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1 Introduction

Let G be a simple graph and let {v1, v2, · · · , vn} be its vertices. For i, j =
1, 2, · · · , n, if two vertices vi and vj of G are adjacent, then we use the notation
vi ∼ vj. For vi ∈ V (G), the degree of the vertex vi, denoted by di, is the number of
the vertices adjacent to vi (the number of the first neighbors). In 1975, Randić defined a
molecular structure descriptor

R = R(G) =
∑
vi∼vj

1√
didj

.

This topological index is also known as the product-connectivity index or Randić index.

In parallel to the definition of the product-connectivity index of Randić, the sum-
connectivity index of a graph G is defined as

S(G) =
∑
vi∼vj

1√
di + dj

,

[6]. Todeschini and Consonni summarized the uses of topological indices in the structure-
property-activity modelling. Topological indices play an important role in the study of
complex networks on a broad spectrum of topics related to bio-informatics and proteomics.
These topics cover many biomedical fields including virology, microbiology, toxicology and
cancer research, to cite only some of the more intensively investigated. The main reason
for the popularity of the topological indices is the high flexibility of this theory to solve in
a fast way many apparently unrelated problems in all these disciplines. This determined
the recent development of several interesting software and theoretical methods to handle
with structure-function information and data mining in this field. Sum-connectivity index
belongs to a family of Randić-like indices. Some applications of the sum-connectivity index
in modelling some molecular properties is presented in [3]. The sum-connectivity index-
concept suggests that it is purposeful to associate to the graph G a symmetric square
matrix SC(G). This sum-connectivity matrix SC(G) = (Sij)n×n is defined as (see [5])

Sij =

{
1√

di+dj
if vi ∼ vj,

0 otherwise.

2 The Sum-Connectivity Energy of a Graph

Let G be a simple, finite, undirected graph. The classical energy E(G) is defined as the
sum of the absolute values of the eigenvalues of its adjacency matrix. For more details on
energy of a graph, see [1, 2].

Let G be a simple graph of order n with vertex set V and edge set E. Let SC(G) be
the sum-connectivity matrix of G. The characteristic polynomial of SC(G) is denoted by
ϕSC(G, λ) = det(λI − SC(G)). Since the sum-connectivity matrix is real and symmetric,
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its eigenvalues are real numbers and we label them in non-increasing order λ1 > λ2 >
· · · > λn. The sum-connectivity energy is given by

SCE(G) =
n∑

i=1

|λi|. (1)

For properties of the eigenvalues of the sum-connectivity matrix, and lower and upper
bounds on sum-connectivity energy, see [5]. The spectrum of a graph G is the list of
distinct eigenvalues λ1 > λ2 > · · · > λr, with their multiplicities m1, m2, . . . , mr, and
we write it as

Spec(G) =

(
λ1 λ2 · · · λr

m1 m2 · · · mr

)
.

This paper is organized as follows: In Section 3, we get some basic properties of
the sum-connectivity energy of a graph. In Section 4, the sum-connectivity energy of
some graphs are obtained. In Section 5, we find the sum-connectivity energy of some
graphs with one edge deleted. In Section 6, we find the sum-connectivity energy of some
complements of specific graphs. Finally, in Section 7, some open problems are given.

3 Some basic properties of the sum-connectivity en-

ergy of a graph

Let di + dj be the sum of degrees of the adjacent vertex pairs and let

P =
∑
i<j

1

di + dj
.

Proposition 3.1. The first three coefficients of ϕSC(G, λ) are given as follows:
(i) a0 = 1,
(ii) a1 = 0,
(iii) a2 = −P .

Proof. (i) From the definition, we have ΦSC(G, λ) = det[λI−SC(G)], so we get a0 = 1.
(ii) The sum of determinants of all 1× 1 principal submatrices of SC(G) is equal to the
trace of SC(G). Therefore a1 = (−1)1 trace of [SC(G)] = 0.
(iii) Similarly proceeding, we have

(−1)2a2 =
∑

1≤i<j≤n

∣∣∣∣aii aij
aji ajj

∣∣∣∣
= −P.

