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Abstract. This work concerns the numerical realization of a Cauchy-type integral
formula for sequence valued analytic functions in the sense of Bukhgeim, and its ap-
plications to the source reconstruction problem in inverse radiative transport through a
non-absorbing and non-scattering medium. The inverse source problem is mathematically
equivalent to the classical X-ray Computed Tomography (CT), where a function is to be
determined from its line integrals. The proposed algorithms have the added advantage
to extend to the source determination problems in media with absorbing and scattering
properties. Such extensions cannot be achieved in the existing X-ray CT algorithms. The
numerical experiments demonstrate the feasibility of our new tomographic algorithms.
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1 Introduction

In this work we propose new numerical algorithms for the quantitative source determi-
nation in an inverse boundary value problem for stationary radiative transfer, which is
applicable and extensible to a broad range of non-destructive imaging methods.

The boundary value problem of the stationary transport equation

ξ · ∇xI(x, ξ) = q(x), x ∈ Ω, ξ ∈ S1, (1a)

I(x, ξ) = 0, (x, ξ) ∈ Γ−, (1b)

models a beam of particles generated by the source q and propagating without attenuation
and scattering in a domain Ω ⊂ R2. The planar domain Ω is bounded and strictly convex
with smooth boundary, while S1 = {ξ ∈ R2 ; |ξ| = 1} is the unit circle of directions. We
pose outflow and inflow boundaries as Γ± = {(x, ξ) ; x ∈ ∂Ω, ξ ∈ S1, ν(x) · ξ ≷ 0} where
ν(x) is the outer unit normal to ∂Ω. The quantity I(x, ξ) represents the particle density
at the position x ∈ Ω with velocity ξ ∈ S1. Equation (1b) means that no radiation
is entering the domain from the exterior. The particle source term is assumed square
integrable, q ∈ L2(Ω), and compactly supported in Ω.

We consider here the following inverse source problem: Find q in Ω from measurements
of the outflow at the boundary:

I(x, ξ) = Imeasure(x, ξ), (x, ξ) ∈ Γ+. (2)

Due to the convexity of the domain, for each (x, ξ) ∈ (Ω × S1) ∪ Γ+, there exists a
unique intersection point x− = x−(x, ξ) of the boundary with the semi axis starting from
x in the opposite direction of ξ. In particular, if s = s(x, ξ) denote the distance from x
to x−, then x = x− + sξ. For each ξ ∈ S1, (1a) is an ODE along the line through x− in
the ξ-direction, whose solution is given by the integral

I(x, ξ) = I(x− + sξ, ξ) =

∫ s

0

q(x− + tξ) dt. (3)

If (x, ξ) ∈ Γ+, then I(x, ξ) =

∫ ∞
−∞

q(x + tξ) dt (q ≡ 0 outside domain), and the inverse

source problem is equivalent to the inversion of the Radon transform problem [11]. The
latter is the mathematical model of X-ray Computed Tomography (CT). In the typical CT
setting, the measured data (sinogram) is equivalent to our boundary information Imeasure.

While the conventional X-ray CT algorithms [8, 9, 10] do provide the solution to the
inverse source problem considered here, they do not extend to the case where the particle
beam is attenuated and scattered by medium. As a result, applications of the X-ray
CT imaging techniques to Positron Emission Tomography (PET) produce low-resolution
images, because the latter involves both attenuation and scattering.

This paper proposes new algorithms for the source reconstruction problem for the
transport equation and demonstrates their numerical feasibility. The proposed algorithms
are based on a Cauchy-type boundary integral formula corresponding to analytic sequence
valued maps as originally introduced by A. Bukhgeim [1]. We mention here that the
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proposed method can be extended to transport through an absorbing and scattering
media. Such extensions are investigated in a forthcoming publication [7].

In the next section, we briefly sketch the mathematical reconstruction procedure based
on the Bukhgeim-Cauchy integral formula in (5) below. In Section 3 we propose two
numerical algorithms for source reconstructions. Finally, in Section 4, several numerical
experiments are conducted to demonstrate the effectiveness of our algorithms.

