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Abstract. In this paper, we study a system of three evolutionary operator equations
involving fractional powers of selfadjoint, monotone, unbounded, linear operators having
compact resolvents. This system constitutes a generalization of a phase field system of
Cahn–Hilliard type modelling tumor growth that has been proposed in Hawkins-Daarud
et al. (Int. J. Numer. Math. Biomed. Eng. 28 (2012), 3–24) and investigated in recent
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papers co-authored by the present authors and E. Rocca. The model consists of a Cahn–
Hilliard equation for the tumor cell fraction φ, coupled to a reaction-diffusion equation
for a function S representing the nutrient-rich extracellular water volume fraction. Ef-
fects due to fluid motion are neglected. The generalization investigated in this paper is
motivated by the possibility that the diffusional regimes governing the evolution of the
different constituents of the model may be of different (e.g., fractional) type. Under rather
general assumptions, well-posedness and regularity results are shown. In particular, by
writing the equation governing the evolution of the chemical potential in the form of a
general variational inequality, also singular or nonsmooth contributions of logarithmic or
of double obstacle type to the energy density can be admitted.

1 Introduction

Let Ω ⊂ R3 denote an open, bounded, and connected set with smooth boundary Γ and
unit outward normal n, let T > 0 be given, and set Qt := Ω × (0, t) for t ∈ (0, T ) and
Q := Ω× (0, T ), as well as Σ := Γ× (0, t). We investigate in this paper the evolutionary
system

α ∂tµ+ ∂tφ+ A2ρµ = P (φ)(S − µ) in Q, (1.1)

µ = β ∂tφ+B2σφ+ f(φ) in Q, (1.2)

∂tS + C2τS = −P (φ)(S − µ) in Q, (1.3)

µ(0) = µ0, φ(0) = φ0, S(0) = S0, in Ω. (1.4)

In the above system, α > 0 and β > 0, and A2ρ, B2σ, C2τ , with r, σ, τ > 0, denote frac-
tional powers of the selfadjoint, monotone, and unbounded linear operators A, B, and C,
respectively, which are supposed to be densely defined in H := L2(Ω) and to have com-
pact resolvents. Moreover, f denotes the derivative of a double-well potential F . Typical
and physically significant examples of F are the so-called classical regular potential, the
logarithmic potential , and the double obstacle potential , which are given, in this order, by

Freg(r) :=
1

4
(r2 − 1)2 , r ∈ R, (1.5)

Flog(r) :=


(
(1 + r) ln(1 + r) + (1− r) ln(1− r)

)
− c1r

2 , r ∈ (−1, 1)
2 log(2)− c1 , r ∈ {−1, 1}
+∞ , r ̸∈ [−1, 1]

, (1.6)

F2obs(r) := c2
(
1− r2

)
if |r| ≤ 1 and F2obs(r) := +∞ if |r| > 1. (1.7)

Here, the constants ci in (1.6) and (1.7) satisfy c1 > 1 and c2 > 0, so that the corresponding
functions are nonconvex. In cases like (1.7), one has to split F into a nondifferentiable
convex part F1 (the indicator function of [−1, 1], in the present example) and a smooth
perturbation F2. Accordingly, in the term f(φ) appearing in (1.2), one has to replace the
derivative F ′

1 of the convex part F1 by the subdifferential f1 := ∂F1 and interpret (1.2) as a
differential inclusion or as a variation inequality involving F1 rather than f1. Furthermore,
the function P occurring in (1.1) and (1.3) is nonnegative and smooth. Finally, the terms
on the right-hand sides in (1.4) are prescribed initial data.
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The above system is a generalization of a phase field system of Cahn–Hilliard type [5]
modelling tumor growth. The original model was proposed in [39], then extended in
[9, 40], and investigated in [11, 12, 27] from the viewpoint of well-posedness, regularity,
and asymptotic analyses; instead, the papers [6, 13, 46–48] were concerned with various
optimal control problems that have been set for this class of models. In the mentioned
contributions, the three operators A2ρ, B2σ, C2τ are nothing but the operator −∆, with
homogeneous Neumann boundary conditions. Concerning the meanings of the variables
of the system (1.1)–(1.4), φ represents an order parameter accounting for the tumor
fraction, and S stands for a nutrient concentration, while the third unknown µ is the
related chemical potential, specified by (1.2) as for the viscous Cahn–Hilliard equation.
Some interest of (1.1)–(1.3) becomes immediately evident and relies to the fact that we
can admit different fractional operators in the description of the evolution of a tumor
growth.

Modelling the dynamics of tumor growth has recently become an important issue
in applied mathematics (see, e.g., [19, 53]). Indeed, a noteworthy interest arose among
mathematicians and applied scientists on the dynamics of tumor cells inside parts of the
human body. Thus, a significant number of models have been introduced and discussed,
with numerical simulations as well, in connection and comparison with the behavior of
other special materials: one may see [3, 18,19,23,25,26,38,45,53,54].

As diffuse interface models are concerned, we note that these models mostly use the
Cahn–Hilliard framework, which is related to the theory of phase transitions, and which
is used extensively in materials science and multiphase fluid flow. Actually, one can
distinguish between two main classes of models. The first one considers the tumor and
healthy cells as inertialess fluids including effects generated by fluid flow development,
postulating a Darcy or a Brinkman law. To this concern, we refer to [20, 22, 29, 30, 33,
34, 36, 41, 43, 49, 52] (see also [4, 17, 21, 24, 37, 50, 51] for local or nonlocal Cahn–Hilliard
systems with Darcy or Brinkman law), and we point out that further mechanisms such
as chemotaxis and active transport can be taken into account. The other class, to which
the model leading to (1.1)–(1.4) belongs, neglects the velocity and admits as variables
concentrations and chemical potential. Let us quote a group of contributions inside this
class, namely [6,7,10,28,31,32,35,44]. To our knowledge, up to now fractional operators
have not yet been dealt with in either of these two groups of models, although one may
also wonder about nonlocal operators.

All in all, fractional operators represent nowadays a challenging subject for mathe-
maticians: they have been used in a number of situations, and there is already a wide
literature about equations and systems with fractional terms. In particular, different vari-
ants of fractional operators have been considered and employed. For a review of some
related work, let us refer the interested reader to our recent papers [14,15] and [8], which
offer a recapitulation of various contributions. In our approach here, which follows closely
the setting used in [8,14–16], we deal with fractional operators defined via spectral theory.
Then we can easily consider powers of a second-order elliptic operator with either Dirichlet
or Neumann or Robin homogeneous boundary conditions, as well as other operators like,
e.g., fourth-order ones or systems involving the Stokes operator. The precise framework
for our fractional operators A2ρ, B2σ, C2τ , is given in the first part of Section 2.

The remainder of the paper is organized as follows. In the next section, we list our
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assumptions and notations and state our results. The uniqueness of the solution is proved
in Section 3, while its existence is established in Section 4. The proof is prepared by
the study of approximating discrete problems, which are introduced and solved in the
subsections of the same section. Finally, the last section is devoted to the regularity of
the solution.

2 Statement of the problem and results

In this section, we state precise assumptions and notations and present our results. As
mentioned above, the set Ω ⊂ R3 is bounded, connected, and smooth, with volume |Ω| and
outward unit normal vector field n on Γ := ∂Ω. Moreover, ∂n stands for the corresponding
normal derivative. We set

H := L2(Ω) (2.1)

and denote by ∥ · ∥ and ( · , · ) the standard norm and inner product of H. Now, we start
introducing our assumptions. As for the operators, we first postulate that

A : D(A) ⊂ H → H, B : D(B) ⊂ H → H and C : D(C) ⊂ H → H are

unbounded, monotone, selfadjoint, linear operators with compact resolvents. (2.2)

Therefore, there are sequences {λj}, {λ′j}, {λ′′j} and {ej}, {e′j}, {e′′j} of eigenvalues and
of corresponding eigenfunctions satisfying

Aej = λjej, Be′j = λ′je
′
j and Ce′′j = λ′′j e

′′
j

with (ei, ej) = (e′i, e
′
j) = (e′′i , e

′′
j ) = δij for i, j = 1, 2, . . . (2.3)

0 ≤ λ1 ≤ λ2 ≤ . . . , 0 ≤ λ′1 ≤ λ′2 ≤ . . . and 0 ≤ λ′′1 ≤ λ′′2 ≤ . . .

with lim
j→∞

λj = lim
j→∞

λ′j = lim
j→∞

λ′′j = +∞, (2.4)

{ej}, {e′j} and {e′′j} are complete systems in H. (2.5)

As a consequence, we can define the powers of these operators with arbitrary positive real
exponents as done below. As far as the first operator is concerned, we have for r > 0

V ρ
A := D(Aρ) =

{
v ∈ H :

∞∑
j=1

|λρj (v, ej)|2 < +∞
}

and (2.6)

Aρv =
∞∑
j=1

λρj (v, ej)ej for v ∈ V ρ
A , (2.7)

the series being convergent in the strong topology of H, due to the properties (2.6) of the
coefficients. We endow V ρ

A with the graph norm, i.e., we set

(v, w)A, ρ := (v, w) + (Aρv, Aρw) and ∥v∥A, ρ := (v, v)
1/2
A, ρ for v, w ∈ V ρ

A , (2.8)
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and obtain a Hilbert space. In the same way, we can define the power Bσ and Cτ for
every σ > 0 and τ > 0, starting from (2.2)–(2.5) for B and C. We therefore set

V σ
B := D(Bσ) and V τ

C := D(Cτ ) with the norms ∥ · ∥B, σ and ∥ · ∥C, τ

associated with the inner products

(v, w)B, σ := (v, w) + (Bσv,Bσw) and (v, w)C, τ := (v, w) + (Cτv, Cτw),

for v, w ∈ V σ
B and v, w ∈ V τ

C , respectively. (2.9)

Since λj ≥ 0 for every j, one immediately deduces from the definition of Aρ that

Aρ : V ρ
A ⊂ H → H is maximal monotone and

εI + Aρ : V ρ
A → H is a topological isomorphism for every ε > 0, (2.10)

where I : H → H is the identity operator. Similar results hold for Bσ and Cτ . It is clear
that, for every ρ1, ρ2 > 0, we have that

(Aρ1+ρ2v, w) = (Aρ1v, Aρ2w) for every v ∈ V ρ1+ρ2
A and w ∈ V ρ2

A , (2.11)

and that similar relations holds for the other two types of fractional operators. Due to
these properties, we can define proper extensions of the operators that allow values in dual
spaces. In particular, we can write variational formulations of the equation (1.1)–(1.3).
It is convenient to use the notations

V −ρ
A := (V ρ

A)
∗, V −σ

B := (V σ
B )

∗, and V −τ
C := (V τ

C )
∗, for ρ, σ, τ > 0. (2.12)

