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1 Introduction

The purpose of this paper is twofold. It is a survey with an expository flavor linking
the notions in the title, and also includes original results.

The paper is split into two parts, both dealing with bounded linear operators on a
Hilbert space. The first part (Sections 3, 4 and 5) surveys the technique of generating a
new inner product from the original one, and its applications to similarity to isometries
and asymptotic limit for contractions, emphasizing the common role played by the equa-
tion T*AT = A. The central results of this part appear in Propositions 4.1, 4.2, giving a
comprehensive characterization of similarity to isometries.

The second part (Sections 6 and 7) is a follow-up of the first one, extending it to power
bounded operators by means of the p-asymptotic limit associated with a Banach limit ¢
and, alternatively, to bounded operators by means of Cesaro asymptotic limit associated
with Cesaro means, still focusing on the role played by the equation T*AT = A. Theo-
rem 6.1 brings together a large collection of properties of p-asymptotic limits for power
bounded operators, as a generalization of analogous results for contractions. Similarly,
Theorem 7.1 brings together a large collection of properties of Cesaro-asymptotic limits
for bounded operators. Theorem 7.2 shows that if a power bounded operator is such that
its sequence of Cesaro means converges in the weak topology, whose shifted sequences
converge uniformly in the shift parameter, then its Cesaro asymptotic limit coincides
with its p-asymptotic limit for all Banach limits . This is followed by an application in
Corollary 7.1.

2 Notation and Terminology

A linear transformation L on a linear space X is injective if and only if its kernel
N(L) = L7'({0}) is null (i.e., if and only if A'(L) = {0}). If X is a normed space, then
let B[X] stand for the normed algebra of all operators on X (i.e., of all bounded linear
transformations of X into itself). If T'€ B[X], then N (T) is a subspace of X', which means
a closed linear manifold of X'. The range R(T) = T'(X) of T € B[X] is a (not necessarily
closed) linear manifold of X'. An operator 7" on a normed space X" has a bounded inverse
on its range if and only if it is bounded below. An operator 7' on a Banach space X is
bounded below if and only if it is injective with a closed range (i.e., N(T) = {0} and
R(T) = R(T')~ where the upper bar denotes closure).

Let X be a normed space. An operator 1" € B[X] is an isometry if | Tz|| = ||x| for every
x € X (a unitary operator is an invertible isometry on a Hilbert space). It is a contraction if
|Tx|| < ||z|| for every z € X (i.e., ||T|| < 1), and it is power bounded if sup,, || 7" < co. In
this case set 8 = sup,, || 7"||. Thus T is power bounded if there is a constant 8 > 0 such that
|T"x|| < B||lx|| for all integers n > 1 and every x € X, which implies sup,, ||7"x|| < oo for
every x € X'. The converse holds if X" is a Banach space by the Banach—Steinhaus Theorem.
Every isometry is a contraction and every contraction is power bounded. An operator
T € B[X] is power bounded below if there is a constant a > 0 such that aljz| < || 7™z
for all integers n > 1 and every x € X. A B[X]-valued sequence {S,} converges uniformly
(or in the operator norm topology) to an operator S € B[X] if ||(S,— S)|| — 0 (notation:
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S, —= S). It converges strongly to S if the X-valued sequence {S,z} converges to Sz
in the norm topology (i.e., ||(S,— S)z| — 0) for every z € X (notation: S, — S). The
sequence {S,} converges weakly to S € B[X] if f((S,— S)x) — 0 for every f in the dual
X* of X and every z in X (notation: S, —— S — if X is a Hilbert space with inner
product (-;-), weak convergence means (S, — S)z;y) — 0 for every z,y € X by the Riesz
Representation Theorem, which is equivalent to ((S,,— S)z;z) — 0 for every x € X if the
Hilbert space is complex by the Polarization Identity). Uniform convergence clearly implies
strong convergence, which in turn implies weak convergence. An operator T' € B[X] is of
class Cy. if the power sequence {T"} converges strongly to the null operator, T"x — 0 for
every x € X (i.e., if T is strongly stable — notation: 7™ — O), and it is of Class Cj. if
T"x 40 for every 0 £z € X.

Suppose X is an inner product space with inner product (-;-). The norm induced
by the inner product will be denoted by || - ||. If X is a Hilbert space and T € B[X],
then T* € B[X] denotes its (Hilbert-space) adjoint. A self-adjoint operator A (i.e., one
for which A*= A) is nonnegative or positive if, respectively, 0 < (Ax;x) for every x € X
or 0 < (Ax;z) for every nonzero x € X (notation: A > O or A > O). A (self-adjoint)
operator A is positive if and only if it is nonnegative and injective:

A>0 < A>0 and N(A)={0}.

Injective self-adjoint operators have dense range (i.e., R(A)” = X whenever N'(A4) = {0}
if A* = A). Thus positive operators are injective with dense range. Hence a positive
operator A on a Hilbert space X is bounded below if and only if its has a bounded inverse
on its closed dense image, which in turn is equivalent to saying that it is injective and
surjective, which means invertible (with a bounded inverse). Invertible positive operators
are called strictly positive and denoted by A > O:

A>=0 < A > O has a bounded inverse on X.

A nonnegative operator A has a unique nonnegative square root Az which is positive or

strictly positive whenever A is (indeed, N'(A2) = N(A) and R(A2)" = R(A)").

3 Generating a New Inner Product

Take a linear space X, let (-;-) be an inner product on X, suppose (X,(-;-)) is a
Hilbert space, and let A be a nonnegative operator (i.e., A > O) on this Hilbert space. As
is readily verified, the nonnegative operator A generates a new semi-inner product (-;-)4
on X defined for every x,y € X by

(z3y)a = (Az3y),

which induces a seminorm || - ||4 on X given by
1 1
[e]la = (Az;2)2 = [|[Azz].
This seminorm || - |4 becomes a norm whenever A is injective (i.e., N(A) = {0} or,

equivalently, whenever the nonnegative A is positive). Consider the inner product space
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(X, (-;-)a). As defined in Section 2, B[X] is the Banach algebra of all linear operators
on the Hilbert space (X, (-;-)) which are bounded (i.e., continuous) with respect to the
norm || - || induced by the inner product (-;-). If A is positive, then let B[X], denote
the normed algebra of all linear operators on the inner product space (X, (-;-)4) which
are bounded (i.e., continuous) with respect to the new norm || - [[4. In this case (i.e., if
A > O or, equivalently, if || - || 4.is a norm), the following elementary result represents an
appropriate starting point.

Proposition 3.1. Let A > O be any positive operator on a Hilbert space (X,(-;-)) and
consider the norm || - |4 induced by the inner product (-;-)a = (A-;-). The following
assertions are equivalent.

(a) A is invertible (i.e., has bounded inverse on X; equivalently, A = O).
(b) The norms || - ||a and || - || on X are equivalent.

Proof. Take the Hilbert space (X, (-;-)) and let A be a positive operator on it. So
1 1
[Az|* < | A= Pl Aza]* = [|All l=]% = 1Al [(Az s 2)] < [|A] [ A [} [lz]] < [IA]*[|=(*

for every z in X. Since A is positive, it is injective, and so A is bounded below if and only
if it has a closed range. Since A is an injective self-adjoint, then R(A)~ = X. Thus the
positive operator A is invertible (i.e., A > O has a bounded inverse on X" or, equivalently,
A is bounded below and surjective) if and only if A is bounded below, which means
a?||z||* < ||Ax||? for every z € X and some a > 0. Therefore

A-0 = ﬁHxHZ < |lz||A < I|A|l||z|]* for every z € X, for some a > 0. O

Perhaps the first result along this line is one ensuring that for every new inner product
there is a positive operator generating it. This is a classical result from [33].