2 Mathematical Formulation

We summarize the mathematical reconstruction procedure to the non-attenuation problem
(1) from [1, 7], which should be referred to for rigorous setting and proofs. Throughout
the paper, x = (x1, x2) ∈ R2 is identified with z = x1 + ix2 ∈ C with i =

√
−1. Also,

ξ = ξ(θ) = (cos θ, sin θ) ∈ S1 is identified with 0 ≤ θ < 2π. We also denote an interior
point of Ω by z, whereas ζ indicates a boundary point.

For any q ∈ L2(Ω), the forward boundary value problem problem (1) has unique
solution I given by (3). Moreover, the solution

I ∈ W 2(Ω× S1) := {f ∈ L2(Ω× S1) ; (x, ξ) 7→ ξ · ∇xf(x, ξ) ∈ L2(Ω× S1)},

and its trace I|Γ+∈ L2(Γ+), see [3].
By the operators ∂ = (∂x1−i∂x2)/2 and ∂ = (∂x1+i∂x2)/2, we have ξ·∇x = e−iθ∂+eiθ∂,

and thus the transport equation (1a) becomes

e−iθ∂I + eiθ∂I = q.

Since the Fourier series I(z, ξ) =
∑
n∈Z

In(z)e−inθ converges (in the L2 sense) a.e. z ∈ Ω, we

have ∑
n∈Z

∂In(z)e−i(n+1)θ +
∑
n∈Z

∂In(z)e−i(n−1)θ = q(z).

From homogeneity of q and the orthogonality of {einθ} the equation above reduces to the
system

∂I−1 + ∂I1 = q, and ∂In + ∂In+2 = 0, n 6= −1.

As I is a real valued function, we have In = I−n for n ∈ Z. Therefore it is sufficient to
consider

∂I−1 + ∂I1 = q, (4a)

∂In + ∂In+2 = 0, n = 0, 1, 2, . . . . (4b)

The values {In} which solves the system (4b) are determined from the boundary values.
More precisely, for n ≥ 0, In(z) is given by the Bukhgeim-Cauchy formula [1, 4]:

In(z) =
1

2πi

∫
∂Ω

In(ζ)

ζ − z
dζ

+
1

2πi

∫
∂Ω

{
dζ

ζ − z
− dζ

ζ̄ − z̄

} ∞∑
j=1

In+2j(ζ)

(
ζ − z
ζ − z

)j

, z ∈ Ω. (5)



416

Note that the right hand side depends only on the boundary values of In, and they are
determined from the measurement on the outflow boundary (2) and the zero inflow con-
dition (1b). Therefore I1(z), z ∈ Ω, is obtained. Moreover, if ∂Ω has a parameterization
ζ(ω), 0 ≤ ω < 2π, then the integral in the second term on the right hand side is simplified
for the purpose of numerical computation as

1

2πi

∫
∂Ω

(
dζ

ζ − z
− dζ

ζ − z

)
F (ζ) =

1

π

∫ 2π

0

Im

(
ζ ′(ω)

ζ(ω)− z

)
F
(
ζ(ω)

)
dω.

with F being the series in (5). Finally from I−1 = I1 and (4a), the unknown source q(z),
z ∈ Ω, is reconstructed.

3 Numerical Algorithms

This section gives two numerical reconstruction procedures based on the last section. Both
algorithms reconstruct the source term q as a piecewise-constant function with respect to
triangles forming a triangulation of Ω.

Algorithm P0. Assume that ∂Ω has a parameterization ζ(ω), 0 ≤ ω < 2π, and that
Imeasure is given on Γ+. Three positive integers, N , K, and M are used in discretization.
We also introduce an inscribed polygonal domain Ωh ≈ Ω, and generate a triangulation

T = {τ`} of Ωh, i.e. each τ` is a triangle, τ` ∩ τk = ∅ if ` 6= k, and Ωh =
⋃
`

τ`.

