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1 Introduction

The purpose of this paper is twofold. It is a survey with an expository flavor linking
the notions in the title, and also includes original results.

The paper is split into two parts, both dealing with bounded linear operators on a
Hilbert space. The first part (Sections 3, 4 and 5) surveys the technique of generating a
new inner product from the original one, and its applications to similarity to isometries
and asymptotic limit for contractions, emphasizing the common role played by the equa-
tion T ∗AT = A. The central results of this part appear in Propositions 4.1, 4.2, giving a
comprehensive characterization of similarity to isometries.

The second part (Sections 6 and 7) is a follow-up of the first one, extending it to power
bounded operators by means of the φ-asymptotic limit associated with a Banach limit φ
and, alternatively, to bounded operators by means of Cesàro asymptotic limit associated
with Cesàro means, still focusing on the role played by the equation T ∗AT = A. Theo-
rem 6.1 brings together a large collection of properties of φ-asymptotic limits for power
bounded operators, as a generalization of analogous results for contractions. Similarly,
Theorem 7.1 brings together a large collection of properties of Cesàro-asymptotic limits
for bounded operators. Theorem 7.2 shows that if a power bounded operator is such that
its sequence of Cesàro means converges in the weak topology, whose shifted sequences
converge uniformly in the shift parameter, then its Cesàro asymptotic limit coincides
with its φ-asymptotic limit for all Banach limits φ. This is followed by an application in
Corollary 7.1.

2 Notation and Terminology

A linear transformation L on a linear space X is injective if and only if its kernel
N (L) = L−1({0}) is null (i.e., if and only if N (L) = {0}). If X is a normed space, then
let B[X ] stand for the normed algebra of all operators on X (i.e., of all bounded linear
transformations of X into itself). If T ∈B[X ], then N (T ) is a subspace of X , which means
a closed linear manifold of X . The range R(T ) = T (X ) of T ∈B[X ] is a (not necessarily
closed) linear manifold of X . An operator T on a normed space X has a bounded inverse
on its range if and only if it is bounded below. An operator T on a Banach space X is
bounded below if and only if it is injective with a closed range (i.e., N (T ) = {0} and
R(T ) = R(T )− where the upper bar denotes closure).

Let X be a normed space. An operator T ∈B[X ] is an isometry if ∥Tx∥ = ∥x∥ for every
x∈X (a unitary operator is an invertible isometry on a Hilbert space). It is a contraction if
∥Tx∥ ≤ ∥x∥ for every x∈ X (i.e., ∥T∥ ≤ 1), and it is power bounded if supn ∥T n∥<∞. In
this case set β = supn ∥T n∥. Thus T is power bounded if there is a constant β > 0 such that
∥T nx∥ ≤ β∥x∥ for all integers n≥ 1 and every x∈X , which implies supn ∥T nx∥<∞ for
every x∈X . The converse holds if X is a Banach space by the Banach–Steinhaus Theorem.
Every isometry is a contraction and every contraction is power bounded. An operator
T ∈B[X ] is power bounded below if there is a constant α> 0 such that α∥x∥ ≤ ∥T nx∥
for all integers n≥ 1 and every x∈X . A B[X ]-valued sequence {Sn} converges uniformly
(or in the operator norm topology) to an operator S ∈B[X ] if ∥(Sn− S)∥ → 0 (notation:
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Sn
u−→ S). It converges strongly to S if the X -valued sequence {Snx} converges to Sx

in the norm topology (i.e., ∥(Sn− S)x∥ → 0) for every x ∈X (notation: Sn
s−→ S). The

sequence {Sn} converges weakly to S ∈B[X ] if f((Sn− S)x) → 0 for every f in the dual
X ∗ of X and every x in X (notation: Sn

w−→ S — if X is a Hilbert space with inner
product ⟨· ; ·⟩, weak convergence means ⟨(Sn− S)x ; y⟩ → 0 for every x, y ∈ X by the Riesz
Representation Theorem, which is equivalent to ⟨(Sn− S)x ;x⟩ → 0 for every x ∈ X if the
Hilbert space is complex by the Polarization Identity). Uniform convergence clearly implies
strong convergence, which in turn implies weak convergence. An operator T ∈B[X ] is of
class C0· if the power sequence {T n} converges strongly to the null operator, T nx → 0 for
every x∈X (i.e., if T is strongly stable — notation: T n s−→ O), and it is of Class C1· if
T nx→/ 0 for every 0 ̸= x∈X .

Suppose X is an inner product space with inner product ⟨ · ; · ⟩. The norm induced
by the inner product will be denoted by ∥ · ∥. If X is a Hilbert space and T ∈B[X ],
then T ∗∈ B[X ] denotes its (Hilbert-space) adjoint. A self-adjoint operator A (i.e., one
for which A∗ = A) is nonnegative or positive if, respectively, 0 ≤ ⟨Ax ;x⟩ for every x ∈ X
or 0 < ⟨Ax ;x⟩ for every nonzero x ∈ X (notation: A ≥ O or A > O). A (self-adjoint)
operator A is positive if and only if it is nonnegative and injective:

A > O ⇐⇒ A ≥ O and N (A) = {0}.

Injective self-adjoint operators have dense range (i.e., R(A)− = X whenever N (A) = {0}
if A∗ = A). Thus positive operators are injective with dense range. Hence a positive
operator A on a Hilbert space X is bounded below if and only if its has a bounded inverse
on its closed dense image, which in turn is equivalent to saying that it is injective and
surjective, which means invertible (with a bounded inverse). Invertible positive operators
are called strictly positive and denoted by A ≻ O:

A ≻ 0 ⇐⇒ A > O has a bounded inverse on X .

A nonnegative operator A has a unique nonnegative square root A
1
2 which is positive or

strictly positive whenever A is (indeed, N (A
1
2 ) = N (A) and R(A

1
2 )− = R(A)−).

3 Generating a New Inner Product

Take a linear space X , let ⟨ · ; · ⟩ be an inner product on X , suppose (X , ⟨ · ; · ⟩) is a
Hilbert space, and let A be a nonnegative operator (i.e., A ≥ O) on this Hilbert space. As
is readily verified, the nonnegative operator A generates a new semi-inner product ⟨ · ; · ⟩A
on X defined for every x, y ∈ X by

⟨x ; y⟩A = ⟨Ax ; y⟩,

which induces a seminorm ∥ · ∥A on X given by

∥x∥A = ⟨Ax ;x⟩
1
2 = ∥A

1
2x∥.

This seminorm ∥ · ∥A becomes a norm whenever A is injective (i.e., N (A) = {0} or,
equivalently, whenever the nonnegative A is positive). Consider the inner product space
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(X , ⟨ · ; · ⟩A). As defined in Section 2, B[X ] is the Banach algebra of all linear operators
on the Hilbert space (X , ⟨ · ; · ⟩) which are bounded (i.e., continuous) with respect to the
norm ∥ · ∥ induced by the inner product ⟨ · ; · ⟩. If A is positive, then let B[X ]A denote
the normed algebra of all linear operators on the inner product space (X , ⟨ · ; · ⟩A) which
are bounded (i.e., continuous) with respect to the new norm ∥ · ∥A. In this case (i.e., if
A > O or, equivalently, if ∥ · ∥A.is a norm), the following elementary result represents an
appropriate starting point.

Proposition 3.1. Let A > O be any positive operator on a Hilbert space (X , ⟨ · ; · ⟩) and
consider the norm ∥ · ∥A induced by the inner product ⟨ · ; · ⟩A = ⟨A · ; · ⟩. The following
assertions are equivalent.

(a) A is invertible (i.e., has bounded inverse on X ; equivalently, A ≻ O).

(b) The norms ∥ · ∥A and ∥ · ∥ on X are equivalent.

Proof. Take the Hilbert space (X , ⟨ · ; · ⟩) and let A be a positive operator on it. So

∥Ax∥2≤ ∥A
1
2∥2∥A

1
2x∥2 = ∥A∥ ∥x∥2A = ∥A∥ |⟨Ax ;x⟩| ≤ ∥A∥ ∥Ax∥ ∥x∥ ≤ ∥A∥2∥x∥2

for every x in X . Since A is positive, it is injective, and so A is bounded below if and only
if it has a closed range. Since A is an injective self-adjoint, then R(A)− = X . Thus the
positive operator A is invertible (i.e., A > O has a bounded inverse on X or, equivalently,
A is bounded below and surjective) if and only if A is bounded below, which means
α2∥x∥2 ≤ ∥Ax∥2 for every x ∈ X and some α > 0. Therefore

A ≻ O ⇐⇒ α2

∥A∥∥x∥
2 ≤ ∥x∥2A ≤ ∥A∥∥x∥2 for every x ∈ X , for some α > 0.

Perhaps the first result along this line is one ensuring that for every new inner product
there is a positive operator generating it.This is a classical result from [33].

Lemma 3.1. Let (X , ⟨ · ; · ⟩) be a Hilbert space, and let [ · ; · ] be a semi-inner product in
X . Then there exists a unique nonnegative operator A ∈ B[X ] for which

[x ; y] = ⟨x ; y⟩A = ⟨Ax ; y⟩ for every x, y ∈ X .

If this unique A ∈ B[X ] is positive, then [ · ; · ] becomes an inner product in X .

Proof. This is a particular case of a fundamental result for densely defined bounded
sesquilinear forms [ · ; · ] in a Hilbert-space setting [33, Theorem 2.28, p.63]. In particu-
lar, if (X , ⟨ · ; · ⟩) is a Hilbert space, then the result holds for every Hermitian symmetric
sesquilinear form inducing either a nonnegative or a positive quadratic form (i.e., it holds
for every semi-inner or inner product [ · ; · ] on X × X ) according to whether A is nonneg-
ative or positive, respectively.