Lemma 3.1. Let (X,(-;-)) be a Hilbert space, and let |-;-] be a semi-inner product in
X. Then there exists a unique nonnegative operator A € B[X] for which

[2:y] = (x;y)a = (Az3y) for every z,y € X.
If this unique A € B[X] is positive, then [-;-] becomes an inner product in X.

Proof. This is a particular case of a fundamental result for densely defined bounded
sesquilinear forms [-;-] in a Hilbert-space setting [33, Theorem 2.28, p.63]. In particu-
lar, if (X, (-;-)) is a Hilbert space, then the result holds for every Hermitian symmetric
sesquilinear form inducing either a nonnegative or a positive quadratic form (i.e., it holds

for every semi-inner or inner product [-;-] on X x X) according to whether A is nonneg-
ative or positive, respectively. ]
The inner product space (X, [-;-]) may not be a Hilbert space if the positive A is not

strictly positive. However, if A is invertible (i.e., if A > O), then the new norm generated
by A is equivalent to the original one (by Proposition 3.1), and so (X, (-;-)4) becomes a
Hilbert space.
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4 Similarity to an Isometry and the Equation 7TAT = A

Let the seminorm (norm) || - |4 be the one induced by the new semi-inner product
(inner product) (-;-)4 = (A-;-) as discussed in the previous section.

Proposition 4.1. Let X be a Hilbert space. Take an arbitrary operator T in B[X] and
an arbitrary nonnegative operator A in B[X].

(a) Since A > O, then ||[Tx||a = ||x||a for every x € X if and only if T*"AT = A.
(b) If A> O, then T is an isometry in B[X], if and only if T*"AT = A.

(¢) If A> O and T*AT = A, then T is similar to an isometry.
(

d) If T is similar to an isometry, then T*A'T = A’ for some O < A" € B[X].

Proof. (a) If A> O, then || - ||4 is a semi-norm on X. Since T*AT — A is self-adjoint,
(T*AT — A)z,z) = 0 for every z € X if and only if T*AT = A. Therefore, since

Tz} = A2 Ta|*=(ATz; Ta)=(T*ATz,z) and (Az,z)=|Azz|?=]|z|}

for every x € X', we get the result in (a).

(b) If A> O, then || - ||4 is a norm on X and therefore the identity ||Tz||4 = ||z||4 for
every x € X means the operator 7" is an isometry in B[X],. Now apply (a).

(¢c) f A> O and T*AT = A, then for every x € X
|A2T%|® = (A2Tx; A2Tx) = (T"A Tz x) = (Az;z) = | A2z

If A= O, then |A2TA 22| = ||z|| for every z € X. So T is similar to an isometry.

(d) If T € B[X] is similar to an isometry, then there exists an invertible transformation
W in B[X, )] (with a bounded inverse W~ in B[Y, X| for some Hilbert space ) unitarily
equivalent to X by the Inverse Mapping Theorem since X is Banach) for which WTW !
is an isometry in B[)Y]. Since W is invertible, the polar decomposition of W is given by
W = U|W/| where U € B[X, Y] is unitary and |[W| = (W*W)2 € B[X] is strictly positive.
Thus O < |[W|=U*W. Since WI'W~! is an isometry on ), then U*WTW U is an
isometry on X'. Thus

(W, 2) = [[[W]z|* = |UWTW = U|W |||
= [[WITW = Wa|* = |[|W|Tz||* = (T*|W [Tz z)

for every x € X, and hence T*A'T = A’ with O < A’ = |W|%. O

Let T'€ B[X] and A € B[X] be arbitrary operators on a Hilbert space X'. In accordance
with Proposition 4.1(a), T" was called an A-isometry in [35] if T*AT = A for some A > O.
Similarly, T" was called an A-contraction in [35] if T*AT < A for some A > O (see also
[36, 37]). Actually, 7" is similar to a contraction if and only if 7T*AT < A some A > O
(see e.g., [22, Corollary 1.8]). Still along these lines, if an operator A (not necessarily
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nonnegative) is such that T*AT = r(T)?A for some T' € B[X], where r(T) stands for the
spectral radius of T, then A was called T-Toeplitz in [20] (recall: if T' is power bounded
and ||T"|| /4 0, then r(T') = 1). For further applications of the new semi-inner product
space (X, (-;-)a) along different lines from those discussed here see, e.g., [1] and the
references therein.

Similarity to an isometry is equivalent to the equation T*AT = A for some A > O
(Proposition 4.1 (c,d)). This is still equivalent to some forms of power boundedness and
power boundedness below (including Cesaro means forms). These are brought together in
the next proposition.

Proposition 4.2. Let T be an operator on a Hilbert space X. The following assertions
are pairwise equivalent.

(a) T is similar to an isometry.

(b) T is power bounded and power bounded below: there exist o, 5 >0 such that

ollz|| < | TFz|| < Bllz|| for allk >0 and everyz € X.
(¢) There exist a, 5 > 0 and an invertible R € B|X] for which

n—1
al|z))? < %Zk:OHRT%Hz < B||lz||* for alln > 1 and everyx € X.

(d) There exist o, B > 0 for which

n—1
al|z)|? < lE:k::()HTka2 < B||lz||* for alln > 1 and everyx € X.

n

(e) There exist o, 8 > 0 and an invertible R € B[X] for which

allz|| < |RT*z|| < Bllz|| for allk >0 and every x € X.

Proof. Suppose (c) holds. Since —5[|RT"z||> < =537 [[RT"z|* < B|z|]? then

YRTwPY =13 LRI P < 1Y gl
= mp LS RIRT P < 282 R e,

and so sup, ||(l Yo k}rl)lRT"xH2<oo for every z € X. By the Banach- Steinhaus

Theorem sup, + >/ % HRT”H < oo which implies ©|RT"||* = 0 (as Y-,_y 15 — ©0)-
Thus since HT*"R*RT"H = ||RT™|?,

%HT*”R*R T"|| — 0.
Now for each n > 1 consider the Cesaro mean

AN sk pr ok
Qu=13y T RRI"
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. 1 n— 1
Since (@ ba= (Qur ) = S IR TS then alfel*< @, ol < A2 and henee
{Qn2} is a bounded sequence of strictly positive operators (and so is {Q,}).

(i) First suppose the Hilbert space X is separable. In this case the bounded sequence
{Q.} has a weakly convergent subsequence (see, e.g., [24, Theorem 5.70]). But the cone
of nonnegative operators is weakly closed in B[X] and so the weak limit of any weakly
convergent subsequence of {@,} is again a nonnegative operator in B[X]. Let the nonneg-
ative @ € B[X] be the weak limit of a weakly convergent subsequence of {@,}. Actually,
Q is strictly positive because {@,} is bounded below. Since

for each n > 1, and since ||T*"R*RT™|| — 0, we get (again) the equation

QT = Q.

So T is similar to an isometry (i.e., (a) holds) by Proposition 4.1(c). In other words, with
O < A = (@ the equation T*AT = A implies T is similar to an isometry.

(ii) Next suppose the Hilbert space X is not separable. Since (c¢) holds, 7" is nonzero. Take
an arbitrary 0#x € X and set M, = span ( Uz T T 2} U {T"T*™z})" which is a
separable nontrivial (closed) subspace of the (nonseparable) Hilbert space X including
x and reducing T. Then both T'|r, and (T|pm,)* = T*|m, act on the separable Hilbert
space M. Thus since T'| x4, satisfies (¢) — because T' does — then according to (i) T'|um,
is similar to an isometry. Consider the collection & = {p M, : = € X'} of all orthogonal
direct sums of these subspaces, which is partially ordered (in the inclusion ordering) and is
not empty (if 0 # y € M+, then M, C M, L because M, L reduces T" and so M, L M,).
Moreover, every chain in & has an upper bound in & (the union of all orthogonal direct
sums in a chain of orthogonal direct sums in § is again an orthogonal direct sum in ).
Thus Zorn’s Lemma ensures that & has a maximal element, say M = @ M,, which
coincides with X' (otherwise it would not be maximal since M & M+ =X). As T|y, 7 =
Tx, then T = P T|m, on X = @ M, is similar to an isometry since each 7’|, on M,
is similar to an isometry according to item (i) above. Thus again (a) holds. Hence

(c) = (a).