Step P0-1. Let θn = 2πn/N for 0 ≤ n < N , and ωk = 2πk/K for 0 ≤ k ≤ K. Write
ζk = ζ(ωk) and ζ ′k = ζ ′(ωk) for 0 ≤ k < K. Compute

I1+2m,k =
1

N

N−1∑
n=0

Ĩmeasure

(
ζk, ξ(θn)

)
ei(1+2m)θn ,

for 1 ≤ 1 + 2m ≤M and 0 ≤ k < K, where

Ĩmeasure(ζ, ξ) =

{
Imeasure(ζ, ξ), if (ζ, ξ) ∈ Γ+;

0, otherwise.

This obviously arises from the composite trapezoidal rule to the Fourier transform

I1+2m(ζk) =
1

2π

∫ 2π

0

I
(
ζk, ξ(θ)

)
ei(1+2m)θ dθ.

In other words, Imeasure is sampled at
(
ζk, ξ(θn)

)
∈ Γ+. Since the source is compactly

supported inside, we also use I(ζ, ξ) = 0 for ν(ζ) · ξ = 0.
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Step P0-2. Let z` be the center of mass of τ` and write C as the set of centers. For
z` ∈ C, compute I1(z`), where

I1(z) =
1

Ki

K−1∑
k=0

ζ ′k
ζk − z

I1,k

+
2

K

K−1∑
k=0

{
Im

(
ζ ′k

ζk − z

)}
b(M−1)/2c∑

m=1

I1+2m,k

(
ζk − z
ζk − z

)m
 , z ∈ Ω. (6)

This approximates (5). Note that the denominator ζk − z never vanishes because z ∈ Ω
and ζk ∈ ∂Ω.

Step P0-3. For each τ`, we evaluate partial derivatives ∂x1I1|τ` and ∂x2I1|τ` . Suppose
that τ` has three adjacent triangles τ`j , of respective center of mass z`j , and let denote
by (λ`j ,1, λ`j ,2) =

(
Re(z`j − z`), Im(z`j − z`)

)
the corresponding displacements, j = 1, 2, 3.

Solve λ`1,1 λ`1,2
λ`2,1 λ`2,2
λ`3,1 λ`3,2

(δx1I1(z`)
δx2I1(z`)

)
=

I1(z`1)− I1(z`)
I1(z`2)− I1(z`)
I1(z`3)− I1(z`)

 (7)

in the sense of least square. For each z`, there exists a unique solution, δx1I1(z`) and
δx2I1(z`), since at least two of z`j − z`, j = 1, 2, 3, are linearly independent. If τ` has two
adjacent triangles, they can be calculated similarly.

Step P0-4. For each triangle τ` ∈ T , (4a) gives the reconstruction of q|τ` as

q` = Re
(
δx1I1(z`)

)
+ Im

(
δx2I1(z`)

)
.

Remark. We give a remark on Step P0-3. The directional derivative of a smooth function
f(z) to the direction ν = (ν1, ν2) (a unit vector) is given by

∂f

∂ν
(z`) =

∂f

∂x1

(z`)ν1 +
∂f

∂x2

(z`)ν2.

We approximate this observation; discretizing the directional derivative on the left hand
side by the finite difference, we obtain the system

I1(z`j)− I1(z`)∥∥λ`j∥∥ = δx1I1(z`)
λ`j ,1∥∥λ`j∥∥ + δx2I1(z`)

λ`j ,2∥∥λ`j∥∥ , j = 1, 2, 3,

that is (7). This insight infers that δx1I1(z`) and δx2I1(z`) are expected to approximate
the partial derivatives ∂x1I1(z`) and ∂x2I1(z`) respectively.

Same procedure is applicable to a rectangulation by a regular lattice instead of trian-
gulations, where the solution coincides with the central difference.

In Algorithm P0, I1(z) is approximated by a piecewise constant function, which is
reasonable if I1 ∈ L2(Ω). However, for smoother sources, algorithms based on smoother
approximation are expected to increase the accuracy. Such examples motivate the next
algorithm.
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Algorithm P1. Suppose that the same discretization parameters as Algorithm P0 are
given. A triangulation is also required.

Step P1-1. Same as Step P0-1.

