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1 Introduction

We are concerned with the abstract optimal control problem

min{F (u, y) : y ∈ S(u)}. (1.1)

Here, u : [0, T ]→ H stands for a time-dependent admissible control, H is a Hilbert space,
and y : [0, T ]→ H belongs to the set S(u) of a nonlinear evolution equation with datum
u to be specified below. The nonnegative target functional F is defined on the trajectories
u and y.

Relation y ∈ S(u) corresponds to different models of dissipative evolution. In partic-
ular, we will consider the case of u-forced

Gradient flows: y′ + ∂φ(y) = u,

Monotone and pseudomonotone flows: y′ + A(y) = u,

Generalized gradient flows: ∂y′ψ(y, y′) + ∂φ(y) = u,

GENERIC flows: y′ = L(y)DE(y)−K(y)(∂φ(y)− u).

The reader is referred to the following sections for all necessary details. In all of these
cases, the abstract relation y ∈ S(u) stands for the variational formulation of a nonlinear
partial differential problem of parabolic type, possibly being singular or degenerate.

The differential constraint y ∈ S(u) will be equivalently reformulated as

y ∈ S(u) ⇔ G(u, y) = 0,

where the constraining functional G is a nonnegative functional on entire trajectories.
This characterization is not new. In the specific case of a gradient flow y′ + ∂φ(y) = u,
where ∂φ stands for the subdifferential of the convex energy φ : H → (−∞,∞], two
possible choices of the constraint functional G are given by the Brezis-Ekeland-Nayroles
functional

GBEN(u, y) =

∫ T

0

(
φ(y) + φ∗(u− y′)− (u, y)

)
dt+

1

2
‖y(T )‖2 − 1

2
‖y0‖2

and the De Giorgi functional

GDG(u, y) =

∫ T

0

(
1

2
‖y′‖2 +

1

2
‖∂φ(y)− u‖2 − (u, y′)

)
dt+ φ(y(T ))− φ(y0).

Here, (·, ·) and ‖ · ‖ denote the scalar product and the norm in H, respectively. The
trajectory y is forced to assume the initial value y(0) = y0 by defining G(u, y) = ∞
otherwise.

The focus of this note is on the penalization of problem (1.1) by

minEε(u, y) for Eε(u, y) := F (u, y) +
1

ε
G(u, y). (1.2)

This corresponds to approximate the constrained minimization of problem (1.1) by means
of a family of unconstrained minimizations.
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This approach is indeed classical and has to be traced back to Lions [24], who pro-
posed to penalize the constraint by the residual of the equation. This has already been
investigated, both in the stationary and the evolutive case, see [3, 4, 5, 15, 20, 29] among
many others. We follow this line by penalizing the minimization by the De Giorgi func-
tional GDG, which corresponds to the residual by nonetheless exploiting the variational
structure of the equation in order to simplify the energy. On the other hand, penalization
in coordination with the Brezis-Ekeland-Nayroles functional GBEN is not directly related
with residual minimization and, to our knowledge, has not been studied yet. Note that
the actual choice of the constraining functional G strongly influences the properties of the
problem, so that the considering different options for G is a sensible issue.

In the case of the Brezis-Ekeland-Nayroles functional GBEN, problem (1.2) turns out
to be a separately convex minimization problem. This allows for the implementation of an
alternate minimization procedure, where Eε is alternatively minimized in the state and
the control until convergence.

The case of the De Giorgi functional GDG bears its interest in the fact that it is not
restricted to convex functionals φ. In fact, GDG is suited for nonconvex potentials as
well and it can be easily modified to accommodate additional nonlinear features, such as
nonlinear dissipative or conservative terms (see Section 4 below).

Our aim is that of checking the solvability of the penalized minimization problem (1.2)
and the convergence of its minimizers to minimizers of the constrained problem (1.1) as
ε→ 0. This will be achieved by proving the Γ-convergence of the penalized functional Eε
to the limit E0 defined by

E0(u, y) = F (u, y) if G(u, y) = 0 and E0(u, y) =∞ otherwise

under different variational settings, corresponding to the above-mentioned different evo-
lution models.

The paper is organized as follows. The abstract functional setup is detailed in Section
2. Then, the application of the abstract theory to the case of the Brezis-Ekeland-Nayroles
variational principle for gradient, noncyclic and semimonotone flows, and doubly nonlinear
flows is addressed in Section 3. Eventually, Section 4 deals with the applications of De
Giorgi principle in the context of gradient, doubly nonlinear, and GENERIC flows.

2 Abstract setup

Let us start by specifying some notation. In the following, H stands for a real separable
Hilbert space with scalar product (·, ·) and norm ‖ · ‖. The norm in the general Banach
space E will be denoted by ‖ · ‖E. Given the reference time T > 0, we make use of the
standard Bochner spaces Lp(0, T ;E), W 1,p(0, T ;E), C([0, T ];E) and so on.

A caveat on notation: we will use the same symbol c to indicate positive universal
constants, possibly depending on data, and changing from line to line.

Given a topological space (X, τ), we recall that a sequence of functionals Eε : (X, τ)→
[0,∞] is said to Γ-converge [11] to the limit E0 : (X, τ)→ [0,∞] if E0(x) ≤ lim infε→0 Eε(xε)
for any xε → x and for all x̂ ∈ X there exists a sequence x̂ε → x̂ such that Eε(xε)→ E0(x̂).
The reader is referred to Dal Maso [10] for a thorough presentation.
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We record here the following elementary lemma, which serves as basis for proving
convergence of the minimizers of problem (1.2) throughout.

Lemma 2.1 (Γ-convergence). Let (X, τ) be a sequential topological space and the func-
tionals F , G : (X, τ) → [0,∞] be lower semicontinuous. Assume Eε := F + ε−1G to be
proper (Eε 6≡ ∞) and equicoercive for ε > 0 small enough, namely that there exists ε0 > 0,
λ > 0, and a compact K ⊂ X such that {x ∈ X : Eε(x) < λ} ⊂ K for all ε < ε0. Then,

1. Eε
Γ→ E0 where E0(x) := F(x) if G(x) = 0 and E0 =∞ otherwise;

2. min Eε can be solved for all ε < ε0. Any sequence xε of quasiminimizers, namely
lim infε→0(Eε(xε)− inf Eε) = 0, admits a subsequence converging to a minimizer
of E0;

3. If E0 admits a unique minimizer x0, any sequence of quasiminimizers of Eε converges
to x0.

Proof. Ad 1. Let xε → x and assume with no loss of generality that supε Eε(xε) ≤ c <∞.
In particular, 0 ≤ G(x) ≤ lim infε→0 εEε(xε) ≤ lim infε→0 εc = 0. Then E0(x) = F(x) ≤
lim infε→0F(xε) ≤ lim infε→0 Eε(xε). Fix now any x̂ ∈ X. As ε−1G(x̂) → ∞ if G(x̂) > 0,

one has that Eε(x̂)→ E0(x̂). This proves the Γ-convergence Eε
Γ→ E0.

