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1 Introduction

There exists by now a vast literature about models of epidemic spread, most of which
take the form of ODE systems. The heterogeneity of space, however, can play an essential
role in the dynamics of an infectious disease, as the environmental conditions can differ
from one site to the other and moreover the individuals in the populations can move in
space. Therefore various settings accounting for both space and time variability have
been proposed, among the first being the contact model with diffusion in [14], followed
by [8–10, 13] and many others, mainly performing traveling wave analysis. ∗ During
the last two decades the investigation of well-posedness and qualitative properties of
solutions to reaction-diffusion PDE systems describing epidemics has attracted increasing
interest, see e.g. [1, 6, 11, 21, 23]; we also refer to [7, 22] for earlier works. Some
of the more recent models [4, 5, 12, 15] were extended to account for at least one of
the interacting populations having a motility bias in a certain direction (e.g., due to
environmental influences like fluid or air flow), which leads to a drift term supplementing
the diffusion and the source/decay terms.

A model with linear cross-diffusion of susceptibles has been considered in [20], while [3]
proposed a numerical scheme to handle a nonlinear one. Such terms are included into the
epidemic model in order to account for the response of an active population of suscep-
tibles toward the other population’s degree of infectiveness. The former would typically
try to avoid the latter by biasing its movement in the direction opposite to the gradi-
ent of infected population density. How effective this avoidance is depends, of course,
on the amount of susceptibles and infected in the system and their respective ratio: A
small amount of infected in an overwhelming susceptible population will pass -at least
for a while- unnoticed (carelessness). In the other extreme, a large density of infected
in a comparatively rather small population of susceptibles will lead to fatalism (very
low possibility of avoidance). At moderate densities and ratios the avoidance mechanism
can be quite effective, leading to patterns and (local) phase separation, see the simula-
tions in [3, 20]. The corresponding advection term occurring in the PDE for the density
of susceptibles can be interpreted as a repellent taxis term, in analogy with models of
(chemo)repellence involving (chemo)taxis terms with a sign opposite to that usual for
Keller-Segel type models.

In this work we propose and investigate a reaction-diffusion model for infection spread with
contact and with repellent taxis, which combines cross-diffusion (in the sense mentioned
above) with the influence of contacts between susceptibles and infected on the self-diffusion
of the latter. To our knowledge, previous epidemic models have either one or the other of
these features, see [14, 19, 20]; the model in [3] involves self-diffusion of infected with self-
contact. The mentioned studies in [3, 19, 20] mostly focus upon computational aspects.
They do not include any proofs of existence of solutions to such settings. Here we aim at
addressing this analytical issue for the announced model extension.

The paper is structured as follows: Section 2 specifies the model to be investigated,
along with the mathematical challenges arising from its structure, and introduces a family

∗In this context we are interested only in reaction-diffusion models; population balance models ac-
counting for further structures and featuring integro-differential PDEs (see e.g. [18] and the references
therein) are not addressed here.
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of regularized problems approximating the actual PDE system of interest. Section 3 is
dedicated to the analysis of this regularized problem, followed in Section 4 by the existence
proof for solutions to the full model in 1D and with positive initial density of susceptibles.
Section 5 contains the existence proof for supersolutions of our model in space dimension
N ě 2 and for nonnegative initial density of susceptibles. Finally, Section 6 provides some
numerical simulations to illustrate the behavior of the model for a few different scenarios
of the epidemics. Some concluding remarks are provided as well.

2 Model setup

We consider the following model for the evolution of susceptibles (S) and infected (I):

$

’

’

’

&

’

’

’

%

BtS “ ∇ ¨ p∇S ` χpSqS∇Iq ` fpS, Iq in R` ˆ Ω,

BtI “ S∆I ` gpS, Iq in R` ˆ Ω,

BνS “ BνI “ 0 in R` ˆ BΩ,
Sp0, ¨q “ S0, Ip0, ¨q “ I0 in Ω.

