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1 Introduction

We investigate the existence of weak solutions to a system of partial differential equations
coupling chemical reaction, momentum transfer and diffusion, cast in the framework of
mixture theory [5]. For simplicity, we restrict ourselves to a model with a single non-
reversible chemical reaction in a one-dimensional bounded spatial domain [0, 1] enclosed
by unlimited (or instantly replenished) reservoirs of the reacting chemicals. The chemical
reaction is of the N+1-to-1-type with the reacting chemicals consisting out of N solids and
a single fluid, while the produced chemical is a solid. New mathematical challenges arise
due to the strong nonlinear coupling between all unknowns and their transport fluxes.
Evolution systems, in which chemical reactions, momentum transfer, diffusion and stresses
interplay, thereby satisfying the balances of masses and forces occur in physical systems
or biological processes; see e.g. [7, 11, 15, 25]. Here, the interest lies in capturing the in-
teractions between flows, deformations, chemical reactions and structures. Such a system
is, for instance, used in biology to better understand and eventually forecast plant growth
and plant development [25], and in structural engineering to describe ambiental corrosion,
for example sulfate attack in sewer pipes [15], in order to increase the durability of an
exposed concrete sample. Our initial interest in this topic originates from mathematical
descriptions of sulfate corrosion [4]. The mathematical techniques used for a system de-
scribing sulfate attack - when within a porous media (concrete) sulfuric acid reacts with
slaked lime to produce gypsum - could be equally well applied to systems sharing similar
features (e.g. types of flux couplings and nonlinearities).

At a general level, the system outlined in this paper is a combination of parabolic equations
of diffusion-drift type with production terms by chemical reactions and pseudo-parabolic
stress equations containing elastic and viscoelastic terms. On their own, both parabolic
equations, cf. [13, 21, 22], and pseudo-parabolic equations, see [3, 14, 16, 27, 28, 31],
are well understood from mathematical and numerical analysis perspectives. However,
coupling these objects leads to systems of equations with a less understood structure.
Many systems in the literature seem similar to ours at a first glance. A coupling resem-
bling our case appears in [1], but with different nonlinear terms due to the combination of
Navier-Stokes and Cahn-Hilliard systems. Other systems do not use chemical reactions or
diffusion like in [7], where multi-dimensional Navier-Stokes-like stress equations are used;
refer to a composite domain situation [11]; do not use stress equations [15]; or contain a
hyperbolic stress equation [25].

We investigate in this paper the simplest case: a one-dimensional bounded domain. The
one-dimensional setting allows one to control the nonlinearities by relying on the em-
bedding H1 ↪→ L∞. In higher-dimensions, this embedding does not hold, and hence,
nonlinearities become difficult to control.
The main target here is to probe the parameter region for which the system is weakly
solvable. To this aim we search for explicit expressions of a priori parameter-dependent
bounds. These bounds delimit the parameter region where the existence of our concept
of weak solutions holds. Our numerical simulations show that the existence region is
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actually larger.

In Section 2 we introduce our mathematical model together with a set of assumptions
based on which the existence of weak solutions can be proven. In Section 3 we present
two theorems: the main existence theorem for the continuous-time system with certain
physical constraints and an auxilliary existence theorem for the time-discretized version of
the system. In Section 4 we prove the auxilliary existence theorem and, then, in Section 5
we prove the main existence theorem by using the auxilliary existence theorem. In Section
6, we validate numerically the existence of solutions and, additionally, we show numeri-
cally that the assumptions seem to be more restrictive than necessary. Moreover, we show
in what manner the existence of weak solutions depends on certain crucial parameters.

2 Formulation of the model equations

Consider a 1-d body, modeled as a d-component (d ≥ 2) mixture of (d − 1) solid com-
ponents and one fluid component. The body will deform under the action of chemical
reactions. This process is described by a system of partial differential equations (PDEs)
and initial and boundary conditions.
We define our system on a time-space domain [0, T ]× [0, 1], where T is the not yet deter-
mined final time of the process. The unknowns of our system are two vector functions,
φ : ([t0, T ] × [0, 1])d → Rd and w : ([t0, T ] × [0, 1])d−1 → Rd−1, and two scalar functions
v : [0, T ] × [0, 1] → R and W : [0, T ] → R denoting respectively the volume fractions of
the d chemical components active in a target chemical reaction, the displacements of the
solid mixture components with respect to the initial domain as reference coordinate sys-
tem, the velocity of the fluid, and the domain size. We identify the different components
of the vectors with the different chemicals and use the following notation convention: The
subscript 1 is related to the produced chemical, the subscript d is related to the fluid, all
other subscripts are related to the remaining solid chemicals.
The time evolution of the unknowns is described by the following system of coupled partial
differential equations: For l ∈ L = {1, . . . , d − 2, d}, the index of the reacting chemicals,
and m ∈M = {1, . . . , d− 1}, the index of the solid chemicals, we have