Now if (a) holds, then (as in the proof of (d) in Proposition 4.1) there exists an in-
vertible transformation W € B[X,))] for which |[WT*W=ly|| = |y| for every y € Y,
equivalently, |[WT*z|| = ||Wzx|| for every x € X, for all k > 0. Therefore we get | T%z| =
W=W TRz < WY [WTEz|| = [WH[[Wel| < [[WH[[W][|lz]| and also [z =
W=iWal| < [WH{[We|| = [[WH[[WTz| < [[WH[[WI[[|T*x, which implies
W= 2] < 1T%2| < [W W] ||| for all k& for every x. Hence

(&) = (b).
This concludes the proof since (b) = (d) = (¢) <= (e) <= (b) holds trivially. O

The positive numbers o and 3 are constant with respect to  but of course they may
depend on T'. Parts of Proposition 4.2 have appeared in [21, Theorem 2|, [31, Proposition
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6.3], [15, Theorem 2], [22, Proposition 1.15], [2, Theorem 1], and [27, Corollary 4.2] (and
parts of it — e.g., (a) <= (b) — may survive in a normed-space setting). For further
conditions on similarity to isometries along these lines see, e.g., [4, Proposition 2.6], [38,
Theorem 2.1].

5 Contractions and the Equation T"AT = A

The next proposition is a classical result on Hilbert-space contractions dating back
to the early 1950s (see, e.g., [22, Chapter 3] and the references therein). It is based on
a well-known result which says: every monotone bounded sequence of Hilbert-space self-
adjoint operators converges strongly. If T is a Hilbert-space contraction, then {7*"T"} is
a bounded monotone sequence of self-adjoint operators (in fact a nonincreasing sequence
of nonnegative operators) and so it converges strongly to a nonnegative contraction A:

lim 7T""T" = A strongly

(i.e., lim, [[(T*"T"— A)z|| = 0 for every x). Such a nonnegative contraction A is usually
refereed to as the asymptotic limit of the contraction T So if T' is a contraction, then the
strong limit A > O of {T*"T"} (i.e., the asymptotic limit of T') defines a new semi-inner
product (-;-)4 on X which becomes an inner product if A > O, and in this case T acts
as an isometry on (X, (-;-)4) by Proposition 4.1(b).

Proposition 5.1. For every contraction T on a Hilbert space X there exists a unique
nonnegative operator A on X for which

(a) T 55 A,

and so
(w5y)a = lim, (T T2 y) = lim, (T2 T"y) = (Az;y)

for every x,y € X or, equivalently,
|T"x|| — HA%.%H for every x € X,
where ||Azz| = ||z||4 = |[T9z||4 for every x € X and every j > 0.
Moreover:
(b) O<A<LI (i.e., A is a nonnegative contraction on X).

(c) T*AT =A. FEquivalently,
|A2Tmx|| = ||A2z|| for every x € X and every n> 1.

(d) AZ0 = |lA| =|T] = 1.
() AT=0 <= TA=0 <= A=0.
(f) AT=TA < A= A%
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(g) I—A)T"—=50 andso (I—A2)T"—5 0.

(h) ||AT 2| — |A2z|| for every x € X.

(i) N(A)={zeX: Tz -0} (so T"—50 < A=0).

() NU-A)={zeXx: ||T"| =|z|| ¥n>1} (so T is an isometry <= A=1).

Furthermore,
A is invertible <= T is similar to an isometry.

Proof. See, e.g., [22, Propositions 3.1, 3.2 and 3.8] — see also [8], [30], [6], [28]. O

Remark 5.1. According to Proposition 5.1(i) the strong limit A of {T*"T™} for a Hilbert-
space contraction T is positive if and only if T' is a contraction of class C}.:

(a) T is a Cy.-contraction <= N(A)={0} < A>O0.
Since A?=A> O implies A=1, the above equivalence and Proposition 5.1(j) ensures
(b) T is a Cy.-contraction with A = A?> <= T is an isometry.

For a collection of properties of asymptotic limits for Hilbert-space contractions see,
for instance, [40, Section 1.10], [9, Section 6], [22, Chapter 3|, [10], [25]. For the new inner
product (-;-)4 generated by the asymptotic limit A of a Cj.-contraction T' (i.e., for a
positive A or, in particular, for a strictly positive A as in Propositions 4.1(c) and 4.2) see,
for instance, [16], [22, Remark 3.9] and [23].

6 Power Bounded Operators and the Equation 7T7AT=A

The existence of Banach limits was established by Banach himself [3, p.21] as a con-
sequence of the Hahn—Banach Theorem. Let £5° denote the Banach space of all complex-
valued bounded sequences equipped with its usual sup-norm. A Banach limit is any
bounded linear functional ¢:(°— C (ie., ¢ € {T", where (" is the dual of (3°) as-
signing a complex number to each complex-valued bounded sequence which satisfies the

following properties. Take {&,} € £5°.
(o) ¢ is linear (i.e., additive and homogenous),
(i) pisreal (i.e., p({&.}) € R whenever {,} is real-valued),
(ii) ¢ is positive (i.e., 0 < o({&,}) whenever 0 < &, for every n),
(iii) ¢ is order-preserving (i.e., p({&.}) < p({vn}) if & < v, in R for every n),
(vi) ¢ is backward-shift-invariant  (i.e., ({&11}) = ({&n})),
(

v) liminf, &, < p({&.}) < limsup, &, for every real-valued sequence {¢,},
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(vi)  assigns to a convergent sequence its limit (i.e., &, = & = p({&.}) =€)
(in particular, p({1,1,1,...}) = 1),

(vi) gl = 1.

For existence of Banach limits see, e.g., [5, Section II1.7] or [24, Problem 4.66]). Moreover,
for every Banach limit ¢ there exist Banach limits ¢, and ¢_ such that

lim,inf 23" Gy = o ({6)) < 0({6)) < e ({6)) = lmsup 23 6

for an arbitrary real-valued sequence {,} € £3°, where ¢_({£,}) and ¢, ({&,}) are the
minimum and maximum values of Banach limits at {&,}, respectively [34, Theorem
(B8,7)]; and for every & € [p_({&n}), o+ ({&n})] there exists a Banach limit ¢ for which
©'({&n}) =€ (see also [32, (1.1)]). Actually, all Banach limits coincide on a real-valued
sequence if and only if their shifted Cesaro means converge uniformly in the shifted
parameter. In other words, if {&,} is a real-valued sequence, then

n—1
©({&,}) = ¢ for all Banach limits ¢ <= limnizk_ogkﬂ = ¢ uniformly in j.

[29, Theorem 1] (see also [34, Theorem (9)]). We will refer to the above displayed results
as Lorentz characterizations. Also, and consequently, since ¢_ and ¢, are Banach limits,
then for every real-valued sequence {&,},

n—1 n—1
liminf,&, < hmnlnfjizkzofkﬂ < hmnSUPj%Zk:O&fﬂ' < limsup,,&,.

The Banach limit technique for power bounded operators discussed here is well-known
and has been applied quite often (see, e.g., [17, 18, 19] for applications along the lines
considered here).