Thus, we have that

A2ρ ∈ L(V ρ
A ;V

−ρ
A ), B2σ ∈ L(V σ

B ;V
−σ
B ), and C2τ ∈ L(V τ

C ;V
−τ
C ), (2.13)

as well as

Aρ ∈ L(H;V −ρ
A ), Bσ ∈ L(H;V −σ

B ), and Cτ ∈ L(H;V −τ
C ). (2.14)

The symbol ⟨ · , · ⟩A, ρ will be used for the duality pairing between V −ρ
A and V ρ

A . Moreover,
we identify H with a subspace of V −ρ

A in the usual way, i.e., such that

⟨v, w⟩A, ρ = (v, w) for every v ∈ H and w ∈ V ρ
A . (2.15)

Analogously, we have that H ⊂ V −σ
B and H ⊂ V −τ

C and use similar notations.
From now on, we assume that

α, β, ρ, σ and τ are fixed positive real numbers. (2.16)

Moreover, for some of our results we have to require the following continuous embeddings
of Sobolev type:

V ρ
A ⊂ L4(Ω) and V τ

C ⊂ L4(Ω) . (2.17)

Under these assumptions, we can choose some M ≥ 1 such that

∥v∥4 ≤M ∥v∥A, ρ and ∥v∥4 ≤M∥v∥C, τ (2.18)

for every v ∈ V ρ
A and v ∈ V τ

C , respectively.
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Remark 2.1. For instance, the first embedding (2.17) is satisfied if A = −∆, the (neg-
ative) Laplace operator, with domain H2(Ω) ∩H1

0 (Ω) (thus, with homogeneous Dirichlet

conditions, but similarly for the Neumann boundary conditions). Indeed, V
1/2
A = H1

0 (Ω)
in this case. Clearly, the same embedding holds true if ρ is sufficiently close to 1/2.

For the nonlinear functions entering the equations (1.1)–(1.3) of our system, we pos-
tulate the properties listed below. The notation F λ

1 stands for the Moreau–Yosida regu-
larization of F1 at the level λ > 0 (see, e.g., [2, p. 39]).

F := F1 + F2, where: (2.19)

F1 : R → [0,+∞] is convex, proper, and l.s.c., with F1(0) = 0; (2.20)

F2 : R → R is of class C1 with a Lipschitz continuous first derivative; (2.21)

F λ
1 (s) + F2(s) ≥ −C0 for some constant C0 and every s ∈ R; (2.22)

P : R → [0,+∞) is bounded and Lipschitz continuous. (2.23)

Remark 2.2. The assumption (2.22) can be supposed to hold just for sufficiently small
λ > 0. A sufficient condition for this (see [16, formula (3.1)] for some explanation) is that
F satisfies an inequality of type

F (s) ≥ c1s
2 − c2 , for some constants ci > 0 and every s ∈ R. (2.24)

Hence, (2.20)–(2.22) are fulfilled by all of the important potentials (1.5)–(1.7).

We set, for convenience,

f1 := ∂F1 and f2 := F ′
2 . (2.25)

Moreover, we term D(F1) and D(f1) the effective domains of F1 and f1, respectively. We
notice that f1 is a maximal monotone graph in R×R and use the same symbol f1 for the
maximal monotone operators induced in L2 spaces. Observe that D(F1) = D(f1) = R for
F = Freg, while D(F1) = [−1, 1] and D(f1) = (−1, 1) for F = Flog. Finally, we have that
D(F1) = D(f1) = [−1, 1] if F = F2obs.

On account of (2.11) and its analogues for B and C, we give a weak formulation of
the equations (1.1)–(1.3). Moreover, we present (1.2) as a variational inequality. For the
data, we make the following assumptions:

µ0 ∈ H, φ0 ∈ V σ
B with F1(φ0) ∈ L1(Ω), and S0 ∈ H. (2.26)

We then look for a triplet (µ, φ, S) satisfying

µ ∈ H1(0, T ;V −ρ
A ) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ρ

A), (2.27)

φ ∈ H1(0, T ;H) ∩ L∞(0, T ;V σ
B ), (2.28)

S ∈ H1(0, T ;V −τ
C ) ∩ L∞(0, T ;H) ∩ L2(0, T ;V τ

C ), (2.29)

F1(φ) ∈ L1(Q), (2.30)

and solving the system

α⟨∂tµ(t), v⟩A, ρ +
(
∂tφ(t), v

)
+ (Aρµ(t), Aρv) =

(
P (φ(t))(S(t)− µ(t)), v

)
for every v ∈ V ρ

A and for a.a. t ∈ (0, T ), (2.31)
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β
(
∂tφ(t), φ(t)− v

)
+
(
Bσφ(t), Bσ(φ(t)− v)

)
+

∫
Ω

F1(φ(t)) +
(
f2(φ(t)), φ(t)− v

)
≤

(
µ(t), φ(t)− v

)
+

∫
Ω

F1(v)

for every v ∈ V σ
B and for a.a. t ∈ (0, T ), (2.32)

⟨∂tS(t), v⟩C, τ + (CτS(t), Cτv) = −
(
P (φ(t))(S(t)− µ(t)), v

)
for every v ∈ V τ

C and for a.a. t ∈ (0, T ), (2.33)

µ(0) = µ0 , φ(0) = φ0 , and S(0) = S0 . (2.34)

Here, it is understood that
∫
Ω
F1(v) = +∞ whenever F1(v) ̸∈ L1(Ω).

We notice at once that (2.32) is equivalent to its time-integrated variant, that is,

β

∫ T

0

(
∂tφ(t), φ(t)− v(t)

)
dt+

∫ T

0

(
Bσφ(t), Bσ(φ(t)− v(t))

)
dt

+

∫
Q

F1(φ) +

∫ T

0

(
f2(φ(t)), φ(t)− v(t)

)
dt

≤
∫ T

0

(
µ(t), φ(t)− v(t)

)
dt+

∫
Q

F1(v) for every v ∈ L2(0, T ;V σ
B ). (2.35)

Here is our well-posedness and continuous dependence result.

Theorem 2.3. Let the assumptions (2.2), (2.16), (2.19)–(2.23) and (2.25) on the struc-
ture of the system, and (2.26) on the data be fulfilled. Then there exists at least one
triplet (µ, φ, S) satisfying (2.27)–(2.30) and solving problem (2.31)–(2.34). Moreover, for
this solution we have the estimates

α1/2∥µ∥L∞(0,T ;H) + ∥Aρµ∥L2(0,T ;H)

+ β1/2∥∂tφ∥L2(0,T ;H) + ∥Bσφ∥L∞(0,T ;H) + ∥F (φ)∥L∞(0,T ;L1(Ω))

+ ∥S∥L∞(0,T ;H) + ∥CτS∥L2(0,T ;H) + ∥P 1/2(φ)(S − µ)∥L2(0,T ;H)

≤ C1

(
α1/2∥µ0∥+ ∥Bσφ0∥+ ∥F (φ0)∥L1(Ω) + ∥S0∥+ 1

)
, (2.36)

∥∂t(αµ+ φ)∥L2(0,T ;V −ρ
A ) + ∥∂tS∥L2(0,T ;V −τ

C )

≤ C2

(
α1/2∥µ0∥+ ∥Bσφ0∥+ ∥F (φ0)∥L1(Ω) + ∥S0∥+ 1

)
, (2.37)

with a constant C1 that depends only on Ω and the constant C0 from (2.22), and a constant
C2 that also depends on P . If, in addition, (2.24) is satisfied, then we also have

∥φ∥L∞(0,T ;V σ
B ) ≤ C3

(
α1/2∥µ0∥+ ∥Bσφ0∥+ ∥F (φ0)∥L1(Ω) + ∥S0∥+ 1

)
, (2.38)

where C3 depends on Ω and the constants C0, c1 and c2 from (2.22) and (2.24). Finally,
the solution (µ, φ, S) is unique if the spaces V ρ

A and V τ
C satisfy (2.17).

Remark 2.4. More generally, we could add known forcing terms uµ, uφ and uS to the
right-hand sides of equations (1.1), (1.2) and (1.3), respectively, and accordingly modify
the definition of solution. If we assume that

uµ, uφ , uS ∈ L2(0, T ;H) , (2.39)
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then we have a similar well-posedness result. In estimate (2.36), one has to modify
the right-hand side by adding the norms corresponding to (2.39) (possibly multiplied by
negative powers of α and β). This remark is useful if one has in mind to perform a control
theory on the above system with distributed controls.

Our next aim is to prove further properties of the solution. Indeed, from one side,
one wishes to improve the regularity requirements (2.27)–(2.30) under suitable new as-
sumptions on the data. On the other hand, one wishes to have an equation (or at least a
differential inclusion) in place of the variational inequality (2.32). The next results deal
with these problems independently from each other, in principle. The first one requires
just something more on the initial data, indeed. Namely, we assume that

µ0 ∈ V ρ
A , φ0 ∈ V 2σ

B with f ◦
1 (φ0) ∈ H, and S0 ∈ V τ

C , (2.40)

where for s ∈ D(f1), the symbol f ◦
1 (s) stands for the element of f1(s) having minimum

modulus. We notice that (2.40) implies (2.26) since F1(s) ≤ F1(0) + sf ◦
1 (s) for every

s ∈ D(f1) by convexity and F1(0) = 0. Hence the existence of a solution is still ensured.

For the other problem, one cannot expect anything that is similar to (1.2), since no
estimate for f1(φ) is available in the general case. However, if the assumptions on the
structure are reinforced, then one can recover (1.2) at least as a differential inclusion. The
crucial condition is the following:

ψ(v) ∈ H and
(
B2σv, ψ(v)

)
≥ 0, for every v ∈ V 2σ

B and every monotone

and Lipschitz continuous function ψ : R → R vanishing at the origin. (2.41)

We notice that this assumption is fulfilled if B2σ = −∆ with zero Neumann boundary
conditions. Indeed, in this case it results that V 2σ

B = {v ∈ H2(Ω) : ∂nv = 0}, and, for
every ψ as in (2.41) and v ∈ V 2σ

B , we have that ψ(v) ∈ H1(Ω) (since v ∈ H1(Ω)) as well as

(
B2σv, ψ(v)

)
=

∫
Ω

(−∆v)ψ(v) =

∫
Ω

∇v · ∇ψ(v) =
∫
Ω

ψ′(v)|∇v|2 ≥ 0.

More generally, in place of the Laplace operator we can take the principal part of an
elliptic operator in divergence form with Lipschitz continuous coefficients, provided that
the normal derivative is replaced by the conormal derivative. In any case, we can take the
(zero) Dirichlet boundary conditions instead of the Neumann boundary conditions, since
the functions ψ for which (2.41) is required has to satisfy ψ(0) = 0.