Ad 2. The existence of a minimizer xε of Eε for ε < ε0 follows from the equicoercivity
and the lower semicontinuity of the sum F+ε−1G. Any sequence xε of quasiminimizers be-
longs to K for ε small enough. As such, it admits a subsequence (not relabeled) converging
to x0 and, for any x ∈ X, we have that E0(x0) ≤ lim infε→0 Eε(xε) = lim infε→0 min Eε ≤
lim infε→0 Eε(x) = E0(x). In particular, x0 minimizes E0.

Ad 3. This follows from the uniqueness of the minimizer of E0 and from the fact that
the topology is assumed to be sequential.

3 Brezis-Ekeland-Nayroles principle

In this section, we investigate penalization (1.2) by letting the constraining functional to
be of Brezis-Ekeland-Nayroles type. Let us start by presenting a result in the case of the
classical gradient flow with forcing u

y′ + ∂φ(y) 3 u in H, a.e. in (0, T ), y(0) = y0. (3.1)

As usual, the prime denotes here derivation with respect to time. The potential φ : H →
(−∞,∞] is assumed to be convex, proper, and lower semicontinuous, and we denote
by D(φ) = {y ∈ H : φ(y) < ∞} its essential domain. The symbol ∂φ denotes the
corresponding subdifferential in the sense of convex analysis. This is defined as

ξ ∈ ∂φ(y) ⇔ y ∈ D(φ) and (ξ, x− y) ≤ φ(x)− φ(y) ∀x ∈ H.

The initial datum y0 is assumed to belong to D(φ). Given u ∈ L2(0, T ;H), the solution
y ∈ H1(0, T ;H) of (3.1) exists uniquely [6]. The celebrated result by Brezis & Ekeland
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[7, 8] and Nayroles [31, 32] implies that y solves (3.1) iff GBEN(u, y) = 0, where the
constraining functional GBEN(u, y) : L2(0, T ;H)×H1(0, T ;H) is given by

GBEN(u, y) =


∫ T

0

(
φ(y)+φ∗(u−y′)−(u, y)

)
dt+

1

2
‖y(T )‖2 − 1

2
‖y0‖2 if y(0) = y0

∞ otherwise.
(3.2)

Here, φ∗ denotes the conjugate to φ, namely, φ∗(y∗) = supy((y
∗, y)− φ(y). Note that, for

all (u, y) ∈ L2(0, T ;H) ×H1(0, T ;H) the functions t 7→ φ(y′(t)) and y 7→ φ∗(u(t)−y′(t))
are measurable, so that GBEN(u, y) is well defined. Still, GBEN(u, y) takes the value ∞ if
t 7→ φ(y′(t)) or y 7→ φ∗(u(t)−y′(t)) do not belong to L1(0, T ).

Existence results based in the Brezis-Ekeland-Nayroles principle have been obtained by
Rios [33], Auchmuty [1], Roub́ıček [35], and Ghoussoub & Tzou [17] among others.
In [17], the authors recast the problem within the far-reaching theory of (anti-)selfdual
Lagrangians [18]. A variety of extensions have been proposed, including perturbations
[16], long-time dynamics [23], measure data [25], time discretizations [37], second-order
[26], doubly-nonlinear [36], monotone [39], pseudomonotone equations and their structural
compactness [41], and rate-independent flows [38]. Note however that deriving existence
via these extensions may call for more stringent assumptions on the data of the problem.

In the following, we will assume that the set of admissible controls U is a com-
pact subset of L2(0, T ;H). Moreover, we ask the target functional F : L2(0, T ;H) ×
H1(0, T ;H) → [0,∞) to be lower semicontinuous with respect to the strong × weak
topology of L2(0, T ;H)×H1(0, T ;H). An example in this class is

F (u, y) =
1

2

∫ T

0

‖y − ytarget‖2dt+
1

2

∫ T

0

‖y′ − y′target‖2dt+
1

2

∫ T

0

‖u‖2dt

for some given ytarget ∈ H1(0, T ;H). The main result of this section is the following.

Theorem 3.1 (Gradient flows, BEN principle). Let φ : H → (−∞,∞] be convex,
proper, and lower semicontinuous, y0 ∈ D(φ), ∅ 6= U ⊂⊂ L2(0, T ;H), F : L2(0, T ;H) ×
H1(0, T ;H)→ [0,∞] lower semicontinuous and coercive w.r.t. the strong × weak topology
τ of L2(0, T ;H)×H1(0, T ;H), F (u, y) <∞ only if u ∈ U , GBEN defined as in (3.2), and
Eε := F + ε−1GBEN for ε > 0.

Then, minEε admits a solution for all ε > 0. Moreover, Eε
Γ→ E0 with respect to

topology τ where E0 = F on {GBEN = 0} and E0 = ∞ otherwise, and any sequence of
quasiminimizers converges, up to a subsequence, to a solution of minE0. In case minE0

admits a unique minimizer, any sequence of quasiminimizers τ -converges to it.

Proof. In order to prove the statement we apply Lemma 2.1 with the choices X =
L2(0, T ;H)×H1(0, T ;H) and τ = strong × weak topology in X.

We start by checking that Eε is proper. In fact, by letting u ∈ U and y ∈ H1(0, T ;H)
be the unique solution of y′+∂φ(y) 3 u with y(0) = y0 we have that Eε(u, y) = F (u, y) <
∞.

In order to prove the lower semicontinuity of GBEN, assume that (un, yn)
τ→ (u, y). As
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H1(0, T ;H) ⊂ C([0, T ];H) and U is compact in L2(0, T ;H) we have that

un − y′n → u− y′ weakly in L2(0, T ;H),

(un, yn)→ (u, y) in L1(0, T ),

yn(T )→ y(T ) weakly in H.

This implies that GBEN(u, y) ≤ lim infn→∞GBEN(un, yn). The equicoercivity of Eε follows
from that of F .

A remarkable feature of the penalization of problem (1.1) via the Brezis-Ekeland-
Nayroles functional relies in the possibility of exploiting convexity. Indeed, in case F
is convex, the penalized F + ε−1GBEN turns out to be separately convex, the only non-
convexity coming from the bilinear term (u, y). This in turn suggests the possibility of
implementing some alternate minimization procedure. Note that, in relation with appli-
cations to PDEs, the bilinear term (u, y) is usually of lower order.

In the statement of Theorem 3.1 we have assumed F to be coercive. In fact, the
functional GBEN itself cannot be expected to be coercive with respect to topology τ . In
particular, this would follow by asking φ∗ to be superquadratic. This would however
induce a quadratic bound to φ, a quite restrictive assumption, especially in relation to
PDEs.

An alternative possibility is that of augmenting GBEN by a coercive term, which would
still vanish on solutions of (3.1). A proposal in this direction is in [36], where the following
variant of the Brezis-Ekeland-Nayroles functional is presented

G̃BEN(u, y) = GBEN(u, y) +

(∫ T

0

(
‖y′‖2−(u, y′)

)
dt+ φ(y(t))− φ(y0)

)+

(3.3)

with r+ := max{r, 0}. By letting now Eε = F + ε−1G̃BEN one can prove the statement of
Theorem 3.1 also for a noncoercive functional F , for coercivity for y with respect to the
weak topology of H1(0, T ;H) is provided by G̃BEN.

