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Abstract. We apply a mathematical elastic shell model to describe a human mitral
valve based on its geometric and mechanical properties. Specifically, we adopt an elliptic
variational model called Koiter’s equation to simulate the human mitral valve. Then, we
provide a conforming finite element method to compute the deformation of the mitral
valve. The numerical results show that the proposed mathematical model simulates well
the human mitral valve.
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1 Introduction

As one of the important valve tissues in the human heart, the mitral valve guarantees
the one-way flow of blood from the left atrium to the left ventricle, and plays an important
role in maintaining the normal function of the heart [1]. So far, the research on the
modeling of the mitral valve can be divided into structural models and fluid-solid coupling
models. Structure models only consider the structure and shape of the mitral valve,
and are the foundation of fluid-structure-interaction models. Weinberg and Kaazempur-
Mofrad [2, 3] used finite element simulation to describe the three-dimensional stress and
strain of a mitral valve undergoing large deformations. Prot’s et al. [4] conducted a finite
element analysis of the effect of the ring shape and tendine-cord force distribution of the
mitral valve on the whole human heart. Dal Pan F’s et al. [5] established a finite element
model for the mitral valve, and simulated the mitral diastole by an edge suture method.

A fluid-structure-interaction (FSI) model refers to a model exploring the interaction
between the structure of a mitral valve and the fluid domain. Research in this field has
been mainly done by Kunzelman’s et al. [6, 7, 8], Lim’s et al. [9], Einstein’s et al. [10]
and so on. For example, Kunzelman’s et al. [6, 7, 8] established the most primitive
human mitral valve model, and then simulated the mitral valve closing process based on
the original model. Lim’s et al. [9] built a flap with a uniform thickness of the membrane
structure to simulate the normal working mechanism for a mitral valve, though the free
edge of the flap had no tip, and local details of flap morphology were ignored in their
model. Einstein’s et al. [10] set up an FSI model of a mitral valve in the human heart,
but oversimplified the geometric shape and the physiological structure of the mitral valve.
A new structural finite element model is proposed by Marco et al. [11], considering the
following: (i) an accurate morphological description of the valve, (ii) a description of
tissues mechanical properties accounting for anisotropy and nonlinearity, (iii) dynamic
boundary conditions of mimic annulus and papillary muscles contraction. In recent years,
Luo et al. [13, 12, 14] also proposed a fluid-solid coupling model of a human mitral valve.
Shen et al. [15, 16, 17] studied the geometry of a mitral valve, a pulmonary valve and a
tricuspid valve respectively, and gave mathematical parametric equations for these valves,
and came up with an elastic shell model for the human tricuspid valve.

As shown by medical imaging data, the leaflets of the human mitral valve are extremely
thin, with a thickness of about 1.32mm (cf. [11]). The mitral valve is studied here
using Koiter’s shell model which is a well-recognized two-dimensional for thin elastic
shells. Koiter [18, 19] defined the two-dimensional (2D) model to approximate three-
dimensional elasticity for thin shells in the 1960s. Ciarlet [20] later defined different
shell models based on Koiter’s model according to the middle surface of shell. Bernadou
[21] conducted a general analysis of the finite element methods (FEMs) to conforming,
nonconforming and mixed finite elements for Koiter’s model. In recent years. Shen et
al. [22, 23, 24, 25, 26] presented several numerical computations of Koiter’s model under
some special assumptions.

In this paper, our aim is to employ a mathematical elastic shell model to describe the
mitral valve elastic model. More specifically, we use Koiter’s model for the mitral valve
leaflets and propose a numerical approximation scheme for this elastostatics model. To
this end, we discretize spatial variables. In other words, we use conforming finite elements
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(linear triangles) to approximate the tangent components of the displacement, and another
conforming finite element(HCT triangles) to approximate the normal component of the
displacement. Thus, we define a mathematical model for the human mitral valve, perform
numerical simulations and analyse the results. Hopefully, our research will provide a basis
for the dynamic model and the functional simulation of the human mitral valve.

2 Mathematical model and numerical schemes

2.1 Preliminaries

Our notation is generally that of [27]. In the following, Latin indices and exponents
i, j, k, · · · ∈ {1, 2, 3}, whereas Greek indices and exponents α, β, γ, · · · ∈ {1, 2}. Further-
more, the repeated index summation convention is used in a systematic way.