(2.1a)

(2.1b)

(2.1c)

(2.1d)

Here Ω is a bounded domain in RN , N P N, with the corresponding outer normal unit
vector ν on BΩ.
The equations describe the interactions of the two populations, whereby S performs linear
diffusion and repellent taxis in the sense mentioned in Section 1: Susceptibles tend to
avoid the infected. The efficiency of avoidance is characterized by the function χ which
in analogy to chemotaxis models will be called in the following tactic sensitivity. It may
in fact depend both on S and I, however for our analysis we choose it in the form

χpSq “ Kp1´ Sq,

which accounts for the crowding effect: amidst a large mass of susceptibles their awareness
of infectives is reduced (’drowned’). In particular, the threshold value for S corresponding
to a tight packing state is assumed to be normalised to Smax “ 1.
The first term on the right hand side of (2.1b) describes self-diffusion with interpopulation
contact, similarly to the model in [14]. Further, we modify the interaction terms having
the usual form SI to account for an infectiveness threshold with a limitation given by the
total population. Thus, following e.g., [20] or [1] we choose

fpS, Iq “ ´λS
SI

S ` I
` µSSp1´ Sq, gpS, Iq “ λI

SI

S ` I
´ µII,

where the second terms in these expressions describe as usual logistic growth of suscep-
tibles and linear removal of infected, respectively. † The removed (including dead and
recovered) population can be described by

BtR “ µII.

This equation is decoupled from (2.1), thus not contributing to the dynamics of pS, Iq
and will therefore be ignored in the following.

†The function f1pS, Iq “
SI
S`I is Lipschitz with respect to S and I in the open first quadrant, hence

its definition can be extended to the closure of that set by letting it be zero when either S “ 0 or I “ 0.
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Analytical challenges. System (2.1) combines several effects which jointly make the
analysis challenging:

(i) (2.1a) is in divergence form, while (2.1b) is not, and they are strongly coupled;

(ii) equation (2.1a) for S includes a potentially destabilising chemotaxis transport term,
in this case in the direction opposite to ∇I;

(iii) equation (2.1b) for I features a non-standard degeneracy occurring on the zero level
set of the variable S.

System (2.1) can be seen as a formal limit as εÑ 0 of the following family of regularised
problems:

$

’

’

’

&

’

’

’

%

BtSε “ ∇ ¨ p∇Sε ` χpSεqSε∇Iεq ` fpSε, Iεq in R` ˆ Ω,

BtIε “ pε` Sεq∆Iε ` gpSε, Iεq in R` ˆ Ω,

BνSε “ BνIε “ 0 in R` ˆ BΩ,
Sεp0, ¨q “ S0, Iεp0, ¨q “ I0 in Ω.

(2.2a)

(2.2b)

(2.2c)

(2.2d)

Thereby a small number ε P p0, 1s added to the diffusion coefficient of I eliminates the
degeneracy issue. Standard tools can be used (see Section 3 below) in order to prove the
existence of solutions for (2.2). This observation naturally leads to an attempt to apply
the standard compactness method which is based on establishing uniform w.r.t. ε a priori
estimates for Sε, Iε, and their derivatives in suitable Bochner spaces and utilising some
known compact embeddings and other necessary results in order to prove the existence
of a sequence which converges to some weak solution of the non-perturbed system. In
general, however, owing to the sort of degeneracy present in the original system, it seems
difficult, if not impossible, to get a priori bounds which would allow to pass rigorously to
the limit in the term Sε∆Iε in order to regain S∆I.
In order to obtain our existence results, we assume that

S0 P L
8
pΩq, 0 ď S0 ď 1, (2.3a)

I0 P W
1,8
pΩq, I0 ě 0. (2.3b)

In this work we consider first the special situation when

N “ 1 and inf
Ω
S0 P p0, 1s

and prove in Section 4 that under these assumptions a solution does exist. In Section 5 we
then turn to the general case of an arbitrary space dimension and without a positive lower
bound for S0. In this case we are able to establish the existence of a weak supersolution
(see Definition 5.1 below).

Remark 2.1 (Notation). Throughout the paper we make the following useful conventions:

1. For any index i, a quantity Ci denotes a positive constant or function;
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2. Dependence upon such parameters as: the space dimension N , domain Ω, constants
K,λI , λS, µI , µS, and the norms of the initial data S0 and I0 is mostly not indicated
in an explicit way;

3. We assume the reader to be familiar with the conventional Lebesgue, Sobolev, and
Bochner spaces and standard results concerning them. We denote 〈¨, ¨〉 the duality
paring between H1pΩq and its dual pH1pΩqq1.