Before closing this subsection, let us remark that a time-dependent potential φ can be
considered as well, namely

y′(t) + ∂φ(t, y(t)) 3 u(t) in H, for a.e. t ∈ (0, T ), y(0) = y0. (3.4)

Here, φ : (0, T ) × H → (−∞,∞] is asked to be measurable with respect to L ⊗ B(H),
where L is the Lebesgue σ-algebra in (0, T ) and B(H) is the Borel σ-algebra in H, and
such that y 7→ φ(t, y) is proper, convex, and lower semicontinuous for a.e. t ∈ (0, T ).
Problem (3.4) can be equivalently reformulated as GBEN(u, y) = 0 where

GBEN(u, y) =


∫ T

0

(
φ(t, y(t))+φ∗(t, u(t)−y(t)′)−(u(t), y(t))

)
dt

+
1

2
‖y(T )‖2 − 1

2
‖y0‖2 if y(0) = y0

∞ otherwise.

where of course conjugation in φ∗ is taken with respect to the second variable only. In
order to be sure, however, that pairs (u, y) exist with that GBEN(u, y) = 0, some additional
assumptions on the time dependence t 7→ φ(t, y) is required. The reader is referred to
[21, 22, 30, 42] for a collection of classical results in this direction.
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3.1 An example

With the aim of illustrating the statement of Theorem 3.1, we investigate the ODE optimal
control problem

min

{
1

2

∫ 1

0

(y(t)− e−t)2dt+
1

2

∫ 1

0

t2(u(t)− e−t)2dt : (3.5)

y′(t) + y(t) = u(t) ≡ u0e−t, u0 ∈ [0, 1], y(0) = 1

}
. (3.6)

Here, by taking advantage of the linearity of the constraint one can directly compute
y(t) = S(u0e−t)(t) = e−t(1 + tu0) and

u0 7→ F (S(u0e−t), u0e−t) :=
1

2

∫ 1

0

(S(u0e−t)(t)− e−t)2dt+
1

2

∫ 1

0

t2(u0e−t − e−t)2dt

=

(
1

2

∫ 1

0

t2e−2tdt

)(
u2

0 + (u0 − 1)2
)

=: γ
(
u2

0 + (u0 − 1)2
)

In particular, the optimal control corresponds to u0 = 1/2, the optimal solution is y(t) =
e−t(1 + t/2), and the minimum of E0 is

F (e−t(1 + t/2), e−t/2) = γ/2 = 1/16− 5/(16e2) ∼ 0.0202.

The ODE is the gradient flow of the potential φ(y) = y2/2 under the additional forcing
u. Correspondingly, the Brezis-Ekeland-Nayroles functional GBEN is given by

GBEN(u, y) =


∫ 1

0

(
1

2
y2 +

1

2
(u− y′)2 − uy

)
dt+

1

2
y2(1)− 1

2
if y(0) = 1,

∞ otherwise.

The penalized optimal control problem reads then

min

{∫ 1

0

(
1

2
(y(t)− e−t)2 +

t2

2
(u(t)− e−t)2 +

1

2ε
y2(t) +

1

2ε
(u(t)− y′(t))2 − 1

ε
u(t)y(t)

)
dt

+
1

2ε
y2(1)− 1

2ε
: u(t) ≡ u0e−t, u0 ∈ [0, 1], y(0) = 1

}
.

For all given u, the Euler-Lagrange equation for Eε = F + ε−1GBEN in terms of yε is

y′′(t)− y(t)− εy(t) = −(2u0 + ε)e−t, y′(1) + y(1) = u0/e.

Complemented with the initial condition y(0) = 1, these linear relations uniquely identify
a critical point yε of Eε. In fact, this is necessarily the unique minimizer of the convex
functional y 7→ Eε(u, y) and can be explicitly determined in terms of u0 as

yε,u0(t) = c1εe
−αεt + c2εe

αεt +

(
2u0

ε
+ 1

)
e−t
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where we have used the shorthand notation

αε := (1 + ε)1/2,

c1ε :=

(
u0

e
− (1 + αε)

(
2u0

ε
+ 1

))(
(1− αε)e−αε − (1 + αε)e

αε
)−1

,

c2ε := −2u0

ε
− c1ε.

The value of Eε(u0e−t, yε,u0) can be explicitly evaluated. An elementary but tedious
computation gives

Eε(u0e−t, yε,u0) =

(
c2

1ε

2
+
c2

1ε

2ε
+
α2
εc

2
1ε

2ε

)
e−2αε − 1

−2αε
+

(
c2

2ε

2
+
c2

2ε

2ε
+
α2
εc

2
2ε

2ε

)
e2αε − 1

2αε

+

(
2u2

0

ε2
+

1

2ε

(
2u0

ε
+ 1

)2

+
1

2ε

(
2u0

ε
+ 1 + u0

)2

− u0

ε

(
2u0

ε
+ 1

))
e−2 − 1

−2

+

(
2c1εu0

ε
+
c1ε

ε

(
2u0

ε
+ 1

)
+
αεc1ε

ε

(
2u0

ε
+ 1 + u0

)
− c1εu0

ε

)
e−αε−1 − 1

−αε − 1

+

(
2c2εu0

ε
+
c2ε

ε

(
2u0

ε
+ 1

)
− αεc2ε

ε

(
2u0

ε
+ 1 + u0

)
− c2εu0

ε

)
eαε−1 − 1

αε − 1

+

(
1 +

1

ε
− α2

ε

ε

)
c1εc2ε +

1

2ε

(
c1εe

−αε + c2εe
αε +

(
2u0

ε
+ 1

)
e−1

)2

− 1

2ε

+ γ(u0 − 1)2. (3.7)

Different curves u0 7→ Eε(u0e−t, yε,u0) for different choices of ε are depicted in Figure 1.
We observe that the minimizer and the minimum approach 1/2 and 0.0202, respectively,
as ε→ 0, as expected.

3.2 Gradient flows in dual space

The statement of Theorem 3.1 can be extended to the case of gradient-flow dynamics in
dual spaces. Let us introduce a real reflexive Banach space W , densely and continuously
embedded into H, so that W ⊂ H ⊂ W ∗ is a classical Gelfand triplet. We consider the
problem

y′ + ∂φ(y) 3 u in W ∗, a.e. in (0, T ), y(0) = y0. (3.8)

The potential φ : W → R is assumed to be everywhere defined, convex, proper, and lower
semicontinuous. The symbol ∂φ in (3.8) denotes now the subdifferential between W and
W ∗. This is defined as

ξ ∈ ∂φ(y) ⇔ 〈ξ, x− y〉 ≤ φ(x)− φ(y) ∀x ∈ W

where 〈·, ·〉 is the duality pairing between W ∗ and W . We assume φ to be bounded as
follows

φ(y) ≥ c‖y‖mW −
1

c
∀y ∈ W, φ∗(y∗) ≥ c‖y∗‖m′W ∗ −

1

c
∀y∗ ∈ W ∗

‖ξ‖m′W ∗ ≤ c(1 + ‖y‖mW ) ∀y ∈ W, ξ ∈ ∂φ(y)
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Figure 1: Curves u0 7→ Eε(u0e−t, yε,u0) from (3.7) for ε = 2, 1, 0.5, 0.1, and 0 (bottom to
top). On each curve, the dot indicates the minimizer.

