0.95],
p € 10.05,0.5], H =5 (first two panels), and H = 20 (third and fourth panel).

The left panel gives evidence that at any value of the lateral move probability, the
average current increases with the density if this is sufficiently small, i.e., smaller that
about 0.3. On the other hand, when such a value is reached, the dynamics freezes in
blocked configurations, and hence, the currents suddenly drop to zero. It is quite remark-
able that the current, when different from zero, does not depend very much on the lateral
move probability h. On the other hand, as we have already noted in the above Section 3.1,
for intermediate values of the density the anticipation mechanism helps transport, in the
sense that the freezing of the dynamics occurs at larger value of the density if h is large.

To emphasize this point aspect in a better way, we have plotted in Figure 6 the final
simulation configuration of the system at density p = 0.275, for different values of the
lateral move probability . The pictures shows that if A is small the dynamics is eventually
trapped in a blocked configuration whereas as h is increased no freezing is observed, at
least on the time scale we considered, and the current results to be different from zero.

We finally remark that, for » = 0, if the dynamics is not trapped then the order is
perfect, namely, ¢ = 1 is reached. In other words, in the absence of the background noise,
the anticipation mechanism guarantees a perfect lane formation, provided the dynamics is
not frozen in blocked configurations. In our opinion, this is a very valuable result, since
it states that lanes forming in counterfows can be explained just as a consequence of the
anticipation mechanism.

Data referring to the case H = 20 and reported in Figures 5 and 6 can be discussed
similarly; the only difference is that the effect of the anticipation mechanism is slightly
stronger. This fact can be observed both in Figure 5 and 6.

We test if the anticipation mechanism is robust with respect to the background noise,
that is to say, if its ability to form lanes is still valid for r different from zero.

In Figures 7 and 8 we report the scatter plot of the average current and the order
parameter on the r—p plane for different values of the lateral move probability. In partic-
ular, the left panel refers to the case in which the anticipation mechanism is not present
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Figure 6: From the left to the right it is depicted the final configuration of the simulations
for the cases r =0, p = 0.275, H = 5 and h = 0.05 (first graph), H = 5, and h = 0.45
(second graph), H = 5, and h = 0.50 (third graph), H = 20 and h = 0.05 (fourth graph),
H =20 and h = 0.45 (fifth graph), and H = 20 and h = 0.50 (sixth graph).
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Figure 7: Scatter plot of the average current in the plane r—p for r € [0,0.09], p €
[0.05,0.5], H =0 (left), H =5 and h = 0.11 (center), H =5 and h = 0.71 (right).

in the dynamics.

We pinpoint here a behavior which is very similar to the one discussed in the case r = 0.
In particular, we notice that, for a fixed value of the density p, increasing the lateral move
probability avoids the freezing of the dynamics at larger values of the density p. Note
also, that the current does not depend very much on the value of the disorder parameter
in the considered range. This is quite obvious since in these pictures we are focussing on
a very tiny slice of the part of the graphs shown in Figures 2 and 4, very close to the
vertical axis.

Finally, we remark that Figure 8 shows that the anticipation mechanism is able to
explain lane formation also in the presence of a weak background noise. Such an order
is eventually destroyed if the parameter » becomes too large as underligned by the data
reported in Figure 4.
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Figure 8: Scatter plot of the order parameter ¢ in the plane r—p for the same case
considered in Figure 7.

4 Discussion

As closing note, in the same line of thinking as in Ref. [24], we argue that the key towards
an even deeper understanding of a collective behavior like lane formation lies in identi-
fying the principles of the behavioral algorithms followed by each individual, and also,
in answering the question: How does information flow among the pedestrians? Address-
ing this question requires the embedding in our model of fine environmental psychology
information as well as aspects of the psychology of groups. We have not touched these
aspects at all in this contribution. This can be seen as further work. On the hand, for
the presented bi-directional pedestrian flow scenario, given two population sizes walking
within the strip A, we are convinced that the simple combination of just 3 parameters
is sufficient to predict the formation of lanes. These parameters are the horizon depth
H, the lateral move probability h, and the background noise r. This level of complexity
is much lower than what usually the social force model is offering. Furthermore, our
three parameters have a clear physical meaning. The harder to identify is eventually the
background noise level r, which on top of everything is also prone to different modeling
interpretations and incorporates very much the specifics of the local conditions (geometry
of the building, local traffic, etc.).
Two main results stand out:

(A) In the absence of the background noise, the anticipation mechanism guarantees a
perfect lane formation, provided the dynamics is not frozen in blocked configura-
tions;

(B) The current does not depend very much on the lateral move probability h.

An interesting question is to which extent (A) and (B) hold if pedestrians would
be moving at different speeds? This question, connecting pedestrian flow to traffic flow
matters, could be addressed rather naturally using a continuous time version of the present
model in which pedestrian moving at different speeds would be modelled by particles
moving with different rates.
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A Strict periodic boundary conditions

As we have already mentioned in the above discussion, we considered "not strictly im-
posed vertical periodic boundary conditions”. Our choice is motivated by the fact that
the upper and the lower boundaries are thought as two open doors for the pedestrian mo-
tion. In this appendix, we show some minimal results obtained in the case when vertical
periodic boudary conditions are strictly imposed as it is usually the case in the statistical
mechanics of lattice models. By “strictly imposed” we simply mean that the updating
rule is covariant in the lattice and the rows 0 and Lo + 1 are respectively identified with
the rows L, and 1.

We have repeated the simulations shown in the first two panels of Figure 5 and in the
third panel of Figures 7 and 8. Our results, now plotted in Figure 9, do not show new
features with respect to what has been discussed above.

0.05 0.5 0.95 0.05 0.5 0.95

lateral move probability lateral move probability

density

Figure 9: Scatter plot of the current (first and third panel) and order parameter ¢ (second
and fourth panel) for the strict periodic dynamics. In the first two panels H = 5 and
r = 0. In the third and fourth panels H =5 and h = 0.71.
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