∂tφl − δl∂2
zφl + Il(φ)∂z (Γ(φ)v) +

∑
m∈M

1∑
i,j=0

∂iz
(
Blijm(φ)∂jtwm

)
= Gφ,l(φ), (1a)

∂z (Γ(φ)v) +
∑
m∈M

1∑
j=0

∂z
(
Hjm(φ)∂jtwm

)
= Gv(φ), (1b)

∂twm −Dm∂
2
zwm − γm∂2

z∂twm + Fm(φ)v (1c)

+
∑
j∈M

1∑
i+n=0
i,n≥0

∂z
(
Eminj(φ)∂iz∂

n
t wj

)
= Gw,m, (φ)



276

with constants δl, Dm, γm ∈ R+ and functions Il, Γ, Blijm, Hjm, Fm, Eminj, Gφ,l, Gv,
Gw,m that are actually products of functions fi(·) ∈ C1([0, 1]), satisfying

f(φ) =
d∏
i=1

fi(φi). (2)

Furthermore, we abuse notation with ‖f(·)‖C1([0,1])d ≤ f ∈ R+ for reducing the amount
of constants.

Physically, Equation (1a) can be interpreted as a generalized reaction-diffusion-advection
equation obtained from a mass balance law, Equation (1b) can be interpreted as a trans-
port equation indicating the consequences of retaining incompressibility, and Equation
(1c) is a pseudo-parabolic equation obtained from a generalized momentum balance law.
Note that the system (1a) - (1c) must satisfy the constraint

∑d
l=1 φl = 1, the fundamental

equation of fractions, which allowed for the elimination of φd−1.
We assume the volume fractions are insulated at the boundary: ∂zφ = 0 at z = 0 and
z = 1. The boundary at z = 0 is assumed to be fixed, while the boundary at z = 1
has a displacement W (t) = h(t)− 1, where h(t) is the height of the reaction layer at the
present time t and h(0) = 1. The Rankine-Hugoniot relations, see e.g. [23], state that the
velocity of a chemical at a boundary is offset from V0 = 0 or V1 = ∂tW (t), the velocity of
the boundary at z = 0 or z = 1, respectively, by influx or outflux of this chemical, i.e.

at z = 0 and z = 1 hold

{
φm (V0,1 − ∂twm) · n̂ = ĴmL (φm,res − φm)

φd (V0,1 − v) · n̂ = ĴdL (φd,res − φd)
(3)

with Ĵd, Ĵm ≥ 0 for m ∈ M, φd,res, φm,res ∈ [0, 1] for m ∈ M and
∑d

j=1 φl,res = 1. We
assume L(·), the concentration jump across the boundary, to have the semi-permeable
form L(f) := f+, the positive part of f . Furthermore, we assume all chemicals have only
one reservoir. The fluid chemical reservoir is assumed to be at z = 1: φd,res ≥ 0 at z = 1,
φd,res = 0 at z = 0. The solid chemical reservoirs are assumed to be at z = 0: φm,res = 0
at z = 1, φm,res ≥ 0 at z = 0 for m ∈M. We generalize the Rankine-Hugoniot relations
by replacing φm with H1m(φ) and φd with Γ(φ) in Equation (3).
The influx due to the Rankine-Hugoniot relations shows that the displacement wm|z=1

will not be equal to the boundary displacement W (t). This will result in stresses, which
we incorporate within a Robin boundary condition at these locations [24, Section 5.3].
Collectively for all t ∈ [0, T ], these boundary conditions are, for m ∈M, l ∈ L, given by{