where m > 1 and m′ = m/(m− 1). In particular, the above bounds entail a polynomial
control on φ of the form

φ(y) ≤ c‖y‖mW + c ∀y ∈ W, φ∗(y∗) ≤ c‖y∗‖m′W ∗ + c ∀y∗ ∈ W ∗

which is now compatible with PDE applications.
Given the initial datum y0 ∈ W (recall that D(φ) = W ), for all u ∈ Lm′(0, T ;W ∗),

the solution y ∈ W 1,m′(0, T ;W ∗) ∩ Lm(0, T,W ) of (3.8) exists uniquely. In particular, y
solves (3.8) iff GBEN(u, y) = 0 where

GBEN(u, y) =


∫ T

0

(
φ(y) + φ∗(u− y′)− 〈u, y〉

)
dt+

1

2
‖y(T )‖2 − 1

2
‖y0‖2 if y(0) = y0

∞ otherwise.

The result of Theorem 3.1 can be reformulated in this setting by assuming the set of
admissible controls U to be a compact subset of Lm

′
(0, T ;W ∗) and F : Lm

′
(0, T ;W ∗) ×

W 1,m′(0, T ;W ∗) ∩ Lm(0, T,W ) → [0,∞] to be lower semicontinuous with respect to the
strong × weak topology of Lm

′
(0, T ;W ∗)×W 1,m′(0, T ;W ∗)∩Lm′(0, T,W ), with F (u, y) <

∞ only if u ∈ U . Note that here no coercivity of F is actually needed, for in this case
GBEN itself turns out to be coercive, due to the lower bounds on φ and φ∗.

Once again, GBEN is proper, since it vanishes on solutions to (3.8), which are known
to exist. In order to check for the lower semicontinuity of GBEN one would need to recall
the embedding W 1,m′(0, T ;W ∗) ∩ Lm(0, T,W ) ⊂ C([0, T ];H). In particular, the term
‖y(T )‖2 turns out to be lower semicontinuous.

3.3 Nonpotential and nonmonotone flows

Originally limited to gradient flows of convex functionals, the Brezis-Ekeland-Nayroles
variational approach has been extended to classes of nonpotential monotone flows by
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Visintin [39]. By replacing Fenchel duality by the representation theory by Fitzpatrick
[14], he noticed that solutions of the nonpotential flow

y′ + Ay 3 u a.e. in W ∗, y(0) = y0, (3.9)

where A : W → 2W
∗

is a maximal monotone, coercive, and representable operator and
y0 ∈ D(A), can be characterized by GBEN(u, y) = 0, where GBEN : L2(0, T ;W ∗) ×
H1(0, T ;W ∗) ∩ L2(0, T,W )→ [0,∞] is now given as

GBEN(u, y) =


∫ T

0

(
fA(y, u−y′)−〈u, y〉

)
dt+

1

2
‖y(T )‖2 − 1

2
‖y0‖2 if y(0) = y0,

∞ otherwise.
(3.10)

The function fA : W×W ∗ → (−∞,∞] is convex, lower semicontinuous, with fA(y, y∗) ≥
〈y∗, y〉 for all (y, y∗) ∈ W ×W ∗, and represents the operator A in the following sense

y∗ ∈ Ay ⇔ fA(y, y∗) = 〈y∗, y〉. (3.11)

An operator is said to be representable when it admits a representing function. All
maximal monotone operators are representable, for instance via their Fitzpatrick function

fA(y, y∗) := 〈y∗, y〉+ sup{〈y∗ − ỹ∗, ỹ − y〉 : ỹ ∈ W, ỹ∗ ∈ Aỹ}.

A monotone operator need however not be cyclic nor maximal to be representable. The
reader is referred to [40, 41] for a full account on this theory. By taking advantage of
position (3.10), the assertion of Theorem 3.1 can hence be modified to include the case of
the differential constraint (3.9) as well.

More generally, the reach of the penalization via the Brezis-Ekeland-Nayroles func-
tional extends even beyond monotone situations. Assume to be given B : H ×W → 2W

∗

such that

B(h, ·) : W → 2W
∗

is maximal monotone, ∀h ∈ H,

∀(h, y) ∈ H ×W, ∀y∗ ∈ B(h, y), ∀hn → h in H

there exists y∗n such that y∗n ∈ B(hn, yn) and y∗n → y∗ in W ∗.

This class of nonmonotone operators A(y) := B(y, y), called semimonotone [41], includes
the class of pseudomonotone operators [9], and it is representable [41, Thm. 4.4] in the
sense of (3.11) by means of a weakly lower semicontinuous albeit nonconvex function fA

fA(y, y∗) := 〈y∗, y〉+ sup{〈y∗ − ỹ∗, ỹ − y〉 : ỹ ∈ W, ỹ∗ ∈ B(y, ỹ)}. (3.12)

On this basis, the nonmonotone flow

y′ + A(y) 3 u a.e. in W ∗, y(0) = y0, (3.13)

driven by the semimonotone operator A(y) can be variationally reformulated as GBEN = 0,
where GBEN is defined in from (3.10), where however fA is now defined by (3.12). Note
that GBEN is proper and lower semicontinuous with respect to the strong × weak topology
of L2(0, T ;W ∗)×H1(0, T ;W ∗)∩L2(0, T,W ). By letting Eε = F +ε−1GBEN and assuming
again that F is coercive and F (u, y) < ∞ only if u ∈ U , the results of Theorem 3.1 can
be extended to the case of optimal control problems driven by (3.13) as well.
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3.4 Doubly nonlinear flows

A gradient flow can be seen as a particular case of the doubly nonlinear evolution

∂ψ(y′) + ∂φ(y) 3 u in V ∗, a.e. in (0, T ), y(0) = y0. (3.14)

Here, V is a real reflexive Banach space with W ⊂⊂ V , the symbol ∂ refers to the
subdifferential between V and V ∗, and ψ : V → [0,∞) is a second convex, proper, lower
semicontinuous functional defined on the whole V . More precisely, we assume ψ to fulfill
0 ∈ ∂ψ(0) and to be of polynomial growth, namely

c‖y′‖pV −
1

c
≤ 〈w, y′〉, ‖w‖p

′

V ∗ ≤ c(1 + ‖y′‖pV ) ∀y′ ∈ V, w ∈ ∂ψ(y′)

ψ∗(w) ≥ c‖w‖p
′

V ∗ −
1

c
∀w ∈ V ∗

for p > 1 and p′ = p/(p− 1). Additionally, we assume D(φ) = W and the coercivity

φ(y) ≥ c‖y‖mW −
1

c
∀y ∈ W

for some m > 1. In [36] a doubly nonlinear version of the Brezis-Ekeland-Nayroles func-
tional is addressed. In particular, one has that (u, y, w) ∈ Lp′(0, T ;V ∗)×W 1,p′(0, T ;V ∗)∩
Lm(0, T ;W )× Lp′(0, T ;V ∗) solve

w ∈ ∂ψ(y′), ∂φ(y) 3 u− w a.e. in (0, T ), y(0) = y0

iff GBEN(u, y, w) = 0, where GBEN : Lp
′
(0, T ;V ∗) × W 1,p′(0, T ;V ∗) ∩ Lm(0, T ;W ) ×

Lp
′
(0, T ;V ∗)→ [0,∞] is now defined as

GBEN(u, y, w) =



(∫ T

0

(
ψ(y′) + ψ∗(w)− 〈u, y′〉

)
dt+ φ(y(T ))− φ(y0)

)+

+

∫ T

0

(
φ(y) + φ∗(u− w)− 〈u− w, y〉

)
dt if y(0) = y0

∞ otherwise.