Theorem 2.5. Let the assumptions (2.2), (2.16)–(2.23), and (2.25) on the structure of
the system be fulfilled. Moreover, let the data satisfy (2.40). Then the unique solution
(µ, φ, S) to problem (2.31)–(2.34) enjoys the further regularity

µ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ρ
A) ∩ L

2(0, T ;V 2ρ
A ), (2.42)

φ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V σ
B ), (2.43)

S ∈ H1(0, T ;H) ∩ L∞(0, T ;V τ
C ) ∩ L2(0, T ;V 2τ

C ). (2.44)
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Theorem 2.6. Besides the assumptions (2.2), (2.16), (2.19)–(2.23), and (2.25) on the
structure of the system, let (2.41) be fulfilled. Moreover, let the data satisfy (2.26). Then
there exist a solution (µ, φ, S) to problem (2.31)–(2.34) and some ξ such that

φ ∈ L2(0, T ;V 2σ
B ) and ξ ∈ L2(0, T ;H) , (2.45)

β ∂tφ+B2σφ+ ξ + f2(φ) = µ and ξ ∈ f1(φ) a.e. in Q . (2.46)

Furthermore, even ξ is unique under the further assumption (2.17).

Corollary 2.7. Assume (2.2), (2.16)–(2.23), (2.25), and (2.41) for the structure of the
system, and (2.40) for the data. Then the unique solution (µ, φ, S) to problem (2.31)–
(2.34) and the corresponding ξ satisfy (2.42)–(2.46) as well as

φ ∈ L∞(0, T ;V 2σ
B ) and ξ ∈ L∞(0, T ;H). (2.47)

In the following, we make use of the elementary identity and of the Young inequality

a(a− b) =
1

2
a2 +

1

2
(a− b)2 − 1

2
b2 for every a, b ∈ R, (2.48)

ab ≤ δa2 +
1

4δ
b2 for every a, b ∈ R and δ > 0. (2.49)

Moreover, if V is a Banach space and v is any function in L2(0, T ;V ), then we define
1 ∗ v ∈ H1(0, T ;V ) by setting

(1 ∗ v)(t) :=
∫ t

0

v(s) ds for t ∈ [0, T ]. (2.50)

Notice that, for every t ∈ [0, T ], we have

∥(1 ∗ v)(t)∥2V ≤ T

∫ t

0

∥v(s)∥2V ds , (2.51)

(
1 ∗ (uv)

)
(t) = u(t)(1 ∗ v)(t)−

∫ t

0

u′(s)(1 ∗ v)(s) ds if u ∈ H1(0, T ). (2.52)

As for the notation concerning norms, we use the symbol ∥ · ∥V for the norm in the generic
Banach space V (as done in (2.51)) with the following exceptions: the simpler symbol
∥ · ∥ denotes the norms in H, as already said; for the norms in the spaces V ρ

A , V
σ
B and

V τ
C we use the notations introduced above; if 1 ≤ q ≤ ∞, the norm in any Lq space is

denoted by ∥ · ∥q.
Finally, we state a general rule that we follow throughout the paper as far as the

constants are concerned. We use a small-case italic c without subscripts for different
constants that may only depend on the final time T , the operators Aρ, Bσ and Cτ ,
the shape of the nonlinearities F and P , and the properties of the data involved in the
statements at hand. The values of such constants might change from line to line and
even within the same formula or chain of inequalities. The symbol cδ stand for (possibly
different) constants that depend on the parameter δ in addition. It is clear that c and cδ
do not depend on the regularization parameter λ and the time step h we introduce in the
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next sections. With the aim of performing some asymptotic analyses as the parameters
α and/or β tend to zero, we clearly specify that the values of c or cδ do not depend on α
or β. Constants (possibly different from each other) that depend, e.g., on both α and β
are denoted by cα,β. In contrast, we use different symbols (likeM in (2.18) or C0 in (2.22))
for precise values of constants that we want to refer to.

3 Uniqueness

In this section, we give the proof of the uniqueness part of Theorem 2.3. We pick two
solutions (µi, φi, Si), i = 1, 2, and set for convenience µ := µ1 − µ2, φ := φ1 − φ2 and
S := S1−S2. Now, we write equation (2.31) for these solutions and integrate the difference
with respect to time. Then, we test the equality thus obtained by µ. At the same time,
we test the difference of (2.33) written for the two solutions by S. Then, we sum up,
integrate over (0, t) with an arbitrary t ∈ (0, T ], and rearrange. The resulting left-hand
side contains the term 1

2
∥Aρ(1 ∗ µ)(t)∥2. Thus, we add the same quantity

1

2
∥(1 ∗ µ)(t)∥2 =

∫ t

0

(
(1 ∗ µ)(s), µ(s)

)
ds

to both sides, by choosing the former expression for the left-hand side and the latter for
the right-hand side, and use the definition (2.8) with v = (1 ∗ µ)(t). Similarly, we add
the same quantity to both sides in order to reconstruct the full norm ∥S( · )∥C, τ in the
corresponding integral. We then obtain the identity

α

∫ t

0

∥µ(s)∥2 ds+
∫ t

0

(
φ(s), µ(s)

)
ds+

1

2
∥(1 ∗ µ)(t)∥2A, ρ

+
1

2
∥S(t)∥2 +

∫ t

0

∥S(s)∥2C, τ ds

=

∫ t

0

((
1 ∗ [P (φ1)(S1 − µ1)− P (φ2)(S2 − µ2)]

)
(s), µ(s)

)
ds

−
∫ t

0

((
P (φ1)(S1 − µ1)− P (φ2)(S2 − µ2)

)
(s), S(s)

)
ds

+

∫ t

0

(
(1 ∗ µ)(s), µ(s)

)
ds+

∫ t

0

∥S(s)∥2 ds . (3.1)

Now, we treat the first term of the right-hand side. In the sequel, δ is a positive parameter.
By an integration by parts, we get that∫ t

0

((
1 ∗ [P (φ1)(S1 − µ1)− P (φ2)(S2 − µ2)]

)
(s), µ(s)

)
ds

= −
∫ t

0

((
P (φ1)(S1 − µ1)− P (φ2)(S2 − µ2)

)
(s), (1 ∗ µ)(s)

)
ds

+
((

1 ∗ [P (φ1)(S1 − µ1)− P (φ2)(S2 − µ2)]
)
(t), (1 ∗ µ)(t)

)
,
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and we denote by Y1 and Y2, in this order, the summands on the right-hand side. To
handle these terms, we owe to the Hölder and Young inequalities, the boundedness and
the Lipschitz continuity of P , and the embeddings (2.17). As for Y1, we have

Y1 = −
∫ t

0

(
[P (φ1)(S − µ)](s), (1 ∗ µ)(s)

)
ds

−
∫ t

0

(
[(P (φ1)− P (φ2))(S2 − µ2)](s), (1 ∗ µ)(s)

)
ds

≤ δ

∫ t

0

(
∥S(s)∥2 + ∥µ(s)∥2

)
ds+ cδ

∫ t

0

∥(1 ∗ µ)(s)∥2 ds

+ c

∫ t

0

∥φ(s)∥2
(
∥S2(s)∥4 + ∥µ2(s)∥4

)
∥(1 ∗ µ)(s)∥4 ds

≤ δ

∫ t

0

(
∥S(s)∥2 + ∥µ(s)∥2

)
ds+ cδ

∫ t

0

∥(1 ∗ µ)(s)∥2 ds

+ δ

∫ t

0

∥φ(s)∥2B, σ ds+ cδ

∫ t

0

(
∥S2(s)∥2C, τ + ∥µ2(s)∥2A, ρ

)
∥(1 ∗ µ)(s)∥2A, ρ ds , (3.2)

and we notice that the function s 7→ ∥S2(s)∥2C, τ + ∥µ2(s)∥2A, ρ belongs to L1(0, T ), thanks
to the regularity assumed for the solution (µ2, φ2, S2). In order to deal with Y2, we prepare
an estimate of a delicate term with the help of (2.52). Since P is nonnegative, one of
the resulting terms turns out to be nonpositive. Thus, on account of Hölder’s inequality,
(2.51), and (2.17), we have

−
(
(1 ∗ [P (φ1)µ])(t), (1 ∗ µ)(t)

)
= −

(
P (φ1(t))(1 ∗ µ)(t), (1 ∗ µ)(t)

)
+
(∫ t

0
P ′(φ1(s))∂tφ1(s)(1 ∗ µ)(s) ds, (1 ∗ µ)(t)

)
≤ δ ∥(1 ∗ µ)(t)∥24 + cδ

∥∥∥∫ t

0
P ′(φ1(s))∂tφ1(s)(1 ∗ µ)(s) ds

∥∥∥2

4/3

≤ δ ∥(1 ∗ µ)(t)∥24 + cδ

∫ t

0

∥∂tφ1(s)∥22 ∥(1 ∗ µ)(s)∥24 ds

≤ δM ∥(1 ∗ µ)(t)∥2A, ρ + cδ

∫ t

0

∥∂tφ1(s)∥2 ∥(1 ∗ µ)(s)∥2A, ρ ds ,

where we observe that the function s 7→ ∥∂tφ1(s)∥2 belongs to L1(0, T ). At this point,
we can estimate the term Y2 by using (2.51), this inequality, and (2.18) with M ≥ 1. We
have

Y2 =
(
(1 ∗ [P (φ1)(S − µ)− (P (φ1)− P (φ2))(S2 − µ2)])(t), (1 ∗ µ)(t)

)
≤ δ ∥(1 ∗ µ)(t)∥2 + cδ ∥(1 ∗ [P (φ1)S])(t)∥2

−
(
(1 ∗ [P (φ1)µ])(t), (1 ∗ µ)(t)

)
+ δ ∥(1 ∗ µ)(t)∥24 + cδ∥(1 ∗ [(P (φ1)− P (φ2))(S2 − µ2)])(t)∥24/3
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≤ δ ∥(1 ∗ µ)(t)∥2 + cδ

∫ t

0

∥(P (φ1)S)(s)∥2 ds

+ δM ∥(1 ∗ µ)(t)∥2A, ρ + cδ

∫ t

0

∥∂tφ1(s)∥2 ∥(1 ∗ µ)(s)∥2A, ρ ds

+ δ ∥(1 ∗ µ)(t)∥24 + cδ

∫ t

0

∥[(P (φ1)− P (φ2))(S2 − µ2)](s)∥24/3 ds

≤ 3 δM ∥(1 ∗ µ)(t)∥2A, ρ + cδ

∫ t

0

∥S(s)∥2 ds+ cδ

∫ t

0

∥∂tφ1(s)∥2 ∥(1 ∗ µ)(s)∥2A, ρ ds

+ cδ

∫ t

0

(
∥S2(s)∥24 + ∥µ2(s)∥24

)
∥φ(s)∥2 ds , (3.3)

where the function s 7→ ∥S2(s)∥24 + ∥µ2(s)∥24 is known to belong to L1(0, T ). Indeed, we
have S2 ∈ L2(0, T ;V τ

C ) ⊂ L2(0, T ;L4(Ω)) and µ2 ∈ L2(0, T ;V ρ
A) ⊂ L2(0, T ;L4(Ω)).