3 Analysis of the regularized system (2.2)

3.1 A priori estimates and compactness

To begin with, we establish several necessary a priori estimates for (2.2).

Lemma 3.1. Let a pair of measurable functions pSε, Iεq : R`0 ˆ Ω Ñ r0, 1s ˆ R`0 be a
sufficiently regular solution to system (2.2). Then it satisfies the following estimates:

}∇Iε}L8pR`;L2pΩqq ď C1, (3.1)

}Iε}L2p0,T ;L2pΩqq ď C2pT q, (3.2)
?
ε }∆Iε}L2p0,T ;L2pΩqq `

›

›

›

a

Sε∆Iε

›

›

›

L2p0,T ;L2pΩqq
ď C3pT q (3.3)

}BtIε}L2p0,T ;L2pΩqq ď C4pT q, (3.4)

}∇Sε}L2p0,T ;L2pΩqq ď C5pT q, (3.5)

}BtSε}L2p0,T ;pH1pΩqq1q ď C6pT q (3.6)

Proof. Testing (2.2b) with ´∆Iε and using Young’s inequality we obtain that

1

2

d

dt
}∇Iε}2L2pΩq “´ ε }∆Iε}

2
L2pΩq ´

›

›

›

a

Sε∆Iε

›

›

›

2

L2pΩq
´

ż

Ω

gpSε, Iεq∆Iε dx

ď´ ε }∆Iε}
2
L2pΩq ´

›

›

›

a

Sε∆Iε

›

›

›

2

L2pΩq
´ µI}∇Iε}2L2pΩq ` C7

›

›

›

a

Sε∆Iε

›

›

›

L2pΩq

ď´ ε }∆Iε}
2
L2pΩq ´

1

2

›

›

›

a

Sε∆Iε

›

›

›

2

L2pΩq
´ µI}∇Iε}2L2pΩq ` C8. (3.7)

Using the Gronwall lemma and integrating with respect to time when necessary we
conclude from (3.7) that estimates (3.1) and (3.3) hold. Testing (2.2b) with Iε and
integrating over Ω we obtain with the Cauchy-Schwarz and Young inequalities that

1

2

d

dt
}Iε}

2
L2pΩq

“

ż

Ω

pIεpε` Sεq∆Iε ` IεgpSε, Iεqq dx

ďC9

ˆ

?
ε }∆Iε}L2pΩq `

›

›

›

a

Sε∆Iε

›

›

›

L2pΩq

˙

}Iε}L2pΩq ` C10}Iε}L2pΩq ´ µI}Iε}
2
L2pΩq

ďC11

ˆ

ε }∆Iε}
2
L2pΩq `

›

›

›

a

Sε∆Iε

›

›

›

2

L2pΩq
` 1

˙

´
µI
2
}Iε}

2
L2pΩq. (3.8)
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Combining the Gronwall lemma with (3.3) and (3.8) we obtain (3.2). Altogether, esti-
mates (3.1)-(3.3) allow to estimate the right-hand side of (2.2b) yielding (3.4).
Next, we test (2.2a) with Sε and integrate over Ω, by parts where necessary. We thus
obtain by using the Cauchy-Schwarz and Young inequalities and the estimate (3.1) that

1

2

d

dt
}Sε}

2
L2pΩq “´ }∇Sε}2L2pΩq `

ż

Ω

´χpSεqSε∇Sε ¨∇Iε ` SεfpSε, Iεq dx

ď´
1

2
}∇Sε}2L2pΩq ` C12. (3.9)

Integrating (3.9) over p0, T q we obtain (3.5). Finally, (3.1) and (3.5) allow to estimate the
right-hand side of (2.2a) yielding (3.6).