Indeed, the two nonnegative integrals in the definition of GBEN correspond to the two
relations w ∈ ∂ψ(y′) and ∂φ(y) 3 u − w, respectively. At the price of introducing
the new variable w, one can penalize the differential constraint (3.14) by minimizing
(u, y, w) 7→ Eε(u, y, w) = F (u, y, w) + ε−1GBEN(u, y, w). Again, the results of Theorem
3.1 can be extended to this situation. In particular, it can be proved that GBEN is
proper and lower semicontinuous with respect to the strong × weak × weak topology of
Lp
′
(0, T ;V ∗)×W 1,p′(0, T ;V ∗)∩Lm(0, T ;W )×Lp′(0, T ;V ∗). Moreover, it turns out to be

coercive as well, as soon as it is restricted to u ∈ U . In particular, no coercivity has to
be assumed on F in this case. Indeed, GBEN is here the doubly nonlinear version of the
former (3.3), which was in fact introduced to ensure coercivity.
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4 De Giorgi principle

Let us now turn out attention to the penalization (1.2) by means of a variational refor-
mulation of dissipative evolution, following the general approach to gradient flows from
[12].

Consider again the classical gradient flow in a Hilbert space (3.1) where now the
potential φ : H → (−∞,∞] is asked to be lower semicontinuous and proper, possibly
being nonconvex. To keep notation to a minimum, let us assume φ = φ1 + φ2 with φ1

convex, proper, and lower semicontinuous, and φ2 ∈ C1,1. Then, by letting ∂φ denote the
classical Fréchet subdifferential, namely

ξ ∈ ∂φ(y) ⇔ y ∈ D(φ) and lim inf
w→y

φ(w)− φ(y)− (ξ, w − y)

‖y − w‖
≥ 0,

(note that the Fréchet subdifferential coincides with the subdifferential of convex analysis
on convex functions) we have that ∂φ = ∂φ1 +Dφ2. We will additionally assume ∂φ1 to
be single-valued, whenever nonempty. More general settings are discussed in Subsection
4.2 below.

Solutions to (3.1) correspond toGDG(u, y) = 0, where the functionalGDG : L2(0, T ;H)×
H1(0, T ;H)→ [0,∞] is defined as

GDG(u, y) =


∫ T

0

(
1

2
‖y′‖2 +

1

2
‖∂φ(y)−u‖2 − (u, y′)

)
dt+ φ(y(T ))− φ(y0)

if y ∈ D(∂φ) a.e. and y(0) = y0

∞ otherwise.

(4.1)

Due to its ties with the variational theory of steepest decent in metric spaces from [12]
we call GDG De Giorgi functional. In (4.1) we used the notation D(∂φ) to indicate the
essential domain of ∂φ, namely D(∂φ) = {y ∈ H : ∂φ(y) 6= ∅}. Note that, by [34, Lemma
3.4], the map t 7→ ∂φ(y(t)) is measurable whenever y ∈ H1(0, T ;H) with y ∈ D(∂φ) a.e.
The reformulation of the gradient flow (3.1) via GDG is based on the computation of the
squared residual of (3.1), namely,∫ T

0

1

2
‖y′ + ∂φ(y)− u‖2dt =

∫ T

0

(
1

2
‖y′‖2 +

1

2
‖∂φ(y)− u‖2 + (y′, ∂φ(y)− u)

)
dt

= GDG(u, y) if y(0) = y0.

The latter computation hinges on the chain rule (∂φ(y), y′) = (φ ◦ y)′, which holds in the
case of φ = φ1 + φ2 in the following precise form [6, Lemme 3.3]

y ∈ H1(0, T ;H), ξ ∈ L2(0, T ;H), ξ ∈ ∂φ(y) a.e. in (0, T )

⇒ φ ◦ y ∈ AC(0, T ) and (φ ◦ y)′ = (ξ, y′) a.e. in (0, T ). (4.2)

Indeed, note that ∂φ(y) ∈ L2(0, T ;H) if GBEN(u, y) <∞. The main result of this section
is the following.
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Theorem 4.1 (Gradient flows, DG principle). Let φ = φ1 + φ2 : H → (−∞,∞] have
compact sublevels with φ1 proper, convex, and lower semicontinuous, ∂φ1 single-valued,
and φ2 ∈ C1,1. Moreover, let y0 ∈ D(φ), ∅ 6= U ⊂⊂ L2(0, T ;H), F : L2(0, T ;H) ×
H1(0, T ;H) → [0,∞] be lower semicontinuous w.r.t. the strong × weak topology τ of
L2(0, T ;H)×H1(0, T ;H), F (u, y) < ∞ only if u ∈ U , GDG be defined as in (4.12), and
Eε := F + ε−1GDG for ε > 0.

Then, minEε admits a solution for all ε > 0. Moreover Eε
Γ→ E0 with respect to

topology τ where E0 = F on {GDG = 0} and E0 = ∞ otherwise, and any sequence of
quasiminimizers converges, up to a subsequence, to a solution of minE0. In case minE0

admits a unique minimizer, any sequence of quasiminimizers converge to it with respect
to τ .

Proof. The statement follows by applying Lemma 2.1 in the space X = L2(0, T ;H) ×
H1(0, T ;H) endowed with its strong × weak topology τ .

Let u ∈ U and let y ∈ H1(0, T ;H) be the unique solution of y′ + ∂φ(y) 3 u with
y(0) = y0. As we have that Eε(u, y) = F (u, y) <∞, the functional Eε is clearly proper.