Now, we come back to (3.1) and estimate the second term on the right-hand side,
which we call Y3 for simplicity. We have

Y3 = −
∫ t

0

((
P (φ1)(S − µ) + (P (φ1)− P (φ2))(S2 − µ2)

)
(s), S(s)

)
ds

≤ δ

∫ t

0

∥µ(s)∥2 ds+ cδ

∫ t

0

∥S(s)∥2 ds

+ δ

∫ t

0

∥S(s)∥24 ds+ cδ

∫ t

0

(
∥S2(s)∥24 + ∥µ2(s)∥24

)
∥φ(s)∥2 ds

≤ δ

∫ t

0

∥µ(s)∥2 ds+ cδ

∫ t

0

∥S(s)∥2 ds

+ δM

∫ t

0

∥S(s)∥2C, τ ds+ cδ

∫ t

0

(
∥S2(s)∥2C, τ + ∥µ2(s)∥2A, ρ

)
∥φ(s)∥2 ds . (3.4)

At this point, we recall (3.1)–(3.4) and use the Schwarz and Young inequalities to estimate
the first term of the last line of (3.1), in order to get the estimate

α

∫ t

0

∥µ(s)∥2 ds+
∫ t

0

(
φ(s), µ(s)

)
ds+

1

2
∥(1 ∗ µ)(t)∥2A, ρ

+
1

2
∥S(t)∥2 +

∫ t

0

∥S(s)∥2C, τ ds

≤ δ

∫ t

0

(
∥S(s)∥2 + ∥µ(s)∥2

)
ds+ cδ

∫ t

0

∥(1 ∗ µ)(s)∥2 ds

+ δ

∫ t

0

∥φ(s)∥2B, σ ds+ cδ

∫ t

0

(
∥S2(s)∥2C, τ + ∥µ2(s)∥2A, ρ

)
∥(1 ∗ µ)(s)∥2A, ρ ds

+ 3 δM ∥(1 ∗ µ)(t)∥2A, ρ + cδ

∫ t

0

∥S(s)∥2 ds+ cδ

∫ t

0

∥∂tφ1(s)∥2 ∥(1 ∗ µ)(s)∥2A, ρ ds

+ cδ

∫ t

0

(
∥S2(s)∥24 + ∥µ2(s)∥24

)
∥φ(s)∥2 ds+ δ

∫ t

0

∥µ(s)∥2 ds+ cδ

∫ t

0

∥S(s)∥2 ds
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+ δM

∫ t

0

∥S(s)∥2C, τ ds+ cδ

∫ t

0

(
∥S2(s)∥2C, τ + ∥µ2(s)∥2A, ρ

)
∥φ(s)∥2 ds

+ δ

∫ t

0

∥µ(s)∥2 ds+ cδ

∫ t

0

∥(1 ∗ µ)(s)∥2 ds+
∫ t

0

∥S(s)∥2 ds . (3.5)

Next, we use the variational inequality (2.32), writing it for the two solutions, and testing
the resulting inequalities by φ2 and φ1, respectively. Now, we sum up and notice that
the contributions involving F1 cancel out. By integrating over (0, t), using the Lipschitz
continuity of f2, and adding the same term to both sides in order to recover the full
V σ
B -norm on the left-hand side, we then obtain that

β

2
∥φ(t)∥2 +

∫ t

0

∥φ(s)∥2B, σ ds ≤ c

∫ t

0

∥φ(s)∥2 ds+
∫ t

0

(
µ(s), φ(s)

)
ds. (3.6)

Finally, we add (3.5) to (3.6), choose δ > 0 sufficiently small, and apply Gronwall’s lemma.
We then conclude that (µ, φ, S) = (0, 0, 0), and the proof is complete.

Remark 3.1. In connection with Remark 2.4, we could consider the equations obtained
by adding the forcing terms, say, controls, to the right-hand sides of the equations. It is
clear that no change is necessary in the above proof in order to obtain uniqueness also in
this more general situation. Furthermore, just minor modifications lead to a continuous
dependence result. More precisely, if uµ,i, uφ,i and uS,i, i = 1, 2, are two choices of the
controls and uµ, uφ and uS denote their differences, then we obtain, with the notation
used in the proof,

∥µ∥L2(0,T ;H) + ∥1 ∗ µ∥L∞(0,T ;V ρ
A) + ∥φ∥L∞(0,T ;H)∩L2(0,T ;V σ

B ) + ∥S∥L∞(0,T ;H)∩L2(0,T ;V τ
C )

≤ C4

(
∥uµ∥L2(0,T ;H) + ∥uφ∥L2(0,T ;H) + ∥uS∥L2(0,T ;H)

)
, (3.7)

where C4 > 0 depends only on the structure, i.e., the linear operators, the shape of the
nonlinearities, the parameters α and β, and the final time T .

4 Existence

In this section, we prove the existence of a solution to problem (2.31)–(2.34) as stated in
Theorem 2.3. To help the reader, we start with a formal estimate that gives a flavor of the
regularity to be expected and, at the same time, indicates the direction one can take for
a rigorous proof. Then, in the next subsections, we introduce the approximating problem
and its discretization, solve the discrete problem, perform rigorous estimates, and solve
first the regularized problem and then problem (2.31)–(2.34).

4.1 Preliminaries

Here is the formal estimate just mentioned. We multiply (1.1), (1.2), and (1.3), by µ,
−∂tφ, and S, respectively, in the scalar product of H. Then we sum up and integrate
over (0, t), where t ∈ (0, T ) is arbitrary, noting that the terms involving the product µ ∂tφ
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cancel each other. By accounting for (2.11) and its analogues for the other two types of
operators, we obtain the identity

α

2
∥µ(t)∥2 +

∫ t

0

∥Aρµ(s)∥2 ds

+ β

∫
Qt

|∂tφ|2 +
1

2
∥Bσφ(t)∥2 +

∫
Ω

F (φ(t))

+
1

2
∥S(t)∥2 +

∫ t

0

∥CτS(s)∥2 ds+
∫
Qt

P (φ)(S − µ)2

=
α

2
∥µ0∥2 +

1

2
∥Bσφ0∥2 +

∫
Ω

F (φ0) +
1

2
∥S0∥2 .

By reading F1 instead of F λ
1 in (2.22), and adding |Ω|C0 to both sides of the above

equality, we conclude that

α1/2 ∥µ∥L∞(0,T ;H) + ∥Aρµ∥L2(0,T ;H)

+ β1/2 ∥∂tφ∥L2(0,T ;H) + ∥Bσφ∥L∞(0,T ;H) + ∥F (φ) + C0∥L∞(0,T ;L1(Ω))

+ ∥S∥L∞(0,T ;H) + ∥CτS∥L2(0,T ;H) + ∥P 1/2(φ)(S − µ)∥L2(0,T ;H)

≤ C
(
α1/2 ∥µ0∥+ ∥Bσφ0∥+ ∥F (φ0) + C0∥1 + ∥S0∥

)
, (4.1)

where C > 0 is a universal constant. Eliminating C0 in the norms by means of the triangle
inequality, we obtain an estimate that is nothing but (2.36).

In the next subsections, after introducing and solving the discrete problem, we imple-
ment the above argument to derive a rigorous a priori estimate for the discrete solution.
Then, we use it for the necessary limiting procedures and solve the original problem. For
this purpose, it is convenient to introduce some notations at once.

Notation 4.1. Let N be a positive integer, and let Z be one of the spaces H, V ρ
A , V

σ
B , V

τ
C .

We set h := T/N and In := ((n− 1)h, nh) for n = 1, . . . , N . Given z = (z0, z1, . . . , zN) ∈
ZN+1, we define the piecewise constant and piecewise linear interpolants

zh ∈ L∞(0, T ;Z), zh ∈ L∞(0, T ;Z), and ẑh ∈ W 1,∞(0, T ;Z),

by setting

zh(t) = zn and zh(t) = zn−1 for a.a. t ∈ In, n = 1, . . . , N, (4.2)

ẑh(0) = z0 and ∂tẑh(t) =
zn+1 − zn

h
for a.a. t ∈ In, n = 1, . . . , N. (4.3)

For the reader’s convenience, we summarize the relations between the finite set of val-
ues and the interpolants in the following proposition, whose proof follows from straight-
forward computations.

Proposition 4.2. With Notation 4.1, we have that

∥zh∥L∞(0,T ;Z) = max
n=1,...,N

∥zn∥Z , ∥zh∥L∞(0,T ;Z) = max
n=0,...,N−1

∥zn∥Z , (4.4)

∥∂tẑh∥L∞(0,T ;Z) = max
0≤n≤N−1

∥(zn+1 − zn)/h∥Z , (4.5)
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∥zh∥2L2(0,T ;Z) = h
N∑

n=1

∥zn∥2Z , ∥zh∥2L2(0,T ;Z) = h
N−1∑
n=0

∥zn∥2Z , (4.6)

∥∂tẑh∥2L2(0,T ;Z) = h
N−1∑
n=0

∥(zn+1 − zn)/h∥2Z , (4.7)

∥ẑh∥L∞(0,T ;Z) = max
n=1,...,N

max {∥zn−1∥Z , ∥zn∥Z} = max {∥z0∥Z , ∥zh∥L∞(0,T ;Z)} , (4.8)

∥ẑh∥2L2(0,T ;Z) ≤ h
N∑

n=1

(
∥zn−1∥2Z + ∥zn∥2Z

)
≤ h ∥z0∥2Z + 2 ∥zh∥2L2(0,T ;Z) . (4.9)

Moreover, it holds that

∥ẑh(t)− zh(t)∥Z ≤ ∥zh(t)− zh(t)∥Z , ∥ẑh(t)− zh(t)∥Z ≤ ∥zh(t)− zh(t)∥Z
for a.a. t ∈ (0, T ) , (4.10)

∥zh − ẑh∥L∞(0,T ;Z) = max
n=0,...,N−1

∥zn+1 − zn∥Z = h ∥∂tẑh∥L∞(0,T ;Z) , (4.11)

∥zh − ẑh∥2L∞(0,T ;Z) ≤ h
N−1∑
n=0

h

∥∥∥∥zn+1 − zn

h

∥∥∥∥2

Z

= h ∥∂tẑh∥2L2(0,T ;Z) , (4.12)

∥zh − ẑh∥2L2(0,T ;Z) =
h

3

N−1∑
n=0

∥zn+1 − zn∥2Z =
h2

3
∥∂tẑh∥2L2(0,T ;Z) , (4.13)

and similar identities for the difference zh− ẑh. As a consequence, we have the inequalities

∥zh − zh∥L∞(0,T ;Z) ≤ 2h ∥∂tẑh∥L∞(0,T ;Z) , (4.14)