Lemma 3.2. Let for each ε P p0, 1s the pair pSε, Iεq : R`0 ˆ Ω Ñ r0, 1s ˆ R`0 be a
sufficiently regular solution to system (2.2). Then there exists a sequence εn Ñ 0 and a
pair pS, Iq such that for any T ą 0

∇Iεn
˚
á
nÑ8

∇I in L8p0, T ;L2
pΩqq, (3.10)

εn∆Iεn Ñ
nÑ8

0 in L2
p0, T ;L2

pΩqq, (3.11)

BtIεn á
nÑ8

BtI in L2
p0, T ;L2

pΩqq, (3.12)

Iεn Ñ
nÑ8

I in L2
p0, T ;L2

pΩqq and a.e., (3.13)

∇Sεn á
nÑ8

∇S in L2
p0, T ;L2

pΩqq, (3.14)

BtSεn á
nÑ8

BtS in L2
p0, T ; pH1

pΩqq1q, (3.15)

Sεn Ñ
nÑ8

S in L2
p0, T ;L2

pΩqq and a.e. (3.16)

Proof. This is a direct consequence of uniform estimates (3.1)-(3.6) combined with the
Lions-Aubin lemma and the Banach-Alaoglu theorem.

3.2 Existence of solutions

Since system (2.2) couples two parabolic equations, one of which is in divergence form,
while the other is not, the standard theory, e.g. from [16] or [2], seems not to be directly
applicable. Still, existence of solutions can be obtained by using the well-established
procedure based on the Schauder fixed point theorem. For the convenience of the reader,
we state the corresponding existence result and sketch its proof. We choose the following
notion of a solution:

Definition 3.3 (Weak-strong solution). We call a pair of measurable functions pSε, Iεq :
R`0 ˆ Ω Ñ r0, 1s ˆ R`0 a weak-strong solution to system (2.2) if:

1. ∇Sε P L2
locpR

`
0 ;L2pΩqq, BtSε P L

2
locpR

`
0 ; pH1pΩqq1q;

2. Iε P L
2
locpR

`
0 ;H2pΩqq, ∇Iε P L8pR`0 ;L2pΩqq, BtIε P L

2
locpR

`
0 ;L2pΩqq;
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3. the pair pSε, Iεq is a weak solution to (2.2a) and a strong solution to (2.2b), i.e., for
all ϕ P H1pΩq it holds that

〈BtSε, ϕ〉 “ ´
ż

Ω

p∇Sε ` χpSεqSε∇Iεq ¨∇ϕdx`
ż

Ω

fpSε, Iεqϕdx a.e. in R`0 ,

(3.17a)

BtIε “ pε` Sεq∆Iε ` gpSε, Iεq a.e. in R`0 ˆ Ω, (3.17b)

BνIε “ 0 a.e. in R`0 ˆ BΩ, (3.17c)

Sεp0, ¨q “ S0, Iεp0, ¨q “ I0 a.e. in Ω. (3.17d)

Theorem 3.4 (Existence of a weak-strong solution). Let (2.3) hold. Then, system (2.2)
possesses a weak-strong solution in terms of Definition 3.3.

Proof. (Sketch) To begin with, we decouple the equations for the two components:

$

’

&

’

%

BtIε “ pε` S̄εq∆Iε ` gpS̄ε, Iεq in R` ˆ Ω,

BνIε “ 0 in R` ˆ BΩ,
Iεp0, ¨q “ I0 in Ω

(3.18a)

(3.18b)

(3.18c)

and

$

’

&

’

%

BtSε “ ∇ ¨ p∇Sε ` χpSεqSε∇Iεq ` fpSε, Iεq in R` ˆ Ω,

BνSε “ 0 in R` ˆ BΩ,
Sεp0, ¨q “ S0 in Ω.

(3.19a)

(3.19b)

(3.19c)

For smooth S̄ε and I0 standard parabolic theory [16] insures the existence of a unique
classical solution Iε to (3.18). Similarly, such Iε and smooth S0 lead to a unique classical
solution Sε to (3.19). Moreover, it is clear from the proofs that results of Lemmas 3.1-3.2
continue to hold. They allow to obtain solutions with the regularity as stated in Definition
3.3 under assumption (2.3) by means of an approximation procedure.
Uniqueness can be established in both cases in the usual way by considering equations
for differences of two solutions, testing with suitable test functions, performing estimates,
and, finally, applying the Gronwall lemma. Here we only check uniqueness for (3.19): Let

S
p1q
ε and S

p2q
ε be two solutions corresponding to some Iε and S0. Set

U :“ Sp1qε ´ Sp2qε , ξ1 :“
χpS

p1q
ε qS

p1q
ε ´ χpS

p2q
ε qS

p2q
ε

S
p1q
ε ´ S

p2q
ε

∇Iε, ξ2 :“
fpS

p1q
ε , Iεq ´ fpS

p2q
ε , Iεq

S
p1q
ε ´ S

p2q
ε

.