Proposition 3.2. If λ1, λ2, . . . , λn are the sum-connectivity eigenvalues of SC(G),
then

n∑
i=1

λi
2 = 2P.
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Proof. We know that
n∑

i=1

λ2
i =

n∑
i=1

n∑
j=1

aijaji

= 2
∑
i<j

a2ij +
n∑

i=1

a2ii

= 2P.

We now have an upper bound for the sum-connectivity energy of a graph G:

Theorem 3.3. [5] Let G be a graph with n vertices. Then

SCE(G) ≤
√

2n
∑
i<j

1

di + dj
.

The following result gives a lower bound for the sum-connectivity energy of G:

Theorem 3.4. Let G be a graph with n vertices. If R= det SC(G), then

SCE(G) ≥
√

2P + n(n− 1)R
2
n .

Proof. By definition,

(SCE(G))2 =

(
n∑

i=1

| λi |

)2

=
n∑

i=1

| λi |
n∑

j=1

| λj |

=
n∑

i=1

| λi |2 +
∑
i ̸=j

| λi || λj | .

Using arithmetic mean and geometric mean inequality, we have

1

n(n− 1)

∑
i ̸=j

| λi || λj | ≥

(∏
i ̸=j

| λi || λj |

) 1
n(n−1)

.

Therefore,

[SCE(G)]2 ≥
n∑

i=1

| λi |2 +n(n− 1)

(∏
i ̸=j

| λi || λj |

) 1
n(n−1)

= 2P + n(n− 1)R
2
n .

Thus the result follows.
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4 Sum-connectivity energy of some standard graphs

Theorem 4.1. The sum-connectivity energy of the cycle graph C2n is

SCE(C2n) = 2 +
2n−1∑

m=1, m ̸=n

| cos πm
n

|.

Proof. The sum-connectivity matrix corresponding to the cycle graph C2n is

SC(C2n) =



0 1
2

0 0 0 . . . 0 1
2

1
2

0 1
2

0 0 . . . 0 0
0 1

2
0 1

2
0 . . . 0 0

...
...

...
...

...
. . .

...
...

0 0 0 0 0 . . . 0 1
2

1
2

0 0 0 0 . . . 1
2

0


.

This is a circullant matrix of order 2n. Its eigenvalues are

λm =


1, for m = 0

−1, for m = n
cos πm

n
, for 0 < m < n, n < m ≤ 2n− 1.

Therefore the sum-connectivity energy is

SCE(C2n) = | − 1|+ |1|+
2n−1∑

m=1,m ̸=n

| cos πm
n

|

and finally we get the result.

Theorem 4.2. The sum-connectivity energy of the complete graph Kn is

SCE(Kn) =
√
2n− 2.

The proof is similar, so we omit it.

Theorem 4.3. The sum-connectivity energy of the star graph K1,n−1 is

SCE(K1,n−1) =
2
√
n− 1√
n

.

Proof. Let K1,n−1 be the star graph with vertex set V . The sum-connectivity matrix is
similarly obtained to above matrices and the characteristic equation will be

λn−2

(
λ2 − n− 1

n

)
= 0.

Therefore the result is obtained.
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Theorem 4.4. The sum-connectivity energy of the crown graph S0
n is

SCE(S0
n) =

4n− 4√
2n− 2

.

Proof. Let S0
n be a crown graph of order 2n with vertex set {u1, u2, · · · , un, v1, v2, · · · , vn}.

The sum-connectivity matrix is

SC(S0
n) =



0 0 0 . . . 0 0 A . . . A A
0 0 0 . . . 0 A 0 . . . A A
0 0 0 . . . 0 A A . . . 0 A
...

...
...

. . .
...

...
...

. . .
...

...
0 0 0 . . . 0 A A . . . A 0
0 A A . . . A 0 0 . . . 0 0
A 0 A . . . A 0 0 . . . 0 0
...

...
...

. . .
...

...
...

. . .
...

...
A A A . . . A 0 0 . . . 0 0
A A A . . . 0 0 0 . . . 0 0


,

where A = 1√
2(n−1)

. Then the characteristic equation is

(
λ+

1√
2n− 2

)n−1(
λ− 1√

2n− 2

)n−1(
λ+

n− 1√
2n− 2

)(
λ− n− 1√

2n− 2

)
= 0

and therefore, the spectrum is

SpecSC(S
0
n) =

(
n−1√
2n−2

−(n−1)√
2n−2

1√
2n−2

−1√
2n−2

1 1 n− 1 n− 1

)
.