The inner product space (X , [ · ; · ]) may not be a Hilbert space if the positive A is not
strictly positive. However, if A is invertible (i.e., if A ≻ O), then the new norm generated
by A is equivalent to the original one (by Proposition 3.1), and so (X , ⟨ · ; · ⟩A) becomes a
Hilbert space.
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4 Similarity to an Isometry and the Equation T ∗AT =A

Let the seminorm (norm) ∥ · ∥A be the one induced by the new semi-inner product
(inner product) ⟨· ; ·⟩A = ⟨A· ; ·⟩ as discussed in the previous section.

Proposition 4.1. Let X be a Hilbert space. Take an arbitrary operator T in B[X ] and
an arbitrary nonnegative operator A in B[X ].

(a) Since A ≥ O, then ∥Tx∥A = ∥x∥A for every x ∈ X if and only if T ∗AT = A.

(b) If A > O, then T is an isometry in B[X ]A if and only if T ∗AT = A.

(c) If A ≻ O and T ∗AT = A, then T is similar to an isometry.

(d) If T is similar to an isometry, then T ∗A′T = A′ for some O ≺ A′ ∈ B[X ].

Proof. (a) If A ≥ O, then ∥ · ∥A is a semi-norm on X . Since T ∗AT −A is self-adjoint,
⟨(T ∗AT −A)x, x⟩ = 0 for every x ∈ X if and only if T ∗AT = A. Therefore, since

∥Tx∥2A =∥A
1
2Tx∥2 =⟨ATx ;Tx⟩=⟨T ∗ATx, x⟩ and ⟨Ax, x⟩=∥A

1
2x∥2 =∥x∥2A

for every x ∈ X , we get the result in (a).

(b) If A > O, then ∥ · ∥A is a norm on X and therefore the identity ∥Tx∥A = ∥x∥A for
every x ∈ X means the operator T is an isometry in B[X ]A. Now apply (a).

(c) If A ≥ O and T ∗AT = A, then for every x ∈ X

∥A
1
2Tx∥2 = ⟨A

1
2Tx ;A

1
2Tx⟩ = ⟨T ∗ATx ;x⟩ = ⟨Ax ;x⟩ = ∥A

1
2x∥2.

If A ≻ O, then ∥A 1
2TA− 1

2x∥ = ∥x∥ for every x ∈ X . So T is similar to an isometry.

(d) If T ∈ B[X ] is similar to an isometry, then there exists an invertible transformation
W in B[X ,Y ] (with a bounded inverse W−1 in B[Y ,X ] for some Hilbert space Y unitarily
equivalent to X by the Inverse Mapping Theorem since X is Banach) for which WTW−1

is an isometry in B[Y ]. Since W is invertible, the polar decomposition of W is given by

W = U |W | where U ∈ B[X ,Y ] is unitary and |W | = (W ∗W )
1
2 ∈ B[X ] is strictly positive.

Thus O ≺ |W | = U∗W. Since WTW−1 is an isometry on Y , then U∗WTW−1U is an
isometry on X . Thus

⟨|W |2x, ;x⟩ = ∥|W |x∥2 = ∥U∗WTW−1U |W |x∥2

= ∥|W |TW−1Wx∥2 = ∥|W |Tx∥2 = ⟨T ∗|W |2Tx ;x⟩

for every x ∈ X , and hence T ∗A′ T = A′ with O ≺ A′ = |W |2.

Let T ∈B[X ] and A∈B[X ] be arbitrary operators on a Hilbert space X . In accordance
with Proposition 4.1(a), T was called an A-isometry in [35] if T ∗AT = A for some A ≥ O.
Similarly, T was called an A-contraction in [35] if T ∗AT ≤ A for some A ≥ O (see also
[36, 37]). Actually, T is similar to a contraction if and only if T ∗AT ≤A some A ≻ O
(see e.g., [22, Corollary 1.8]). Still along these lines, if an operator A (not necessarily
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nonnegative) is such that T ∗AT = r(T )2A for some T ∈ B[X ], where r(T ) stands for the
spectral radius of T , then A was called T -Toeplitz in [20] (recall: if T is power bounded
and ∥T n∥ ̸→ 0, then r(T ) = 1). For further applications of the new semi-inner product
space (X , ⟨ · ; · ⟩A) along different lines from those discussed here see, e.g., [1] and the
references therein.

Similarity to an isometry is equivalent to the equation T ∗AT = A for some A ≻ O
(Proposition 4.1 (c,d)). This is still equivalent to some forms of power boundedness and
power boundedness below (including Cesàro means forms). These are brought together in
the next proposition.

Proposition 4.2. Let T be an operator on a Hilbert space X . The following assertions
are pairwise equivalent.

(a) T is similar to an isometry.

(b) T is power bounded and power bounded below: there exist α, β > 0 such that

α∥x∥ ≤ ∥T kx∥ ≤ β∥x∥ for all k ≥ 0 and every x ∈ X .

(c) There exist α, β > 0 and an invertible R ∈ B[X ] for which

α∥x∥2 ≤ 1
n

∑n−1

k=0
∥RT kx∥2 ≤ β∥x∥2 for all n ≥ 1 and every x ∈ X .

(d) There exist α, β > 0 for which

α∥x∥2 ≤ 1
n

∑n−1

k=0
∥T kx∥2 ≤ β∥x∥2 for all n ≥ 1 and every x ∈ X .

(e) There exist α, β > 0 and an invertible R ∈ B[X ] for which

α∥x∥ ≤ ∥RT kx∥ ≤ β∥x∥ for all k ≥ 0 and every x ∈ X .

Proof. Suppose (c) holds. Since 1
n+1

∥RT nx∥2 ≤ 1
n+1

∑n
k=0 ∥RT kx∥2 ≤ β∥x∥2, then

1
n
∥RT nx∥2

∑n

k=0

1
k+1

= 1
n

∑n

k=0

1
k+1

∥RT kT n−kx∥2 ≤ 1
n

∑n

k=0
β∥T n−kx∥2

= n+1
n
β 1

n+1

∑n

k=0
∥R−1RT kx∥2 ≤ 2 β2∥R−1∥2∥x∥2,

and so supn

∥∥( 1
n

∑n
k=0

1
k+1

)1
2RT nx

∥∥2<∞ for every x ∈ X . By the Banach–Steinhaus

Theorem supn
1
n

∑n
k=0

1
k+1

∥∥RT n
∥∥2

<∞ which implies 1
n
∥RT n∥2→ 0 (as

∑n
k=0

1
1+k

→∞).
Thus since ∥T ∗nR∗RT n∥ = ∥RT n∥2,

1
n
∥T ∗nR∗RT n∥ → 0.

Now for each n ≥ 1 consider the Cesàro mean

Qn = 1
n

∑n−1

k=0
T ∗kR∗RT k.
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Since ∥Qn

1
2x∥2 = ⟨Qnx ;x⟩ = 1

n

∑n−1
k=0 ∥RT kx∥2, then α∥x∥2≤ ∥Qn

1
2x∥2≤ β∥x∥2, and hence

{Qn

1
2} is a bounded sequence of strictly positive operators (and so is {Qn}).

(i) First suppose the Hilbert space X is separable. In this case the bounded sequence
{Qn} has a weakly convergent subsequence (see, e.g., [24, Theorem 5.70]). But the cone
of nonnegative operators is weakly closed in B[X ] and so the weak limit of any weakly
convergent subsequence of {Qn} is again a nonnegative operator in B[X ]. Let the nonneg-
ative Q∈B[X ] be the weak limit of a weakly convergent subsequence of {Qn}. Actually,
Q is strictly positive because {Qn} is bounded below. Since

T ∗QnT = Qn + 1
n
(R∗R− T ∗nR∗RT n)

for each n ≥ 1, and since 1
n
∥T ∗nR∗RT n∥ → 0, we get (again) the equation

T ∗QT = Q.

So T is similar to an isometry (i.e., (a) holds) by Proposition 4.1(c). In other words, with
O ≺ A = Q the equation T ∗AT = A implies T is similar to an isometry.

(ii) Next suppose the Hilbert space X is not separable. Since (c) holds, T is nonzero. Take

an arbitrary 0 ̸= x∈X and set Mx = span
(∪

m,n≥0{TmT ∗nx}∪{T nT ∗mx}
)−

which is a
separable nontrivial (closed) subspace of the (nonseparable) Hilbert space X including
x and reducing T. Then both T |Mx and (T |Mx)∗ = T ∗|Mx act on the separable Hilbert
space Mx. Thus since T |Mx satisfies (c) — because T does — then according to (i) T |Mx

is similar to an isometry. Consider the collection ℑ = {
⊕

Mx : x∈X} of all orthogonal
direct sums of these subspaces, which is partially ordered (in the inclusion ordering) and is
not empty (if 0 ̸= y ∈Mx

⊥, then My ⊆Mx
⊥ because Mx

⊥ reduces T and so Mx ⊥My).
Moreover, every chain in ℑ has an upper bound in ℑ (the union of all orthogonal direct
sums in a chain of orthogonal direct sums in ℑ is again an orthogonal direct sum in ℑ).
Thus Zorn’s Lemma ensures that ℑ has a maximal element, say M =

⊕
Mx, which

coincides with X (otherwise it would not be maximal since M⊕M⊥ = X ). As T |Mxx =
Tx, then T =

⊕
T |Mx on X =

⊕
Mx is similar to an isometry since each T |Mx on Mx

is similar to an isometry according to item (i) above. Thus again (a) holds. Hence

(c) =⇒ (a).