In this notation we have for U the linear equation

BtU “ ∆U `∇ ¨ pξ1Uq ` ξ2U in L2
p0, T ; pH1

pΩqq1q. (3.20)

We need to verify that U “ 0 a.e. Observe that

ξ1 “ K
`

1` Sp1qε ` Sp2qε
˘

∇Iε P L8p0, T ;L2
pΩqq, (3.21)
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∇¨ξ1 “ K
`

1` Sp1qε ` Sp2qε
˘

∆Iε `K
`

1`∇Sp1qε `∇Sp2qε
˘

¨∇Iε P L2
p0, T ;L1

pΩqq, (3.22)

|ξ2| ď }BSf}L8pp0,1qˆR`qq ă 8. (3.23)

We are going to test (3.20) with

signδpUq :“

#

signpUq for |U | ě δ,
1
δ
U for |U | ă δ

for δ ą 0,

and then pass to the limit as δ Ñ 0. Since signδ P W
1,8pRq, it holds that

signδpUq P L
2
p0, T ;H1

pΩqq,

i.e., it is a valid test function. Using the weak chain and product rules and (3.21)-(3.23)
where necessary, we thus compute that

〈BtU, signδpUq〉 “
d

dt

ż

Ω

ż U

0

signδpW q dWdx Ñ
δÑ0

d

dt
}U}L1pΩq in D1p0, T q, (3.24)

ż

Ω

∇U ¨∇ signδpUq dx “

ż

Ω

sign1δpUq|∇U |2 dx ě 0, (3.25)

ż

Ω

signδpUq∇ ¨ pξ1Uq dx “

ż

Ω

ˆ

U signδpUq∇ ¨ ξ1 ` ξ1 ¨∇
ż U

0

signδpW q dW

˙

dx

Ñ
δÑ0

ż

Ω

p|U |∇ ¨ ξ1 ` ξ1 ¨∇|U |q dx in D1p0, T q

“

ż

Ω

∇ ¨ pξ1|U |q dx “ 0, (3.26)

ż

Ω

ξ2U signδpUq dx ď C13}U}L1pΩq. (3.27)

Combining (3.24)-(3.27) we obtain that

d

dt
}U}L1pΩq ď C13}U}L1pΩq. (3.28)

Finally, applying the Gronwall lemma to (3.28), we conclude that }U}L1pΩq ” 0.
Altogether, we have a well-defined operator Φ in the following setting:

X :“ L2
p0, T ;L2

pΩqq, M :“ tS P X : 0 ď S ď 1u,

Φ : MÑM, ΦpS̄εq :“ Sε

Thanks to Lemma 3.2 the image ΦpMq is precompact in X. Moreover, this Lemma
together with fact that both equations are uniquely solvable imply the continuity of Φ.
Therefore, the Schauder fixed point theorem implies the existence of a fixed point and, as
a result, of a solution to (2.2).
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4 Existence of solutions to (2.1) for N “ 1 and S0 ą 0

Throughout this section we assume that

Ω is a finite interval in R (4.1)

and

0 ă inf
Ω
S0 ď S0 ď 1. (4.2)

4.1 An a priori lower bound

To begin with, we return to the regularised problem (2.2) and establish an a priori
uniform positive lower bound for Sε.