∂zφl|z=0 = 0,
∂zφl|z=1 = 0,

(4a)
H1m(φ)∂twm|z=0 = ĴmL (φm,res − φm|z=0) ,

∂zwm|z=1 = Am (wm|z=1 −W (t)) ,
v|z=0 = 0,

Γ(φ) (∂tW (t)− v)|z=1 = ĴdL (φd,res − φd|z=1) ,

(4b)

where Am ∈ R. Additionally there are positive lower bounds for Γ(φ) and all H1m:
Γα := inf

φ∈Idα
Γ(φ) > 0 and Hα := min

m∈M
inf
φ∈Idα

H1m(φ) > 0, with Iα = (α, 1 − (d − 1)α) for
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all 0 < α < 1/d. It is worth noting, that in the limit |Am| → ∞ one formally obtains
Dirichlet boundary conditions.
The initial conditions describe a uniform and stationary equilibrium solution at t = 0:

φl(0, z) = φl0 and wm(0, z) = 0 for all z ∈ [0, 1] and W (0) = 0. (5)

Note that v(0, z) ∈ H1(0, 1) needs not to be specified as v(0, z) follows from Equations
(1b), (1c), and (4a) on {0} × (0, 1).
The system of PDEs including initial and boundary conditions described above is called
the continuous-time system for later reference in this paper.

3 Main existence result

Introduce φmin ∈ (0, 1 − C1,0(d − 1)/d]. Moreover, C1,0, the optimal Sobolev constant of
the embedding H1(0, 1) ⊂ C0[0, 1], is given by C1,0 = coth(1), see [33].
We assume that the following set of restrictions are satisfied.

Assumption 1.
We assume the parameters of the continuous-time system to satisfy:

(i) δl > 0,

(ii) |Am| < 1,

(iii) E2
m01j <

4
9(d−1)2 min{3/5, γm(1− |Am|)}min{3, γj(1− |Aj|)},

(iv) 4Γ(φ0)2 > (5d− 4)2Fm(φ0)2H1j(φ0)2,

(v) φi0 ≥ φmin and
∑

i 6=ĩ φi0 <
1−φmin

C1,0
for all 1 ≤ ĩ ≤ d, while

∑d
i=1 φi0 = 1,

(vi) (3d− 2)(5d− 4)γjA
2
j < 1,

(vii) 4γj > (3d− 2)(5d− 4)H1m(φ0)2/Γ(φ0)2

for all j,m ∈M, all l ∈ L, and all i ∈ {1, . . . , d}.
Additionally, we assume that the parameters are such that there exist positive constants
ηm1, ηm2, ηm01j1, ηm01j2 > 0 for j,m ∈M satisfying

(viii) C1m = 1−
∑
j∈M

Ej01m
ηj01m1

2
> 0,

(ix) C2m = γm(1−|Am|)−
ηm1+ηm2

2
− 1

2

∑
j∈M

(
Em01j

ηm01j1

+
Em01j

ηm01j2

+Ej01mηj01m2

)
> 0,

(x)
7d− 5

Γ2
φmin

max
m∈M

{
H2

1m

C2m

} ∑
m∈M

(
γ2
m|Am|2

2ηm1

+
F 2
m

2ηm2

)
< 1

for all m ∈M.
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Note, conditions (i), (ii), (viii) and (ix) are necessary conditions for coercivity in order
to obtain a-priori estimates. Conditions (iii), (iv), (vi) and (vii) are necessary conditions
for coercivity of a special system in Appendix A for the existence of a special physical
v0. Condition (v) guarantees the physical condition φk ∈ (φmin, 1 − (d − 1)φmin)d, while
condition (x) guarantees boundedness of ‖v‖L2(0,T ;H1(0,1)).

Accepting Assumption 1, we can now formulate the main result of this paper.

Theorem 1.
Let d ∈ {2, 3, 4} and let the parameters satisfy Assumption 1. Then there exist constants
T > 0 and V > 0 and functions

φl ∈ L2(0, T ;H2([0, 1])) ∩ L∞(0, T ;H1(0, 1)) ∩ C0([0, T ];C0[0, 1])

∩H1(0, T ;L2(0, 1)),

v ∈ L2(0, T ;H1(0, 1)),

wm ∈ L∞(0, T ;H2(0, 1)) ∩ C0([0, T ];C1[0, 1]) ∩H1(0, T ;H1(0, 1)),

W ∈ H1(0, T ),

for all l ∈ L, m ∈ M such that (φ1, . . . , φd−2, φd, v, w1, . . . , wd−1,W ) satisfies the weak
version of the continuous system (1a)-(1c), (4a), (4b), and (5), such that

(I) ‖v‖L2(0,T ;L2(0,1)) ≤ V ,

(II) ‖∂zv‖L2(0,T ;L2(0,1)) ≤ V ,

(III) min
1≤l≤d

min
t∈[0,T ]

min
z∈[0,1]

φl(t, z) ≥ φmin with φd−1 = 1−
∑
l∈L

φl.