Functional F is τ -lower semicontinuous by assumption. In order to check the τ -lower
semicontinuity of GDG let (uε, yε)

τ→ (u, y) be given. With no loss of generality, one can
assume supεGDG(uε, yε) ≤ c < ∞. In particular, we can assume that y′ε and ∂φ(uε) are
uniformly bounded in L2(0, T ;H). By means of the chain rule (4.2) we obtain that for
all t ∈ [0, T ]

φ(yε(t))− φ(y0) =

∫ t

0

(φ ◦ y)′ dt =

∫ t

0

(∂φ(y), y′)dt

≤ ‖∂φ(y)‖L2(0,T,H)‖y′‖L2(0,T,H) <∞ (4.3)

independently of t ∈ [0, T ] and ε > 0. This implies that t 7→ φ(yε(t)) is uniformly
bounded. As the sublevels of φ are compact, this yields that there exists K ⊂⊂ H
such that yε(t) ∈ K for all t ∈ [0, T ] and ε > 0. The uniform bound on y′ε gives that
yε are equicontinuous and the Ascoli-Arzelà Theorem implies that, up to not relabeled
subsequences, yε → y strongly in C([0, T ];H). This entails that ∂φ(yε) → ∂φ(u) in
L2(0, T,H) since ∂φ is strongly × weakly closed as subset of L2(0, T ;H) × L2(0, T ;H).
Moreover, the strong convergence of yε in C([0, T ];H) implies that yε(T )→ y(T ) strongly
in H, so that φ(y(T )) ≤ lim infε→0 φ(yε(T )) as φ is lower semicontinuous. Since (uε, y

′
ε)→

(u, y′) strongly in L1(0, T ), we can pass to lower limits in all terms in GDG(uε, yε) and
thus check that GDG(u, y) ≤ lim infε→0GDG(uε, yε).

The τ -equicoercivity of Eε follows as U is compact in L2(0, T ;H) and GDG(u, y) con-
trols the L2(0, T ;H) norm of y′.

Before closing this subsection, let us record that in the former case of (3.6) the two
functionals GBEN and GDG coincide. In particular, Figure 1 illustrates the convergence of
the penalization via GDG as well. By considering in that same linear ODE example φ(y) =
λy2/2 with λ > 0 instead of φ(y) = y2/2 one finds the relation GBEN(u, y) = λGDG(u, y),
which implies that the minimizers of F + ε−1GBEN and F + (ε/λ)−1GDG coincide. Hence,
for fixed ε > 0 one has that GBEN, respectively GDG, delivers the best approximation in
terms of minimum and minimizer if λ < 1, respectively λ > 1. This in particular proves
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that, in general, no functional a priori dominates the other in terms of accuracy of the
approximation for fixed ε.

4.1 A numerical simulation

In order to present a second illustration of the penalization procedure, let us resort to a
nonlinear ODE. We consider the optimal control problem

min

{
1

2

∫ 1

0

(y(t)− 1)2dt+
1

2
(u− 2)2 : y′(t) + y3(t) = u for t ∈ [0, 1], y(0) = 1

}
.

(4.4)
with u ∈ R. By evaluating u 7→ F (u, S(u)) with Matlab, where y = S(u) is the unique
solution to y′ + y3 = u with y(0) = 1, one finds a unique optimal u ∼ 1.016 and,
correspondingly, F (u, S(u)) ∼ 0.4917.

The De Giorgi penalized problem for ε > 0 reads

min
(
F + ε−1GDG

)
= min

{
1

2

∫ 1

0

(y(t)− 1)2dt+
1

2
(u− 2)2

+
1

ε

(∫ 1

0

(
1

2
(y′(t))2 +

1

2
(y3(t)−u)2 − uy′(t)

)
dt+

1

4
y4(1)− 1

4

)
: y(0) = 1

}
.

The corresponding Euler-Lagrange equations, complemented by the initial condition,
reads

−y′′(t) + 3(y3(t)− u)y2(t) = 0 for t ∈ (0, 1), y′(1) + y3(1) = u, y(0) = 1. (4.5)

Given u, by numerically solving the latter boundary-value problem with Matlab, one finds
a critical point yε,u of Eε and evaluates u 7→ Eε(u, yε,u). The results of this simulation are
illustrated in Figure 2, showing convergence of minima and minimizers as ε→ 0.

4.2 More general potentials

The proof of Theorem 4.1 can be extended to include some more general classes of po-
tentials. A first generalization of the theory allows to treat the case of φ = φ1 + φ2 with
∂φ1 not single-valued. In this case, one starts by equivalently rewriting problem (3.1) as

y′ =
(
u− ∂φ(y)

)◦
in H, a.e. in (0, T ), y(0) = y0. (4.6)

Here,
(
u− ∂φ(y)

)◦
denotes the unique element of minimal norm in the convex and closed

set u − ∂φ(y) = u − ∂φ1(y) − Dφ2(y). Let us briefly comment on the equivalence of
problems (3.1) and (4.6). On the one hand, a solution to (4.6) clearly solves (3.1) as well.
On the other hand, solutions to (3.1) are unique: Let y1 and y2 be two solutions, and
write

y′1 − y′2 + ξ1 − ξ2 = Dφ2(y1)−Dφ2(y2) in H, a.e. in (0, T ),
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1.013 1.014 1.015 1.016 1.017 1.018 1.019 1.02 1.021 1.022

0.4906

0.4908

0.491

0.4912

0.4914

0.4916

0.4918

0.492

0.4922

0.4924

Figure 2: Curves u 7→ Eε(u, yε,u) for problem (4.4) for ε = 1, 0.5, 0.1, 0.05, and 0 (bottom
to top). On each curve, the dot indicates the minimizer.

where ξi ∈ ∂φ1(yi) a.e. in (0, T ), for i = 1, 2. Test the latter equality by y1 − y2 and
integrate on (0, t). By the monotonicity of ∂φ1 and the Lipschitz continuity of Dφ2 we
obtain

1

2
‖y1(t)− y2(t)‖2 ≤ ‖D2φ‖L∞

∫ t

0

‖y1(s)− y2(s)‖2ds

and y1 = y2 follows by the Gronwall Lemma.
Equality (4.6) can then be equivalently recast as GDG(u, y) = 0 along with the choice

GDG(u, y) =


∫ T

0

(
1

2
‖y′‖2 +

1

2
‖(∂φ(y)− u)◦‖2 − (u, y′)

)
dt+ φ(y(T ))− φ(y0)

if y ∈ D(∂φ1) a.e. and y(0) = y0

∞ otherwise.

Note that GDG is proper, as it vanishes on solutions of the gradient flow. In particular,
if GDG(u, y) < ∞ we have y ∈ H1(0, T ;H) and we can find ξ ∈ L2(0, T ;H) such that
ξ − u = (∂φ(y) − u)◦ and ξ ∈ ∂φ(y) a.e. Then, by means of the chain rule (4.2) one
computes

(φ ◦ y)′ = (ξ, y′) = (ξ − u, y′) + (u, y′) a.e. in (0, T ).

as well as the chain of equivalences

y′ = (u− ∂φ(y))◦ a.e.

⇔ 0 =
1

2
‖y′ + ξ − u‖2 =

1

2
‖y′‖2 +

1

2
‖ξ − u‖2 + (ξ − u, y′) a.e.

⇔ 0 =
1

2
‖y′‖2 +

1

2
‖ξ − u‖2 − (u, y′) + (φ ◦ y)′ a.e.