Now if (a) holds, then (as in the proof of (d) in Proposition 4.1) there exists an in-
vertible transformation W ∈ B[X ,Y ] for which ∥WT kW−1y∥ = ∥y∥ for every y ∈ Y ,
equivalently, ∥WT kx∥ = ∥Wx∥ for every x ∈ X , for all k ≥ 0. Therefore we get ∥T kx∥ =
∥W−1WT kx∥ ≤ ∥W−1∥∥WT kx∥ = ∥W−1∥∥Wx∥ ≤ ∥W−1∥∥W∥∥x∥ and also ∥x∥ =
∥W−1Wx∥ ≤ ∥W−1∥∥Wx∥ = ∥W−1∥∥WT kx∥ ≤ ∥W−1∥∥W∥∥T kx∥, which implies
∥W−1∥−1∥W∥−1∥x∥ ≤ ∥T kx∥ ≤ ∥W−1∥∥W∥∥x∥ for all k for every x. Hence

(a) =⇒ (b).

This concludes the proof since (b) =⇒ (d) =⇒ (c) ⇐= (e) ⇐= (b) holds trivially.

The positive numbers α and β are constant with respect to x but of course they may
depend on T. Parts of Proposition 4.2 have appeared in [21, Theorem 2], [31, Proposition
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6.3], [15, Theorem 2], [22, Proposition 1.15], [2, Theorem 1], and [27, Corollary 4.2] (and
parts of it — e.g., (a) ⇐⇒ (b) — may survive in a normed-space setting). For further
conditions on similarity to isometries along these lines see, e.g., [4, Proposition 2.6], [38,
Theorem 2.1].

5 Contractions and the Equation T ∗AT = A

The next proposition is a classical result on Hilbert-space contractions dating back
to the early 1950s (see, e.g., [22, Chapter 3] and the references therein). It is based on
a well-known result which says: every monotone bounded sequence of Hilbert-space self-
adjoint operators converges strongly . If T is a Hilbert-space contraction, then {T ∗nT n} is
a bounded monotone sequence of self-adjoint operators (in fact a nonincreasing sequence
of nonnegative operators) and so it converges strongly to a nonnegative contraction A:

lim T ∗nT n = A strongly

(i.e., limn ∥(T ∗nT n− A)x∥ = 0 for every x). Such a nonnegative contraction A is usually
refereed to as the asymptotic limit of the contraction T. So if T is a contraction, then the
strong limit A ≥ O of {T ∗nT n} (i.e., the asymptotic limit of T ) defines a new semi-inner
product ⟨ · ; · ⟩A on X which becomes an inner product if A > O, and in this case T acts
as an isometry on (X , ⟨ · ; · ⟩A) by Proposition 4.1(b).

Proposition 5.1. For every contraction T on a Hilbert space X there exists a unique
nonnegative operator A on X for which

(a) T ∗nT n s−→ A,

and so
⟨x ; y⟩A = limn⟨T ∗nT nx ; y⟩ = limn⟨T nx ;T ny⟩ = ⟨Ax ; y⟩

for every x, y ∈ X or, equivalently,

∥T nx∥ → ∥A
1
2x∥ for every x ∈ X ,

where ∥A 1
2x∥ = ∥x∥A = ∥T jx∥A for every x∈X and every j ≥ 0.

Moreover :

(b) O ≤ A ≤ I (i.e., A is a nonnegative contraction on X ).

(c) T ∗AT =A. Equivalently,

∥A 1
2T nx∥ = ∥A 1

2x∥ for every x∈X and every n≥ 1.

(d) A ̸= O =⇒ ∥A∥ = ∥T∥ = 1.

(e) AT = O ⇐⇒ TA = O ⇐⇒ A = O.

(f) AT = TA ⇐⇒ A = A2.
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(g) (I − A)T n s−→ O and so (I − A
1
2 )T n s−→ O.

(h) ∥AT nx∥ → ∥A 1
2x∥ for every x ∈ X .

(i) N (A) =
{
x ∈ X : T nx → 0

}
(so T n s−→ O ⇐⇒ A = O).

(j) N (I−A) =
{
x∈X : ∥T nx∥ = ∥x∥ ∀n≥ 1

}
(so T is an isometry ⇐⇒ A = I).

Furthermore,
A is invertible ⇐⇒ T is similar to an isometry.

Proof. See, e.g., [22, Propositions 3.1, 3.2 and 3.8] — see also [8], [30], [6], [28].

Remark 5.1. According to Proposition 5.1(i) the strong limit A of {T ∗nT n} for a Hilbert-
space contraction T is positive if and only if T is a contraction of class C1· :

(a) T is a C1·-contraction ⇐⇒ N (A) = {0} ⇐⇒ A > O.

Since A2=A>O implies A=I, the above equivalence and Proposition 5.1(j) ensures

(b) T is a C1·-contraction with A = A2 ⇐⇒ T is an isometry.

For a collection of properties of asymptotic limits for Hilbert-space contractions see,
for instance, [40, Section I.10], [9, Section 6], [22, Chapter 3], [10], [25]. For the new inner
product ⟨· ; ·⟩A generated by the asymptotic limit A of a C1·-contraction T (i.e., for a
positive A or, in particular, for a strictly positive A as in Propositions 4.1(c) and 4.2) see,
for instance, [16], [22, Remark 3.9] and [23].

6 PowerBoundedOperators and the Equation T ∗AT=A

The existence of Banach limits was established by Banach himself [3, p.21] as a con-
sequence of the Hahn–Banach Theorem. Let ℓ∞+ denote the Banach space of all complex-
valued bounded sequences equipped with its usual sup-norm. A Banach limit is any
bounded linear functional φ : ℓ∞+ → C (i.e., φ ∈ ℓ∞+

∗, where ℓ∞+
∗ is the dual of ℓ∞+ ) as-

signing a complex number to each complex-valued bounded sequence which satisfies the
following properties. Take {ξn} ∈ ℓ∞+ .

(o) φ is linear (i.e., additive and homogenous),

(i) φ is real (i.e., φ({ξn}) ∈ R whenever {ξn} is real-valued),

(ii) φ is positive (i.e., 0 ≤ φ({ξn}) whenever 0 ≤ ξn for every n),

(iii) φ is order-preserving (i.e., φ({ξn}) ≤ φ({υn}) if ξn ≤ υn in R for every n),

(vi) φ is backward-shift-invariant (i.e., φ({ξn+1}) = φ({ξn})),

(v) lim infn ξn ≤ φ({ξn}) ≤ lim supn ξn for every real-valued sequence {ξn},
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(vi) φ assigns to a convergent sequence its limit (i.e., ξn → ξ =⇒ φ({ξn}) = ξ)

(in particular, φ({1, 1, 1, . . . }) = 1),

(vii) ∥φ∥ = 1.

For existence of Banach limits see, e.g., [5, Section III.7] or [24, Problem 4.66]). Moreover,
for every Banach limit φ there exist Banach limits φ+ and φ− such that

limninfj
1
n

∑n−1

k=0
ξk+j = φ−({ξn}) ≤ φ({ξn}) ≤ φ+({ξn}) = limnsupj

1
n

∑n−1

k=0
ξk+j

for an arbitrary real-valued sequence {ξn} ∈ ℓ∞+ , where φ−({ξn}) and φ+({ξn}) are the
minimum and maximum values of Banach limits at {ξn}, respectively [34, Theorem
(β, γ)]; and for every ξ ∈ [φ−({ξn}), φ+({ξn})] there exists a Banach limit φ′ for which
φ′({ξn}) = ξ (see also [32, (1.1)]). Actually, all Banach limits coincide on a real-valued
sequence if and only if their shifted Cesàro means converge uniformly in the shifted
parameter. In other words, if {ξn} is a real-valued sequence, then

φ({ξn}) = ξ for all Banach limits φ ⇐⇒ limn
1
n

∑n−1

k=0
ξk+j = ξ uniformly in j.

[29, Theorem 1] (see also [34, Theorem (δ)]). We will refer to the above displayed results
as Lorentz characterizations. Also, and consequently, since φ− and φ+ are Banach limits,
then for every real-valued sequence {ξn},

lim infnξn ≤ limninfj
1
n

∑n−1

k=0
ξk+j ≤ limnsupj

1
n

∑n−1

k=0
ξk+j ≤ lim supnξn.

The Banach limit technique for power bounded operators discussed here is well-known
and has been applied quite often (see, e.g., [17, 18, 19] for applications along the lines
considered here).

Suppose T ∈B[X ] is a power bounded operator (i.e., supn ∥T n∥ < ∞) acting on a
Hilbert space (X , ⟨ · ; · ⟩). Let ∥ · ∥ : X →R be the norm induced by the inner product
⟨ · ; · ⟩ : X×X → C. Let φ : ℓ∞+ →C be an arbitrary Banach limit. Since T is power bounded,
{⟨T nx ;T ny⟩} ∈ ℓ∞+ for each x, y in X . Thus set

⟨x ; y⟩φ = φ({⟨T nx ;T ny⟩}) = φ({⟨T ∗nT nx ; y⟩})

for x, y in X . Since every Banach limit is linear (which implies φ({ξn}) = φ({ξn})) and
positive (i.e., 0 ≤ φ({ξn}) whenever 0 ≤ ξn for every n), and since T is linear, then it is
readily verified that ⟨· ; ·⟩φ :X×X →C is a semi-inner product on X . Hence

∥x∥2φ = φ({∥T nx∥2})

for every x ∈ X defines the seminorm ∥ · ∥φ : X → R induced by the semi-inner product
⟨· ; ·⟩φ. (Even in this case of a sequence of norms of powers of a power bounded operator,
the squares in the above identity cannot be omitted due to the nonmultiplicativity of
Banach limits). Since a Banach limit is order-preserving for real-valued bounded sequences
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(i.e., φ({ξn}) ≤ φ({υn}) if ξn ≤ υn in R for every n), and since φ({1, 1, 1, . . . }) = 1, then
as T is power bounded,

∥x∥φ ≤ supn∥T n∥∥x∥
for every x ∈ X . Since Banach limits are backward-shift-invariant,

∥Tx∥2φ = φ({∥(T n+1x)∥2}) = φ({∥(T nx)∥2}) = ∥x∥2φ.

for every x ∈ X . The above setup leads to a generalization of Proposition 5.1 from con-
tractions to power bounded operators as in the forthcoming Theorem 6.1.

