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Abstract. In this study, a modified matrix-collocation method based on Laguerre
polynomials to find the approximate solutions of the mentioned nonlinear functional dif-
ferential equations under the initial or boundary conditions is proposed. These type
equations are used as mathematical models in many problems in fields of engineering,
mathematics, physics, chemistry, population dynamics, control theory and biology. There
exists main challenges for solving the mentioned problems due to large range of variables,
nonlinearity and multi-dimensionality, so on; thereby, the numerical methods have been
developed by many authors. To show the effectiveness of this approach, some examples
along with error estimations are illustrated by tables and figures; the consistency of the
technique is analyzed.
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1 Introduction
The most mathematical models used in many problems of physics, biology, chemistry,
engineering, and in other areas, are based on integral equations, nonlinear partial differ-
ential and delay partial differential equations.

The subject of this study is to apply the Laguerre matrix collocation method for solving
some nonlinear functional differential equations in the general form

F (x, t, u(x, t), ux(x, t), ut(x, t), uxx(x, t), uxt(x, t), utt(x, t), u(x, αt+ β)) = 0 (1)

with the initial and the boundary conditions

u(x, 0) = m(x), x ∈ [a, b]

ut(x, 0) = n(x),

u(a, t) = h(t), t ∈ [0, T ]

u(b, t) = k(t).

(2)

In this study, we consider the following case of Eq.(1) which is the nonlinear delay partial
differential equation of the form [1]

ut(x, t) = εuxx(x, t) + u(x, t)[1− u(x, t− τ)] + f(x, t),

or
ut(x, t) = εuxx(x, t) + u(x, t)− u(x, t− τ)u(x, t) + f(x, t), a ≤ x ≤ b, t > 0 (3)

where ε is the diffusion coefficient, τ > 0 is a constant delay, and f(x, t) is the given
continous function. This equation is an extension of the logic equation which is described
as delayed logistic equation [2].

This model is known as the special case of the well-known Hutchinson’s equation (1948)
which is also called as the specific version of Wright’s equation, describes delayed logistic
equation with a discrete delay [3]-[7]. Lord Cherwell had the probability methods’ appli-
cations to the distribution of prime numbers with related to this model. It is also utilized
as a single species growth model with time delay [8]-[9].

Many real-world phenomena can be modelled by the nonlinear delay partial differential
equation since processes, both natural and manmade, in biology, medicine, chemistry,
physics, engineering, economics, etc., involve time delays [10]-[19].

On the other hand, most of such models can not be solved exactly. Therefore, it is
necessary to design efficient numerical methods to approximate their solutions. The fun-
damentals and methods for such equations were developed in literature: perturbation
method for the asymptotic solutions, finite element method, the complex WKB-Maslov
method for the asymptotic solutions, non-oscillatory interpolation method, exponential
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time differencing methods, finite difference approximations, direct local boundary integral
equation method, pseudo-spectral Legendre-Galerkin method, collocation method, higher
order numerical methods so on [20]-[26].

In this work, we develop a numerical method, "Improved Laguerre matrix method", to
get an approximate solution of Eq. (3) under the conditions (2) in the finite Laguerre
series form which is given by

u(x, t) =
N∑
r=0

N∑
s=0

ar,sLr,s(x, t); Lr,s(x, t) = Lr(x)Ls(t) (4)

where ar,s r, s = 0, ..., N are the unknown Laguerre coefficients and Ln(x), n = 0, 1, 2, ..., N
are the Laguerre polynomials defined by

Ln(x) =
n∑
k=0

(−1)k

k!

(
n

k

)
xk, n ∈ N, 0 ≤ x <∞. (5)

2 The Formulation of the generalized Laguerre polyno-
mials

Generalized Laguerre polynomials Ln(x, α) are orthogonal in the interval [0,+∞) with
respect to the weight function ω(x, α) = xαe−x. For α = 0, these polynomials become
ordinary Laguerre polynomials Ln(x); Ln(x, 0) = Ln(x).
Polynomials Ln(x, α) are defined by the generating function

(1− t)−(α+1) e−xt

(1− t)
=

+∞∑
n=0

Ln(x, α)
tn

n!
. (6)

From the relation (5), the three term recurrence relation is obtained as

(n+ 1)Ln+1(x, α) = (2n+ α + 1− x)Ln(x, α)− (n+ α)Ln−1(x, α) (7)

with starting values L0(x, α) = 1, L1(x, α) = α + 1− x [27].

3 Fundamental relations and Improved Laguerre ma-
trix method

Firstly, we convert the expressions defined in (3) to matrix forms; then, by means of
these matrices, we construct the Laguerre collocation method. The matrix relation of the
Laguerre polynomial solution in (4) can be written as

[u(x, t)] = L(x)L(t)A (8)
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where

L(x) =
[
L0(x) L1(x) · · · LN(x)

]
,

L(t) =


L(t) 0 · · · 0
0 L(t) · · · 0
...