Step P1-2. Let V be the set of the vertices of the triangulation T . For vj ∈ V ∩ Ω,
compute an approximation to I(vj) by I1(vj) in (6). For vj ∈ V ∩∂Ω, we let I1(vj) = I1,k

where vj = ζk ∈ ∂Ω. Note that Imeasure is also sampled at V ∩ ∂Ω.

Step P1-3. Denote vertices of a triangle τ` by v`j , j = 1, 2, 3. Find a linear function
ϕτ`(x1, x2) = a`x1 + b`x2 + c`, a`, b`, c` ∈ C, subject to ϕτ`(v`j) = I1(v`j) for j = 1, 2, 3.
This means that I1(z) is approximated by a continuous and piecewise-linear function.
Note that ϕτ` uniquely exists on each τ`.

Step P1-4. Finally the source in τ` is reconstructed as

q` = Re(a`) + Im(b`).

4 Numerical Experiments

In this section, we exhibit numerical examples by the proposed algorithms. In the exam-
ples, the target source q(x) is assigned by the modified Shepp-Logan model [12], which
occupies the ellipse

Ω =

{
(x1, x2) ;

x2
1

a2
+
x2

2

b2
< 1

}
, a = 0.69, b = 0.92,

and thus ∂Ω = {(a cosω, b sinω); 0 ≤ ω < 2π}. Throughout this section, the discretization
parameters are K = 360, N = 360, and M = 128. The triangulation T is generated
without any information of inclusions, and it consists of 12132 vertices and 23862 triangles
The maximum diameter of the triangulation is 0.0237. We write by zl the center of mass of
each triangle τ` ∈ T . All computations are processed with the double precision arithmetic.

Firstly, the boundary data I|Γ−∪Γ+ is represented in Figure 1. For each ζ ∈ ∂Ω
(indicated by •), the graph

{(
I(ζ, ξ), ξ

)
; ξ ∈ S1

}
is shown as the closed curve in the

polar coordinates
{
ζ + 1

2
I(ζ, ξ)ξ ; ξ ∈ S1

}
[5]. Note that, since I|Γ− = 0 (no incoming

radiation (1b)), the curve never enters the domain Ω indicated by the gray area. The
boundary observation Imeasure is equivalent to the Radon transform shown by sinogram
(Figure 2) as mentioned earlier, which gives complete measurement data. On the contrary,
Figure 1 gives more instinctive understanding.

Reconstructed q by Algorithm P0 and Algorithm P1 are depicted in Figure 3 and
Figure 4 respectively. Each equips the section on the dotted segment, and they shows
that the reconstructed results shows quantitative agreements.

In order to estimate directional derivatives in Step P0-3, we also compute q by the
finite difference, replacing Step P0-3 and P0-4,

q` = Re
I1(z` + h)− I1(z` − h)

2h
+ Im

I1

(
z` + h

√
−1
)
− I1

(
z` − h

√
−1
)

2h
,
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ζ=(1,0)•

I(
ζ,
 ξ
)

arg(ξ)

Figure 1: Boundary data I(ζ, ξ)|Γ−∪Γ+ . The curve is
{
ζ + 1

2
I(ζ, ξ)ξ ; ξ ∈ S1

}
for ζ ∈ ∂Ω

indicated by the dot (•). The Shepp-Logan model occupies the gray area. The right figure
is a magnification of that at ζ = (1, 0).

Table 1: Computational times, unit: sec.

Algorithm Fourier coefficient Numerical integration (6)
Total (Step P0-1 and P1-1) and others (ratio)

Algorithm P0 5.43 1.60 3.83 (1.95)

Algorithm P1 3.50 1.61 1.96 (1)

Algorithm FD 16.8 1.62 15.2 (7.76)

where h ≈ 0.00806 is the average of distances between centers of mass of adjacent triangles
(we call this Algorithm FD [6]). The numerical result is depicted in Figure 5. Table 1
shows computational times on Xeon E5-2650 v4 (2.2GHz) with single core. Theoretically
computational times of Algorithm P0 and Algorithm FD are proportional to number of
triangles, while those of Algorithm P1 is proportional to that of vertices. In numerical
experiments, the ratios shown inside parenthesis (·) in Table 1 agree with ideal ratios.