Let ω be an open, bounded, connected subset of R2. Let the boundary γ = ∂ω be
Lipschitz-continuous, and let γ = γ0 ∪ γ1 be a partition of γ into two measurable subsets
with γ0 ∩ γ1 = ∅, where γ0 with length γ0 > 0 is the clamped boundary, and γ1 is the
free boundary. Let y = (yα) denote a generic point in the closure ω of the set ω and let

∂α := ∂/∂yα. Consider an immersion θ⃗ ∈ C3(ω;R3), so the two vectors

a⃗α(y) := ∂αθ⃗(y),

are linearly independent at all points y ∈ ω (cf. [28]). The two vectors span the tangent
plane to the surface

S := θ⃗(ω)

at the point θ⃗(y), and the unit vector

a⃗3(y) :=
a⃗1(y)× a⃗2(y)

|⃗a1(y)× a⃗2(y)|

is normal to S at point θ⃗(y). These vectors a⃗i(y) constitute the covariant basis at the

point θ⃗(y), whereas the vectors a⃗i(y) is defined by the relations

a⃗i(y) · a⃗j(y) = δij

constitute the contravariant basis at point θ⃗(y), where δij is the Kronecker symbol (note

that a⃗3(y) = a⃗3(y) and that the vector a⃗α(y) is also in the tangent plane to S at θ⃗(y)).
aαβ and aαβ denote the covariant and contravariant components of the metric tensor

of S respectively. They are defined by

aαβ := a⃗α · a⃗β, aαβ := a⃗α · a⃗β, a⃗α = aαβa⃗β.

bαβ and bβα denote the covariant and mixed components of the curvature tensor of S ,
and are defined by

bαβ := a⃗3 · ∂βa⃗α, bβα := aβσ · bσα.
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The Christoffel symbols Γσ
αβ on S are defined by:

Γσ
αβ := a⃗σ · ∂αa⃗β.

Note that
(aαβ) = (aαβ)

−1.

The determinant of the metric tensor is denoted

a := det(aαβ)

Finally, we introduce the two-dimensional elastic tensor along S through its contravari-
ant components aαβστ defined by

aαβστ =
4λµ

λ+ 2µ
aαβaστ + 2µ(aασaβτ + aατaβσ),

where λ ≥ 0, µ > 0 are the Lamé constants of the elastic material.

2.2 Mathematical model

Koiter’s equations[19] define a 2D model for a linearly elastic shell of the following
form

Find ζ⃗ ∈ V⃗K(ω) := {ζ⃗ = (ζi) ∈ H1(ω)×H1(ω)×H2(ω); ζi = ∂nζ3 = 0 on γ0},
such that ε

∫
ω
aαβστγστ (ζ⃗)γαβ(η⃗)

√
ady + ε3

3

∫
ω
aαβστρστ (ζ⃗)ραβ(η⃗)

√
ady

=
∫
ω
piηi

√
ady, ∀η⃗ ∈ V⃗K(ω),

(1)
where ε is the half-thickness of the shell, ∂nζ3 denotes the outer normal derivative of ζ3
along the boundary of ω, and pi ∈ L2(ω) are given functions accounting for the applied

forces on the middle surface S. The unknown is the vector ζ⃗ = (ζ1, ζ2, ζ3) whose compo-
nents ζi are the covariant components of the displacement field ζia⃗

i of the middle surface
S.

Here, the functions γαβ(η⃗) and ραβ(η⃗) are the customary covariant components of the
linearized change of metric and change of curvature tensors defined by

γαβ(η⃗) :=
1

2
(∂βηα + ∂αηβ)− Γσ

αβησ − bαβη3,

ραβ(η⃗) :=∂αβη3 − Γσ
αβ∂ση3 − bσαbαβη3

+ bσα(∂βησ − Γτ
βσητ ) + bτβ(∂αητ − Γσ

ατησ)

+ (∂αb
τ
β + Γτ

ασb
σ
β − Γσ

αβb
τ
σ)ητ .

Then, we have the following existence and uniqueness theorem for the problem (1) (cf.
[17]).