Suppose T' € B[X] is a power bounded operator (i.e., sup, ||[T"] < co) acting on a
Hilbert space (X,(-;-)). Let || -||: X =R be the norm induced by the inner product
(-;-): AxX—= C. Let ¢: £5°— C be an arbitrary Banach limit. Since 7" is power bounded,
(T ; Ty)} € £ for each x,y in X'. Thus set

(@;9)e=({{T"x;T"y)}) = p({{T™"T"z;y)})
for z,y in X. Since every Banach limit is linear (which implies p({&,}) = P({£.})) and
positive (i.e., 0 < ¢({&,}) whenever 0 < ¢, for every n), and since T is linear, then it is
readily verified that (-;-),: X xX —C is a semi-inner product on X. Hence

[l = o ({IT"2(1*})

for every x € X' defines the seminorm || - ||,: X = R induced by the semi-inner product
(-;),- (Even in this case of a sequence of norms of powers of a power bounded operator,
the squares in the above identity cannot be omitted due to the nonmultiplicativity of
Banach limits). Since a Banach limit is order-preserving for real-valued bounded sequences
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(e, o({&}) < o({v,}) if &, < v, in R for every n), and since p({1,1,1,...}) =1, then
as T' is power bounded,
[zl < sup,|[[T7|[[]

for every x € X. Since Banach limits are backward-shift-invariant,

IT2]5 = e{IT )1} = (LT 2)[I*}) = ll=[I3-

for every x € X. The above setup leads to a generalization of Proposition 5.1 from con-
tractions to power bounded operators as in the forthcoming Theorem 6.1.

Remark 6.1. An important particular case. If a power bounded operator T is of class
Cy. (i.e., T"x 40 for every 0 #z € X), then 0 < liminf, ||T"x| for every = #0 (see, e.g.,
proof of Theorem 6.1(i) below). Any Banach limit ¢ is such that liminf, &, < p({&.}) <
lim sup,, &, for a real-valued bounded sequence {,}. Then 0 < p({||7"x|/}) = ||z||, when-
ever x#0. So the seminorm || - ||, becomes a norm and consequently the semi-inner
product (-;-), becomes an inner product. Conversely, if 7" is not of class Cj., then
there is a nonzero z € X for which 7"z — 0 and so limsup,, ||7"x| — 0 which implies
o({lIT"x||*|}) =0 so that ||z||, =0, and the seminorm || - ||, is not a norm. Thus if || - |,
is a norm, then T is of class C}.. Hence

(-;+), is an inner product <= T is a power bounded of class Cj..

Thus if T is a power bounded operator of class C;. (with respect to the original norm
| - |), then (since ||Tz||, = ||z||, for every z € X as we saw above) the norm || - ||, makes
T into an isometry when acting on the inner product space (X, (-;-),).

Proposition 5.1 can be extended from contractions to power bounded operators (in
particular, to power bounded operators of class C}.). Given a power bounded operator
T and a Banach limit ¢, there is a unique nonnegative operator A, referred to as the
p-asymptotic limit of T, such that (-;-), = (A-;-) by Lemma 3.1. So

e({T™"T"}) = A, weakly

(ie., o({{(T*" Tz ;y)}) = (Ayx;y) for every x,y). The next theorem rounds up a collec-
tion of properties (either well-known or not) of the yp-asymptotic limit A, for a power
bounded operator T into a unified statement. Each assertion in Theorem 6.1 is written
so as to establish an injection from the items in Proposition 5.1 into homonymous items
in Theorem 6.1.

Theorem 6.1. Let T'# O be a power bounded operator on a Hilbert space (X, (-;-)) and
let p: (7 — C be an arbitrary Banach limit. Consider the semi-inner product (-;-), =
o({(T™-;T™)}) in X generated by T and p. Then there exists a unique nonnegative
operator A, on X (which depends on T and @) such that (-;-), = (Ay,-; ) and so
(a) (5900 = o({{T"x; Tmy)}) = o({(T"T 25 y)}) = (Apr;y)
for every x,y € X or, equivalently,
P({IT 2|} = | Ag2al|? for every we X,

where ||A¥,%m|| = ||zll, = [|[Tz]|, for every x € X and every j > 0.
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Moreover:

(b) O <A, < pB*I with B =sup,|T"| # 0.

Thus || Ayl < B* and the identity || Ayl = 5% may hold.

(c) T*A,T = A,.  Equivalently,
||AW%T"90|| = ||ASD%:)3|| for every x € X and every n > 0.

(d) A, #0 = 1< |[[Ay]| and 1 < ||T7).

() A,T=0 < TA,=0 <= A,=0.

(f) A,T=TA, = A,=A7.

Conversely, if A, = AS2, then

(f1) (A T =T Ay)x||* < (82— 1)||Apz||? for all n and every x € X,
in particular, |[(A,T —TAy)x|]* < (|T]|* = 1)||Apz||* for every x € X,
(£2) P({l[(A,T" = T Ay )x[*}) =0 for every x € X,

(f3) ||Ayll =1 whenever O # A,.

(8) 0<e({lI(I = AT z[?}) < (|AlP = 1) |Agzz]>  and
0<p({II=A2) T 2D <+ A2) P[NP =Dl Ageall® for any 2 € X,
which are both null if ||A,|| =1 (in particular if O # A, = A2) or A, = O.

() e({l4,T"2]?}) = A |? + o ({ (T = Ap)T"x|*}) for every w € X.

(i) N(Ay) ={z e X: Tz = 0} = {z € X: o({||T"z|*}) = 0}.

Hence o({||T"z||*}) =0 for every x € X <= T" = 0 < A,= 0.

() {z € X:lim, |T"z] = Bllz] }

CN(BI = Ay) = {x € X:p({[|T"2]}) = |||}
C {w € X+ |z < limink, | T < lim sup, | T = 8] }.

Hence o({||T"z|*}) = B2||x||? for every x € X <= lim, ||T"z|| = B||x|| for every
reX = A,=p0] < A,=1 < T is an isometry on (X,(-;)).

Also,
(-3 ) is an inner product <= T is of class Cy. <= A, is positive.

In this case (i.e., if A, > O),
k) A,T=TA, <= A,=A}2 <= A,=1 < T is an isometry on (X,{-;-)).

Furthermore, the following assertions are pairwise equivalent.
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(1) A, is invertible (i.e., A, > O).

(2) The norms || - ||, and || - || on X are equivalent.
(3) T on (X,(-;-)) is similar to an isometry.

(4) T on (X,(-;-)) is power bounded below.

Proof. Let T be a power bounded operator on a Hilbert space (X, (-;-)). Thus the se-
quence {(T"xz ; T™y)} is bounded for every x,y € X. Then consider the semi-inner product
(3 ) =w({(I™-;T™-)}) in X generated by T" and a Banach limit .

(a) As (X, (-;-)) is a Hilbert space, an application of Lemma 3.1 ensures the existence
of a unique nonnegative operator A, on & for each power bounded operator 7" and each
Banach limit ¢, the p-asymptotic limit of T', such that

o({{(T™"T"z y)}) = (@3 y)p = (T;Y)a, = (Apz;y) for every z,y € X.

The nontrivial part of the next equivalence follows by the polarization identity. The last
identity is a consequence of the shift invariance property for Banach limits:

]2 = [1Ag2 2] = o ({IT"2)*}) = o({IT"T72|*}) = | Ap2 T?a||* = | Tz,
for every x € X and every j > 0.

(b) Now set 3 = sup, | T". Since || Ay22]|* = o({[|T"z|?}) < sup, [|T"z|* < 5%||]* for
every x € X (because ||¢] = 1) we get

14,1l = 14,2 |1* < 5°.

Also (A, — B2z ;)= || A2 z||2= B2z > < (| Ayl — B2)||z]|> < 0 for every = € X by the
above inequality. Thus the inequalities in (b) hold (since A, is self-adjoint):

O <A, <pI
(If T =shift{s,1,1,1,... }, then A, = diag{$% 1,1,1,...} =T*"T" for all n > 1.)