The proof of this theorem is given in Section 5, and consists out of the following three
steps.

Step 1.
First, we assume conditions (I), (II), and (III) to hold. We discretise the continuous-time
system in time with a regular grid of step size ∆t, and apply a specific Euler scheme. This
is the so-called Rothe method, see [18, 29]. Our chosen discretization is such that the
equations become linear elliptic equations with respect to evaluation at time slice {t = tk}
and only contain evaluations at time slices {t = tk} and {t = tk−1}. The time derivative
∂tu is replaced with the standard first order finite difference Dk∆t(u) := (uk − uk−1)/∆t,
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where we use the notation uk(z) := u(tk, z). The discretised system has the form

Dk∆t(φl)− δl∂2
zφ

k
l + Il(φ

k−1)∂z
(
Γ(φk−1)vk−1

)
(8a)

+
∑
m∈M

1∑
i=0

∂iz
(
Bli0m(φk−1)wk−1

m +Bli1m(φk−1)Dk∆t(wm)
)

= Gφ,l(φ
k−1),∑

m∈M
∂z
(
H0m(φk−1)wk−1

m +H1m(φk−1)Dk∆t(wm)
)

(8b)

+∂z
(
Γ(φk−1)vk

)
= Gv(φ

k−1),

Dk∆t(wm)−Dm∂
2
zw

k
m − γm∂2

zDk∆t(wm) + Fm(φk−1)vk−1 (8c)

+
∑
j∈M

1∑
i=0

∂z
(
Emi0j(φ

k−1)∂izw
k−1
j + Em01j(φ

k−1)Dk∆t(wj)
)

= Gw,m(φk−1),

with initial conditions Equation (5) and boundary conditions (3), (4a), and (4b) become:{
∂zφ

k
l

∣∣
z=0

= 0,
∂zφ

k
l

∣∣
z=1

= 0,
(9a)

H1m(φk−1|z=0)Dk∆t(wm)
∣∣
z=0

= ĴmL
(
φm,res − φk−1

m

∣∣
z=0

)
∂zw

k
m

∣∣
z=1

= Am
(
wkm
∣∣
z=1
−W k

)
vk
∣∣
z=0

= 0

Γ
(
φk−1|z=1

) (
Dk∆t(W )− vk−1

)∣∣
z=1

= ĴdL
(
φd,res − φk−1

d

∣∣
z=1

)
,

(9b)

for l ∈ L and m ∈M, with the notation W k := W (tk).
For convenience, we refer to the discretised system (8a)-(8c), (9a), and (9b) as the discrete-
time system.
A powerful property of this discrete-time system is its sequential solvability at time tk:
the existence of a natural hierarchy in attacking this problem. First, we obtain results
for Equation (8c), then we use these results to obtain results for both Equations (8a) and
(8b). Moreover, the structure of the discrete-time system is that of an elliptic system.
Hence, the general existence and uniqueness theory for elliptic systems can be extended
directly to cover our situation. One can either apply standard results from ordinary
differential equations (ODEs), cf. [26, p.130], or from elliptic theory, cf. Chapter 6 in
[13], since the discrete-time system at each time slice {t = tk} can be put into the form
A(uk, vk) = F k−1vk with A a continuous coercive bilinear form and F k−1 a continuous
operator depending on the previous time slice {t = tk−1} allowing Lax-Milgram to be
applied. We take the elliptic theory option.