Therefore,

SCE(S0
n) =

4n− 4√
2n− 2

.

Theorem 4.5. The sum-connectivity energy of the cocktail party graph Kn×2 is

SCE(Kn×2) = 2
√
n− 1.

Proof. The proof is similar and omitted.

Theorem 4.6. The sum-connectivity energy of the complete bipartite graph Kn,n of
order 2n is

SCE(Kn,n) =
√
2n.
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Proof. Let Kn,n be the complete bipartite graph of order 2n with vertex set
{u1, u2, · · · , un, v1, v2, · · · , vn}. The sum-connectivity matrix is

SC(Kn,n) =



0 0 0 . . . 1√
2n

1√
2n

1√
2n

0 0 0 . . . 1√
2n

1√
2n

1√
2n

0 0 0 . . . 1√
2n

1√
2n

1√
2n

...
...

...
. . .

...
...

...
1√
2n

1√
2n

1√
2n

. . . 0 0 0
1√
2n

1√
2n

1√
2n

. . . 0 0 0
1√
2n

1√
2n

1√
2n

. . . 0 0 0


.

Then the characteristic equation is

λ2n−2
(
λ2 − n

2

)
= 0.

Hence, the spectrum will be

SpecSC(Kn,n) =

( √
n
2

−
√

n
2

0
1 1 2n− 2

)
.

Therefore, we obtain the result.

Definition 4.7. The friendship graph, denoted by F n
3 , is the graph obtained by taking

n copies of the cycle graph C3 with a vertex in common. It can easily be seen that
V (F n

3 ) = 2n+ 1.

Theorem 4.8. The sum-connectivity energy of the friendship graph F n
3 is

SCE(F n
3 ) =

1

2

(
2n− 1 +

√
17n+ 1

n+ 1

)
.

Proof. Let F n
3 be the friendship graph with 2n + 1 vertices. The sum-connectivity

matrix is 

0 1√
2n+2

1√
2n+2

1√
2n+2

1√
2n+2

. . . 1√
2n+2

1√
2n+2

1√
2n+2

0 1
2

0 0 . . . 0 0
1√

2n+2
1
2

0 0 0 . . . 0 0
1√

2n+2
0 0 0 1

2
. . . 0 0

1√
2n+2

0 0 1
2

0 . . . 0 0
...

...
...

...
...

. . .
...

...
1√

2n+2
0 0 0 0 . . . 0 1

2
1√

2n+2
0 0 0 0 . . . 1

2
0


.
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The characteristic equation is(
λ2 − 1

2
λ− n

n+ 1

)(
λ− 1

2

)n−1(
λ+

1

2

)n

= 0

implying that the spectrum is

SpecSC(F
n
3 ) =

(
−1
2

1
2

1
4
+ 1

4

√
17n+1
n+1

1
4
− 1

4

√
17n+1
n+1

n n− 1 1 1

)
.

Therefore we obtain the result.

Definition 4.9. The double star graph Sn,m is the graph constructed from K1,n−1 and
K1,m−1 by joining their centers v0 and u0.

It is easy to see that

V (Sn,m) = V (K1,n−1) ∪ V (K1,m−1)

and
E(Sn,m) = {v0u0; v0vi;u0uj : 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1}.

Therefore, the double star graph is also a bipartite graph.

Theorem 4.10. The sum-connectivity energy of the double star graph Sn,n is

SCE(Sn,n) = 2

√
8n2 − 7n+ 1

2n(n+ 1)
.

Proof. The sum-connectivity matrix is

SC(Sn,n) =



0 1√
n+1

1√
n+1

. . . 1√
n+1

1√
2n

0 0 . . . 0
1√
n+1

0 0 . . . 0 0 0 0 . . . 0
1√
n+1

0 0 . . . 0 0 0 0 . . . 0
...

...
...

. . .
...

...
...

. . .
...