∥zh − zh∥2L2(0,T ;Z) ≤
2h2

3
∥∂tẑh∥2L2(0,T ;Z) . (4.15)

Finally, we have that

h
N−1∑
n=0

∥(zn+1 − zn)/h∥2Z ≤ ∥∂tz∥2L2(0,T ;Z) ,

if z ∈ H1(0, T ;Z) and zn = z(nh) for n = 0, . . . , N. (4.16)

4.2 Approximation and discretization

In this subsection, we introduce an approximation of problem (2.31)–(2.34) and its time
discretization. Then, we solve the discrete problem. We first introduce the Moreau–
Yosida regularizations F λ

1 and fλ
1 of F1 of f1 at the level λ > 0 (see, e.g., [2, p. 28 and

p. 39]). We set, for convenience,

F λ := F λ
1 + F2 and fλ := fλ

1 + f2 . (4.17)

By accounting for well-known properties of this regularization and the assumptions (2.20)–
(2.22), we have

F λ
1 (s) =

∫ s

0

fλ
1 (s

′) ds′ , 0 ≤ F λ
1 (s) ≤ F1(s) , and F λ(s) ≥ −C0 , (4.18)
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for every s ∈ R, as well as

|fλ
1 (s)| ≤ |f ◦

1 (s)| for every s ∈ D(f1) , (4.19)

where f ◦
1 (s) is the element of f1(s) having minimum modulus. By replacing F1 in (2.32)

by F λ
1 , we obtain the following system:

α ⟨∂tµλ(t), v⟩A, ρ +
(
∂tφ

λ(t), v
)
+ (Aρµλ(t), Aρv) =

(
P (φλ(t))(Sλ(t)− µλ(t)), v

)
for every v ∈ V ρ

A and for a.a. t ∈ (0, T ), (4.20)

β
(
∂tφ

λ(t), φλ(t)− v
)
+
(
Bσφλ(t), Bσ(φλ(t)− v)

)
+

∫
Ω

F λ
1 (φ

λ(t)) +
(
f2(φ

λ(t)), φλ(t)− v
)

≤
(
µλ(t), φλ(t)− v

)
+

∫
Ω

F λ
1 (v) for every v ∈ V σ

B and for a.a. t ∈ (0, T ), (4.21)

⟨∂tSλ(t), v⟩C, τ + (CτSλ(t), Cτv) = −
(
P (φλ(t))(Sλ(t)− µλ(t)), v

)
for every v ∈ V τ

C and for a.a. t ∈ (0, T ), (4.22)

µλ(0) = µ0 , φλ(0) = φ0 , and Sλ(0) = S0 . (4.23)

We stress that (4.21) is equivalent to both the time-integrated variational inequality

β

∫ T

0

(
∂tφ

λ(t), φλ(t)− v(t)
)
dt+

∫ T

0

(
Bσφλ(t), Bσ(φλ(t)− v(t))

)
dt

+

∫
Q

F λ
1 (φ

λ) +

∫ T

0

(
f2(φ

λ(t)), φλ(t)− v(t)
)
dt

≤
∫ T

0

(
µλ(t), φλ(t)− v(t)

)
dt+

∫
Q

F λ
1 (v) for every v ∈ L2(0, T ;V σ

B ), (4.24)

and the pointwise variational equation (since F λ
1 is differentiable and fλ

1 is its derivative)

β
(
∂tφ

λ(t), v
)
+
(
Bσφλ(t), Bσv

)
+
(
fλ(φλ(t)), v

)
=

(
µλ(t), v

)
for every v ∈ V σ

B and for a.a. t ∈ (0, T ). (4.25)

Theorem 4.3. Under the same assumptions as in Theorem 2.3, the problem (4.20)–(4.23)
has at least a solution satisfying the analogues of (2.27)–(2.29).

Remark 4.4. The above statement does not ensure uniqueness. On the other hand, no
uniqueness for the solution to the approximating problem is necessary for our purpose.
However, uniqueness is guaranteed if the spaces V ρ

A and V τ
C satisfy (2.17). Indeed, in this

case, what we have proved in Section 3 can be applied since F λ satisfies all the properties
we have postulated for F .

The major part of the present section is devoted to the proof of Theorem 4.3, which is
based on the discretization procedure. Thus, we introduce and solve the discrete problem
and then take the limits of the interpolants as the time step size tends to zero.
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The discrete problem. We fix an integer N > 1 and set h := T/N . Moreover, we fix
a constant L satisfying

L > Lip f2 , (4.26)

where Lip f2 is the Lipschitz constant of f2. Then, the discrete problem consists in finding
three (N + 1)-tuples (µ0, . . . , µN), (φ0, . . . , φN), and (S0, . . . , SN), satisfying

µ0 = µ0 , φ0 = φ0 , and S0 = S0 , (4.27)

(µ1, . . . , µN) ∈ (V 2ρ
A )N , (φ1, . . . , φN) ∈ (V 2σ

B )N ,

and (S1, . . . , SN) ∈ (V 2τ
C )N , (4.28)

and solving

α
µn+1 − µn

h
+
φn+1 − φn

h
+ A2ρµn+1 + P (φn)µn+1 = P (φn)Sn+1 , (4.29)

β
φn+1 − φn

h
+B2σφn+1 + (fλ + L I)(φn+1) = Lφn + µn+1 , (4.30)

Sn+1 − Sn

h
+ C2τSn+1 + P (φn)Sn+1 = P (φn)µn+1 (4.31)

a.e. in Ω, for n = 0, 1, . . . , N − 1. This problem can be solved inductively for n =
0, . . . , N − 1. Namely, for a given (µn, φn, Sn) ∈ H ×H ×H, we show that there exists
a unique triplet (µn+1, φn+1, Sn+1) ∈ V 2ρ

A × V 2σ
B × V 2τ

C satisfying a problem equivalent to
(4.29)–(4.31). Here is the construction of the new problem. We first observe that the
linear operator

Ahv :=
α

h
v + A2ρv + P (φn)v, v ∈ V 2ρ

A , (4.32)

is an isomorphism from V 2ρ
A to H. To see this, it suffices to apply (2.10) to A2ρ and to

notice that the linear operator given by the last contribution v 7→ P (φn)v is monotone
and continuous from H into itself, since P is bounded and nonnegative. By the way, one
also sees that A−1

h ∈ L(H;H) is monotone and that its norm is bounded by h/α. Hence,
(4.29) can be solved for µn+1, and we can write

µn+1 = A−1
h

(α
h
µn − φn+1 − φn

h
+ P (φn)Sn+1

)
. (4.33)

So, we replace (4.29) by (4.33), and (4.30) by the equation obtained by inserting in (4.30)
the expression for µn+1 given by (4.33) in place of µn+1. Thus, the new second equation
reads

β
φn+1 − φn

h
+B2σφn+1 + (fλ + L I)(φn+1)

= Lφn + A−1
h

(α
h
µn − φn+1 − φn

h
+ P (φn)Sn+1

)
or, even better,

β
φn+1 − φn

h
+B2σφn+1 + (fλ + L I)(φn+1) +

1

h
A−1

h φn+1

= Lφn + A−1
h

(α
h
µn +

1

h
φn + P (φn)Sn+1

)
. (4.34)



360

We rewrite (4.31) here, for convenience,

Sn+1 − Sn

h
+ C2τSn+1 + P (φn)Sn+1 = P (φn)µn+1 , (4.35)

and the new problem is given by (4.33)–(4.35). We now show that it can be solved by
a fixed point argument, provided that h > 0 is small enough. To this end, we construct
some mappings. In doing this, for simplicity, we use the symbols µn+1, φn+1, and Sn+1,
as if they were independent variables. The subscripts we choose remind the order of
appearance of the equations. Here are the mappings:

Φ3 : H → V 2τ
C ⊂ H; µn+1 7→ Sn+1 by solving (4.35) for Sn+1,

Φ2 : H → V 2σ
B ⊂ H; Sn+1 7→ φn+1 by solving (4.34) for φn+1,

Φ1 : H ×H → V 2ρ
A ⊂ H; (φn+1, Sn+1) 7→ µn+1 by just applying (4.33),

Φ : H → H; µ 7→ Φ1

(
Φ2

(
Φ3(µ)

)
,Φ3(µ)

)
.

Once we prove that these mappings are well defined and that Φ has a unique fixed
point µ∗, it is clear that the unique solution (µn+1, φn+1, Sn+1) we are looking for is
given by (µ∗,Φ2(Φ3(µ

∗)),Φ3(µ
∗)). Let us start. As for Φ3, one adopts the same argument

used to define A−1
h . Concerning Φ2, the proof is similar, if one notes that the monotonicity

of A−1
h follows from the one of Ah and that even fλ and f2 + LI are everywhere defined

monotone operators, the last due to (4.26). Thus, all of the mappings are well defined.
Now, we consider Φ3 and take any µ1 , µ2 ∈ H. By writing (4.35) with Si and µi, i = 1, 2,
in place of Sn+1 and µn+1, respectively, and multiplying the difference by S1 − S2, we
immediately find that

1

h
∥S1 − S2∥ ≤ sup

s∈R
P (s) ∥µ1 − µ2∥ .

This implies that

∥Φ3(µ1)− Φ3(µ2)∥ ≤ K3h ∥µ1 − µ2∥ for every µ1, µ2 ∈ H ,

where K3 is the supremum of P . Similarly, one shows that

∥Φ2(S1)− Φ2(S2)∥ ≤ K2 h ∥S1 − S2∥ ,

∥Φ1(φ1, S1)− Φ1(φ2, S2)∥ ≤ K1

(
∥φ1 − φ2∥+ ∥S1 − S2∥

)
,

for every Si ∈ H and φi ∈ H, i = 1, 2, and some constants K2 and K1. Hence, there is a
constant K such that

∥Φ(µ1)− Φ(µ2)∥ ≤ Kh ∥µ1 − µ2∥ for every µ1, µ2 ∈ H.