Step 2.
We prove Theorem 2, the discretized version of Theorem 1, in Section 4 by testing the
time-discrete system with specific test functions such that we obtain quadratic inequali-
ties by using conditions (I), (II) and (III). By application of Young’s inequality and using
Gronwall-like lemmas we obtain energy-like estimates, which are step size ∆t-independent
upper bounds of the Sobolev norms of the weak solutions. These bounds allow for weakly
convergent sequences in ∆t small parameter. Moreover, the upper bounds of the energy-
like estimates are monotonically increasing functions of T and V , the parameters used in
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(I), (II) and (III). With these upper bounds, we test whether or not the conditions (I),
(II) and (III) can be satisfied: the consistency check of our assumption. This leads to the
conditions of Assumption 1 to guarantee overlapping regions in (T, V )-space for which
Theorem 2 holds for ∆t small enough, including the conditions (I), (II) and (III). Since
T > 0 and V > 0 only have to exist, it is sufficient to find a non-empty intersection of all
the overlapping regions.

Theorem 2.
Let d ∈ {2, 3, 4} and let the parameters satisfy Assumption 1, then there exist T > 0,
V > 0, τ̂ > 0 and C > 0 independent of ∆t such that for all 0 < ∆t < τ̂ there exists
a sequence of functions (φk1, . . . , φ

k
d−2, φ

k
d, v

k, wk1 , . . . , w
k
d−1,W

k) for 0 ≤ tk ≤ T satisfying
the weak version of the discrete-time system given by Equations (8a)-(8c), (9a), (9b), and
(5) as well as the following a priori bounds

k∑
j=0

∥∥∂zvj∥∥2

L2(0,1)
∆t,

k∑
j=0

∥∥vj∥∥2

L2(0,1)
∆t ≤ V 2,

min
1≤l≤d

min
z∈[0,1]

φkl (z) ≥ φmin,∥∥φk1∥∥H1(0,1)
, . . . ,

∥∥φkd∥∥H1(0,1)
≤ C,

k∑
j=1

∥∥φj1∥∥2

H2(0,1)
∆t, . . . ,

k∑
j=1

∥∥φjd∥∥2

H2(0,1)
∆t ≤ C,

k∑
j=1

∥∥Dk∆t(φj1)
∥∥2

L2(0,1)
∆t, . . . ,

k∑
j=1

∥∥Dk∆t(φjd)∥∥2

L2(0,1)
∆t ≤ C,∥∥wk1∥∥H2 , . . . ,

∥∥wkd−1

∥∥
H2(0,1)

≤ C,
k∑
j=1

∥∥Dk∆t(wj1)
∥∥2

H1(0,1)
∆t, . . . ,

k∑
j=1

∥∥Dk∆t(wjd−1)
∥∥2

H1(0,1)
∆t ≤ C,

∣∣W k
∣∣ , k∑

j=1

∣∣Dk∆t(W )
∣∣2 ∆t ≤ C,

for all 0 ≤ tk ≤ T , where φkd−1 = 1−
∑

l∈L φ
k
l .

Step 3.
We introduce temporal interpolation functions û(t) = uk−1 + (t− tk−1)Dk∆t(u) on [t0, T ]×
[0, 1]. Then we use Theorem 2 to show that the interpolation functions are measurable,
bounded and converge weakly. With the Lions-Aubin-Simon lemma, see [8, 10], in com-
bination with the Rellich-Kondrachov theorem, see [2, p.143] and [6], we show strong
convergence as well. The proof concludes by showing that the weak solution of the time-
discrete system converges to a weak solution of the continuous-time system.
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4 Proof of Theorem 2

The proof of Theorem 2 is done in three steps. First, energy bounds are obtained by as-
suming there exist φmin > 0, V > 0 and T > 0 for which the three inequalities of Theorem
2 hold.∗ Second, we apply two discrete variants of Gronwall’s inequality to the quadratic
inequalities to obtain a-priori estimates independent of ∆t. Lastly, we show that φmin > 0,
V > 0 and T > 0 can be chosen if Assumption 1 is satisfied by the parameters of the
continuous-time system.

Before we can do these three steps, we must show that the discrete-time system is well-
posed. We do this iteratively in k, such that the solution of time slice tk−1 implies the
well-posedness of the solution of time slice k. Since the initial conditions (5) are smooth
and v0 follows from a second order system, we obtain the well-posedness for all tk ∈ [0, T ].
In more detail see Appendix A.