Remark 6.1. An important particular case. If a power bounded operator T is of class
C1· (i.e., T nx→/ 0 for every 0 ̸= x∈X ), then 0 < lim infn ∥T nx∥ for every x ̸= 0 (see, e.g.,
proof of Theorem 6.1(i) below). Any Banach limit φ is such that lim infn ξn ≤ φ({ξn}) ≤
lim supn ξn for a real-valued bounded sequence {ξn}. Then 0 <φ({∥T nx∥}) = ∥x∥φ when-
ever x ̸= 0. So the seminorm ∥ · ∥φ becomes a norm and consequently the semi-inner
product ⟨ · ; · ⟩φ becomes an inner product. Conversely, if T is not of class C1·, then
there is a nonzero x∈X for which T nx→ 0 and so lim supn ∥T nx∥→ 0 which implies
φ({∥T nx∥2|}) = 0 so that ∥x∥φ = 0, and the seminorm ∥ · ∥φ is not a norm. Thus if ∥ · ∥φ
is a norm, then T is of class C1·. Hence

⟨ · ; · ⟩φ is an inner product ⇐⇒ T is a power bounded of class C1·.

Thus if T is a power bounded operator of class C1· (with respect to the original norm
∥ · ∥), then (since ∥Tx∥φ = ∥x∥φ for every x∈X as we saw above) the norm ∥ · ∥φ makes
T into an isometry when acting on the inner product space (X , ⟨ · ; · ⟩φ).

Proposition 5.1 can be extended from contractions to power bounded operators (in
particular, to power bounded operators of class C1·). Given a power bounded operator
T and a Banach limit φ, there is a unique nonnegative operator Aφ, referred to as the
φ-asymptotic limit of T, such that ⟨· ; ·⟩φ = ⟨A· ; ·⟩ by Lemma 3.1. So

φ({T ∗nT n}) = Aφ weakly

(i.e., φ({⟨T ∗nT nx ; y⟩}) = ⟨Aφx ; y⟩ for every x, y). The next theorem rounds up a collec-
tion of properties (either well-known or not) of the φ-asymptotic limit Aφ for a power
bounded operator T into a unified statement. Each assertion in Theorem 6.1 is written
so as to establish an injection from the items in Proposition 5.1 into homonymous items
in Theorem 6.1.

Theorem 6.1. Let T ̸= O be a power bounded operator on a Hilbert space (X , ⟨· ; ·⟩) and
let φ : ℓ∞+ → C be an arbitrary Banach limit . Consider the semi-inner product ⟨ · ; · ⟩φ =
φ({⟨T n · ;T n · ⟩}) in X generated by T and φ. Then there exists a unique nonnegative
operator Aφ on X (which depends on T and φ) such that ⟨ · ; · ⟩φ = ⟨Aφ · ; ·⟩ and so

(a) ⟨x ; y⟩φ = φ({⟨T nx ;T ny⟩}) = φ({⟨T ∗nT nx ; y⟩}) = ⟨Aφx ; y⟩

for every x, y ∈ X or, equivalently,

φ({∥T nx∥2}) = ∥Aφ
1
2 x∥2 for every x∈X ,

where ∥Aφ
1
2 x∥ = ∥x∥φ = ∥T jx∥φ for every x∈X and every j ≥ 0.
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Moreover :

(b) O ≤ Aφ ≤ β2I with β = supn∥T n∥ ̸= 0.

Thus ∥Aφ∥ ≤ β2 and the identity ∥Aφ∥ = β2 may hold.

(c) T ∗AφT = Aφ. Equivalently,

∥Aφ
1
2 T nx∥ = ∥Aφ

1
2 x∥ for every x∈X and every n≥ 0.

(d) Aφ ̸= O =⇒ 1 ≤ ∥Aφ∥ and 1 ≤ ∥T∥.

(e) AφT = O ⇐⇒ TAφ = O ⇐⇒ Aφ = O.

(f) AφT = TAφ =⇒ Aφ = Aφ
2.

Conversely, if Aφ = Aφ
2, then

(f1) ∥(AφT
n − T nAφ)x∥2 ≤ (β2− 1)∥Aφx∥2 for all n and every x∈X ,

in particular, ∥(AφT − TAφ)x∥2 ≤ (∥T∥2− 1)∥Aφx∥2 for every x∈X ,

(f2) φ({∥(AφT
n − T nAφ)x∥2}) = 0 for every x∈X ,

(f3) ∥Aφ∥ = 1 whenever O ̸= Aφ.

(g) 0 ≤ φ({∥(I−Aφ)T nx∥2}) ≤ (∥Aφ∥2−1) ∥Aφ
1
2 x∥2 and

0≤φ({∥(I−Aφ
1
2 )T nx∥2})≤∥(I +Aφ

1
2 )−1∥2(∥Aφ∥2−1)∥Aφ

1
2 x∥2 for any x∈X ,

which are both null if ∥Aφ∥ = 1 (in particular if O ̸= Aφ = Aφ
2) or Aφ = O.

(h) φ({∥AφT
nx∥2}) = ∥Aφ

1
2 x∥2 + φ({∥(I−Aφ)T nx∥2}) for every x∈X .

(i) N (Aφ) =
{
x ∈ X : T nx → 0

}
=

{
x ∈ X : φ({∥T nx∥2}) = 0

}
.

Hence φ({∥T nx∥2}) = 0 for every x ∈ X ⇐⇒ T n s−→ O ⇐⇒ Aφ = O.

(j)
{
x ∈ X : limn ∥T nx∥ = β∥x∥

}
⊆ N (β2I − Aφ) =

{
x ∈ X : φ({∥T nx∥2}) = β2∥x∥2

}
⊆

{
x ∈ X : ∥x∥ ≤ lim infn∥T nx∥ ≤ lim supn∥T nx∥ = β∥x∥

}
.

Hence φ({∥T nx∥2}) = β2∥x∥2 for every x∈X ⇐⇒ limn ∥T nx∥ = β∥x∥ for every
x∈X ⇐⇒ Aφ = β2I ⇐⇒ Aφ = I ⇐⇒ T is an isometry on (X , ⟨ · ; · ⟩).

Also,
⟨ · ; · ⟩φ is an inner product ⇐⇒ T is of class C1· ⇐⇒ Aφ is positive.

In this case (i.e., if Aφ > O),

(k) AφT = TAφ ⇐⇒ Aφ = Aφ
2 ⇐⇒ Aφ = I ⇐⇒ T is an isometry on (X , ⟨ · ; · ⟩).

Furthermore, the following assertions are pairwise equivalent.
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(1) Aφ is invertible (i.e., Aφ ≻ O).

(2) The norms ∥ · ∥φ and ∥ · ∥ on X are equivalent.

(3) T on (X , ⟨ · ; · ⟩) is similar to an isometry.

(4) T on (X , ⟨ · ; · ⟩) is power bounded below.

Proof . Let T be a power bounded operator on a Hilbert space (X , ⟨ · ; · ⟩). Thus the se-
quence {⟨T nx ;T ny⟩} is bounded for every x, y ∈ X . Then consider the semi-inner product
⟨ · ; · ⟩φ = φ({⟨T n · ;T n ·⟩}) in X generated by T and a Banach limit φ.

(a) As (X , ⟨ · ; · ⟩) is a Hilbert space, an application of Lemma 3.1 ensures the existence
of a unique nonnegative operator Aφ on X for each power bounded operator T and each
Banach limit φ, the φ-asymptotic limit of T , such that

φ({⟨T ∗nT nx y⟩}) = ⟨x ; y⟩φ = ⟨x ; y⟩Aφ = ⟨Aφx ; y⟩ for every x, y ∈ X .

The nontrivial part of the next equivalence follows by the polarization identity. The last
identity is a consequence of the shift invariance property for Banach limits:

∥x∥2φ = ∥Aφ
1
2 x∥2 = φ({∥T nx∥2}) = φ({∥T nT jx∥2}) = ∥Aφ

1
2 T jx∥2 = ∥T jx∥2φ

for every x∈X and every j ≥ 0.

(b) Now set β = supn ∥T n∥. Since ∥Aφ
1
2 x∥2 = φ({∥T nx∥2}) ≤ supn ∥T nx∥2 ≤ β2∥x∥2 for

every x ∈ X (because ∥φ∥ = 1) we get

∥Aφ∥ = ∥Aφ
1
2 ∥2 ≤ β2.

Also ⟨(Aφ− β2I)x ;x⟩=∥Aφ
1
2 x∥2−β2∥x∥2≤ (∥Aφ∥ − β2)∥x∥2 ≤ 0 for every x∈X by the

above inequality. Thus the inequalities in (b) hold (since Aφ is self-adjoint):

O ≤ Aφ ≤ β2I.

(If T = shift{β, 1, 1, 1, . . . }, then Aφ = diag{β2, 1, 1, 1, . . . } = T ∗nT n for all n ≥ 1.)

(c) By definition, ∥x∥Aφ = ∥x∥φ and so ∥Tx∥Aφ = ∥Tx∥φ. Since ∥Tx∥φ = ∥x∥φ according
to (a), then by (b) and Proposition 4.1(a)

T ∗AφT = Aφ.

Equivalently, T ∗nAφT
n = Aφ for every n ≥ 1 by induction, which means

∥Aφ
1
2 T nx∥2 = ⟨T ∗nAφT

nx ;x⟩ = ⟨Aφx ;x⟩ = ∥Aφ
1
2 x∥2

for every x ∈ X since Aφ is nonnegative.