Therefore, if Kh < 1, Φ is a contraction in H and thus has a unique fixed point. We
conclude that the discrete problem is uniquely solvable by assuming that 0 < h < K−1.
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4.3 Solution of the approximating problem

As announced in the Introduction, we prove the existence of a solution to the approxi-
mating problem (4.20)–(4.23) by taking the limit of the interpolants of the solution to
the discrete problem as the time step size h tends to zero. According to Notation 4.1, we
remark at once that the regularity required for discrete solution implies that

µ̂h ∈ L∞(0, T ;V ρ
A), µ

h
∈ L∞(0, T ;H), and µh ∈ L∞(0, T ;V 2ρ

A ), (4.36)

φ̂h ∈ W 1,∞(0, T ;V σ
B ), φ

h
∈ L∞(0, T ;V σ

B ), and φh ∈ L∞(0, T ;V 2σ
B ), (4.37)

Ŝh ∈ L∞(0, T ;V τ
C ), Sh ∈ L∞(0, T ;H), and Sh ∈ L∞(0, T ;V 2τ

C ), (4.38)

and that the discrete problem also reads

α ∂tµ̂h + ∂tφ̂h + A2ρµh + P (φ
h
)µh = P (φ

h
)Sh a.e. in Q, (4.39)

β ∂tφ̂h +B2σφh + (fλ + L I)(φh) = Lφ
h
+ µh a.e. in Q, (4.40)

∂tŜh + C2τSh + P (φ
h
)Sh = P (φ

h
)µh a.e. in Q, (4.41)

µ̂h(0) = µ0 , φ̂h(0) = φ0 , Ŝh(0) = S0 a.e. in Ω. (4.42)

We point out that the equations (4.39)–(4.41) have been written a.e. in Q, and in this
case all of the terms, including A2ρµh, B

2σφh, and C
2τSh, are interpreted as functions of

space and time; another way of reading (4.39)–(4.41) could be in H, a.e. in (0, T ), as the
single terms make sense in the space H as well.

So, our aim is to let h tend to zero in (4.39)–(4.42) (or in some equivalent formulation).
Hence, we start estimating. We do this on the solution to the discrete problem (4.27)–
(4.31), by adapting the procedure that led to the formal estimate of Section 4.1. Then,
we express the bounds we find in terms of the interpolants. According to the general rule
stated at the end of Section 2, the (possibly different) values of the constants termed c
are independent of the parameters h, λ, α, and β.

Basic a priori estimate. We test (4.29), (4.30) and (4.31) (by taking the scalar product
in H) by µn+1, (φn+1 − φn)/h and Sn+1, respectively, and add the resulting identities to
each other. Noting an obvious cancellation, we obtain the equality

α

h
(µn+1, µn+1 − µn) + ∥Aρµn+1∥2 +

∫
Ω

P (φn)(µn+1 − Sn+1)2

+ β

∥∥∥∥φn+1 − φn

h

∥∥∥∥2

+
1

h

(
Bσφn+1, Bσ(φn+1 − φn)

)
+

1

h

(
(fλ + L)(φn+1), φn+1 − φn

)
+

1

h
(Sn+1, Sn+1 − Sn) + ∥CτSn+1∥2

=
L

h
(φn, φn+1 − φn).
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Now, we observe that the function s 7→ F λ(s) + L
2
r2 = F λ

1 (s) + F2(s) +
L
2
r2 is convex

on R, since F λ
1 is convex and L satisfies (4.26). Thus, we have that

(
(fλ + L I)(φn+1), φn+1 − φn

)
≥

∫
Ω

F λ(φn+1) +
L

2
∥φn+1∥2 −

∫
Ω

F λ(φn)− L

2
∥φn∥2.

Therefore, by using this inequality and applying the identity (2.48) to some terms of the
previous equality, we deduce that

α

2h
∥µn+1∥2 + α

2h
∥µn+1 − µn∥2 − α

2h
∥µn∥2 + ∥Aρµn+1∥2

+

∫
Ω

P (φn)(µn+1 − Sn+1)2 + β

∥∥∥∥φn+1 − φn

h

∥∥∥∥2

+
1

2h
∥Bσφn+1∥2 + 1

2h
∥Bσ(φn+1 − φn)∥2 − 1

2h
∥Bσφn∥2

+
1

h

∫
Ω

F λ(φn+1) +
L

2h
∥φn+1∥2 − 1

h

∫
Ω

F λ(φn)− L

2h
∥φn∥2

+
1

2h
∥Sn+1∥2 + 1

2h
∥Sn+1 − Sn∥2 − 1

2h
∥Sn∥2 + ∥CτSn+1∥2

≤ L

2h
∥φn+1∥2 − L

2h
∥φn∥2 − L

2h
∥φn+1 − φn∥2.

At this point, we first note two cancellations; then, we multiply by h and sum up with
respect to n = 0, . . . ,m− 1 for m = 1, . . . , N . We obtain

α

2
∥µm∥2 − α

2
∥µ0∥2 +

α

2

m−1∑
n=0

∥µn+1 − µn∥2 +
m−1∑
n=0

h ∥Aρµn+1∥2

+
m−1∑
n=0

h

∫
Ω

P (φn)(µn+1 − Sn+1)2 + β

m−1∑
n=0

h

∥∥∥∥φn+1 − φn

h

∥∥∥∥2

+
1

2
∥Bσφm∥2 − 1

2
∥Bσφ0∥2 +

1

2

m−1∑
n=0

∥Bσ(φn+1 − φn)∥2 +
∫
Ω

F λ(φm)−
∫
Ω

F λ(φ0)

+
1

2
∥Sm∥2 − 1

2
∥S0∥2 +

1

2

m−1∑
n=0

∥Sn+1 − Sn∥2 +
m−1∑
n=0

h ∥CτSn+1∥2

≤ − L

2

m−1∑
n=0

∥φn+1 − φn∥2.

Clearly, this inequality also holds for m = 0 if it is understood that all the sums vanish
since the set of the indices is empty. Therefore, by rearranging, accounting for (4.18),
adding |Ω|C0 to both sides and owing to the assumption (2.26) on the initial data, we
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obtain an estimate (the analogue of (4.1)) that in terms of the interpolants reads

α ∥µh∥2L∞(0,T ;H) +
α

h
∥µh − µ

h
∥2L2(0,T ;H) + ∥Aρµh∥2L2(0,T ;H)

+ ∥(P (φ
h
))1/2(µh − Sh)∥2L2(0,T ;H) + β ∥∂tφ̂h∥2L2(0,T ;H) +

L

h
∥φh − φ

h
∥2L2(0,T ;H)

+ ∥Bσφh∥2L∞(0,T ;H) +
1

h
∥Bσ(φh − φ

h
)∥2L2(0,T ;H) + ∥F λ(φh)∥L∞(0,T ;L1(Ω))

+ ∥Sh∥2L∞(0,T ;H) +
1

h
∥Sh − Sh∥2L2(0,T ;H) + ∥CτSh∥2L2(0,T ;H)

≤ C ′
0

(
α ∥µ0∥2 + ∥Bσφ0∥2 + ∥F (φ0)∥1 + ∥S0∥2 + 1

)
, (4.43)

where C ′
0 depends only on Ω and the constant C0.

First consequences. We observe that (see also (4.12))

∥φh(t)∥ ≤ ∥φ̂h(t)∥+ ∥φh(t)− φ̂h(t)∥
≤ ∥φ0∥+ T 1/2∥∂tφ̂h∥L2(0,T ;H) + h1/2∥∂tφ̂h∥L2(0,T ;H)

for a.a. t ∈ (0, T ). Moreover, the inequality P (s) ≤ c (P (s))1/2 holds true for every s ∈ R
due to the boundedness of P . Hence, we infer from (4.43) that

∥µh∥L∞(0,T ;H)∩L2(0,T ;V ρ
A) + ∥φh∥L∞(0,T ;V σ

B ) + ∥Sh∥L∞(0,T ;H)∩L2(0,T ;V τ
C )

+ ∥φ̂h∥H1(0,T ;H) + ∥F λ(φh)∥L∞(0,T ;L1(Ω)) + ∥P (φ
h
)(µh − Sh)∥L2(0,T ;H)

≤ cα,β , (4.44)

as well as (due to (4.10))

∥µh − µ̂h∥L2(0,T ;H) + ∥φh − φ
h
∥L2(0,T ;V σ

B ) + ∥φh − φ̂h∥L2(0,T ;H)

+ ∥Sh − Ŝh∥L2(0,T ;H) ≤ cα h
1/2. (4.45)

By combining with (4.44), we deduce that

∥φ
h
∥L2(0,T ;V σ

B ) ≤ cα,β . (4.46)

We also derive an estimate that we will use later on. Since F2 grows at most quadratically
due to (2.21), the inequality (4.44) yields an estimate for F2(φh) in L∞(0, T ;L1(Ω)).
Therefore, owing to the estimate of F λ(φh) given by (4.43), we deduce that

∥F λ
1 (φh)∥L∞(0,T ;L1(Ω)) ≤ cα,β . (4.47)

Second a priori estimate. By direct computation, for n = 0, . . . , N − 1 and for a.e.
t ∈ (nh, (n+ 1)h), we have that

∥Bσ(φ̂h(t)− φ
h
(t))∥ = ∥Bσ(φn + t−nh

h
(φn+1 − φn)− φn)∥

= t−nh
h

∥Bσ(φn+1 − φn)∥ = t−nh
h

∥Bσ(φh(t)− φ
h
(t))∥ ≤ ∥Bσ(φh(t)− φ

h
(t))∥ ,



364

whence
∥Bσ(φ̂h − φ

h
)∥L2(0,T ;H) ≤ ∥Bσ(φh − φ

h
)∥L2(0,T ;H) .

By also accounting for (4.45), we deduce that

∥φ̂h − φ
h
∥L2(0,T ;V σ

B ) ≤ cα h
1/2 ,

and (4.46) yields that
∥φ̂h∥L2(0,T ;V σ

B ) ≤ cα,β . (4.48)

Third a priori estimate. By equation (4.39) and assumption (2.23), we have

α ∥∂tµ̂h∥L2(0,T ;V −ρ
A )

≤ c
(
∥∂tφ̂h∥L2(0,T ;H) + ∥A2ρµh∥L2(0,T ;V −ρ

A ) + ∥µh∥L2(0,T ;H) + ∥Sh∥L2(0,T ;H)

)
.

Then, we account for (4.44) and the first of (2.13) to obtain an estimate for the time
derivative ∂tµ̂h. By proceeding analogously with equation (4.41), we conclude that

∥∂tµ̂h∥L2(0,T ;V −ρ
A ) + ∥∂tŜh∥L2(0,T ;V −τ

C ) ≤ cα,β . (4.49)

Convergence. By recalling (4.44)–(4.49), we see that there exist a triplet (µλ, φλ, Sλ)
such that

µh → µλ weakly star in L∞(0, T ;H) ∩ L2(0, T ;V ρ
A) , (4.50)

µ̂h → µλ weakly star in H1(0, T ;V −ρ
A ) ∩ L∞(0, T ;H) , (4.51)

φh → φλ weakly star in L∞(0, T ;V σ
B ) , (4.52)

φ
h
→ φλ weakly in L2(0, T ;V σ

B ) , (4.53)

φ̂h → φλ weakly in H1(0, T ;H) ∩ L2(0, T ;V σ
B ) , (4.54)

Sh → Sλ weakly star in L∞(0, T ;H) ∩ L2(0, T ;V τ
C ) , (4.55)

Ŝh → Sλ weakly star in H1(0, T ;V −τ
C ) ∩ L∞(0, T ;H) , (4.56)

at least for some sequence hk ↘ 0. From (4.51), (4.54), (4.56), and (4.42), we deduce
that the initial conditions (4.23) are satisfied by the limiting triplet. Next, we prove
that (4.20)–(4.22) are fulfilled as well. By first applying the Aubin–Lions lemma (see,
e.g., [42, Thm. 5.1, p. 58]) to φ̂h on account of (4.54), and then owing to (4.45), we
deduce that

φ̂h → φλ, φh → φλ, and φ
h
→ φλ, strongly in L2(0, T ;H). (4.57)

In particular note that the limit φλ is in H1(0, T ;H) ∩ L∞(0, T ;V σ
B ), thanks to (4.52)

and (4.54). Next, by recalling that f2 and P are Lipschitz continuous (see (2.21), (2.23),
and (2.25)), and that the same holds for fλ

1 due to the general properties of the Yosida
approximation, we infer that

fλ(φh) → fλ(φλ) and P (φ
h
) → P (φλ) strongly in L2(0, T ;H).
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The latter, (4.55), and (4.50) imply that

P (φ
h
)(Sh − µh) → P (φλ)(Sλ − µλ) weakly in L1(Q).