...
1√
n+1

0 0 . . . 0 0 0 0 . . . 0
1√
2n

0 0 . . . 0 0 1√
n+1

1√
n+1

. . . 1√
n+1

0 0 0 . . . 0 1√
n+1

0 0 . . . 0
...

...
...

. . .
...

...
...

. . .
...

...
0 0 0 . . . 0 1√

n+1
0 0 . . . 0

0 0 0 . . . 0 1√
n+1

0 0 . . . 0



.

Hence the characteristic equation is

λ2n−4

(
λ2 +

1√
2n

λ− n− 1

n+ 1

)(
λ2 − 1√

2n
λ− n− 1

n+ 1

)
= 0
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implying that the spectrum is

SpecSC(Sn,n) =

(
0 1

2

(
1√
2n

+A
)

1
2

(
1√
2n

−A
)

1
2

(
− 1√

2n
+A

)
1
2

(
− 1√

2n
−A

)
2n− 4 1 1 1 1

)
,

where A =
√

8n2−7n+1
2n(n+1)

. Therefore we get the required result.

Definition 4.11. Let n be any positive integer. The graph obtained by coalescence of n
copies of the cycle graph C4 of length 4 with a common vertex is called the Dutch windmill
graph and denoted by Dn

4 .
We can easily show that the Dutch windmill graph has 3n+ 1 vertices and 4n edges.

Theorem 4.12. The sum-connectivity energy of the Dutch windmill graph Dn
4 is

SCE(Dn
4 ) =

√
2(n− 1) + 2

√
3n+ 1

2n+ 2
.

Proof. Let Dn
4 be the Dutch windmill graph with 3n+1 vertices. The sum-connectivity

matrix is

SC(Dn
4 ) =



0 1√
2n+2

0 1√
2n+2

1√
2n+2

. . . 0 1√
2n+2

1√
2n+2

0 1
2

0 0 . . . 0 0

0 1
2

0 0 0 . . . 0 0
1√

2n+2
0 0 0 1

2
. . . 0 0

1√
2n+2

0 0 1
2

0 . . . 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 . . . 0 1

2
1√

2n+2
0 0 0 0 . . . 1

2
0


.

Then the characteristic equation is(
λ2 − 3n+ 1

2n+ 2

)
λn+1

(
λ− 1√

2

)n−1(
λ− 1

2

)n

= 0.

Hence, the spectrum becomes

SpecSC(F
3
n) =

(
1√
2

−1√
2

0
√

3n+1
2n+2

−
√

3n+1
2n+2

n− 1 n− 1 n+ 1 1 1

)

implying that SCE(D4
n) =

√
2(n− 1) + 2

√
3n+1
2n+2

.

5 Sum-connectivity energy of specific graphs with

one edge deleted

In this section we calculate the sum-connectivity energy for certain graphs with one edge
deleted. Edge deletion helps to calculate several properties of large graphs in terms of
smaller graphs obtained by successively deleting a number of edges:
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Theorem 5.1. Let e be an edge of the complete graph Kn. The sum-connectivity energy
of Kn − e is

SCE(Kn − e) =
n− 3√
2n− 2

+

√
2n3 + n2 − 12n+ 5

(2n− 2)(2n− 3)
.

Proof. Similarly proceeding, we have the sum-connectivity matrix as

SC(Kn − e) =

(
02×2

1√
2n−3

J2×(n−2)
1√

2n−3
J2×(n−2)

1√
2n−2

(J − I)(n−2)

)
.

Hence the characteristic equation is

λ(λ− 1√
2n− 2

)n−3

(
λ2 − n− 3√

2(n− 1)
λ− 2n− 4

2n− 3

)(
λ2 − 1√

2n
λ− n− 1

n+ 1

)
= 0

and therefore the spectrum will be

SpecSC(Kn − e) =

(
1√

2n−2
1
2

(
n−3√
2n−2

+B
)

1
2

(
n−3√
2n−2

−B
)

0

n− 3 1 1 1

)
,

where B =
√

2n3+n2−12n+5
(2n−2)(2n−3)

. Therefore, the result follows.

Theorem 5.2. Let e be an edge of the complete bipartite graphKn,n. The sum-connectivity
energy of Kn,n − e is

SCE(Kn,n − e) = 2

√
2n3 + 3n2 − 4n− 1

2n(2n− 1)
.