(d) Then ∥Aφ
1
2 x∥2 = ∥Aφ

1
2 T nx∥2≤ ∥Aφ

1
2 ∥2∥T nx∥2 = ∥Aφ∥ ∥T nx∥2. So (for a constant se-

quence) ∥Aφ
1
2 x∥2 = φ({∥Aφ

1
2 x∥2})≤ ∥Aφ∥φ({∥T nx∥2}) = ∥Aφ∥∥Aφ

1
2 x∥2 for every x ∈ X

by (a). Hence if there is x0 ∈X for which Aφ
1
2 x0 ̸= 0, then 1 ≤ ∥Aφ∥:

1 ≤ ∥Aφ∥ whenever Aφ ̸= O.

Since Aφ = T ∗AφT , then ∥Aφ∥ ≤ ∥Aφ∥ ∥T∥2. Hence Aφ ̸= O implies 1 ≤ ∥T∥.
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(e) If Aφ = O, then AφT = TAφ = O trivially. By (c), AφT = O implies Aφ = O. Finally,

if TAφ = O, then φ({∥T nAφx∥}) = 0, and so ∥Aφ
3
2 x∥ = 0, for every x ∈ X , by (a). Thus

Aφ = O (by the Spectral Theorem since by (b) Aφ is nonnegative).

(f) Take x, y ∈X . Since T ∗nAφT
n = Aφ, then φ({⟨T ∗nAφT

nx ; y⟩}) = φ({⟨Aφx ; y⟩}) =
⟨Aφx ; y⟩ (constant sequence). Also by (a) φ({⟨T ∗nT nAφx ; y⟩}) = ⟨Aφ

2x ; y⟩. So

AφT = TAφ =⇒ Aφ = Aφ
2.

Conversely, ⟨AφT
nx ;T nAφx⟩ = ∥Aφ

1
2 T nx∥2 = ∥Aφ

1
2 x∥2 by (c). IfAφ = Aφ

2, then Aφ
1
2 =

Aφ by uniqueness of the nonnegative square root, and hence

∥(AφT
n − T nAφ)x∥2 = ∥AφT

nx∥2 + ∥T nAφx∥2− 2∥Aφ
1
2 x∥2

= ∥T nAφx∥2 − ∥Aφx∥2 ≤ (β2 − 1)∥Aφx∥2

for all n and every x ∈ X . In particular, for n = 1 we get for every x ∈ X

∥(AφT − TAφ)x∥2 ≤ (∥T∥2 − 1)∥Aφx∥2.

Asymptotically, if Aφ = Aφ
2, then Aφ

1
2 = Aφ. So we get by (a) and the above identity

φ({∥(AφT
n − T nAφ)x∥2}) = φ({∥T nAφx∥2}) − ∥Aφx∥2 = ∥Aφ

3
2 x∥2 − ∥Aφx∥2 = 0

for every x ∈ X . Moreover, if Aφ = Aφ
2, then Aφ is an orthogonal projection (since it is

self-adjoint) and so ∥Aφ∥ = 1 whenever Aφ ̸= O.

(g) Take an arbitrary x ∈ X . Again, by (c) we get ⟨T nx ;Aφ T
nx⟩ = ∥Aφ

1
2 T nx∥2 =

∥Aφ
1
2 x∥2 for all n ≥ 0, and φ({∥T nx∥2}) = ∥Aφ

1
2 x∥2 according to (a). Thus

0 ≤ φ({∥(I − Aφ)T nx∥2}) = φ({∥T nx∥2}) + φ({∥AφT
nx∥2}) − 2φ({∥Aφ

1
2 x∥2})

= φ({∥AφT
nx∥2}) − ∥Aφ

1
2 x∥2 ≤ (∥Aφ∥2 − 1)∥Aφ

1
2 x∥2.

Since I − Aφ = (I + Aφ
1
2 ) (I − Aφ

1
2 ), and since I + Aφ

1
2 is invertible with a bounded

inverse (because Aφ ≥ O), then I − Aφ
1
2 = (I + Aφ

1
2 )−1 (I − Aφ) and so

0 ≤ φ({∥(I − Aφ
1
2 )T nx∥2}) ≤ ∥(I + Aφ

1
2 )−1∥2φ({∥(I − Aφ)T nx∥2}).

(h) This was proved above: φ({∥(I − Aφ)T nx∥2}) = φ({∥AφT
nx∥2}) − ∥Aφ

1
2 x∥2.

(i) Part of assertion (i) follows at once from (a) since N (Aφ) = N (Aφ
1
2 ). Indeed,

T nx → 0 =⇒ φ({∥T nx∥}) = 0 ⇐⇒ ∥Aφ
1
2 x∥2 = 0 ⇐⇒ x ∈ N (Aφ

1
2 ) ⇐⇒ x ∈N (Aφ).

Conversely, suppose β ≥ 1. (Otherwise T nx → 0 for every x ∈ X since supn ∥T n∥ = β < 1
implies ∥T n∥ ≤ ∥T∥n ≤ βn→ 0.) If φ({∥T nx∥}) = 0 for some Banach limit φ, then we get
lim infn ∥T nx∥ = 0 (recall: 0 ≤ lim infn ξn ≤ φ({ξn}) ≤ lim supn ξn for ξn ≥ 0). However,
if lim infn ∥T nx∥ = 0, then for every ε > 0 there is an integer nε such that ∥T nεx∥ < ε,
which implies ∥T nx∥ ≤ β ∥T nεx∥ < βε for all n ≥ nε. Thus ∥T nx∥ → 0.
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(j) Take any 0 ̸= x ∈ X (nonzero to avoid trivialities). Since φ is a Banach limit,

∥T nx∥ → β∥x∥ =⇒ φ({∥T nx∥2}) = β2∥x∥2.

According to (a),

φ({∥T nx∥2}) = β2∥x∥2 ⇐⇒ ∥Aφ
1
2 x∥2 = β2∥x∥2 ⇐⇒ ⟨(β2I − Aφ)x ;x⟩ = 0,

and according to (b), since N ((β2I − Aφ)
1
2 ) = N (β2I − Aφ),

⟨(β2I − Aφ)x ;x⟩ = 0 ⇐⇒ ∥(β2I − Aφ)
1
2x∥ = 0 ⇐⇒ x ∈ N (β2I − Aφ).

Conversely, since φ({∥T nx∥2}) = β2∥x∥2 means φ({β2∥x∥2− ∥T nx∥2}) = 0, and since
0 ≤ β2∥x∥2− ∥T nx∥2 for every n because supn∥T nx∥ ≤ β∥x∥, then we get

φ({∥T nx∥2}) = β2∥x∥2 =⇒ lim infn{β2∥x∥2 − ∥T nx∥2} = 0.

However, recalling again that 0 ≤ ∥T nx∥ ≤ β∥x∥ for every n,

lim infn{β2∥x∥2 − ∥T nx∥2} = 0 ⇐⇒ lim supn∥T nx∥ = β∥x∥.

Moreover, for x ̸= 0 and since β > 0 (as T ̸= O),

lim supn∥T nx∥ = β∥x∥ =⇒ β ≥ 1

(indeed, if β < 1, then β = lim supn
∥Tnx∥
∥x∥ ≤ lim supn supx ̸=0

∥Tnx∥
∥x∥ = lim supn ∥T n∥ ≤

lim supn ∥T∥n ≤ lim supn β
n = limn β

n = 0). Also, since ∥T n+mx∥ ≤ β∥T nx∥ for each
m,n ≥ 0, then lim supn ∥T nx∥ = lim supn ∥T n+mx∥ ≤ β lim infm ∥Tmx∥, and so

lim supn∥T nx∥ = β∥x∥ =⇒ ∥x∥ ≤ lim infm∥Tmx∥.

Finally, by the above implications and equivalences, if limn ∥T nx∥ = β∥x∥ for every x ∈ X ,
then φ({∥T nx∥2}) = β2∥x∥2 for every x ∈ X , which means Aφ = β2I. But this implies
T ∗T = I by (c) (since β ̸= 0 whenever T ̸= O), which in turn implies Aφ = I by (a) (i.e.,
⟨Aφx ; y⟩ = φ({⟨T ∗nT nx ; y⟩}) for every x, y ∈ X ). However, if Aφ = I, then ∥Tx∥ = ∥x∥
for every x ∈ X by (c), which means T is an isometry on (X , ⟨ · ; · ⟩), and we are back to
limn ∥T nx∥ = β∥x∥ for every x ∈ X with β = 1.

As we saw in Remark 6.1, ⟨ · ; · ⟩φ is an inner product if and only if T is a power
bounded of class C1·, and the semi-inner product ⟨ · ; · ⟩φ = ⟨Aφ · ; · ⟩ is an inner product

(i.e., the seminorm ∥ · ∥φ = ∥Aφ
1
2 · ∥ is a norm) if and only if N (Aφ) = {0}, which means

the nonnegative Aφ is positive. Thus from now on suppose Aφ> O.

(k) If AφT = TAφ then Aφ = Aφ
2 by (f) and so Aφ is an orthogonal projection (since it is a

seif-adjoint idempotent) which implies Aφ = I (because Aφ > O), and hence AφT = TAφ

trivially. Therefore if Aφ > O,

AφT = TAφ =⇒ Aφ = Aφ
2 =⇒ Aφ = I =⇒ AφT = TAφ.

But Aφ = I if and only if T is an isometry, as we saw in the proof of item (j).
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Since T is power bounded, to prove assertions (1) to (4) proceed as follows.

(1) ⇐⇒ (2), (3) ⇐⇒ (4), and (1) =⇒ (3)

by Proposition 3.1, Proposition 4.2(a,b), and Proposition 4.1(c), respectively. Conversely,
as T is power bounded, if (4) holds, then α∥x∥ ≤ ∥T nx∥ ≤ β∥x∥ for all n ≥ 0, and so
α∥x∥ ≤ φ({∥T nx∥}) ≤ β∥x∥, for every x ∈ X . Since φ({∥T nx∥2}) = ∥x∥2φ by (a), then
α2∥x∥2 ≤ ∥x∥2φ ≤ β2∥x∥2 for every x ∈ X and so (2) holds. Thus

(4) =⇒ (2).