(c) By definition, |z|la,= ||z||, and so ||Tz| 4, = ||Tx||,. Since ||Tz|,= ||z|, according
to (a), then by (b) and Proposition 4.1(a)

T"A,T = A,.
Equivalently, T*"A,T" = A, for every n > 1 by induction, which means
JAAT" |2 = (T4, T e s 2) = (Asa) = [ Af o]
for every x € X' since A, is nonnegative.

(d) Then [[Ayzz|?= ||A2 T x| < ||Agz |2 T x| = || Ay || | T7]|%. So (for a constant se-
1 1 n 1

quence) [[ A2z = o({[[Ag22|*}) < |4l o({[IT"2|*}) = | Ao || [ A2 | for every z € X

by (a). Hence if there is zg € X for which A 2z #0, then 1 <|A,||:

1 <|[A,|]| whenever A,#O.
Since A, = T*A, T, then ||A,|| < ||A,||||T||*. Hence A, # O implies 1 < ||T|.
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(e)If A, = O, then A, T =T A, = O trivially. By (c), A,T = O implies A, = O. Finally,
if TA, = O, then o({||T"A,x||}) =0, and so HAﬁ:cH =0, for every x € X, by (a). Thus
A, = O (by the Spectral Theorem since by (b) A, is nonnegative).

(f) Take z,y € X. Since T*"A,T" = A,, then o({{T*"A,T"z;y)}) = ¢({{Apz;y)}) =
(Ayx;y) (constant sequence). Also by (a) @({(T*"T"Ayx;y)}) = (A2x;y). So

AT =TA, = A,= A2

Conversely, (A Tz ; T Ayz) = ||[A2 T z|? = ||Az2z|? by (). IfA, = A2 then Az =
A, by uniqueness of the nonnegative square root, and hence

(AT = T Ay )a|* = | AT z|* + | T Agar||* - 2]| A2 ]|
= [IT"Aga||* — [[Apz|* < (B — 1)]| Apa|?
for all n and every z € X. In particular, for n = 1 we get for every z € X
(AT = TA)z|* < (IIT]* = Dl Apz|*.
Asymptotically, if A,= A2 then Ag,% = A,. So we get by (a) and the above identity
{lI(AT" = T"A)z|}) = o({IT A |}) — | Apz|® = [[Agz || — | Apz|* = 0

for every = € X. Moreover, if A, = A2, then A, is an orthogonal projection (since it is
self-adjoint) and so ||A,|| = 1 whenever A, # O.

(g) Take an arbitrary = € X. Again, by (c) we get (I"z;A,T"x) = ||A¥,%T"x||2 =
||A¢,%x||2 for all n > 0, and o({||T"z||*}) = ||A¥,%x||2 according to (a). Thus

0 < o({lI(I = A)T"z|*}) = ({IT"2|?}) + o({| AT ]1?}) — 20({[|Az2 2]1*})
= o({I1A,T"2|*}) — Az z]* < (| A2 — DA 2]

Since I — A, = (I4+ A,2) (I — A,2), and since [ + A2 is invertible with a bounded
inverse (because A, > O), then I — A,z = (I + A2)" (I — A,) and so

0 < ({1 = A2)T"2|*}) < (1 + A2) " Pe({lI(I = A)T"2]*}).

(h) This was proved above: o({||(I — A,)T"z|?}) = o({|| AT z|?}) — || A2 |2
(i) Part of assertion (i) follows at once from (a) since N'(A4,) =N (Aﬁ). Indeed,

Tz =0 = o({|T"z||}) =0 < [|[A2z|? =0 <= zeN(A,2) < zeN(A,).

Conversely, suppose 5 > 1. (Otherwise 7"z — 0 for every x € X since sup,, ||T"|| = < 1
implies |77 < [|T]|™ < 8" — 0.) If o({||T"x||}) = 0 for some Banach limit ¢, then we get
liminf, ||7"z| = 0 (recall: 0 < liminf, &, < p({&.}) < limsup, &, for &, > 0). However,
if liminf, ||7™z|| = 0, then for every ¢ > 0 there is an integer n. such that ||T"z| < ¢,
which implies ||T"z|| < B ||T™ x| < Be for all n > n.. Thus ||T"z|| — 0.
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(j) Take any 0 # = € X (nonzero to avoid trivialities). Since ¢ is a Banach limit,
IT"2]| = Bllz| = o({IT"=[I*}) = 5[l
According to (a),
(T 2|*}) = Bllell® <= ||Ag2al* = Bllz|® <= ((B*] - Ap)z;z) =0,
and according to (b), since N'((3*I — A¢)%) =N(B*I - A,),
(81— Ag)a;a) = 0 = [|[(B] — Ap)2a| =0 <= z e N(BT - A)

Conversely, since o({||T"z||*}) = B?||z||* means p({5?%||z]|*> — ||T"z||*}) = 0, and since
0 < B2||z||*> — ||T™x||* for every n because sup, ||T"z| < S||z||, then we get

p({IIT"2|]*}) = 8|2l = liminf, {8°||=|* — |T"=[|"} = 0.
However, recalling again that 0 < ||[T"z|| < §||z|| for every n,
liminf,{%||z||* — |T"z|*} = 0 <= limsup,||T"z| = B]|||.
Moreover, for x # 0 and since 5 > 0 (as T' # O),
lim sup, | ]| = Blla] = B> 1

(indeed, if § < 1, then 8 = limsup, Hﬂﬁc“ < limsup,, supx;éo% = limsup,, ||T"] <

limsup, ||7||" < limsup,, 8" = lim, 8" = 0). Also, since |[|[T"""z| < B||T™z|| for each
m,n > 0, then limsup,, ||T"z| = limsup,, |77 x| < g liminf,, |7™z||, and so

limsup, [Tz = Blz]| = ||=[| < liminf,, [Tz

Finally, by the above implications and equivalences, if lim,, ||T"z| = B||z|| for every z € X,
then o({||T"z||*}) = B?||z||* for every x € X, which means A, = $%I. But this implies
T*T =1 by (c) (since 8 # 0 whenever T' # O), which in turn implies A, = I by (a) (i.e.,
(Apzsy) = o({{(T*"T"x 5 y)}) for every z,y € X'). However, if A, = I, then ||Tz|| = ||z||
for every x € X by (c), which means 7" is an isometry on (X, (-;-)), and we are back to
lim, ||T"x| = B||z|| for every z € X with g = 1.

As we saw in Remark 6.1, (-;-), is an inner product if and only if 7" is a power
bounded of class C}., and the semi-inner product (-;-), = (A, -;-) is an inner product
(i.e., the seminorm || - ||, = ||A<p% - |l is a norm) if and only if N'(A,) = {0}, which means
the nonnegative A, is positive. Thus from now on suppose A,> O.

(k) If A, T = TA, then A, = A2 by (f) and so A, is an orthogonal projection (since it is a
seif-adjoint idempotent) which implies A, = I (because A, > O), and hence A, T =TA,
trivially. Therefore if A, > O,

AT=TA, = Ay=A2 = A,=1 = A,T=TA,,

But A, = I if and only if 7" is an isometry, as we saw in the proof of item (j).
©
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Since T is power bounded, to prove assertions (1) to (4) proceed as follows.
(1) < (2), 3) <= (4), and (1) = (3)

by Proposition 3.1, Proposition 4.2(a,b), and Proposition 4.1(c), respectively. Conversely,
as T is power bounded, if (4) holds, then «|z| < ||T"z|| < B||z|| for all n > 0, and so
allz)| < e({[|T"z]|}) < Bllz|l, for every = € X. Since p({||T"z[|*}) = |[z[|Z by (a), then
o?||z]|* < [|z]|2 < B2|z||* for every x € X' and so (2) holds. Thus

(4) = (2). O

Remark 6.2. If T is a contraction (equivalently, if 5 <1), then Theorem 6.1 is reduced
to Proposition 5.1, and {T*"T"} converges strongly (thus weakly) to A, = A for every
Banach limit ¢, with ||A]| =1 or ||A|| = 0. For a C}.-contraction, [|A| = 1.