Lemma 4.1. Solutions to (2.2) satisfy

›

›S´1
ε

›

›

L8p0,T ;L8pΩqq
ď C14pT q. (4.3)

Proof. We use the standard method of propagation of Lp bounds in order to derive a
finite uniform upper bound for S´1

ε . Its inverse gives a uniform positive lower bound for
Sε. Let p ě 1. Multiplying (2.2a) by ´pS´p´1

ε and integrating by parts over Ω we obtain
using the Hölder, Young, and Gagliardo-Nirenberg inequalities as well as estimate (3.1)
where necessary that

d

dt

›

›

›
S
´

p
2

ε

›

›

›

2

L2pΩq
“´

4pp` 1q

p

›

›

›
∇S´

p
2

ε

›

›

›

2

L2pΩq
` 2pp` 1q

ż

Ω

χpSεqS
´

p
2

ε ∇S´
p
2

ε ¨∇Iε dx

´ p

ż

Ω

fpSε, IεqS
´p´1
ε dx

ď´ C15

›

›

›
∇S´

p
2

ε

›

›

›

2

L2pΩq
` C16p

›

›

›
∇S´

p
2

ε

›

›

›

L2pΩq

›

›

›
S
´

p
2

ε

›

›

›

L8pΩq
}∇Iε}L2pΩq

` pλS
›

›S´1
ε

›

›

p

LppΩq

ď´ C17

›

›

›
∇S´

p
2

ε

›

›

›

2

L2pΩq
` C18p

2
›

›

›
S
´

p
2

ε

›

›

›

2

L8pΩq

ď´ C17

›

›

›
S
´

p
2

ε

›

›

›

2

H1pΩq
` C19p

2
›

›

›
S
´

p
2

ε

›

›

›

2

L8pΩq

ď´ C17

›

›

›
S
´

p
2

ε

›

›

›

2

H1pΩq
` C20p

2
›

›

›
S
´

p
2

ε

›

›

›

4
3

H1pΩq

›

›

›
S
´

p
2

ε

›

›

›

2
3

L1pΩq

ďC21p
6
›

›

›
S
´

p
2

ε

›

›

›

2

L1pΩq
(4.4)

ďC22p
6
›

›

›
S
´

p
2

ε

›

›

›

2

L2pΩq
. (4.5)

Using the Gronwall lemma we conclude from (4.5) that

›

›S´1
ε pt, ¨q

›

›

p

LppΩq
ďetC22p6

›

›S´1
0

›

›

p

LppΩq
ď etC22p6 |Ω|

›

›S´1
0

›

›

p

L8pΩq
.
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Consequently,

›

›S´1
ε

›

›

L8p0,T ;LppΩqq
ď C23pT, pq for all p ě 1. (4.6)

Further, integrating (4.4) over p0, tq we obtain that

›

›S´1
ε pt, ¨q

›

›

p

LppΩq
ď
›

›S´1
0

›

›

p

LppΩq
` C21p

6

ż t

0

›

›S´1
ε ps, ¨q

›

›

p

L
p
2 pΩq

ds.

Consequently,

›

›S´1
ε

›

›

p

L8p0,T ;LppΩqq
ď |Ω|

›

›S´1
0

›

›

p

L8pΩq
` TC21p

6
›

›S´1
ε

›

›

p

L8p0,T ;L
p
2 pΩqq

. (4.7)

For n P N we introduce

An :“
›

›S´1
0

›

›

2n`1

L8pΩq
`
›

›S´1
ε

›

›

2n`1

L8p0,T ;L2n`1
pΩqq

.

Due to estimate (4.7) we have that

An`1 ď C24pT qp2
6
q
nA2

n, (4.8)

whereas (4.6) implies that

A0 ď C25pT q. (4.9)

Using the standard recursive result [16, Chapter 2, Lemma 5.6] we conclude with (4.8)
that for all n P N

An ďC
2n´1
24 pT qp26

q
2n´1´nA2n

0 . (4.10)

Combining (4.9)-(4.10) we conclude that

›

›S´1
ε

›

›

L8p0,T ;L2n`1
pΩqq

ď A2´pn`1q

n ď C26pT q. (4.11)

Since } ¨ }2n`1 Ñ } ¨ }8 as nÑ 8, (4.11) implies (4.3) .