Remark 6.2. If T is a contraction (equivalently, if β ≤ 1), then Theorem 6.1 is reduced
to Proposition 5.1, and {T ∗nT n} converges strongly (thus weakly) to Aφ = A for every
Banach limit φ, with ∥A∥ = 1 or ∥A∥ = 0. For a C1·-contraction, ∥A∥ = 1.

Such a combined procedure (of using Lemma 3.1 together with an inner product gen-
erated by a power bounded operator and a Banach limit) seems to have been originated in
the celebrated Nagy’s 1947 paper [39] (see also [40, Section II.5]). Subsequent applications
of it appear, for instance, in [16, 17, 18] and, recently, in [11, 12, 27]. Proposition 4.2(a,b),
however, supplies an elementary and straightforward proof of Nagy’s result as follows.

Corollary 6.1. [39] On a Hilbert space, an invertible power bounded operator with a
power bounded inverse is similar to a unitary operator — the converse is trivial .

Proof. Let T ∈ B[X ] and T−1 ∈ B[X ] be power bounded. Thus there exist real constants
0 < α ≤ 1 and 1 ≤ β for which ∥T n∥ ≤ β and ∥T−n∥ ≤ α−1 for all n ≥ 0. So α∥x∥ ≤
∥T−n∥−1∥x∥ ≤ ∥T nx∥ ≤ β∥x∥ for all n and every x. Hence T is similar to an isometry
by Proposition 4.2(a,b). Since T is invertible, then so is the isometry similar to it: an
invertible Hilbert-space isometry means a unitary operator.

7 Cesàro Means and the Equation T ∗AT = A

A word on terminology. An X -valued sequence in an arbitrary normed space X is
called Cesáro convergent if its sequence of arithmetic means (referred to as Cesáro means)
converges in X , whose limit is called Cesáro limit.

Banach limits have been related to Cesàro means since the very beginning [29], and
Cesàro means are naturally linked to the Ergodic Theorem for power bounded operators.
If a sequence {Qn} of Cesàro means Qn = 1

n

∑n−1
k=0T

∗kT k for an operator T converges
(either weakly, strongly, or uniformly), then its limit Q (if it exists) has been refereed to
as the Cesàro asymptotic limit of T (see [11]). As is well-known, the strong limit Q always
exists for contractions and coincides with the asymptotic limit A: for a contraction T the
sequence of Cesàro means {Qn} converges strongly to Q = A. An elementary quick proof
is readily obtained as follows.

Proposition 7.1. For a Hilbert-space contraction the sequence of Cesàro means converges
strongly and the Cesàro asymptotic limit coincides with the asymptotic limit :

∥T∥ ≤ 1 =⇒ Qn = 1
n

∑n−1

k=0
T ∗kT k s−→ Q = A.
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Proof. If T is a contraction, then the sequence {T ∗nT n} converges strongly to A by Propo-
sition 5.1. Since xn → x implies 1

n

∑n
k=1 xk → x for any normed-space-valued sequence

{xn}, then T ∗nT n s−→ A implies Qn
s−→ Q = A.

As before, the next theorem brings together scattered properties (again, either well-
known — e.g., [11, Theorems 2.5, 2.6 and Proposition 5.1] — or not) of Cesàro asymptotic
limits Q into a unified statement. Some parts in the proof behave similarly to their equiv-
alent in the proof of Theorem 6.1, as expected; some other parts require an independent
and different approach. Each assertion in Theorem 7.1 below is written so as to establish a
bijection with the items in Theorem 6.1 and so, by transitivity, it establishes an injection
from the items in Proposition 5.1 into homonymous items in Theorems 6.1 and 7.1.

Theorem 7.1. Let O ̸= T ∈B[X ] be a Hilbert-space operator. For each positive integer
n consider the Cesàro mean

Qn = 1
n

∑n−1

k=0
T ∗kT k

in B[X ]. Suppose the sequence {Qn} converges weakly to Q∈B[X ]. That is, suppose

(a) Qn
w−→ Q. Equivalently,

∥Qn

1
2x∥ → ∥Q 1

2x∥ for every x∈X .

Then in this case:

(b) O ≤ Q and, if supn ∥T n∥ = β (so that β ̸= 0), then Q ≤ β2.

If T is power bounded, then ∥Q∥ ≤ β2 and the identity ∥Q∥ = β2 may hold.

(c) T ∗QT = Q. Equivalently,

∥Q1
2 T nx∥ = ∥Q1

2 x∥ for every x∈X and every n≥ 0. Therefore

∥Qn

1
2T jx∥2 = 1

n

∑n−1
k=0∥T k+jx∥2 → ∥Q 1

2x∥2 for every x ∈ X and every j ≥ 0.

(d) Q ̸= O =⇒ 1 ≤ ∥Q∥ and 1 ≤ ∥T∥.

(e) QT = O ⇐⇒ TQ = O ⇐⇒ Q = O.

(f) QT = TQ =⇒ Q = Q2.

Conversely, if Q = Q2, then

(f1) ∥(QT n − T nQ)x∥2 ≤ (supn ∥T n∥2− 1)∥Qx∥2 for all n and every x∈X ,

in particular, ∥(QT − TQ)x∥2 ≤ (∥T∥2− 1)∥Qx∥2 for every x∈X ,

(f2) ∥(QT n − T nQ)x∥ → 0 for every x∈X ,

(f3) ∥Q∥ = 1 whenever O ̸= Q.

(g) ∥(I −Q)Qn

1
2x∥2 ≤ (∥Q∥2 − 1) ∥Qn

1
2x∥2 → (∥Q∥2 − 1) ∥Q 1

2x∥2 and

∥(I −Q
1
2 )Qn

1
2x∥2 ≤ ∥(I + Q

1
2 )−1∥2(∥Q∥2 − 1) ∥Qn

1
2x∥2 for every x∈X ,

which are both null if ∥Q∥ = 1 or asymptotically null if Q = O.



162

(h) ∥QQn

1
2x∥2 = ∥(2Q− I)

1
2Qn

1
2x∥2 + ∥(I −Q)Qn

1
2x∥2 for every x∈X ,

(i) If T is power bounded, then

N (Q) =
{
x ∈ X : T nx → 0

}
=

{
x ∈ X : 1

n

∑n−1
k=0∥T kx∥ → 0

}
.

Hence T n s−→ O ⇐⇒ Q = O and T is power bounded.

(j) If supn ∥T n∥ = β (so that β ̸= 0) then{
x ∈ X : limn ∥T nx∥ = β∥x∥

}
⊆ N (β2I −Q) =

{
x ∈ X : limn

1
n

∑n−1
k=0∥T kx∥2 = β2∥x∥

}
⊆

{
x ∈ X : ∥x∥ ≤ lim infn∥T nx∥ ≤ lim supn∥T nx∥ = β∥x∥

}
.

Hence limn
1
n

∑n−1
k=0∥T kx∥2 = β2∥x∥ for every x∈X ⇐⇒ limn ∥T nx∥ = β∥x∥ for

every x ∈ X ⇐⇒ Q = β2I ⇐⇒ Q = I ⇐⇒ T is an isometry on (X , ⟨ · ; · ⟩).

Also if T is power bounded, then

⟨ · ; · ⟩Q is an inner product ⇐⇒ T is of class C1· ⇐⇒ Q is positive.

In the case of Q > O we get

(k) QT = TQ ⇐⇒ Q = Q2 ⇐⇒ Q = I ⇐⇒ T is an isometry on (X , ⟨ · ; · ⟩).

Furthermore, the following assertions are pairwise equivalent.

(1) Q is invertible (i.e., Q ≻ O).

(2) The norms ∥ · ∥Q and ∥ · ∥ on X are equivalent.

(3) T on (X , ⟨ · ; · ⟩) is similar to an isometry.

(4) T on (X , ⟨ · ; · ⟩) is power bounded below.

Proof. Let T ∈B[X ] be an operator acting on a Hilbert space X , take the sequence
{T ∗nT n} of nonnegative operators in B[X ], and consider the Cesàro mean

Qn = 1
n

∑n−1

k=0
T ∗kT k for every n ≥ 1

associated with {T ∗nT n}. Suppose the B[X ]-valued sequence {Qn} of nonnegative opera-
tors converges weakly to the Cesàro asymptotic limit Q∈B[X ] of T .

(a) Since the class of nonnegative operators is weakly closed in B[X ], then the weak limit
Q is nonnegative, and hence Qn

w−→ Q is equivalent to

∥Qn

1
2x∥2 = ⟨Qnx x⟩ → ⟨Qx x⟩ = ∥Q

1
2x∥2 for every x ∈ X .

(b) By (a), O ≤ Q. If supn ∥T n∥ = β, then Qn ≤ 1
n
I + 1

n

∑n−1
k=1β

2I → β2I (and if
T = shift{β, 1, 1, 1, . . . }, then Q = T ∗nT n = diag{β2, 1, 1, 1, . . . }) for every n≥ 1.

(c) Since Qn = 1
n

∑n−1
k=0T

∗kT k, then (compare with the proof of Proposition 4.2)
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T ∗QnT = Qn+1 + 1
n
(Qn+1 − I)

for each n≥ 1. If ⟨Qnx ;x⟩→ ⟨Qx ;x⟩ for every x∈X , then {Qn} is bounded and so

T ∗QT = Q.