We obtain the weak form of the discrete-in-time system by multiplying the model equa-
tions with a function in H1(0, 1), integrating over (0, 1) and applying the boundary con-
ditions where needed. We test Equation (8a) with φkl and Dk∆t(φl), and Equation (8c)
with wkm and Dk∆t(wm) to obtain the quadratic inequalities below:

Dk∆t

(∑
m∈M
‖wm‖2

L2 + a1m‖∂zwm‖2
L2

)
+
∑
m∈M

[
a2m(∆t)

∥∥Dk∆t(wm)
∥∥2

L2 + a3m(∆t)
∥∥Dk∆t (∂zwm)

∥∥2

L2

]
≤ a4 +

∑
m∈M

[
a5m‖wkm‖2

L2 +a6m‖∂zwkm‖2
L2 +a7m‖wk−1

m ‖2
L2 +a8m‖∂zwk−1

m ‖2
L2

+a9m

∥∥Dk∆t(wm)
∥∥2

L2 +a10m

∥∥Dk∆t(∂zwm)
∥∥2

L2

]
+ a11‖vk−1‖2

L2 + a12‖∂zvk−1‖2
L2 , (11)

∗We would like to point out that for a given time T , which is not defined as the size of the temporal
domain for which (I), (II), and (III) in Theorem 1 hold, the common procedure for applying the Rothe
method is the procedure as followed in [9], since one can choose sequences ∆t decreasing to 0 such that
T/∆t is an integer. However, in our case we cannot a-priori claim that T ≥ ∆t is satisfied or that T/∆t
is an integer. We shows that there is a delicate relation between T , V and ∆t and that a T > ∆t and
V > 0, both independent of ∆t, for sufficiently small ∆t can be chosen from a connected set of (T, V )
points for which (I) and (II) hold for all sufficiently small ∆t, especially for sequences ∆t such that T/∆t
is an increasing integer. Moreover, one can even choose (T, V )-points independent of ∆t such that (I),
(II), and (III) in Theorem 1 hold for all ∆t sufficiently small and T/∆t an increasing sequence of integers.
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for all l ∈ L

Dk∆t
(
‖φl‖2

L2

)
+ b1l‖∂zφkl ‖2

L2 + b2l (∆t)
∥∥Dk∆t(φl)∥∥2

L2

≤ b3l + b4l‖∂zvk−1‖2
L2 + b5l‖φkl ‖2

L2 +
∑
n∈L

[
b6ln‖∂zφk−1

n ‖2
L2

]
+
∑
m∈M

1∑
i=0

[
b7lim

∥∥∂izwk−1
m

∥∥2

L2 + b8lim

∥∥Dk∆t(∂izwm)
∥∥2

L2

]
, (12)

and

Dk∆t

(∑
l∈L
‖∂zφl‖2

L2

)
+
∑
l∈L

[
c1l

∥∥Dk∆t(φl)∥∥2

L2 + c2l(∆t)
∥∥Dk∆t (∂zφl)

∥∥2

L2

]
≤ c3 + c4‖∂zvk−1‖2

L2 +
∑
l∈L

[
c5l

∥∥Dk∆t(φl)∥∥2

L2 + ck6l‖∂zφk−1
l ‖

2
L2

]
+
∑
m∈M

1∑
i=0

[
c7im

∥∥∂izwk−1
m

∥∥2

L2 + c8im

∥∥Dk∆t(∂izwm)
∥∥2

L2

]
. (13)

For details of the derivation of these quadratic inequalities and the exact definition of the
’a’, ’b’, and ’c’-coefficients, see Appendix B.
For coercivity, which is needed to obtain bounds on ‖Dk∆t(wm)||H1 and ‖Dk∆t(φl)||L2 , we
need the conditions a2m(0)− a9m > 0, a3m(0)− a10m > 0 and c1l− c5l > 0. It follows that
these conditions can be satisfied by choosing the right values for the free parameters ηx if
conditions (viii) and (ix) of Assumption 1 are satisfied, which is only possible if conditions
(i), (ii) and (iii) of Assumption 1 are satisfied.

Before we make use of the quadratic inequalities (11), (12), and (13), we introduce two
versions of the discrete Gronwall lemma, see [12] and Theorem 4 in [17], which we modi-
fied slightly by using the inequalities 1/(1− a) ≤ ea+a2 ≤ e1.6838a for 0 ≤ a ≤ 0.6838, and
1 + a ≤ ea ≤ 1 + aea for a ≥ 0.