We evaluate a pseudo-error of a reconstructed {q`} by

Eq(T ) =

{∑
τ`∈T

|q(z`)− q`|2 |τ`|

}1/2

,

where |τ`| is the area of τ`. Note that Eq(T ) does not give L2-error because all inclusions
in the Shepp-Logan model are not polygons but ellipses, and thus the exact q(z) can be
discontinuous on some triangles. The evaluated values for Algorithm P0, Algorithm P1,
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Figure 2: Sinogram representing measurement data (the Radon transform) for the modi-
fied Shepp-Logan model [12]

-1 -0.5  0  0.5  1
-1

-0.5

 0

 0.5

 1

 0
 0.2
 0.4
 0.6
 0.8
 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

-0.8-0.6-0.4-0.2  0  0.2 0.4 0.6 0.8

R
e
c
o
n
s
tr

u
c
te

d
 q

(z
)

x

Figure 3: Reconstructed q` by Algorithm P0 on Ω (left) and its section on the dotted line
(right)

and Algorithm FD are 0.939, 0.162, and 6.44 respectively. Relatively larger disturbance
are observed in the profile of Algorithm FD.

Figure 6 plot the reconstructed q` with z` in 0.982 ≤ (x1/a)2 + (x2/b)
2 ≤ 0.992 by the

algorithms. The averages of Algorithm P0, Algorithm P1 and Algorithm FD are 1.09,
0.97, and 1.47, respectively. The exact value in this annual domain is 1, thus the proposed
algorithms are observably accurate than the finite difference.

In order to analyze disturbance more precisely, errors in Bukhgeim-Cauchy integral

Error(r) = max
z∈∂Ω(r)

∣∣∣∣∣ 1J
J−1∑
j=0

I
(
z, ξ(θj)

)
eiθj − I1(z)

∣∣∣∣∣ , (8)
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Figure 4: Reconstructed q` by Algorithm P1 on Ω (left) and its section on the dotted line
(right)
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Figure 5: Reconstructed q` by Algorithm FD [6] on Ω (left) and its section on the dotted
line (right)

where ∂Ω(r) =
{
z ∈ Ω ; dist(z, ∂Ω) = r

}
and where J = 2048, is shown in Figure 7. For

each distance r, we compute 360000 equi-spaced points for the argument direction; we
check the maximum among z = ρn exp(iηn) ∈ ∂Ω(r) with ηn = 2πn/360000, n ∈ Z. From
the results, errors in computation of (5) grow in O(1/r) as z approaches to ∂Ω. This
inaccuracy near the boundary occurs from the near singular kernel 1/(ζ − z), ζ ∈ ∂Ω,
z ∈ Ω, and it is accumulated by cancellation in differentiations. Note that if we change
J to 4096, the results are almost same. This means that the discrete Fourier transform

1

J

J−1∑
j=0

I
(
z, ξ(θj)

)
eiθj is calculated sufficiently accurate.

Finally Figure 8 depicts behaviors of Eq(T ) for the algorithms with K = 360, N = 360
and N = 128 for several finer and coarser triangulations. From the figures, Algorithm P1
gives relatively accurate results. It also indicates that finer triangulations do not have
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Figure 7: Errors (8) in Cauchy-type integral formula (6)

sense with fixed parameters K, N , and M . The results also indicate that the accuracy of
the proposed Algorithm P0 and Algorithm P1 is not affected so much by triangulations,
although Algorithm FD is.
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5 Concluding Remarks

Two numerical algorithms are proposed and investigated for the quantitative reconstruc-
tion of the source term in the boundary value problem of the transport equation. Nu-
merical tests support the feasibility of the proposed methods in the case of reconstructing
discontinuous sources. The proposed algorithms are fast and relatively more accurate
than the finite difference algorithm.

The method relies on the computation of the Cauchy type integrals in (5), whose ker-
nels become nearly singular for points close to the boundary. Several numerical methods
to circumvent the inaccuracy at such points have been proposed, and shown to mitigate
the reconstruction. However, the strength of the method is that the inaccuracy at the
points nearby the boundary does not propagate to the computation at the interior points.
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