Theorem 2.1. Let ω be a bounded connected open subset in R2, whose boundary γ = ∂ω
is Lipschitz-continuous. Let γ0 be a non-empty relatively open subset of γ and let θ⃗ ∈
C3(ω̄;R3) be an immersion. Then, problem (1) has one and only one solution.
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Proof. With the notations,

a(ζ⃗ , η⃗) := ε

∫
ω

aαβστγστ (ζ⃗)γαβ(η⃗)
√
ady +

ε3

3

∫
ω

aαβστρστ (ζ⃗)ραβ(η⃗)
√
ady,

f(η⃗) :=

∫
ω

piηi
√
ady,

problem (1) can be rewritten as follows:{
Find ζ⃗ ∈ V⃗K(ω) := {ζ⃗ = (ζi) ∈ H1(ω)×H1(ω)×H2(ω); ζi = ∂nζ3 = 0 on γ0},
such that a(ζ⃗ , η⃗) = f(η⃗), ∀η⃗ ∈ V⃗k(ω).

(2)

Let the space V⃗k(ω) be equipped with the following norm:

∥η⃗∥V⃗K(ω)
=

2∑
α=1

∥η⃗α∥H1(ω) + ∥η⃗3∥H2(ω).

Since the bilinear form a(·, ·) is V⃗k(ω)− elliptic (cf. [20]), the variational problem (2)
has one and only one solution by Lax-Milgram Theorem (cf., e.g., [29]).

2.3 Numerical methods

The unknown variable is discretized by finite element methods (FEMs) (cf. [21] and [30]).
To be more specific, given a triangulation Th of the domain ω̄ (henceforth assumed to be
polygonal) made of triangles denoted K ∈ Th, we use a P1 triangle to approximate the
tangential components ζα of the sought displacement vector field, and a Hsieh–Clough–
Tocher triangle (i.e., HCT triangle), for approximating the normal component ζ3 of the
sought displacement vector field.

More specifically, we let
V⃗h := Vh1 × Vh2 × Vh3,

where
Vhα := {ηh ∈ C0(ω̄); ηh|K ∈ P1(K) for each K ∈ Th, ηh = 0 on γ0},
Vh3 := {ηh : ω̄ → R; ηh|Ki

∈ P3(Ki), for all 1 ≤ i ≤ 3 and for each K ∈ Th,
ηh is C1–continuous at each interior vertex,
∂nηh is continuous at each mid–point of each interior edge,
ηh = 0 at each vertex that belongs to γ0,
∂nηh = 0 at each mid–point of an edge that belongs to γ0},

where the notation Pk(K), k ≥ 1, designates the space formed by the restriction to a
triangleK ∈ Th of all the polynomials of degree≤ k in the two variables, withKi, i = 1, 2, 3
defining a subdivision of K into three triangles.

Then the finite element approximation to problem (2) is as follows:{
Find ζ⃗h ∈ V⃗h

such that a(ζ⃗h, η⃗h) = f(η⃗h), ∀η⃗h ∈ V⃗h.
(3)
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where the bilinear form a and the linear form f are defined in the proof of Theorem 2.1.
We define the norms ∥ · ∥V⃗h

on the space V⃗h by

∥η⃗h∥V⃗h
:=

∑
α

∥η⃗αh∥H1(ω) + ∥η3h∥H2(ω),

for each η⃗h = (η1h, η2h, η3h) ∈ V⃗h.
Combining Lax-Milgram Theorem and the error estimate established in the monograph

of Bernadou (cf. [21], page 71), we obtain the following theorem.

Theorem 2.2. Let the assumptions be the same as in Theorem 2.1. Then, the variational
problems (3) has an unique solution. Let ζ⃗ and ζ⃗h denote the solutions to problems
(2) and (3), respectively. Then, there exists a constant C, independent of h, such that

∥ζ⃗ − ζ⃗h∥V⃗h
≤ Ch.

3 Numerical experiments

The mitral valve is a cardiac valve connecting the left atrium and the left ventricle
and contains an annulus, two leaflets, papillary muscles and chordae tendineae. The two
valve leaflets are designated as the anterior leaflet and the posterior leaflet, the latter of
which has three subregions.

For each leaflet of human mitral valve, the middle surface S is a portion of elliptic
cylindrical shell when the mitral valve is fully open [15]. In terms of curvilinear coordi-

nates, the surface S is described by the mapping θ⃗ defined by

θ⃗(y1, y2) = (m cos y1, n sin y1, ly2),

where y1 ∈ [0, 2π], ly2 ∈ [h1(y1), h2(y1)], m, n, h1(y1) and h2(y1) represent the lengths
of the semi-major axis, semi-minor axis, the height of the lower and upper boundaries,
respectively, of the elliptic cylinder.