Lemma 1 (1st Discrete Gronwall lemma).
Suppose h ∈ (0, H). Let (xk), (yk+1) and (zk) for k = 0, 1, . . . be sequences in R+

satisfying

yk +
xk − xk−1

h
≤ A+ zk−1 +Bxk + Cxk−1 and

k−1∑
j=0

zjh ≤ Z (14)

for all k = 1, . . . with constants A,B,C and Z independent of h satisfying

A > 0, Z > 0, B + C > 0, and BH ≤ 0.6838,

then

xk ≤
(
x0 + Z + 1.6838Akh

)
e(C+1.6838B)kh and

k∑
j=1

yjh ≤
(
x0 + Z + Ahk

)
e(C+1.6838B)kh.
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Proof. We multiply Equation (14) with h and rewrite it to

(1−Bh)xk ≤ ykh+ (1−Bh)xk ≤ Ah+ zk−1h+
1 + Ch

1−Bh
(1−Bh)xk−1,

leading to the inequality below by making use of the partial geometric sum identity.

(1−Bh)xk ≤ (1−Bh)

(
1 + Ch

1−Bh

)k [
A

B + C
+

Z

1 + Ch
+ x0

]
− (1−Bh)

A

B + C

With 1 + a ≤ ea for a ≥ 0 and 1/(1− a) ≤ ea+a2 ≤ e1.6838a for 0 ≤ a ≤ 0.6838, we obtain
(1 + Ch)/(1 − Bh)≤ exp (Ch+Bh+B2h2)≤ exp (Ch+1.6838Bh), since 0≤Bh<BH ≤
0.6838. Together with ea − 1 ≤ aea for a ≥ 0, we see

xk ≤
[
A
C + 1.6838B

C +B
kh+ Z + x0

]
e(C+1.6838B)kh.

Multiplying Equation (14) with h and summing over k, we obtain

k∑
j=1

yjh ≤
k∑
j=1

yjh+ (1−Bh)xk ≤ Akh+ Z + x0 + (C +B)h
k−1∑
j=0

xj,

which with our newly obtained identity for xk and the partial geometric sum identity
yields

k∑
j=1

yjh ≤
[
Akh+ Z + x0

]
e(C+1.6838B)kh,

which concludes the proof.

Lemma 2 (2nd Discrete Gronwall lemma).
Let c > 0 and (yk), (gk) be sequences of positive numbers satisfying

yk ≤ c+
∑

0≤j<k
gjyj for k ≥ 0,

then

yk ≤ c exp

( ∑
0≤j<k

gj

)
for k ≥ 0.

We are now able to apply Lemma 1 and Lemma 2 to the quadratic inequalities (11),
(12), and (13). The result:

Lemma 3.
Let ∆t ∈ (0, H) with

H ≤ min

 0.6838

max
m∈M

{
a5m,

a6m

a1m

} , 0.6838

min
l∈L
{b5l}

 .
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There exist positive constants ãindex, d̃index, ẽindex and parameter functions a(T, V ), d0(T, V ),
d1(T, V ), d2(T, V ), e1(T, V ), and e2(T, V ) such that for all l ∈ L, for all m ∈M, and for
all tk ∈ [0, T ] the following estimates hold:

‖φkl ‖2
L2 ≤

(
φ2
l0+e2l(T, V )+e1l(T, V )T

)
e1.6838b5lT ,

1

d− 1
‖∂zφkd−1‖2

L2 ≤
∑
l∈L
‖∂zφkl ‖2

L2 ≤ d1(T, V )ed2(T,V ),

1

d− 1
‖φkd−1 − φd−1,0‖2

L2 ≤ T
d1(T, V )

(
1 + d2(T, V )ed2(T,V )

)
min
l∈L
{c1l − c5l}

,

k∑
j=1

∑
l∈L

(c1l − c5l)
∥∥Dj∆t(φl)∥∥2

L2 ∆t ≤ d1(T, V )
(
1 + d2(T, V )ed2(T,V )

)
,∑

m∈M
‖wkm‖2

L2 ≤ d0(T, V ),∑
m∈M

a1m‖∂zwkm‖2
L2 ≤ d0(T, V ),

k∑
j=1

∑
m∈M

(a2m(0)− a9m)
∥∥Dj∆t(wm)