By induction, T ∗nQT n = Q for all n≥ 0. As O ≤ Q and O ≤ Qn for n≥ 1, then (i)

∥Q
1
2T nx∥2 = ⟨QT nx ;T nx⟩ = ⟨T ∗nQT nx ;x⟩ = ⟨Qx ;x⟩ = ∥Q

1
2x∥

for every x∈X and every n≥ 0, and (ii) T ∗jQnT
j w−→ Q for every j ≥ 0, and so

∥Qn

1
2T jx∥2 = ⟨QnT

jx ;T jx⟩ = 1
n

∑n−1

k=0
⟨T ∗k+jT k+jx ;x⟩ = 1

n

∑n−1

k=0
∥T k+jx∥2

for every n ≥ 1 and every j ≥ 0. Thus, since ∥Qn

1
2T jx∥2 → ∥Q 1

2T jx∥2 by (a), then

1
n

∑n−1

k=0
∥T k+jx∥2 → ∥Q

3
2x∥2, for every x ∈ X and every j ≥ 0.

(d) According to (c), ∥Q 1
2x∥2 = ∥Q 1

2T kx∥2 ≤ ∥Q∥∥T kx∥2 for any k≥ 1 and ∥Q 1
2x∥2 =

1
n

∑n−1
k=0∥Q

1
2x∥2 ≤ ∥Q∥ 1

n

∑n−1
k=0∥T kx∥2 → ∥Q∥∥Q 1

2x∥2 ̸= 0 for every x ∈ X\N (Q). So

1 ≤ ∥Q∥ whenever Q ̸= O.

Since Q = T ∗QT , then ∥Q∥ ≤ ∥Q∥T∥2. Hence Q ̸= O implies 1 ≤ ∥T∥.

(e) Q = O trivially implies QT = TQ = O, and QT = O implies Q = O by (c). Also, if

TQ = O, then 0 = ∥Qn

1
2TQx∥ → ∥Q 3

2x∥ for every x ∈ X by (c) again, and so Q = O.

(f) Since O ≤ Q, then QT = TQ if and only if Q
1
2 T = TQ

1
2 . If Q

1
2 T = TQ

1
2 , then ac-

cording to (c) it follows that

⟨Qx ;x⟩ = ∥Q
1
2x∥2 = 1

n

∑n−1

k=1
∥Q

1
2x∥2 = 1

n

∑n−1

k=1
∥Q

1
2T kx∥2

= 1
n

∑n−1

k=1
∥T kQ

1
2x∥2 → ∥Qx∥2 = ⟨Q2x ;x⟩

for every x ∈ X . So Q = Q2. Conversely, ⟨QT nx ;T nQx⟩ = ∥Q 1
2T nx∥2 = ∥Q 1

2x∥2 accord-

ing to (c). Since Q = Q2 if and only if Q
1
2 = Q, then we get in this case

∥(QT n − T nQ)x∥2 = ∥QT nx∥2 + ∥T nQx∥2− 2∥Q
1
2x∥2

= ∥T nQx∥2 − ∥Qx∥2 ≤ (supn∥T n∥2 − 1)∥Qx∥2

for all n and every x ∈ X . In particular, for n = 1 we get for every x ∈ X

∥(QT − TQ)x∥2 ≤ (∥T∥2 − 1)∥Qx∥2.

Thus, asymptotically (with the assumption Q = Q2 still in force), we get by (c)

limn∥(QT n − T nQ)x∥2 = limn∥T nQ
1
2x∥2−∥Q

1
2x∥2 = 0
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for every x ∈ X (and so {QT n − T nQ} is a bounded the sequence of operators disre-
garding whether T is power bounded or not). Again, as in the proof of Theorem 6.1,
O ≤ Q = Q2 ̸= O implies Q is an nonzero orthogonal projection, and so ∥Q∥ = 1.

(g) The inequality is readily verified and the limit comes from (c): for any x ∈ X ,

∥(I −Q)Qn

1
2x∥2 = ∥Qn

1
2x∥2 + ∥QQn

1
2x∥2 − 2∥Q

1
2Qn

1
2x∥2

≤ ∥Qn

1
2x∥2 + ∥Q∥2∥Qn

1
2x∥2 − 2∥Q∥ ∥Qn

1
2x∥2

= (∥Q∥ − 1)2∥Qn

1
2x∥2 → (∥Q∥ − 1)2∥Q

1
2x∥2,

and since I −Q = (I + Q
1
2 )(I −Q

1
2 ) and I + Q

1
2 is invertible, then we get the second

inequality form the above one.

(h) As we saw above, ∥QQn

1
2x∥2 = ∥(I − Q)Qn

1
2x∥2 + 2∥Q 1

2Qn

1
2x∥2 − ∥Qn

1
2x∥2, but

2∥Q 1
2Qn

1
2x∥2 − ∥Qn

1
2x∥2 = ∥(2Q− I)

1
2Qn

1
2x∥2, for every x ∈ X . So we get (h).

(i) As in the proof of Proposition 7.1, if ∥T nx∥ → 0, then 1
n

∑n−1
k=0∥T kx∥ → 0, which means

∥Q 1
2x∥ = 0 by (c) or, equivalently, x ∈ N (Q

1
2 ) (i.e., x ∈ N (Q)). The converse requires

power boundedness. If 1
n

∑n−1
k=0∥T kx∥ → 0 (i.e., if x ∈ N (Q)), then

0 ≤ lim infn∥T nx∥ ≤ limninfj
1
n

∑n−1

k=0
∥T k+jx∥ ≤ limn

1
n

∑n−1

k=0
∥T kx∥ = 0

(as we saw in Section 6). But if T power bounded, then lim infn∥T nx∥ = 0 implies
limn∥T nx∥ = 0 (as we saw in the proof of Theorem 6.1(i)).

(j) Suppose supn ∥T n∥ ≤ β. Again, as in the proof of Proposition 7.1,

∥T nx∥ → β∥x∥ =⇒ 1
n

∑n−1

k=0
∥T kx∥2 → β2∥x∥.

According to (c),

limn
1
n

∑n−1

k=0
∥T kx∥2 = β2∥x∥ ⇐⇒ ∥Q

1
2x∥2 = β2∥x∥2 ⇐⇒ ⟨(Q− β2I)x ;x⟩,

and according to (b),

⟨(Q− β2I)x ;x⟩ ⇐⇒ ∥(Q− β2I)
1
2x∥ = 0 ⇐⇒ x ∈ N (Q− β2I)

since N (Q− β2I)
1
2 = N (Q− β2I). Conversely,

limn
1
n

∑n−1

k=0
∥T kx∥2 = β2∥x∥ =⇒ lim supn∥T nx∥ = β∥x∥.

Indeed, since supn ∥T n∥ ≤ β, then as we saw in Section 6

β2∥x∥2 = limn
1
n

∑n−1

k=0
∥T kx∥2 ≤ lim supn∥T nx∥2 ≤ supn∥T nx∥2 ≤ β2∥x∥2.

Thus, as in the proof of Theorem 6.1(j), for x ̸= 0 and since β > 0,

lim supn∥T nx∥ = β∥x∥ =⇒ β ≥ 1 and ∥x∥ ≤ lim infn∥T nx∥.
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If limn ∥T nx∥ = β∥x∥ for every x ∈ X , then limn
1
n

∑n−1
k=0∥T kx∥2 = β2∥x∥ for every x ∈ X

as we saw above, meaning Q = β2I, which implies T ∗T = I by (c), and so Qn = I = Q.
Conversely, if Q = I, then ∥T nx∥ = ∥x∥ for every x ∈ X by (c) again (i.e., T is an isome-
try), and so limn ∥T nx∥ = β∥x∥ for every x ∈ X with β = 1.

Suppose T is power bounded. If T is of class C1· (i.e.,if ∥T nx∥ ̸→ 0 if x ̸= 0), then
as we saw in the proof of Theorem 6.1(i) 0 < lim infn ∥T nx∥ for x ̸= 0. The converse is
trivial. Since lim infn ∥T nx∥2 ≤ limn

1
n

∑n−1
k=0∥T kx∥2 (as we saw in Section 6) and since

limn
1
n

∑n−1
k=0∥T kx∥2 = ∥Qnx∥2 → ∥Qx∥2 = ∥x∥2Q by (c), then 0 < lim infn ∥T nx∥ implies

0 < ∥x∥Q for x ̸= 0, which means Q > O. Thus if T is power bounded, then

⟨ · ; · ⟩Q is an inner product ⇐⇒ T is of class C1· ⇐⇒ Q is positive.

(k) This follows as in the proof of Theorem 6.1(k) with Aφ replaced by Q.

Moreover, the equivalences among the assertions (1) to (4), depend on the new inner
product ⟨· ; ·⟩Q generated by the positive Q, and so they follow by Propositions 4.1 and
4.2 by using the same argument of Theorem 6.1, with φ({∥T nx∥2}) = ∥x∥2φ replaced by

limn ∥Qn

1
2x∥2 = limn

1
n

∑n−1
k=0∥T kx∥2 → ∥Qx∥2 = ∥x∥2Q.

Remark 7.1. Even a power unbounded operator may have a Cesàro asymptotic limit
(see, e.g., [11, Example 3]), while there is no φ-asymptotic limit for power unbounded
operators. From now on suppose T is power bounded.

(a) Thus for every Banach limit φ there exists a φ-asymptotic limit Aφ for T. Even in this
case of a power bounded operator, the Cesàro asymptotic limit Q may not exist (even in
the weak sense; see [11, Example 2]).

(b) Moreover, even when Q exists it may not coincide with Aφ. Indeed, it was exhibited
in [11, Example 1] a power bounded unilateral weighted shift T such that ∥T n∥ = β =

√
2

for all n and ∥T ne1∥2 is either β2 or 1 depending on n, with Cesàro asymptotic limit
Q = I, which does not coincide with an arbitrary φ-asymptotic limit Aφ (i.e., Q ̸= Aφ for

a specific Banach limit φ — actually, there exist Banach limits φ for which ∥Aφ
1
2 e1∥2 lies

anywhere in the interval [1, β2]).