Then, the covariant basis of the tangent plane to S at θ⃗(y) is

a⃗1(y1, y2) = ∂1θ⃗(y1, y2) = (−m sin y1, n cos y1, 0),

a⃗2(y1, y2) = ∂2θ⃗(y1, y2) = (0, 0, l).

From the definition of a⃗3, we have

a⃗3(y1, y2) :=
a⃗1 × a⃗2
|⃗a1 × a⃗2|

= (
n cos y1√

n2 cos2 y1 +m2 sin2 y1
,

m sin y1√
n2 cos2 y1 +m2 sin2 y1

, 0).

Then, the covariant components of the metric tensor are given by

a11 = a⃗1 · a⃗1 = m2 sin2 y1 + n2 cos2 y1, a21 = a12 = 0, a22 = l2.

Thus,

a := det(aαβ) =

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = l2(m2 sin2 y1 + n2 cos2 y1).
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Since (aαβ) = (aαβ)
−1, the contravariant components of the metric tensor are given by

a11 =
1

m2 sin2 y1 + n2 cos2 y1
, a21 = a12 = 0, a22 =

1

l2
.

Hence,

a⃗1 = a11a⃗1 = (
−m sin y1

m2 sin2 y1 + n2 cos2 y1
,

n cos y1
m2 sin2 y1 + n2 cos2 y1

, 0),

a⃗2 = a22 · a⃗2 = (0, 0,
1

l
).

Since
∂1a⃗1 = (−m cos y1,−n sin y1, 0),

∂1a⃗2 = ∂2a⃗1 = ∂2a⃗2 = (0, 0, 0),

the covariant and mixed components of the second fundamental form of S are given by

b11 = a⃗3 · ∂1a⃗1 =
−mn√

n2 cos2 y1 +m2 sin2 y1
,

b12 = b21 = b22 = 0,

b11 =
−mn

(m2 sin2 y1 + n2 cos2 y1)
3
2

, b21 = b12 = b22 = 0.

Then, the Christoffel symbols of S are given by

Γ1
11 = a⃗1 · ∂1a⃗1 =

(m2 − n2) sin y1 cos y1
m2 sin2 y1 + n2 cos2 y1

,

Γ1
12 = Γ1

21 = Γ1
22 = 0,

Γ2
11 = Γ2

12 = Γ2
21 = Γ2

22 = 0.

According to [31], we take the value of the Young’s modulus E as

E = 4× 106Pa, (4)

and of the Poisson ratio as
ν = 0.45. (5)

Since the Lamé constants, the Poisson ratio and the Young modulus are related by
the following equations (cf. e.g. [32]):

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
, (6)

plugging (4) and (5) into (6) yields

λ = 3.1× 106Pa, µ = 3.45× 105Pa.
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3.1 Anterior leaflet

In this paper, based on the theoretical research presented in [15], the middle surface
S of the mitral valve when it is fully open is a portion of elliptic cylindrical shell (cf. Fig.
1): the parametric equation of the anterior mitral leaflet is that of equation (7) below:

θ⃗(y1, y2) = (1.4 cos y1, 1.04 sin y1, 2.4y2), (7)

where y1 ∈ [0, π], y2 ∈ [0, siny1].

Figure 1: Anterior leaflet of the mitral valve

The domain ω is defined by

ω := {(y1, y2) ∈ R2; y1 ∈ [0, π], y2 ∈ [0, sin y1]},

and the clamped boundary is defined as the image by θ⃗ of the set

γ0 := {(y1, y2) ∈ R2; y1 ∈ [0, π], y2 = 0}.

Let the external forces be defined by p1 = p2 = 0, and p3 = 1.5mmHg (cf. [11]).
We carried out numerical experiments with four different meshes, comprising of 16× 20,
32× 40, 64× 80, and 128× 160 as shown on Fig. 2 (cf. A1, B1, C1, D1). The Fig. 2 (cf.
A2, B2, C2, D2) shows the distribution of the displacement of the anterior leaflet, when
the anterior annular (the blue region on the top of each picture) is fixed, and the maximum
deformation appears on the red region. As expected, the deformation of different meshes
is similar when the mesh is ever smaller.

In order to further analyse the numerical results, we computed the maximum and the
minimum of the three components of displacement (ζ1, ζ2, ζ3) on different meshes in Table
1. Obviously, the maximum and minimum errors of the three displacement components
under different meshes are very small. The results in Fig.2 and Table 1 suggest that the
finite element discrete scheme is stable and convergent for the proposed Koiter’s model
for elliptic cylindrical shell.