Proof. Similarly

SC(Kn,n − e) =

(
0n×n A
A 0n×n

)
,

where A =

(
1√
2n
J(n−1)×(n−1)

1√
2n−1

J(n−1)×1
1√

2n−1
J1×(n−1) 0(1×1)

)
. Hence the characteristic equation is

λ2n−4

(
λ2 +

n− 1√
2n

λ− n− 1

2n− 1

)(
λ2 − n− 1√

2n
λ− n− 1

2n− 1

)
= 0.

Hence, the spectrum would be

SpecSC(Kn,n − e) =

 1
2
(−C +D) 1

2
(−C −D) 1

2
(C +D) 1

2
(C −D) 0

1 1 1 1 2n− 4


where C = n−1√

2
√
2n

and D =
√

2n3+3n2−4n−1
(2n)(2n−1)

implying that

SCE(Kn,n − e) = 2

√
2n3 + 3n2 − 4n− 1

(2n− 2)2n
.
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6 Sum-connectivity energy of graph complements

Definition 6.1. The complement of a graph G is a graph is denoted by G and is a graph
on the same vertices such that two distinct vertices of G are adjacent if and only if they
are not adjacent in G.

Definition 6.2. [4] Let G be a graph and Pk = {V1, V2, ..., Vk} be a partition of its
vertex set V . Then the k-complement of G is obtained as follows: For all Vi and Vj in
Pk, i ̸= j, remove the edges between Vi and Vj and add the edges between the vertices of
Vi and Vj which are not in G and is denoted by Gk.

Definition 6.3. [4] Let G be a graph and Pk = {V1, V2, ..., Vk} be a partition of its
vertex set V . Then the k(i)-complement of G is obtained as follows: For each set Vr in Pk,
remove the edges of G joining the vertices within Vr and add the edges of G (complement
of G) joining the vertices of Vr, and is denoted by Gk(i).

Theorem 6.4. The sum-connectivity energy of the complement Kn of a complete graph
is

SCE(Kn) = 0.

Proof. Let Kn be the complete graph with vertex set V = {v1, v2, ..., vn}. The sum-
connectivity matrix of the complement of Kn is a zero matrix which implies the result.

Theorem 6.5. The sum-connectivity energy of the complement K1,n−1 of the star graph
is

SCE(K1,n−1) =
√
2n− 4.

Proof. Let K1,n−1 be the complement of the star graph. The characteristic equation
becomes

λ1

(
λ− n− 2√

2n− 4

)(
λ− 1√

2n− 4

)n−2

= 0

and therefore the spectrum is

SpecSCK1,n−1 =

( n−2√
2n−4

0 − 1√
2n−4

1 1 n− 2

)
.

Therefore the result is found.

Theorem 6.6. The sum-connectivity energy of the complement Kn×2 of the cocktail
party graph of order 2n is

SCE(Kn×2) =
√
2n.
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Proof. Let Kn×2 be the complement of the cocktail party graph of order 2n with vertex
set {u1, u2, · · · , un, v1, v2, · · · , vn}. Then the sum-connectivity matrix of Kn×2 is

SC(Kn×2) =



0 0 0 0 . . . 1√
2

0 0 0

0 0 0 0 . . . 0 1√
2

0 0

0 0 0 0 . . . 0 0 1√
2

0

0 0 0 0 . . . 0 0 0 1√
2

...
...

...
...

. . .
...

...
...

...
1√
2

0 0 0 . . . 0 0 0 0

0 1√
2

0 0 . . . 0 0 0 0

0 0 1√
2

0 . . . 0 0 0 0

0 0 0 1√
2

. . . 0 0 0 0


.

Hence the characteristic equation becomes

(λ+
1√
2
)n(λ− 1√

2
)n = 0

and therefore the spectrum is

SpecSC(Kn,n) =

( 1√
2

− 1√
2

n n

)
.

Finally we get SCE(Kn×2) =
√
2n.

Theorem 6.7. The sum-connectivity energy of the 2(i)-complement of the double star
graph Sn,n is

SCE((Sn,n)2(i)) =
2n− 4

2
√
n− 1

+
1

2

√
12n2 − 20n+ 11

3(n− 1)
+

1

2

√
16n− 13

3(n− 1)
.