(c) As we have seen in Theorems 6.1(d) and 7.1(d), if the asymptotic limits are not
null, then for every Banach limit φ we get 1 ≤ ∥Aφ∥, 1 ≤ ∥Q∥, and 1 ≤ ∥T∥. These norms,
however, are not related. For instance, if T = shift{β, 1, 1, 1, . . . } is the unilateral weighted
shift with β > 1 as in the proofs of Theorems 6.1(b) and 7.1(b), then ∥Aφ∥ = ∥Q∥ = β2

and ∥T∥ = β. On the other hand, if T =
(
0 β
0 0

)
⊕ I, then T n = O ⊕ I for all n ≥ 2 and

Aφ = Q = O ⊕ I for all Banach limits φ and so ∥T∥ = β with ∥Aφ∥ = ∥Q∥ = 1. Actually,
as we saw in item (b) above, it was exhibited in [11, Example 1] a power bounded unilateral
weighted shift T such that there is a maximum Banach limit φ+ for which ∥Aφ+∥ ≥ 2,

while ∥T∥ =
√

2 and ∥Q∥ = 1.

(d) The inclusions in Theorems 6.1(j) and 7.1(j) may also be proper (e.g., for the unilateral
weighted shift T form [11, Example 1], as in item (b) above, β2 = 2 and Q = I so that
N (β2I −Q) = {0} while ∥T ne1∥ oscillates between 1 and β).
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For a power bounded operator on a finite-dimensional space, the Cesàro asymptotic
limit Q exists and coincides with the φ-asymptotic limit Aφ for every Banach limit φ [11,
Theorem 2.1]. The next theorem gives a condition for Q = Aφ on an infinite-dimensional
space. As we saw in the proof of Theorem 7.1(c), if the sequence {Qn} of Cesàro means
converges weakly to, say Q, then the sequence {T ∗jQnT

j} of Cesàro means converges
weakly (again to Q) for every positive integer j. If such weak convergence holds uniformly
in j, then Q = Aφ for all Banach limits φ.

Theorem 7.2. If T is a Hilbert-space power bounded operator for which the sequence
{T ∗jQnT

j} of Cesàro means converges weakly and uniformly in j,

T ∗jQnT
j = 1

n

∑n−1

k=0
T ∗k+jT k+j w−→ Q uniformly in j,

then the Cesàro asymptotic limit coincides with the φ-asymptotic limit,

Q = Aφ,

for all Banach limits φ : ℓ∞+ → C.

Proof. By Theorem 7.1(c), Qn
w−→ Q if and only if T ∗jQnT

j w−→ Q which means

1
n

∑n−1

k=0
∥T k+jx∥2 → ∥Q

1
2x∥2 for every x ∈ X and every j ≥ 0,

as Q ≥ O. If the weak convergence of {T ∗jQnT
j} holds uniformly in j, then so does

the above convergence. But the real-valued sequence
{

1
n

∑n−1
k=0∥T k+jx∥2

}
of Cesàro means

converges uniformly in j if and only if all Banach limits φ ∈ X ∗ coincide at the sequence
{∥T nx∥2} and are equal to ∥Q 1

2x∥2 [29, Theorem 1] (also [34]); that is,

φ({∥T nx∥2}) = ∥Q
1
2x∥2

for all Banach limits φ : ℓ∞+ → C. In particular, this holds for the arbitrary Banach limit
φ of Theorem 6.1 since T is power bounded. For that Banach limit we got

φ({∥T nx∥2) = ∥Aφ
1
2 x∥2

where Aφ ≥ O is the φ-asymptotic limit of T (associated with φ). Thus ∥Q 1
2x∥2 = ∥Aφ

1
2 x∥2

or, equivalently, ⟨(Q− Aφ)x, ;x⟩ = 0, for every x ∈ X . This means

Q = Aφ

(either because the Hilbert space is complex or because Q− Aφ is self-adjoint).

Remark 7.2. (a) A class of operators that satisfies the assumption of Theorem 7.2 is the
class of quasinormal operators. A Hilbert-space operator T is quasinormal if it commutes
with T ∗T . If T ∈B[X ] is quasinormal on a Hilbert space X , then by two trivial inductions
we get T ∗T T k = T kT ∗T for every k ≥ 1, and consequently T ∗kT k = (T ∗T )k for every
k ≥ 1. This in fact is equivalent to quasinormality — see, e.g., [14, Proposition 13] and
[13, Theorem 3.6]. Therefore
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there is an operator S for which T ∗kT k = Sk for every k ≥ 1 if and only if T
is quasinormal, and such an operator is unique and given by S = |T |2 = T ∗T .

In this case, T ∗k+jT k+j = (T ∗T )k+j = Sk+j for every nonnegative integers j, k. If T is power
bounded, then so is S, and the Mean Ergodic Theorem for power bounded operators
(which holds in reflexive Banach spaces — see, e.g., [7, Corollary VIII.5.4]) ensures strong
convergence for the sequence of Cesàro means

{
1
n

∑n−1
k=0S

k
}

whose strong limit Q lies in
B[X ] by the Banach–Steinhaus Theorem. Thus

Qn = 1
n

∑n−1

k=0
T ∗kT k = 1

n

∑n−1

k=0
Sk s−→ Q,

where Q ≥ O is the Cesàro asymptotic limit of T (cf. proof Theorem 7.1). Hence

1
n

∑n−1

k=0
Sk+j = 1

n

∑n−1

k=0
T ∗k+jT k+j = T ∗jQnT

j s−→ T ∗jQT j = Q = SjQ = QSj

for every j according to Theorem 7.1 (as strong convergence implies weak convergence).
Take an arbitrary x ∈ X . By the above strong convergence

supj

∥∥∥( 1
n

∑n−1

k=0
T ∗k+jT k+j −Q

)
x
∥∥∥ = supj

∥∥∥Sj
(

1
n

∑n−1

k=0
Sk −Q

)
x
∥∥∥

≤ supj∥Sj∥
∥∥∥( 1

n

∑n−1

k=0
Sk −Q

)
x
∥∥∥ → 0.

Then 1
n

∑n−1
k=0T

∗k+jT k+j s−→ Q uniformly in j. Therefore we get (once again, since strong

convergence implies weak convergence) 1
n

∑n−1
k=0T

∗k+jT k+j w−→ Q uniformly in j. (Indeed,

supj

∣∣⟨( 1
n

∑n−1
k=0T

∗k+jT k+j −Q
)
x ;x

⟩∣∣ ≤ supj

∥∥( 1
n

∑n−1
k=0T

∗k+jT k+j −Q
)
x
∥∥∥x∥.) Hence

1
n

∑n−1

k=0
∥T k+jx∥2 → ∥Q

1
2x∥2 uniformly in j.

Thus, according to Theorem 7.2, Q = Aφ for all Banach limits φ, where Aφ is the φ-
asymptotic limit for the power bounded operator T as in Theorem 6.1.

(b) A normed-space operator T is normaloid if ∥T n∥ = ∥T∥n for every integer n ≥ 0. By
the Gelfand–Beurling formula, on a complex Banach-space a normaloid is an operator T
for which spectral radius coincides with norm: r(T ) = ∥T∥. Since power boundedness
implies r(T ) ≤ 1, then it follows at once that

a power bounded operator is normaloid if and only if it is a normaloid contraction.

(In fact, if a normaloid operator is similar to a power bounded operator, then it is a
contraction [26, Proposition 1].) Quasinormal is a class of operators including the normal
operators and the isometries, and it is included in the class of subnormal operators, which
is included in the class of hyponormal operators, which in turn is included in the class
of paranormal operators, which are all normaloid. So all these Hilbert-space normaloid
operators, when power bounded, are contractions and so they naturally fit to Proposition
7.1 (and consequently they trivially fit to Theorem 7.2 — see Remark 6.2).
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Corollary 7.1. Let T be a Hilbert-space power bounded operator. If the sequence {Qn}
of Cesàro means converges uniformly,

Qn = 1
n

∑n−1

k=0
T ∗kT k u−→ Q,

then the Cesàro asymptotic limit coincides with the φ-asymptotic limit,

Q = Aφ,

for all Banach limits φ : ℓ∞+ → C.

Proof. Consider the setup of Theorem 7.1. Recall that Q = T ∗jQT j for every j ≥ 1. If
Qn = 1

n

∑n−1
k=0T

∗kT k u−→ Q, then

supj

∥∥∥ 1
n

∑n−1

k=0
T ∗k+jT k+j −Q

∥∥∥ ≤ supj∥T j∥2
∥∥∥ 1
n

∑n−1

k=0
T ∗kT k −Q

∥∥∥ → 0.

Thus 1
n

∑n−1
k=0T

∗k+jT k+j u−→ Q (and so 1
n

∑n−1
k=0T

∗k+jT k+j w−→ Q) uniformly in j. If T is
power bounded, then Q = Aφ for all φ by Theorem 7.2.

For instance, let T is a uniformly stable noncontraction (i.e., r(T ) < 1 < ∥T∥) acting
on any Hilbert space X . Then T n u−→ O (so that T is power bounded) or, equivalently,
T ∗nT n u−→ O, and so Qn = 1

n

∑n−1
k=0T

∗kT k u−→ Q = O = Aφ for all Banach limits φ : ℓ∞+ → C
(in accordance with Corollary 7.1).

Remark 7.3. If T is a power bounded operator on a finite-dimensional space, then
Q = Aφ for all Banach limits φ : ℓ∞+ → C. Indeed, for power bounded operators on a
finite-dimensional space (where weak, strong, and uniform convergences coincide), the
Cesàro asymptotic limit exists [11, Theorem 2.1]. Thus Q = Aφ for all Banach limits φ
by Corollary 7.1.
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