On the other hand, P (φ
h
)(Sh − µh) is bounded in L2(0, T ;H) by (4.44). Therefore, we

conclude that

P (φ
h
)(Sh − µh) → P (φλ)(Sλ − µλ) weakly in L2(0, T ;H).

In view of (4.57), we have that, possibly taking another subsequence of h,

φh(t) → φλ(t) strongly in H, for a.a. t ∈ (0, T ).

Hence, by lower semicontinuity it turns out that∫
Ω

F λ
1 (φ

λ(t)) ≤ lim inf
h↘0

∫
Ω

F λ
1 (φh(t)) ≤ cα,β for a.a. t ∈ (0, T ). (4.58)

At this point, we write (4.39)–(4.41) in the equivalent form∫ T

0

(
α ⟨∂tµ̂h(s), v(s)⟩A,ρ + (∂tφ̂h(s), v(s)) + (Aρµh(s), A

ρv(s))
)
ds

=

∫ T

0

(
P (φ

h
(s))(Sh(s)− µh(s)), v(s)

)
ds for every v ∈ L2(0, T ;V ρ

A) ,∫ T

0

((
β ∂tφ̂h(s), v(s)

)
+
(
Bσφh(s), B

σv(s)
)
+
(
(fλ

1 + f2 + L I)(φh(s)), v(s)
))
ds

=

∫ T

0

(
Lφ

h
(s) + µh(s), v(s)

)
ds for every v ∈ L2(0, T ;V σ

B ) ,∫ T

0

((
∂tŜh(s), v(s)

)
+
(
CτSh(s), C

τv(s)
))
ds

= −
∫ T

0

(
P (φ

h
(s))(Sh(s)− µh(s)), v(s)

)
ds for every v ∈ L2(0, T ;V τ

C ) ,

and let h tend to zero on account of the convergence properties we have established. We
obtain the integrated versions of (4.20), (4.22), and (4.25). Now, starting from (4.25), we
can perform the formal procedure that led to the estimate (4.1), by observing that the
argument used there is now correct. One obtains the estimate

α1/2 ∥µλ∥L∞(0,T ;H) + ∥Aρµλ∥L2(0,T ;H)

+ β1/2 ∥∂tφλ∥L2(0,T ;H) + ∥Bσφλ∥L∞(0,T ;H) + ∥F λ(φλ) + C0∥L∞(0,T ;L1(Ω))

+ ∥Sλ∥L∞(0,T ;H) + ∥CτSλ∥L2(0,T ;H) + ∥P 1/2(φλ)(Sλ − µλ)∥L2(0,T ;H)

≤ C
(
α1/2∥µ0∥+ ∥Bσφ0∥+ ∥F λ(φ0) + C0∥1 + ∥S0∥

)
, (4.59)

where C0 is given by (4.18) and C is a universal constant. Just something on the regularity
is missing, namely, the requirements for the time derivatives ∂tµ

λ and ∂tS
λ. But these

regularities immediately follow from (4.49), which also yields that

∥∂tµλ∥L2(0,T ;V −ρ
A ) + ∥∂tSλ∥L2(0,T ;V −τ

C ) ≤ cα,β . (4.60)

This concludes the proof of Theorem 4.3.



366

4.4 Solution to the original problem

In this section, we conclude the proof of Theorem 2.3. Namely, we costruct a solution
(µ, φ, S) by letting λ tend to zero in the approximating problem. From (4.59)–(4.60) and
the boundedness of P (which implies P ≤ c P 1/2), we derive the following estimate:

∥µλ∥H1(0,T ;V −ρ
A )∩L∞(0,T ;H)∩L2(0,T ;V ρ

A) + ∥φλ∥H1(0,T ;H)∩L∞(0,T ;V σ
B )

+ ∥Sλ∥H1(0,T ;V −τ
C )∩L∞(0,T ;H)∩L2(0,T ;V τ

C ) + ∥P (φλ)(µλ − Sλ)∥L2(0,T ;H) ≤ cα,β . (4.61)

Therefore, by using the same arguments of the previous subsection and the generalized
Ascoli theorem, we deduce that (for some sequence λk ↘ 0)

µλ → µ weakly in H1(0, T ;V −ρ
A ) ∩ L2(0, T ;V ρ

A) and strongly in L2(0, T ;H),

φλ → φ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V σ
B ) and strongly in C0([0, T ];H),

Sλ → S weakly in H1(0, T ;V −τ
C ) ∩ L2(0, T ;V τ

C ) and strongly in L2(0, T ;H).

Similarly as before, we obtain the initial conditions, and we also have that

f2(φ
λ) → f2(φ) and P (φλ) → P (φ) strongly in L2(0, T ;H),

P (φλ)(Sλ − µλ) → P (φ)(S − µ) weakly in L2(0, T ;H) and strongly in L1(Q).

In particular, we can pass to the limit in (4.20) and (4.22) to obtain (2.31) and (2.33),
respectively. On the contrary, some more work has to be done for the equation for φ,
in particular to argue on the lim inf in the left-hand side of the inequality (4.21) or,
equivalently, (4.24). To this concern, we can show that∫

Ω

F1(φ(t)) ≤ lim inf
λ↘0

∫
Ω

F λ
1 (φ

λ(t)) for all t ∈ [0, T ]. (4.62)

Indeed, let us recall the definitions of the resolvent Jλ of f1 = ∂F1 and the Moreau-Yosida
approximation F λ

1 of F1, which are given by

Jλ := (I + λf1)
−1, F λ

1 (r) := min
s∈R

{
1
2λ

|s− r|2 + F1(s)
}
,

in order to point out the property (see, e.g., [2, Prop. 2.11, p. 39])

F λ
1 (r) = F1(Jλ(r)) +

1

2λ
|Jλ(r)− r|2 for all r ∈ R. (4.63)

Now, we know that φλ(t) converges to φ(t) in H as λ ↘ 0 and that
∫
Ω
F λ
1 (φ

λ(t)) is
nonnegative and bounded independently of λ, by virtue of (4.59) and (2.22). Then,
using the representation (4.63), it immediately follows that

∫
Ω
F1(Jλφ

λ(t)) is bounded
independently of λ and that also Jλφ

λ(t) converges to φ(t) in H as λ↘ 0. Hence, (4.62)
follows from the lower semicontinuity of the convex functional v 7→

∫
Ω
F1(v) in H. In

addition, this argument also entails that F1(φ) ∈ L∞(0, T ;L1(Ω)) and

0 ≤
∫
Q

F1(φ) ≤ lim inf
λ↘0

∫
Q

F λ
1 (φ

λ), (4.64)
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which ensures (2.30). At this point, since∫ T

0

(
Bσφ(t), Bσφ(t))

)
dt ≤ lim inf

λ↘0

∫ T

0

(
Bσφλ(t), Bσφλ(t))

)
dt

by the weak lower semicontinuity of the norm in L2(0, T ;H), it is sufficient to let λ tend
to zero in (4.24) in order to obtain (2.35). This concludes the proof of the existence of a
solution in the sense of Theorem 2.3; it remains to complete the proof of the estimates
(2.36)–(2.38) for the solution we have constructed.

In view of (4.59) and (2.22), we claim that

0 ≤
∫
Ω

(F (φ(t)) + C0) ≤ lim inf
λ↘0

∫
Ω

(
F λ
1 (φ

λ(t)) + F2(φ
λ(t)) + C0

)
≤ C

(
α1/2∥µ0∥+ ∥Bσφ0∥+ ∥F (φ0) + C0∥1 + ∥S0∥

)
(4.65)

for all t ∈ [0, T ]. Indeed, the first inequality in (4.65) is a consequence of (2.22) when
taking the limit as λ ↘ 0. Moreover, as, for all t ∈ [0, T ], φλ(t) converges to φ(t) in H
and F2 ∈ C1(R) has a Lipschitz continuous derivative (i.e., f2), using the Taylor formula
it is not difficult to verify that

F2(φ
λ(t)) → F2(φ(t)) strongly in L1(Ω).

Furthermore, the last term in (4.65) comes from the right-hand side of (4.59) as a con-
sequence of 0 ≤

∫
Ω
F λ
1 (φ0) ≤

∫
Ω
F1(φ0), and

∫
Ω
F1(φ0) if finite because of (2.26). Then,

(4.65) follows easily from (4.62).
Now, by (4.59), (4.65), and the weak or weak star lower semicontinuity of norms,

we easily obtain (2.36). As for (2.37), we find the right bound for the time derivative
∂t(αµ+ φ). We observe that (4.20) yields for every v ∈ L2(0, T ;V ρ

A) that∫ T

0

⟨∂t(αµλ + φλ)(t), v(t)⟩A, ρ dt

= −
∫ T

0

(
Aρµλ(t), Aρv(t)

)
dt+

∫ T

0

(
P (φλ(t))(Sλ(t)− µλ(t)), v(t)

)
dt

≤ ∥Aρµλ∥L2(0,T ;H) ∥Aρv∥L2(0,T ;H) +
(
supP 1/2

)
∥P 1/2(φλ)(Sλ − µλ)∥L2(0,T ;H) ∥v∥L2(0,T ;H)

≤
{
∥Aρµλ∥L2(0,T ;H) +

(
supP 1/2

)
∥P 1/2(φλ)(Sλ − µλ)∥L2(0,T ;H)

}
∥v∥L2(0,T ;V ρ

A) .