Proof. Consider the sum-connectivity matrix. Then the characteristic equation be-
comes (

λ− 1

2
√
n− 1

)2n−4(
λ2 +

1

2
√
n− 1

λ− 1

3

)(
λ2 − 2n− 3

2
√
n− 1

λ− 1

3

)
= 0

and hence, the spectrum is

SpecSC((Sn,n)2(i)) =

( 1
2
√
n−1

A+B A−B C +D C −D

2n− 4 1 1 1 1

)
,

where A = −1
4
√
n−1

, B = 1
4

√
16n−13
3(n−1)

, C = 2n−31
4
√
n−1

and D = 1
4

√
12n2−20n+11

12(n−1)
. Therefore,

SCE((Sn,n)2(i)) =
2n− 4

2
√
n− 1

+
1

2

√
12n2 − 20n+ 11

3(n− 1)
+

1

2

√
16n− 13

3(n− 1)
.
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Theorem 6.8. The sum-connectivity energy of the 2-complement of the cocktail party
graph Kn×2 is

SCE((Kn×2)(2)) = 4(n− 1).

Proof. Consider the 2-complement (Kn×2)(2) of the cocktail party graph. The sum-
connectivity matrix of it is

SC((Kn×2)(2)) =



0 1√
2n

1√
2n

. . . 1√
2n

1√
2n

0 . . . 0 0
1√
2n

0 1√
2n

. . . 1√
2n

0 1√
2n

. . . 0 0
1√
2n

1√
2n

0 . . . 1√
2n

0 0 . . . 1√
2n

0
...

...
...

. . .
...

...
...

. . .
...

...
1√
2n

1√
2n

1√
2n

. . . 0 0 0 . . . 0 1√
2n

1√
2n

0 0 . . . 0 n 2 . . . −2 −2

0 1√
2n

0 . . . 0 1√
2n

0 . . . 1√
2n

1√
2n

...
...

...
. . .

...
...

...
. . .

...
...

0 0 1√
2n

. . . 0 1√
2n

1√
2n

. . . 0 1√
2n

0 0 0 . . . 1√
2n

1√
2n

1√
2n

. . . 1√
2n

0



.

Therefore the characteristic polynomial would be

λn−1

(
λ+

2√
2n

)n−1(
λ− n− 2√

2n

)(
λ− n√

2n

)
= 0

implying that the sum-connectivity spectra is

Spec((Kn×2)(2)) =

(
0 − 2√

2n
n−2√
2n

n√
2n

n− 1 n− 1 1 1

)
.

Therefore the result is obtained.

7 Some open problems

Open problem 7.1. With respect to sum-connectivity, determine the class of graphs
which are co-spectral and characterize them.

Open problem 7.2. With respect to sum-connectivity, determine the class of graphs
which are hyper-energetic and characterize them.

Open problem 7.3. With respect to sum-connectivity, determine the class of graphs
whose sum-connectivity energy and sum-connectivity energy of their complements are
equal.
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Open problem 7.4. With respect to sum-connectivity, determine the class of non-co-
spectral graphs which are equienergetic.

Open problem 7.5. Determine the class of graphs whose sum-connectivity energy is
equal to usual energy.

8 Summary and Conclusion

Energy of a graph is a new concept in graph theory and it has a rapidly increasing impor-
tance due to both its mathematical beauty and its applications in molecular chemistry.
The sum of the absolute values of the eigenvalues of the adjacency matrix of a given graph
gives the energy of the graph. There are different types of graph energies with several
applications and in this paper we went through a detailed search of the sum-connectivity
energy. We obtain exact formulae, upper and lower bounds and some relations for the
sum-connectivity energy. It is obtained for several classes of well-known graphs and also
the effect of edge deletion is studied. At the end, some open problems are proposed.

References

[1] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz, 103
(1978) 1-22.

[2] I. Gutman, The energy of a graph: old and new results, Combinatorics and appli-
cations, A. Betten, A. Khoner, R.Laue and A. Wassermann, eds., Springer, Berlin
(2001) pp. 196-211.
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