⇔ GDG(u, y) = 0.
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In order to extend the results of Theorem 4.1 to this case, one just needs to check that,
by replacing the term ∂φ(y) − u with (∂φ(y) − u)◦ in the functional, coercivity and
lower semicontinuity still hold. As for the first, one still has that φ is controlled along
trajectories as in (4.3), since (∂φ(y) − u)◦ = ξ − u a.e., for some ξ ∈ ∂φ(u) a.e. As for
lower semicontinuity, one just needs to be able to pass to the lim inf in the term containing
(∂φ(y)−u)◦. By letting yε → y strongly in C([0, T ];H) and ηε = (u−∂φ(yε))

◦ → η weakly
in L2(0, T ;H) one finds that ξε := u−ηε ∈ ∂φ(yn) a.e. are such that ξε → u−η =: ξ weakly
in L2(0, T ;H). Moreover, by the strong × weak closure of ∂φ we have that ξ ∈ ∂φ(y) a.e.
We conclude that

1

2

∫ T

0

‖(∂φ(y)− u)◦‖2dt ≤ 1

2

∫ T

0

‖ξ − u‖2dt =
1

2

∫ T

0

‖η‖2dt

≤ lim inf
ε→0

1

2

∫ T

0

‖ηε‖2dt = lim inf
ε→0

1

2

∫ T

0

‖(∂φ(yε)− u)◦‖2dt

and lower semicontinuity of GDG follows.
Even more generally, the theory could be adapted to potential which are not C1,1

perturbations of convex functions. The reader is referred to Rossi & Savaré [34] where
a general frame for existence of solutions to gradient flows on nonconvex functionals is
addressed. In this context, weaker notions of (sub)differential are introduced and the
validity of a corresponding chain rule as in (4.2) is discussed. In particular, examples
of operators fulfilling a suitable chain rule are presented, including classes of dominated
concave perturbations of convex functions.

Let us mention that the validity of a chain rule equality, albeit of a paramount impor-
tance in order to relate the minimization of GDG to the solution of (3.1), is actually not
needed to prove Theorem 4.1. In fact, the chain rule (4.2) has been used there just to
check that the potential φ remains uniformly bounded along trajectories. In particular, a
suitable chain-rule inequality would serve for this purpose as well.

4.3 Generalized gradient flows

The De Giorgi functional approach can be adapted to encompass generalized gradient
flows, namely relations of the form

∂ψ(y, y′) + ∂φ(y) 3 u for a.e. t ∈ (0, T ), y(0) = y0. (4.7)

Here, ψ : H × H → [0,∞) and ∂ψ(y, y′) denotes partial subdifferentiation with respect
to the second variable only. More precisely, we assume that the map v ∈ H 7→ ψ(y, v)
is convex and lower semicontinuous for all y ∈ H, the map (y, v, w) ∈ H × H × H 7→
ψ(y, v) + ψ∗(y, w) is weakly lower semicontinuous and

ψ(y, v) + ψ∗(y, w) ≥ c‖v‖p + c‖w‖p′ ∀y, v, w ∈ H (4.8)

and some p > 1 where p′ = p/(p− 1) and the Legendre-Fenchel conjugation is taken with
respect to the second variable only. An example for ψ satisfying (4.8) is ψ(y, y) = β(y)|y|p,
where p > 1 and β is sufficiently smooth, uniformly positive, and bounded. Note that this
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includes the case of doubly nonlinear flows. As in Theorem 4.1, we assume for simplicity
that ∂φ = ∂φ1 +Dφ2 and is single-valued.

Solutions to (4.7) can be characterized via GDG(u, y) = 0 where GDG : Lp(0, T ;H) ×
W 1,q(0, T ;H)→ [0,∞] is defined as

GDG(u, y) =


∫ T

0

(ψ(y, y′) + ψ∗(y, u−∂φ(y))− (u, y′)) dt+ φ(y(T ))− φ(y0)

if y ∈ D(∂φ) a.e and y(0) = y0

∞ otherwise.

(4.9)

This can be checked by equivalently rewriting

∂ψ(y, y′) + ∂φ(y) 3 u a.e.

⇔ ψ(y, y′) + ψ∗(y, u− ∂φ(y))− (u− ∂φ(u), y′) = 0 a.e.

⇔ ψ(y, y′) + ψ∗(y, u− ∂φ(y))− (u, y′) + (φ ◦ y)′ = 0 a.e.

⇔ GDG(u, y) = 0.

Indeed, the last equivalence follows by integrating the second-last relation in time, in one
direction, and by realizing that the integrand is always nonnegative, in the other direction.

By replacing ‖ · ‖2/2 by ψ(y, ·) under assumption (4.8), an analogous statement to
Theorem 4.1 holds. More precisely, by assuming F : Lp(0, T ;H)×W 1,p′(0, T ;H)→ [0,∞)
to be lower semicontinuous in X = Lp(0, T ;H) × W 1,p′(0, T ;H) with respect to the
strong× weak topology and U to be compact in Lp(0, T ;H), one can reproduce the former
argument. Note however that extra conditions have to be imposed in such a way that
pairs with GBEN(u, y) = 0 exist.

4.4 GENERIC flows

The applicability of the penalization technique via the De Giorgi functional can be ex-
tended to classes of so-called GENERIC flows (General Equations for Non-Equilibrium
Reversible-Irreversible Coupling). These are systems of the form

y′ = L(y)DE(y)−K(y)(∂φ(y)− u) for a.e. t ∈ (0, T ), y(0) = y0. (4.10)

Here, −φ is to be interpreted as the entropy and will have the property of being non-
decreasing in time. The functional E : H → R represents an energy, to be conserved
along trajectories instead. For the sake of simplicity, we assume E to be Fréchet differen-
tiable, with a linearly bounded, strongly × weakly closed differential DE. The mapping
K : H → L(H) (linear and continuous operators) is the so called Onsager operator and
is asked to be continuous with symmetric and positive semidefinite values. On the other
hand, the operator L : H → L(H) is required to be continuous with antiselfadjoint values,
namely L∗(y) = −L(y).

The GENERIC formalism [19] is a general approach to the variational formulation of
physical models and is particularly tailored to the unified treatment of coupled conser-
vative and dissipative dynamics. Potentials and operators are related by the following
structural assumptions

L∗(y)∂φ(y) = K∗(y)DE(y) = 0. (4.11)
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These guarantee that solutions of (4.10) are such that (E ◦ y)′ = 0 and (−φ ◦ y)′ ≥ 0,
namely energy is conserved and entropy increases along trajectories. To date, GENERIC
has been successfully applied to a variety of situations ranging from complex fluids [19],
to dissipative quantum mechanics [28], to thermomechanics [2, 27], and to the Vlasov-
Fokker-Planck equation [13].

By defining the convex potential ξ 7→ ψ∗(y, ξ) = (K(y)ξ, ξ)/2, so that K(y) = ∂ψ∗(y, ·)
(subdifferential with respect to the second variable only), problem (4.10) can be reformu-
lated as GDG(u, y) = 0 where now GDG : L2(0, T ;H) × H1(0, T ;H) → [0,∞] is defined
as

GDG(u, y) =



∫ T

0

(
ψ(y, y′−L(y)DE(y)) + ψ∗(y, u−∂φ(y))

)
dt

−
∫ T

0

(u, y′−L(y)DE(y)) dt+ φ(y(T ))− φ(y0)

if y ∈ D(∂φ) a.e. and y(0) = y0

∞ otherwise.

(4.12)

In fact, we have the following chain of equivalencies

y′ = L(y)DE(y)−K(y)(∂φ(y)− u) a.e.