This, along with (4.59), provides the analogue of the desired estimate for ∂t(αµ
λ + φλ),

and the estimate for ∂t(αµ+ φ) follows immediately. Since the treatment of ∂tS is quite
similar, (2.37) is completely proved. Finally, to obtain (2.38), it suffices to remark that
the further assumption (2.24) we make implies that

∥φ∥2L∞(0,T ;V σ
B ) = ∥φ∥2L∞(0,T ;H) + ∥Bσφ∥2L∞(0,T ;H)

≤ 1

c1

(
∥F (φ)∥L∞(0,T ;L1(Ω)) + c2

)
+ ∥Bσφ∥2L∞(0,T ;H) ,

so that (2.36) plainly leads to the correct estimate (2.38). Then, Theorem 2.3 turns out
to be completely proved.
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5 Regularity

This section is devoted to establish further properties of the solution to problem (2.31)–
(2.34). Namely, we prove Theorems 2.5 and 2.6 as well as Corollary 2.7. We start with
the first of these results.

Proof of Theorem 2.5. The rigorous proof is based on a priori estimates for the
solution to the discrete problem obtained by first performing the discrete differentiation
of (4.30) and then suitably testing the resulting equality as well as (4.29) and (4.31),
and finally summing up. Since the details are rather heavy, we prefer to deal with the
approximating problem (4.20)–(4.23), directly, by taking into account that the use of the
regularity assumption (2.40) on the initial data would be essentially the same for the
rigorous procedure and the formal one.

We differentiate (4.21) with respect to time and test the resulting equality by ∂tφ
λ.

At the same time, we test (4.20) and (4.22) by ∂tµ
λ and ∂tS

λ, respectively. Then, we
sum up and integrate over (0, t). The terms involving the product ∂tφ

λ ∂tµ
λ cancel each

other, and we obtain

α

∫
Qt

|∂tµλ|2 + 1

2
∥Aρµλ(t)∥2

+
β

2
∥∂tφλ(t)∥2 +

∫ t

0

∥Bσ∂tφ
λ(t)∥2 +

∫
Qt

(fλ
1 )

′(φλ)|∂tφλ|2

+

∫
Qt

|∂tSλ|2 + 1

2
∥CτSλ(t)∥2

= −
∫
Qt

f ′
2(φ

λ)|∂tφλ|2 + 1

2
∥Aρµ0∥2 +

β

2
∥∂tφλ(0)∥2 + 1

2
∥CτS0∥2

+

∫
Qt

P (φλ)
[
(Sλ − µλ)∂tµ

λ − (Sλ − µλ)∂tS
λ
]
. (5.1)

All of the terms on the left-hand side are nonnegative, and the first one on the right-hand
side is estimated by a constant proportional to 1/β, due to (4.59). Moreover, the last
integral, which we denote by I for brevity, can be dealt with by using the Young inequality
and (4.59):

I ≤ c

∫
Qt

|(Sλ − µλ)∂tµ
λ|+ c

∫
Qt

|(Sλ − µλ)∂tS
λ|

≤ α

2

∫
Qt

|∂tµλ|2 + 1

2

∫
Qt

|∂tSλ|2 + c

(
1

α
+ 1

)∫ t

0

(
∥Sλ(s)∥2 + ∥µλ(s)∥2

)
ds ,

≤ α

2

∫
Qt

|∂tµλ|2 + 1

2

∫
Qt

|∂tSλ|2 + cα. (5.2)

It remains to deal with the H-norm of ∂tφ(0). To this end, we observe that (4.25) yields

β ∂tφ
λ(0) = µ0 −B2σφ0 − fλ

1 (φ0)− f2(φ0) ,

whence (see (2.40) and (4.19))

∥∂tφλ(0)∥ ≤ 1

β

(
∥µ0∥+ ∥φ0∥B,2σ + ∥f ◦

1 (φ0)∥+ c(∥φ0∥+ 1)
)
≤ cβ .
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Therefore, if we come back to (5.1) and account for (5.2) and the estimate (4.61) of the
previous section, we see that we have proved that

∥µλ∥H1(0,T ;H)∩L∞(0,T ;V ρ
A) + ∥φλ∥W 1,∞(0,T ;H)∩H1(0,T ;V σ

B ) + ∥S∥H1(0,T ;H)∩L∞(0,T ;V τ
C ) ≤ cα,β .

Since (µλ, φλ, Sλ) converges to (µ, φ, S) as shown in the previous section, the above es-
timate implies many of the regularity properties stated in (2.42)–(2.44). Indeed, by ac-
counting for what we have already shown in the first part, we see that just the conditions
µ ∈ L2(0, T ;V 2ρ

A ) and S ∈ L2(0, T ;V 2τ
C ) are missing. But these properties immediately

follow by comparison in the equations (2.31) and (2.33). This concludes the proof.

Proof of Theorem 2.6. In contrast to the proof of Theorem 2.5, we here use a com-
pletely rigorous argument since the details are not complicated. However, a remark is
necessary. We recall that the assumption (2.17) on the spaces V ρ

A and V τ
C is not required

in the statement, so that uniqueness is neither ensured for problem (2.31)–(2.34) nor for
the approximating problem. Hence, we have to be precise. Namely, we fix any solution
(µ, φ, S) that can be obtained by the procedure adopted in Section 4 and prove both its
further regularity and the existence of some ξ satisfying the conditions of the statement
if (2.41) is fulfilled. Thus, the interpolants of the discrete solution converge as h tend to
zero (along a suitable subsequence) to some solution to the approximating problem, which
converges as λ tends to zero (along a subsequence) to the solution we have chosen. So,
coming back to the discrete problem (4.27)–(4.31), we multiply (4.30) by fλ

1 (φ
n+1). We

notice that fλ
1 (φ

n+1) ∈ H, due to (2.41) with v = φn+1 and ψ = fλ
1 , since φn+1 ∈ V 2σ

B ,
and because fλ

1 is monotone and Lipschitz continuous and vanishes at the origin. We
obtain

β

h

(
φn+1 − φn, fλ

1 (φ
n+1)

)
+
(
B2σφn+1, fλ

1 (φ
n+1)

)
+ ∥fλ

1 (φ
n+1)∥2

=
(
µn+1 − f2(φ

n+1) + L(φn − φn+1), fλ
1 (φ

n+1)
)
. (5.3)

For the first term on the left-hand side, we use the convexity in this way:(
φn+1 − φn, fλ

1 (φ
n+1)

)
≥

∫
Ω

F λ
1 (φ

n+1)−
∫
Ω

F λ
1 (φ

n) .

The second term of (5.3) is nonnegative by assumption (2.41). Finally, the right-hand
side is estimated by owing to the Young inequality and to the linear growth of f2 given
by its Lipschitz continuity. Namely, we have that(

µn+1 − f2(φ
n+1) + L(φn − φn+1), fλ

1 (φ
n+1)

)
≤ 1

2
∥fλ

1 (φ
n+1)∥2 + c (∥µn+1∥2 + ∥φn+1∥2 + ∥φn − φn+1∥2 + 1) .

Therefore, combining with (5.3), rearranging, multiplying by h, and summing up with
respect to n = 0, . . . , N − 1, we deduce that

β

∫
Ω

F λ
1 (φ

N) +
1

2

N−1∑
n=0

h ∥fλ
1 (φ

n+1)∥2

≤ β

∫
Ω

F λ
1 (φ0) + c

(N−1∑
n=0

h ∥µn+1∥2 +
N−1∑
n=0

h ∥φn+1∥2 +
N−1∑
n=0

h ∥φn − φn+1∥2
)
.
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Since the first term on the left-hand side is nonnegative, the above inequality and the
second inequality in (4.18) imply the following estimate for the interpolants:

∥fλ
1 (φh)∥2L2(0,T ;H) ≤ β

∫
Ω

F1(φ0) + c
(
∥µh∥2L2(0,T ;H) + ∥φh∥2L2(0,T ;H) + ∥φh − φ

h
∥2L2(0,T ;H)

)
.

By recalling (2.26) for φ0 and the estimates (4.43)–(4.44), we conclude that

∥fλ
1 (φh)∥L2(0,T ;H) ≤ cα,β .

Since φh → φλ strongly in L2(0, T ;H) (see (4.57)) and fλ
1 is Lipschitz continuous, we

infer that
∥fλ

1 (φ
λ)∥L2(0,T ;H) ≤ cα,β .

Moreover, φλ converges to φ strongly in L2(0, T ;H). Therefore, by using weak compact-
ness and applying, e.g., [1, Lemma 2.3, p. 38], we conclude that

fλ
1 (φ

λ) → ξ weakly in L2(0, T ;H), for some ξ with ξ ∈ f1(φ) a.e. in Q.

At this point, we can let λ tend to zero in the integrated version (4.25) and deduce that

β

∫ T

0

(
∂tφ(t), v(t)

)
dt+

∫ T

0

(
Bσφ(t), Bσv(t)

)
dt+

∫ T

0

(
ξ(t) + f2(φ(t), v(t)

)
dt

=

∫ T

0

(
µλ(t), v(t)

)
dt for every v ∈ L2(0, T ;V σ

B ).

This variational equation is equivalent to

β ∂tφ+B2σφ+ ξ + f2(φ) = µ a.e. in (0, T ) in the sense of V −σ
B ,

and this implies both (2.45) and (2.46). In order to prove the last sentence, it suffices to
recall that the embedding properties (2.17) ensure uniqueness for the solution (µ, φ, S).
Hence the uniqueness of ξ simply follows by comparison in (2.46).

Proof of Corollary 2.7. The assumptions of the statement guarantee that the solution
(µ, φ, S) is unique and that there exists a unique ξ satisfying the properties stated in
Theorem 2.6. In particular, by the above proofs, the (unique) solution (µλ, φλ, Sλ) to
the approximating problem and the corresponding fλ

1 (φ
λ) converge to (µ, φ, S) and to ξ,

respectively, in the proper topologies. Moreover, as fλ
1 satisfies the same assumptions as

those we have postulated for f1, we can apply Theorem 2.6 to the approximating problem.
Hence, φλ belongs to L2(0, T ;V 2σ

B ), and (4.21) can be replaced by the equation

B2σφλ(t) + fλ
1 (φ

λ(t)) = µλ(t)− β ∂tφ
λ(t)− f2(φ

λ(t)) for a.a. t ∈ (0, T ). (5.4)

For a while, we argue for a fixed t (a.e. in (0, T )). We multiply (5.4) by fλ
1 (φ(t)) ∈ H.

Since φλ(t) ∈ V 2σ
B and fλ

1 is monotone, Lipschitz continuous, and vanishes at the origin,
we can apply (2.41) and have that(

B2σφλ(t), fλ
1 (φ

λ(t))
)
≥ 0 .

Therefore, we obtain the inequality

∥fλ
1 (φ

λ(t))∥ ≤ ∥µλ(t)− β ∂tφ
λ(t)− f2(φ

λ(t))∥ .
Since µλ−β ∂tφλ−f2(φλ) is bounded in L∞(0, T ;H) by (4.59), the same is true for fλ

1 (φ
λ).

By comparison in (5.4), we deduce that B2σφλ is bounded as well. Hence, it immediately
follows that B2σφ ∈ L∞(0, T ;H), whence also ξ ∈ L∞(0, T ;H) by comparison in (2.46).
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