Such a combined procedure (of using Lemma 3.1 together with an inner product gen-
erated by a power bounded operator and a Banach limit) seems to have been originated in
the celebrated Nagy’s 1947 paper [39] (see also [40, Section I1.5]). Subsequent applications
of it appear, for instance, in [16, 17, 18] and, recently, in [11, 12, 27]. Proposition 4.2(a,b),
however, supplies an elementary and straightforward proof of Nagy’s result as follows.

Corollary 6.1. [39] On a Hilbert space, an invertible power bounded operator with a
power bounded inverse is similar to a unitary operator — the converse is trivial.

Proof. Let T € B[X] and T~ € B[X] be power bounded. Thus there exist real constants
0<a<1and 1<g for which ||[T"|| < and |[|T"|| < ™! for all n>0. So afz| <
|7~ z|| < IT"z|| < B||z|| for all n and every x. Hence T is similar to an isometry
by Proposition 4.2(a,b). Since T is invertible, then so is the isometry similar to it: an
invertible Hilbert-space isometry means a unitary operator. O

7 Cesaro Means and the Equation T"AT = A

A word on terminology. An X-valued sequence in an arbitrary normed space X is
called Cesédro convergent if its sequence of arithmetic means (referred to as Cesaro means)
converges in X, whose limit is called Cesaro limit.

Banach limits have been related to Cesaro means since the very beginning [29], and
Cesaro means are naturally linked to the Ergodic Theorem for power bounded operators.
If a sequence {Q,} of Cesaro means @, = %ZZ;&T*’“T’“ for an operator T' converges
(either weakly, strongly, or uniformly), then its limit @ (if it exists) has been refereed to
as the Cesaro asymptotic limit of T (see [11]). As is well-known, the strong limit @ always
exists for contractions and coincides with the asymptotic limit A: for a contraction 7" the
sequence of Cesaro means {@,} converges strongly to @) = A. An elementary quick proof
is readily obtained as follows.

Proposition 7.1. For a Hilbert-space contraction the sequence of Cesaro means converges
strongly and the Cesaro asymptotic limit coincides with the asymptotic limit:

n—1
ITI<1 = Q=3 T'T"->Q=A
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Proof. 1f T' is a contraction, then the sequence {T*"T™} converges strongly to A by Propo-
sition 5.1. Since x,, — = implies %22:1 xr — x for any normed-space-valued sequence
{z,}, then T*"T" =5 A implies Q,, = Q = A. O

As before, the next theorem brings together scattered properties (again, either well-
known — e.g., [11, Theorems 2.5, 2.6 and Proposition 5.1] — or not) of Cesaro asymptotic
limits () into a unified statement. Some parts in the proof behave similarly to their equiv-
alent in the proof of Theorem 6.1, as expected; some other parts require an independent
and different approach. Each assertion in Theorem 7.1 below is written so as to establish a
bijection with the items in Theorem 6.1 and so, by transitivity, it establishes an injection
from the items in Proposition 5.1 into homonymous items in Theorems 6.1 and 7.1.

Theorem 7.1. Let O # T € B[X] be a Hilbert-space operator. For each positive integer
n consider the Cesaro mean .
_ 1 T sk ke
Qu=13),, T'T

in B[X]. Suppose the sequence {Q,} converges weakly to @ € B[X]. That is, suppose
(a) Q,—> Q. Fquivalently,
||Qn%:c|| — |Q2z|| for every x X,
Then in this case:
(b) O <Q and, if sup, [T = 8 (so that B £0), then Q < B
If T is power bounded, then ||Q| < % and the identity ||Q|| = 5% may hold.
(¢c) T*QT = Q. FEquivalently,
||Q%T"m|| = ||Q%x|| for every x € X and every n>0.  Therefore
Qa7 Tix|2= LS T |2 — || Q2x|? for every x € X and every j > 0.
(d) Q#0 = 1<Qf and 1< |T].
() QT =0 <= TR =0 <= Q =0.
(f) QT =TQ = Q="
Conversely, if Q = Q?, then

(f1) [[(QT™ —T"Q)x||* < (sup, || T"||* — 1)||Qz]||* for all n and every x € X,
in particular, ||[(QT — TQ)x|]* < (|T]]? — 1)||Qx||* for every x € X,

(f2) [[((QT™ —T"Q)x|| = 0 for every x € X,
(f3) Q| =1 whenever O # Q.
(&) I = Q)Qu2a]? < (IQI = V) [Qu2xl* = (IQIP = 1) Q%[>  and

(7= Q)Quz|? < (T + Q%) 2(IQI* = 1) [|Qux? for every x € X,
which are both null if ||Q] =1 or asymptotically null if Q = O.



162

) [QQuzx]* = 12Q ~ D)2 Qu2x|* + (I — Q) Quza|]* for every x € X,
(i) If T is power bounded, then
NQ) ={zeXx: Tz -0} ={r e X: 137 ||T"z| — 0}.
Hence T"—=+ O <= Q = O and T is power bounded.
(j) If sup, |T"|| =B (so that 5 # 0) then
{o € X lim, | 77| = 8]}
CN(BT - Q) = {w € X:lim, 13120 [T = 52}
C {z € X: ||z|| < liminf,||T"z| < limsup,|T"z| = B||z| }.

Hence liHlnlzn_lHTkl‘H2 = B2||z|| for every x € X <= lim, |T"z|| = B||z| for
every t € X < Q= (% < Q=1 <= T is an isometry on (X,{-;-)).

Also if T is power bounded, then
(-;+)q is an inner product <= T is of class Cy. <= @ is positive.
In the case of () > O we get
k) QT =TQ <= Q=Q* <= Q=1 <= T is an isometry on (X,{-;-)).

Furthermore, the following assertions are pairwise equivalent.

(1) Q is invertible (ie., @ > O).

(2) The norms || - |lg and || - || on X are equivalent.
(3) T on (X,(-;-)) is similar to an isometry.

(4) T on (X,(-;-)) is power bounded below.

Proof. Let T € B[X] be an operator acting on a Hilbert space X, take the sequence
{T*"T"} of nonnegative operators in B[X], and consider the Cesaro mean

n—1
Q, = %ZkZOT*ka for every n >1

associated with {T*"T™}. Suppose the B[X]-valued sequence {Q,} of nonnegative opera-
tors converges weakly to the Cesaro asymptotic limit @ € B[X] of T..

(a) Since the class of nonnegative operators is weakly closed in B[X], then the weak limit
Q is nonnegative, and hence Q,, — @ is equivalent to

HQn%IHQ = (Qnr ) > (Qr x) = ||Q%xH2 for every z € X.

(b) By (a), O<Q. If sup, ||T"|| =B, then Q, < LI+ 13071821 — B2I (and if
T = shift{s,1,1,1,...}, then Q = T*"T™ = diag{$% 1,1,1,...}) for every n>1.

(¢) Since Q,, = %ZZ;%T*I“T’“, then (compare with the proof of Proposition 4.2)
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T*QnT = QnJrl + %(QnJrl - [)
for each n > 1. If (Q,z;x) — (Qz;z) for every x € X, then {Q,} is bounded and so
T"QT = Q.
By induction, 7*"QT" = @ for alln > 0. As O < @ and O < Q,, for n > 1, then (i)
QT z|* = (QT"x; T"x) = (T QT"x;x) = (Qu; ) = ||Q2x|
for every z € X and every n >0, and (ii) 7% Q, T’ =~ @Q for every j >0, and so
1 . . . n—1 . . n—1 .
ST |12 J e o T 1 *k+gmk+j . . _ 1 k+j .12
QAT = (QuTPa: i) = 13 (0T 1) = 13 v
for every n > 1 and every j > 0. Thus, since ||Q,L%zj||2 — |Q=Tix||% by (a), then
n—1 .
%z:k:()HT’“J”J:H2 — ||Q%x||2, for every x € X and every 7 > 0.
(@) According to (c), [@¥a]? = |Q¥T*a]P < [QUIT 2] for any k> 1 and [QEa|? =
n— 1 n— 1
ool a|? < QU IT 2> — IR Q2] # 0 for every x € X\N(Q). So
1 <||Q| whenever @Q# O.