⇔ ψ(y, y′−L(y)DE(y)) + ψ∗(y, u−∂φ(y))−
(
y′−L(y)DE(y), u−∂φ(y)

)
= 0 a.e.

⇔ ψ(y, y′−L(y)DE(y)) + ψ∗(y, u−∂φ(y))

− (u, y′ − L(y)DE(y))− (DE(y), L∗(y)∂φ(y)) + (φ ◦ y)′ = 0 a.e.

⇔ GDG(u, y) = 0.

Again, the last equivalence follows by integration in time.
The statement of Theorem 4.1 can be extended to cover the case of GENERIC flows

as well. Let us assume from the very beginning that for all u ∈ H there exists y such that
GDG(u, y) = 0. In applications K and φ are often degenerate (see below). Coercivity for
the sole GDG is hence not to be expected. In order to state a general result, let us hence
assume F itself to be lower semicontinuous and coercive with respect to the strong ×
weak topology of L2(0, T ;H)×H1(0, T ;H). Moreover, let F be coercive with respect to
the strong × strong topology of L2(0, T ;H)×C([0, T ];H) on sublevels of φ and to control
the L2(0, T ;H) norm of ∂φ(y) (alternatively, let ∂φ(y) be linearly bounded). Eventually,
we ask ψ∗ and ψ to be lower semicontinuous in the following sense

ψ(y, η) + ψ∗(y, ξ) ≤ lim inf
ε→0

(
ψ(yε, ηε) + ψ∗(yε, ξε)

)
∀yε → y strongly in C([0, T ];H) with supφ(yε(t)) <∞
and (ηε, ξε)→ (η, ξ) weakly in L2(0, T ;H)2. (4.13)

Owing to the assumptions on F , in order to reproduce the argument of Theorem 4.1
in this setting, one is left to check the lower semicontinuity of GDG. Let (uε, yε)→ (u, y)
strongly × weakly in L2(0, T ;H)×H1(0, T ;H) and assume with no loss of generality that
∂φ(yε) is bounded in L2(0, T ;H). By arguing as in (4.3) one can bound t 7→ φ(yε(t)) so
that all trajectories belong to a sublevel of φ. From the strong coercivity of F on sublevels
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of φ we deduce strong compactness in C([0, T ];H) for yε, so that yε → y uniformly, up to
not relabeled subsequences. As DE is assumed to be strongly × weakly closed and L is
continuous, we have that y′ε−L(yε)DE(yε)→ y′−L(y)DE(y) weakly in L2(0, T ;H). On
the other hand, the strong × weak closure of ∂φ ensures that, again without relabeling,
∂φ(yε)→ ∂φ(y) weakly in L2(0, T ;H). We can hence make use of (4.13) and deduce the
lower semicontinuity of GDG.

Before closing this discussion, let us give an example of an elementary GENERIC
system fitting into this abstract setting. Consider the thermalized oscillator problem

q′′ + νq′ + λq + θ = 0, (4.14)

κθ′ = ν(q′)2 + θq′. (4.15)

Here, y = (q, p, θ) ∈ R3 =: H where q represents the state of the oscillator, p is its
momentum, and θ > 0 is the absolute temperature. The nonnegative constants ν, λ,
and κ are the viscosity parameter, the elastic modulus, and the heat capacity, respec-
tively. Relations (4.14) and (4.14) express the conservation of momentum and energy,
respectively.

In order to reformulate (4.14)-(4.15) as a GENERIC system, we specify the free energy
of the system as

Ψ(y) =
λ

2
q2 + qθ − κθ ln θ.

Moving from this, the entropy −φ and the total energy E are derived by the classical
Helmholtz relations as

−φ(y) = −∂θΨ = −q + κ ln θ + κ, E(y) =
1

2
p2 + Ψ + θφ =

1

2
p2 +

λ

2
q2 + κθ.

In particular, we have that

DE(y) = (λq, p, κ), ∂φ(y) = (−1, 0, κ/θ).

By defining the mappings K and L as

K(y) = νθ

0 0 0
0 1 −p/κ
0 −p/κ p2/κ2

 , L(y) =

 0 1 0
−1 0 −θ/κ
0 θ/κ 0

 ,

we readily check that the compatibility conditions (4.11) hold and that system (4.14)-
(4.15) takes the form in (4.10). By computing the conjugate we find

ψ∗(y, ξ) =
νθ

2
(ξ2 − pξ3/κ)2, ψ(y, η) =

{ 1

2νθ
η2

2 if η1 = η3 + py2/κ = 0,

∞ otherwise

for all y = (q, p, θ) ∈ R3 with θ > 0 and for all (ξ, η) ∈ R2. In particular, the lower
semicontinuity (4.13) follows as supφ(yε(t)) < ∞ implies that θε ≥ c > 0 for some c,
hence 1/θε → 1/θ in C([0, T ]).
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In order to give a concrete example of target functional F choose

F (u, y) =
1

2

∫ T

0

|y − ytarget|2dt+
1

2

∫ T

0

|y′ − y′target|2dt+

∫ T

0

|1/θ − 1/θtarget|2dt

+

∫ T

0

|u|2 dt+

∫ T

0

|u′|2 dt

for some given ytarget = (qtarget, ptarget, θtarget) ∈ H1(0, T ;H) with 1/θtarget ∈ L2(0, T ). The
functional F is coercive with respect to the strong × weak topology of L2(0, T ;H) ×
H1(0, T ;H), as well as to the strong×strong topology of L2(0, T ;H) × C([0, T ];H) on
sublevels of φ. Moreover, it controls the L2(0, T ;H) norm of ∂φ(y). Hence, the abstract
setting described above applies.
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[35] T. Roub́ıček, Direct method for parabolic problems, Adv. Math. Sci. Appl., 10
(2000), 57–65.

[36] U. Stefanelli, The Brezis-Ekeland principle for doubly nonlinear equations, SIAM J.
Control Optim., 47 (2008), 1615–1642

[37] U. Stefanelli, The discrete Brezis-Ekeland principle, J. Convex Anal., 16 (2009),
71–87.

[38] U. Stefanelli, A variational principle for hardening elasto-plasticity, SIAM J. Math.
Anal., 40 (2008), 623–652.

[39] A. Visintin, Extension of the Brezis-Ekeland-Nayroles principle to monotone opera-
tors, Adv. Math. Sci. Appl., 18 (2008), 633–650.

[40] A. Visintin, On the variational representation of monotone operators, Discrete Con-
tin. Dyn. Syst. Ser. S, 10 (2017), 909-–918.



447

[41] A. Visintin, Structural compactness and stability of semi-monotone flows, SIAM J.
Math. Anal., 50 (2018), 2628–2663.

[42] Y. Yamada, On evolution equations generated by subdifferential operators, J. Fac.
Sci. Univ. Tokyo Sect. IA Math., 23 (1976), 491–515.


	Introduction
	Abstract setup
	Brezis-Ekeland-Nayroles principle
	An example
	Gradient flows in dual space
	Nonpotential and nonmonotone flows
	Doubly nonlinear flows

	De Giorgi principle
	A numerical simulation
	More general potentials
	Generalized gradient flows
	GENERIC flows