4.2 Existence of solutions

Having obtained the estimate (4.3) we can now prove the existence of weak-strong solu-
tions to (2.1). The definition is as follows:

Definition 4.2 (Weak-strong solution). We call a pair of measurable functions pS, Iq :
R`0 ˆ Ω Ñ r0, 1s ˆ R`0 a weak-strong solution to system (2.1) if:

1. ∇S P L2
locpR

`
0 ;L2pΩqq, BtS P L

2
locpR

`
0 ; pH1pΩqq1q;

2. I P L2
locpR

`
0 ;H2pΩqq, ∇I P L8pR`0 ;L2pΩqq, BtI P L

2
locpR

`
0 ;L2pΩqq;
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3. the pair pS, Iq is a weak solution to (2.1a) and a strong solution to (2.1b), i.e., for
all ϕ P H1pΩq it holds that

〈BtS, ϕ〉 “ ´
ż

Ω

p∇S ` χpSqS∇Iq ¨∇ϕdx`
ż

Ω

fpS, Iqϕdx a.e. in R`0 , (4.12a)

BtI “ S∆I ` gpS, Iq a.e. in R`0 ˆ Ω, (4.12b)

BνI “ 0 a.e. in R`0 ˆ BΩ, (4.12c)

Sp0, ¨q “ S0, Ip0, ¨q “ I0 a.e. in Ω. (4.12d)

Theorem 4.3 (Existence of a weak-strong solution). Under assumptions (2.3) and (4.1)-
(4.2) system (2.1) possesses a weak-strong solution in terms of Definition 4.2.

Proof. Our starting point is the weak formulation from Definition 3.3 and Lemma 3.2 on
convergence. Thanks to the uniform estimates (3.3) and (4.3) and the Banach-Alaoglu
theorem we may assume that the sequence from that Lemma is chosen in such a way that

∆Iεn á
nÑ8

∆I in L2
p0, T ;L2

pΩqq (4.13)

holds as well. Using (3.1)-(3.6) and (4.13) together with the dominated convergence
theorem and compensated compactness, we can pass to the limit in (3.17) along the
sequence εn Ñ 0 and thus obtain that pS, Iq satisfies all conditions from Definition 4.2.

5 Existence of supersolutions to (2.1) for N ě 2 and

S0 ě 0

In this Section we consider the general case of an arbitrary space dimension, assume
0 ď S0 ď 1, and prove the existence of a weak supersolution to (2.1). The definition is as
follows:

Definition 5.1 (Weak supersolution). We call a pair of measurable functions pS, Iq :
R`0 ˆ Ω Ñ r0, 1s ˆ R`0 a weak supersolution to system (2.1) if:

1. ∇S P L2
locpR

`
0 ;L2pΩqq, BtS P L

2
locpR

`
0 ; pH1pΩqq1q;

2. I P L2
locpR

`
0 ;L2pΩqq, ∇I P L8pR`0 ;L2pΩqq, BtI P L

2
locpR

`
0 ;L2pΩqq;

3. the pair pS, Iq is a weak solution to (2.1a) and a weak supersolution to (2.1b), i.e.,
for all ϕ P H1pΩq and 0 ď ψ P W 1,8pΩq it holds that

〈BtS, ϕ〉 “ ´
ż

Ω

p∇S ` χpSqS∇Iq ¨∇ϕdx`
ż

Ω

fpS, Iqϕdx a.e. in R`0 , (5.1a)
ż

Ω

BtIψ dx ě

ż

Ω

p´∇I ¨∇pψSq ` gpS, Iqψq dx a.e. in R`0 , (5.1b)

Sp0, ¨q “ S0, Ip0, ¨q “ I0 a.e. in Ω. (5.1c)
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Remark 5.2. Recently weak (generalised) supersolutions in the form of a variational
inequality have been used in order to provide a solution concept for models with positive
chemotaxis, see e.g. [17, 24, 25]. In those cases, however, both equations are in divergent
form, while equation (2.1b) is not. The latter precludes the possibility to close (5.1) by
imposing a suitable mass control from above. As a result, even a smooth supersolution
pS, Iq is not automatically a subsolution to (2.1).

Theorem 5.3 (Existence of a weak supersolution). Let (2.3) hold. Then, system (2.1)
possesses a weak supersolution in terms of Definition 5.1.