137

Figure 2: Numerical results on different meshes for the anterior leaflet
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Table 1: Comparison of the numerical results for the anterior leaflet on different meshes.
mesh steps

1
20

1
40

1
80

1
160

ζ1max/10
−6m 6.14517 7.85437 8.9569 9.38467

ζ1min/10
−6m -6.15737 -7.87631 -8.95581 -9.38565

ζ2max/10
−6m 1.9829 2.60384 2.89493 3.01557

ζ2min/10
−6m -3.26868 -4.23734 -4.82134 -5.03315

ζ3max/10
−3m 1.77949 2.68110 3.218720 3.463040

ζ3min/10
−3m -1.80165 -2.504780 -3.442770 -3.764220

Triangles 126 480 1948 7790
Vertices 82 277 1047 4040

3.2 Posterior leaflet

According to reference [15], the parametric equations for the three subregions (P1, P2,
P3) of the posterior leaflet presented in the paper are as follows:

P1 : θ⃗(y1, y2) = (1.4 cos y1, 2.11 sin y1, 1.1y2),

where y1 ∈
[
π, 35π

27

)
, y2 ∈ U(y1) = [0, sin (3y1 − 3π)) ,

P2 : θ⃗(y1, y2) = (1.4 cos y1, 2.11 sin y1, 1.4y2),

where y1 ∈
[
35π
27

, 31π
18

)
, y2 ∈ U(y1) =

[
11
14
sin π

9
, 11
14
sin π

9
+ (1− 11

14
sin π

9
) sin

[
54
23
(y1 − 35π

27
)
])

,

P3 : θ⃗(y1, y2) = (1.4 cos y1, 2.11 sin y1, 1.1y2),

where y1 ∈
[
31π
18

, 2π
)
, y2 ∈ U(y1) =

[
0, sin 16

5
(2π − y1)

)
.

We assume that the middle surface S of the posterior leaflet is a portion of an elliptic
cylindrical shell when it is fully open, as indicated in Fig. 3.

Figure 3: Posterior leaflet of the mitral valve

The domain ω of the curvilinear coordinates on S is defined by

ω := {(y1, y2) ∈ R2; y1 ∈ [π, 2π], y2 ∈ U(y1)},

and the clamped boundary is defined as the image by θ⃗ of the set

γ0 := {(y1, y2) ∈ R2; y1 ∈ [π, 2π], y2 = 0}.

The calculations are made on four meshes, comprising of 20× 20× 20× 30, 40× 40×
40 × 60, 80 × 80 × 80 × 120, and 160 × 160 × 160 × 240 as shown on Fig. 4 (cf. A1,
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Figure 4: Numerical results on the different meshes for the posterior leaflet
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B1, C1, D1). The right side of Fig. 4 (cf. A2, B2, C2, D2) shows the distribution of
the displacement of the posterior leaflet on the corresponding mesh after the deformation,
when the posterior annular is fixed. Then, we computed maximum and minimum of the
three components of displacement (ζ1, ζ2, ζ3) on different meshes in Table 2.

Table 2: Comparison of the numerical results for the posterior leaflet on different meshes.
mesh steps

1
30

1
60

1
120

1
240

ζ1max/10
−6m 3.78129 4.34080 4.50680 4.55608

ζ1min/10
−6m -4.04611 -4.68564 -4.91010 -4.97725

ζ2max/10
−7m 3.55841 4.65556 5.18586 5.40142

ζ2min/10
−7m -7.40491 -8.80006 -9.33077 -9.48805

ζ3max/10
−3m 3.00960 2.68110 3.90270 3.91008

ζ3min/10
−3m -2.87216 -3.70058 -3.81714 -3.94049

Triangles 414 1658 6628 26444
Vertices 253 920 3495 13583

The fact that the minor axis of the posterior annulus and the major axis of the anterior
annulus are equal in length, provides the possibility of coupling the two leaflets. The
numerical results for this coupling are shown in Fig. 5.

Figure 5: Numerical results on different meshes
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4 Conclusions

In this study, a mathematical model is established (a Koiter’s type model) for mitral
valve leaflets, and numerical methods are presented, namely conforming finite element
(P1 and HCT triangles), to compute the deformation of the mitral valve. The numerical
results suggest that the proposed mathematical models could simulate the human mitral
valve well. The results from this study will be extended to the dynamic model for the
human mitral valve during a cardiac cycle in a forthcoming paper.
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