... . . . ...
0 0 · · · L(t)


and

A =
[
a0,0 a0,1 · · · a0,N · · · aN,0 aN,1 · · · aN,N

]T
We can write the matrix relation of Eq.(5) as

L(x) = X(x)H (9)

where
X(x) =

[
1 x1 x2 · · · xN

]
and

H =



(−1)0
0!

(
0
0

)
(−1)0
0!

(
1
0

)
(−1)0
0!

(
2
0

)
· · · (−1)0

0!

(
N
0

)
0 (−1)1

1!

(
1
1

)
(−1)1
1!

(
2
1

)
· · · (−1)1

1!

(
N
1

)
0 0 (−1)2

2!

(
2
2

)
· · · (−1)2

2!

(
N
2

)
...

... . . . ...
...

0 0 0 · · · (−1)N
N !

(
N
N

)


Also, the relations between X(x) and its first and second derivatives can be written as

X′(x) = X(x)B and X′′(x) = X(x)B2 (10)

where

B =


0 1 0 · · · 0
0 0 2 · · · 0
...

...
... . . . ...

0 0 0 · · · N
0 0 0 · · · 0

 .

By using the relations (9) and (10), we obtain

L′(x) = X(x)BH and L′′(x) = X(x)B2H (11)

L(t) = X(t)H and L
′
(t) = X(t)BH (12)
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Also, it is found from the relations (10), (11) and (12)

X(x) = L(x)H−1 ; L′(x) = L(x)C and L
′
(t) = L(t)C (13)

where

C = H−1BH (14)

C =


0 −1 −1 · · · −1
0 0 −1 · · · −1
...

...
... . . . ...

0 0 0 · · · −1
0 0 0 · · · 0

 ; C = diag(C,C, ...,C).

Then by using (9) to (13), we have

L′′(x) = L′(x)C = L(x)C2 (15)

Therefore, from the relations (8), (9), (13) and (15), we reach the following:

[u(x, t)] = L(x)L(t)A (16)

[ux(x, t)] = L′(x)L(t)A = L(x)CL(t)A (17)

[uxx(x, t)] = L′′(x)L(t)A = L(x)C2L(t)A (18)

[ut(x, t)] = L(x)L
′
(t)A = L(x)L(t)CA (19)

Also, we have

[u(x, t− τ)u(x, t)] = L(x)L(t− τ)L(x)L(t)A (20)

where

Ai =
[
ai0 ai1 · · · aiN

]T
, i = 0, 1, ..., N,

A =
[
A0 A1 · · · AN

]T
=

[
a00 · · · a0N a10 · · · a1N · · · aN0 · · · aNN

]T
,

Ai =
[
ai0A ai1A · · · aiNA

]T
, i = 0, 1, ..., N,

A =
[
A0 A1 · · · AN

]T
,

and
L(x) = diag

(
L(x), L(x), · · · L(x)

)
,
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L(t) = diag
(

L(t), L(t), · · · L(t)
)
.

We may define L(t− τ) as

L(t− τ) = X(t)B(t− τ)H

where

B(t− τ) =



(
0
0

)
(−τ)0

(
1
0

)
(−τ)1

(
2
0

)
(−τ)2 · · ·

(
N
0

)
(−τ)N

0

(
1
1

)
(−τ)0

(
2
1

)
(−τ)1 · · ·

(
N
1

)
(−τ)N−1

0 0

(
2
2

)
(−τ)0 · · ·

(
N
2

)
(−τ)N−2

...
... . . . ...

...

0 0 0 · · ·
(
N
N

)
(−τ)0


.

We use the same procedure for the initial and boundary conditions, and the matrix forms
of (2) are

[u(x, 0)] = L(x)L(0)A = [m(x)] = λ

[ut(x, 0)] = L(x)L(0)CA = [n(x)] = µ (21)

[u(a, t)] = L(a)L(t)A = [h(t)] = γ

[u(b, t)] = L(b)L(t)A = [k(t)] = ν.

Then by using (16) to (20), we obtain the matrix equation for Eq. (3) as

{L(x)L(t)C− εL(x)C2L(t)− L(x)L(t)}A+ L(x)L(t− τ)A = [f(x, t)] (22)

or briefly

W(x, t)A+W∗(x, t)A = [f(x, t)]. (23)

The collocation points are defined by

xi =
l

N
i, tj =

T

N
j, i, j = 0, 1, 2, ..., N (24)

and we substitute the collocation points into Eq.(22), we have the system of matrix
equations as

{L(xi)L(tj)C− εL(xi)C2L(tj)− L(xi)L(tj)}A+ L(xi)L(tj − τ)A = F (25)

Hence we can write the system of the matrix equations (25) briefly, then the fundamental
matrix equation is

WA+W∗A = F =⇒ [W;W∗;F] (26)
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Correspondingly, the matrix relations of the initial and boundary conditions are attained
by the same procedure for i, j = 0, 1, ..., N

[u(xi, 0)] = L(xi)L(0)A = [m(xi)] = λi

[ut(xi, 0)] = L(xi)L(0)CA = [n(xi)] = µi

[u(a, tj)] = L(a)L(tj)A = [h(tj)] = γj

[u(b, tj)] = L(b)L(tj)A = [k(tj)] = νj.