Since Q = T*QT, then ||Q|| < ||Q||T||>. Hence Q # O implies 1 < ||T|.

(e) @ = O trivially implies QT = TQ = O, and QT = O implies Q) = O by (c). Also, if
TQ = O, then 0 = ||Qn%TQx|| — ||Q3 2| for every z € X by (c) again, and so Q = O.

(f) Since O < @, then QT =TQ if and only if Q%T = TQ%. If Q%T = TQ%, then ac-
cording to (c) it follows that

o oE ez AN Ak 2 N T A kb2
(Quia) = Q¥ = 13" [Qbal = 1Y Qi)
AN e E 2 2 _ /N2,
= I3 QR — 1 Qall? = (@)

for every z € X. So Q = Q2. Conversely, (QT"z; T"Qz) = ||Q=T"z|*> = ||Q=x||?> accord-
ing to (c). Since Q = Q? if and only if Q2 = Q, then we get in this case

QT = T"Q)zl* = |QT"z|* + | T"Qx|* - 2| Q7|
= | T"Qu|* — 1|Q=||* < (sup, | T"[I* = D Q|

for all n and every x € X'. In particular, for n = 1 we get for every x € X

QT - TQ)x|* < (IT]1* = DI Q|

Thus, asymptotically (with the assumption @ = @Q? still in force), we get by (c)

1 n n . n 1 1
lim,, [(QT™ — T"Q)a||* = lim, [|T"Q2x||*— |Q2x* = 0
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for every z € X (and so {QT™ —T"Q} is a bounded the sequence of operators disre-
garding whether T is power bounded or not). Again, as in the proof of Theorem 6.1,
O < Q = Q? # O implies @ is an nonzero orthogonal projection, and so ||Q|| = 1.

(g) The inequality is readily verified and the limit comes from (c): for any z € X,

(I - Q)Quzz|? = |Qu2z|* + |QQu22]* — 2|Q2 Qu 2|
< 1Qu2 ) + 11QIPQnz2]> — 2Q] |Qn2 ]
= (|QIl - IQuz]* = (IQ] — V2 Qzx|,

and since I —Q = (I + Q%)(I — Q%) and I + Q2 is invertible, then we get the second
inequality form the above one.

(h) As we saw above, [QQ.2z|* = [[(I — Q)Qu2z|® + 2|Q2Qn2x|* — ||Qu2x]% but
21Q7Q, 2|2 — [|Qn2z|? = [|(2Q — 1)2 Q2 x|, for every z € X. So we get (h).
(1) As in the proof of Proposition 7.1, if ||T"z|| — 0, then %ZZ;(I)HT’“:BH — 0, which means

|Qzx]| = 0 by (c) or, equivalently, z € N (Q2) (i.e., z € N(Q)). The converse requires
power boundedness. If 13770 T%z| — 0 (i.e., if 2 € N(Q)), then

L . . 1 n—1 ki . 1 n—1 & .
0 < liminf, ||7"2| < lim,inf;= k:oHT Tz|| < hmnﬁzk:OHT x| =0

(as we saw in Section 6). But if 7' power bounded, then liminf,||7"z|| = 0 implies
lim, ||[T™z|| = 0 (as we saw in the proof of Theorem 6.1(i)).

(j) Suppose sup,, ||T"|| < 8. Again, as in the proof of Proposition 7.1,
n AN k2 2
Tz = Bllall = 3> IT"l* = 82]lz].
According to (c),
n—1 1
hm”%Zk:oHTkaQ — Bla]| = Qx| = Bllz|) — ((Q— Bz ),
and according to (b),
1
(Q—PFNasa) <= |(Q— 1)z =0 <= zeN(@Q- )
since N'(Q — 821)2 = N'(Q — 8*I). Conversely,
AN k2 a2 : no |l —
hmnﬁzk:OHT z||* = f%||z| = limsup,||T"z| = 5]||z|.
Indeed, since sup,, ||7"]| < B, then as we saw in Section 6
n—1
B2||x||* = 1imn%2k_0HTkx“2 < limsup,,||T"z||* < sup,,||T"z||* < B%||z|)*.
Thus, as in the proof of Theorem 6.1(j), for  # 0 and since 5 > 0,

limsup, ||T"z|| = f||lz|| = £ >1 and |z| < liminf,||7T"z].
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If lim, || 7| = B||z|| for every x € X, then lim, 137" (| T%z||? = 82||z|| for every = € X
as we saw above, meaning ) = 321, which implies T*T I by (c¢), and so Q, =1 = Q.
Conversely, if @ = I, then ||T"z|| = ||z| for every z € X by (c) again (i.e., T is an isome-
try), and so lim, ||T"z| = B||z|| for every z € X with g = 1.

Suppose T' is power bounded. If T" is of class Cy. (i.e.,if ||T"z| 4 0 if = # 0), then
as we saw in the proof of Theorem 6.1(i) 0 < liminf,, ||T"z|| for  # 0. The converse is
trivial. Since liminf, [|[7"z]|? < lim, 137" T z|)? (as we saw in Section 6) and since
llmnnz ||Tkx||2 1Qnz])* — [|Qz|* = Hx||Q by (¢), then 0 < liminf, ||[7"| implies
0 < |lz]lo for x # 0, which means ) > O. Thus if T is power bounded, then

(-;)q is an inner product <= T is of class C}. <= (@ is positive.

(k) This follows as in the proof of Theorem 6.1(k) with A, replaced by Q).

Moreover, the equivalences among the assertions (1) to (4), depend on the new inner
product (-;-)g generated by the positive @), and so they follow by Propositions 4.1 and
4.2 by using the same argument of Theorem 6.1, with o({[|T"z[]*}) = ||z replaced by

. 1 .
lim,, [|Qn 2 ||” = lim, 3 >3350 | TF2|” — | Qz ]| = || =

Remark 7.1. Even a power unbounded operator may have a Cesaro asymptotic limit
(see, e.g., [11, Example 3]), while there is no p-asymptotic limit for power unbounded
operators. From now on suppose 7' is power bounded.

(a) Thus for every Banach limit ¢ there exists a p-asymptotic limit A, for 7. Even in this
case of a power bounded operator, the Cesaro asymptotic limit () may not exist (even in
the weak sense; see [11, Example 2]).

(b) Moreover, even when () exists it may not coincide with A,. Indeed, it was exhibited
in [11, Example 1] a power bounded unilateral weighted shift 7" such that |T"| = 8 = v/2
for all n and ||T"e;||? is either % or 1 depending on n, with Cesaro asymptotic limit
() = I, which does not coincide with an arbitrary ¢-asymptotic limit A, (i.e., Q # A, for
a specific Banach limit ¢ — actually, there exist Banach limits ¢ for which ||A¢% e1||? lies
anywhere in the interval [1, 3?]).