Proof. Once again, our starting point is the weak formulation from Definition 3.3 and
Lemma 3.2 on convergence. To begin with, we construct a suitable reformulation of
(2.2b). Since this equation is not in divergence form, the standard approach based on
testing and integration by parts is not a good foundation for a limit procedure. It turns
out useful to construct instead a variational identity which combines equations for both
solution components.
Let 0 ď η P L8p0, T ;W 1,8pΩqq, so that ηIε P L

2p0, T ;H1pΩqq. Testing (3.17a) and (2.2b)
with ´ηIε and η, respectively, adding the results, integrating over p0, T q, and using the
chain rule where necessary, we compute

ż T

0

ˆ

´ 〈BtSε, ηIε〉`
ż

Ω

ηBtIε dx

˙

dt

“

ż T

0

ż

Ω

pp∇Sε ` χpSεqSε∇Iεq ¨∇pηIεq ´∇Iε ¨∇ pηpε` Sεqqq dxdt

`

ż T

0

ż

Ω

p´fpSε, IεqIε ` gpSε, Iεqq η dxdt

“

ż T

0

ż

Ω

`

ηχpSεqSε|∇Iε|2 ` pIε∇Sε ´ pε` Sεq∇Iε ` χpSεqSεIε∇Iεq ¨∇η
˘

dxdt

`

ż T

0

ż

Ω

p´fpSε, IεqIε ` gpSε, Iεqq η dxdt. (5.2)

Using (3.10)-(3.16) together with the dominated convergence theorem and the compen-
sated compactness, we can pass to the limit in (3.17a) and (3.17d) along the sequence
εn Ñ 0 which yields (5.1a) and (5.1c), respectively. Owing to the presence of the quadratic
term |∇Iε|2 in one of the integrals, we cannot justify the equality while passing to the
limit in (5.2). Instead, we take limit inferior on both sides, use the above mentioned con-
vergences and theorems, as well as the weak lower semicontinuity of a norm, and, finally,
the chain rule where necessary and thus arrive at

ż T

0

ˆ

´ 〈BtS, ηI〉`
ż

Ω

ηBtI dx

˙

dt

ě

ż T

0

ż

Ω

`

ηχpSqS|∇I|2 ` pI∇S ´ S∇I ` χpSqSI∇Iq ¨∇η ` p´fpS, IqI ` gpS, Iqq η
˘

dxdt

“

ż T

0

ż

Ω

pp∇S ` χpSqS∇Iq ¨∇pηIq ´∇I ¨∇pηSq ` p´fpS, IqI ` gpS, Iqq ηq dxdt. (5.3)
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Plugging ϕ “ηI P L2p0, T ;H1pΩqq into (3.17a), integrating over p0, T q, passing to the
limit for εn Ñ 0, and then adding the result to (5.3) finally yields (5.1b).

6 Numerical simulations and discussion

In order to illustrate the solution behavior we present in this section some 2D numerical
simulation results for the system (2.1). A finite difference scheme with a first order upwind
discretization of the repellent taxis term was used to produce them. Here we show contour
plots for the populations of susceptibles/infected at various time points in a square domain
Ω “ r0, 10s2. We consider complementary initial densities

I0 “

3
ÿ

i,j“1

Ci expp´px2
j ` y

2
j q{2εq, S0 “ 1´ I0

and use parameters given in Table 1. Figure 1 shows simulations of the model in the cases

C1 C2 C3 ε λS λI µI µS
0.1 0.2 0.3 0.25 0.5 0.5 0.05 0.01

Table 1: Parameters

with (χ “ 15) and without (χ “ 0) repellent taxis, respectively. The former exhibits a
spread of the infection comparable with the latter case, but with a reduced suppression
of the susceptibles and an overall slightly higher infected population density. Due to the
infectives’ diffusion with contact, however, the avoidance efficiency is diminished, which
for even larger values of χ leads to a more effective spread of the invasion. Further
numerical simulations (not shown in this paper) suggest the existence of a critical value
of χ above which the repellent taxis actually triggers the opposite effect. Moreover, here
the sensitivity of susceptibles towards infected was taken to be linearly decreasing with
S which also contributed to the mentioned infection enhancement, but it is reasonable
to assume its dependence also on I, more precisely on the interactions between the two
populations. Analytically determining the critical χ range and its effect on the epidemic
spread would be an interesting problem in the framework of travelling wave analysis.
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Fig. 1: Simulation results for χ “ 15 (upper two rows) and χ “ 0 (lower rows) at different times.
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