(27)

Consequently, to obtain the solution of Eq. (3) under the conditions in Eq. (2), by
replacing the row matrices (27) by the last rows of the augmented matrix (26), then we
have the following new augmented matrix

[W̃;W̃∗; F̃] (28)

By solving the augmented matrix form, the unknown Laguerre coefficients are computed
[28]-[30]. Thus, the approximate solution is found as

uN(x, t) =
N∑
r=0

N∑
s=0

ar,sLr,s(x, t).

4 Error Analysis

In this section, we can check the accuracy of the obtained solutions by resulting equation.
The function uN(x, t) and its derivatives are substituted in Eq.(3), then the resulting
equation must be satisfied approximately since the truncated Laguerre series (5) is ap-
proximate solution of (3). For x = xα, t = tβ ∈ [0, l]× [0, T ] α, β = 0, 1, 2, ...

EN(xα, tβ) = |ut(xα, tβ)− εuxx(xα, tβ)− u(xα, tβ) + u(xα, tβ − τ)u(xα, tβ)− f(xα, tβ)| ∼= 0

where EN(xα, tβ) ≤ 10−kα,β = 10−k and k as a positive integer. Also, we consider the
following different error norms:

• For L2; EN(xα, tβ) = (
∑n

i=1(ei)
2)1/2

• For L∞; EN(xα, tβ) =Max(ei), 0 ≤ i ≤ n

• For RMS; EN(xα, tβ) =
√∑n

i=1(ei)
2

n+1

where RMS is the Root-Mean-Square of errors and ei is defined as ei = u(xα, tβ) −
uN(xα, tβ). We claim that EN(xα, tβ) is diminished and approximate to zero when the
truncation limit N is accelerated [31].
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5 Numerical Test

In this section, we apply our method on the nonlinear delay partial differential equation
with inital and boundary conditions to show its efficiency.

Example

We deal with the nonlinear delay partial differential equation with inital and boundary
conditions, namely Eq. (3) with ε = 10−4, τ = 10−1, x ∈ [0, 1], t ∈ [0, 1] the functions
f(x, t), m(x), h(t), k(t) chosen in such a way that the solution of the problem is known
exactly and is equal to u(x, t) = t exp(x2)

Figure 1: Exact solution and numerical solutions for N = 2, 3, 4.

Figure 2: Numerical error for N = 7, 8, 9.
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Table 1: L2 and L∞ norms of error for x = 0.5 and N = 3 and with the central processing
unit (CPU).

t L2 Error L∞ Error RMS Error
0.0 2.8171E-04 9.9782E-05 1.6039E-05
0.1 2.9221E-04 8.9279E-05 4.5636E-05
0.2 3.8885E-04 1.1055E-04 6.0728E-05
0.3 4.2964E-04 1.1711E-04 6.7098E-05
0.4 4.4344E-04 1.1751E-04 6.9253E-05
0.5 4.4216E-04 1.1473E-04 6.9054E-05
0.6 4.3204E-04 1.1021E-04 6.7473E-05
0.7 4.1670E-04 1.0478E-04 6.5078E-05
0.8 3.9825E-04 9.9165E-05 6.2197E-05
0.9 3.7824E-04 9.3371E-05 5.9071E-05
1.0 3.5750E-04 8.7583E-05 5.5832E-05

Table 2: Central processing unit (CPU) for numerical results with different N values.
N CPU (s)
3 10.014
7 23.772
8 42.138
9 66.533
10 96.792

Table 3: Error comparison between different methods for x = 0.5 and N = 10
t Gauss−Jacobi waveform Present Method
0.0 2.3121E-12 9.8720E-14
0.1 2.9221E-12 8.9279E-14
0.2 3.8885E-12 1.1055E-14
0.3 4.2964E-13 1.1711E-15
0.4 4.4344E-13 1.1751E-15
0.5 4.4216E-13 1.1473E-15
0.6 4.3204E-13 1.1021E-15
0.7 4.1670E-13 1.0478E-15
0.8 3.9825E-12 9.9165E-14
0.9 3.7824E-12 9.3371E-14
1.0 3.5750E-12 8.7583E-14
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6 Conclusion

We have presented and illustrated the method based on Laguerre polynomials for the
solution of a class of nonlinear functional partial differential equations which are usually
difficult to solve analytically. Also they play main role on biology, ecology and fluid and
elastic mechanics, etc.
In many cases, it is required to obtain the approximate solutions. For this purpose, the
presented novel method can be proposed. We have obtained the results efficiently when
the truncation limit N is increased. The tables and figures has been shown the accuracy of
the method. The method is based on computing the coefficients in the Laguerre expansion
of solution of the nonlinear functional partial differential equations.
As a result, the method can also be extended to the nonlinear functional partial differential
equations with the integral terms and their residual error analysis can be structured, but
some modifications are required [32]-[35].
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