(c) As we have seen in Theorems 6.1(d) and 7.1(d), if the asymptotic limits are not
null, then for every Banach limit ¢ we get 1 <||A,||, 1 <||@Q]], and 1 <||T’||. These norms,
however, are not related. For instance, if T' = shift{5, 1,1, 1,... } is the unilateral weighted
shift with 8 > 1 as in the proofs of Theorems 6.1(b) and 7.1(b), then ||A,| =||Q| = 52
and ||T|| = 8. On the other hand, if T = ({§) & I, then T" = O & I for all n > 2 and
A, = Q = O @ for all Banach limits ¢ and so ||T|| = 8 with ||A,|| = [|@|| = 1. Actually,
as we saw in item (b) above, it was exhibited in [11, Example 1] a power bounded unilateral
weighted shift 7" such that there is a maximum Banach limit ¢ for which ||A,, || > 2,

while ||T']| = v/2 and ||Q|| = 1.

50+‘

(d) The inclusions in Theorems 6.1(j) and 7.1(j) may also be proper (e.g., for the unilateral
weighted shift 7' form [11, Example 1], as in item (b) above, 32 = 2 and Q = I so that
N(B?I — Q) = {0} while ||T"e,]| oscillates between 1 and /3).
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For a power bounded operator on a finite-dimensional space, the Cesaro asymptotic
limit () exists and coincides with the p-asymptotic limit A, for every Banach limit ¢ [11,
Theorem 2.1]. The next theorem gives a condition for () = A, on an infinite-dimensional
space. As we saw in the proof of Theorem 7.1(c), if the sequence {Q,} of Cesaro means
converges weakly to, say @, then the sequence {T*Q,T7} of Cesaro means converges
weakly (again to @) for every positive integer j. If such weak convergence holds uniformly
in j, then @) = A, for all Banach limits ¢.

Theorem 7.2. If T is a Hilbert-space power bounded operator for which the sequence
{T*Q,T7} of Cesaro means converges weakly and uniformly in j,

. . n—1 . .
T79Q,T° = %Zk_OT*kﬂTkﬂ — Q  uniformly in j,

then the Cesaro asymptotic limit coincides with the p-asymptotic limit,

Q:Atp)

for all Banach limits ¢: £ — C.

Proof. By Theorem 7.1(c), Q, 2+ Q if and only if 7%7Q,T7 -+ @ which means
1 el k2 1 9 )
Ezk_onT z||* = ||Q2z||* for every x € X and every j > 0,

as @ > O. If the weak convergence of {T*Q,T’} holds uniformly in j, then so does
the above convergence. But the real-valued sequence {%Zz;é | T+ x||2} of Cesaro means
converges uniformly in j if and only if all Banach limits ¢ € X* coincide at the sequence
{||77%||?} and are equal to ||Qzx||? [29, Theorem 1] (also [34]): that is,

p({|IT"z|*}) = Q2

for all Banach limits ¢: ¢5°— C. In particular, this holds for the arbitrary Banach limit
@ of Theorem 6.1 since T' is power bounded. For that Banach limit we got

P({IIT"z]?) = | A2 |

where A, > O is the p-asymptotic limit of T" (associated with ¢). Thus Q2|2 = HAga%fEHZ
or, equivalently, ((Q — A,)z,;z) =0, for every z € X. This means

Q - A«p
(either because the Hilbert space is complex or because ) — A, is self-adjoint). Il

Remark 7.2. (a) A class of operators that satisfies the assumption of Theorem 7.2 is the
class of quasinormal operators. A Hilbert-space operator T is quasinormal if it commutes
with T*T. If T € B[X] is quasinormal on a Hilbert space X', then by two trivial inductions
we get T*T'TF = T*T*T for every k > 1, and consequently T**T* = (T*T)* for every
k > 1. This in fact is equivalent to quasinormality — see, e.g., [14, Proposition 13] and
[13, Theorem 3.6]. Therefore
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there is an operator S for which T**T* = S* for every k > 1 if and only if T
is quasinormal, and such an operator is unique and given by S = |T|*> = T*T.

In this case, T**+I T+ = (T*T)*+J = Sk+J for every nonnegative integers j, k. If T is power
bounded, then so is S, and the Mean Ergodic Theorem for power bounded operators
(which holds in reflexive Banach spaces — see, e.g., [7, Corollary VIII.5.4]) ensures strong
convergence for the sequence of Cesaro means {%Zz;é S’“} whose strong limit @ lies in
B[X] by the Banach—Steinhaus Theorem. Thus

_ 1 n—l wkrpk 1 nilks
Qu=gy, THTF=1%" S*0,
where Q > O is the Cesaro asymptotic limit of T' (cf. proof Theorem 7.1). Hence

n—1 . n—1 . . . Cog i ) . .
lzk:05k+] - %ZkZOT*k-i_JTkJr] — T*]QTLT] — T ]QT] prmnd Q e S]Q — QSJ

n

for every j according to Theorem 7.1 (as strong convergence implies weak convergence).
Take an arbitrary x € X. By the above strong convergence

(A = @) = s[5 (15" - @)
< sup, | 57| (%Z:;;sk Q)| >0,

Then %ZZ;(I)T*’“H T+ 25 @ uniformly in j. Therefore we get (once again, since strong

sup;

convergence implies weak convergence) + P oI TR 2 @ uniformly in j. (Indeed,
sup; [( (2520 T TH = Q)asa)| < sup; || (73032 THH T — Q)l|||z.) Hence

%Z:ﬁOHTkﬂlUHQ — HQ%JI||2 uniformly in j.

Thus, according to Theorem 7.2, @) = A, for all Banach limits ¢, where A, is the -
asymptotic limit for the power bounded operator T as in Theorem 6.1.

(b) A normed-space operator 7' is normaloid if ||7"| = ||T'||™ for every integer n > 0. By
the Gelfand—Beurling formula, on a complex Banach-space a normaloid is an operator T’
for which spectral radius coincides with norm: r(7') = ||T||. Since power boundedness

implies r(7") < 1, then it follows at once that
a power bounded operator is normaloid if and only if it is a normaloid contraction.

(In fact, if a normaloid operator is similar to a power bounded operator, then it is a
contraction [26, Proposition 1].) Quasinormal is a class of operators including the normal
operators and the isometries, and it is included in the class of subnormal operators, which
is included in the class of hyponormal operators, which in turn is included in the class
of paranormal operators, which are all normaloid. So all these Hilbert-space normaloid
operators, when power bounded, are contractions and so they naturally fit to Proposition
7.1 (and consequently they trivially fit to Theorem 7.2 — see Remark 6.2).
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Corollary 7.1. Let T be a Hilbert-space power bounded operator. If the sequence {Q,}
of Cesaro means converges uniformly,

AN ke
Qu=1y, THTF 0,
then the Cesaro asymptotic limit coincides with the p-asymptotic limit,

Q - Azpy
for all Banach limits ¢: £ — C.

Proof. Consider the setup of Theorem 7.1. Recall that Q = T*QTV for every j > 1. If
Qn= 1302 Tk 2 Q, then

n—1 . . .
%ZkZOT k+jpk+i _ QH < suijTsz

n—1

sup; %Zk:oT*ka — QH — 0.
Thus %ZZ;(I)T*]“HT’““ —5 @ (and so - P THHITRR 2 Q) uniformly in j. If T is
power bounded, then @ = A, for all ¢ by Theorem 7.2. n

For instance, let 7' is a uniformly stable noncontraction (i.e., (7)) < 1 < ||T']|) acting
on any Hilbert space X. Then T" —= O (so that T is power bounded) or, equivalently,
T*"T" % O, and so Q,, = %ZZ;&T*’“T’“ — @ = O = A, for all Banach limits ¢: (°— C
(in accordance with Corollary 7.1).

Remark 7.3. If T is a power bounded operator on a finite-dimensional space, then
Q) = A, for all Banach limits ¢: (3°— C. Indeed, for power bounded operators on a
finite-dimensional space (where weak, strong, and uniform convergences coincide), the
Cesaro asymptotic limit exists [11, Theorem 2.1]. Thus @) = A, for all Banach limits ¢
by Corollary 7.1.
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