∥∥2

L2∆t ≤ d0(T, V ),

k∑
j=1

∑
m∈M

(a3m(0)−a10m)
∥∥Dj∆t(∂zwm)

∥∥2

L2∆t ≤ d0(T, V ),

k∑
j=1

∣∣Dj∆t(W )
∣∣2 ∆t ≤ 2V 2 +

2Ĵ2
dφ

2
d,res

Γ2
φmin

T,

|W k|2 ≤

(
|W 0|+ Ĵdφd,res

Γφmin

T + V
√
T

)2

with

d0(T, V ) =
(
(a11 + a12)V 2 + 1.6838a4T

)
ed̃01T ,

d1(T, V ) = c3T + c4V
2 + (d̃11 + d̃12T )d0(T, V ),

d2(T, V ) =
∑
l∈L

c6l1V
2 + (d̃21 + d̃22T )d0(T, V ),

e1l(T, V ) = b3l + min
n∈L
{b6ln}d1(T, V )ed2(T,V ) + ẽ11d0(T, V ),

e2l(T, V ) = b4lV
2 + ẽ21d0(T, V ).

and with

d̃01 = max
m∈M

{
a7m,

a8m

a1m

}
+ 1.6838 max

m∈M

{
a5m,

a6m

a1m

}
d̃11 = max

m∈M

{
c80m

a2m(0)− a9m

+
c81m

a3m(0)− a10m

}
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d̃12 = max
m∈M

{
c70m +

c71m

a1m

}
d̃21 = max

m∈M

{ ∑
l∈L c6l3m

a2m(0)− a9m

+

∑
l∈L c6l3m

a3m(0)− a10m

}
d̃22 = max

m∈M

{∑
l∈L

c6l2m

(
1 +

1

a1m

)}
ẽ11 = max

m∈M

{
b7l0m +

b7l1m

a1m

}
ẽ21 = max

m∈M

{
b8l0m

a2m(0)− a9m

+
b8l1m

a3m(0)− a10m

}
Proof.
The conditions c5l < c1l, a9m < a2m(0) and a10m < a3m(0) are satisfied due to conditions
(i), (viii) and (ix) of Assumption 1, respectively. Apply Lemma 1 to Equation (11) in
order to obtain all four wk bounds.
For the bounds of φkd−1, we use

∑d
l=1 φ

k
l = 1 in two ways. First, we apply ∂z to this identity

and use |x|21 ≤ n|x|22 for x ∈ Rn to obtain the upper bound
∑

l∈L ‖∂zφkl ‖2
L2 . Second, we

subtract the same identity at time-slice t = 0 to obtain an upper bound in
∑

l∈L(φkl −φl,0)
and, then, apply again |x|21 ≤ n|x|22 for x ∈ Rn using the telescoping series for k to obtain
the upper bound k∆t

∑k
j=1

∑
l∈L ‖Dk∆t(φd−1)‖2

L2∆t.
All the φ-bounds now follow from applying Lemma 1 to Equation (12) and Lemma 2 to
Equation (13) and inserting the newly obtained wk bounds.
The use of the Gronwall inequalities are only allowed for ∆t small enough, as given by
the conditions for H in Lemma 1.

Remark: The a priori estimates in Lemma 3 depend on T > 0 and V > 0. We need to
prove that T > 0 and V > 0 can be chosen for ∆t > 0 small enough. On closer inspection,
we see that we can work with upper bounds only.

Lemma 4.
Let 0 ≤ tk = k∆t ≤ T . Let Pd be the set of cyclic permutations of (1, . . . , d). The

constraints φkl (z) ∈ [φmin,1 − (d − 1)φmin] for 1 ≤ l ≤ d,
k∑
j=0

‖vj‖2
L2∆t ≤ V 2, and

k∑
j=0

‖∂zvj‖
2
L2 ∆t ≤ V 2 are implied by

∑
j∈M

∥∥∥φkαj∥∥∥
H1
≤ 1− φmin

C1,0

for all α ∈ Pd and
k∑
j=0

∥∥∂zvj∥∥2

L2 ∆t ≤ V 2,

with C1,0 given by (ii) from Section 3.

Proof.
The boundary condition (9b) allows the application of the Poincaré inequality to vk, which
gives the bound ‖vj‖L2 ≤ ‖∂zvj‖L2 .
For the constraints on φkl we pick arbitrarily an α ∈ Pd and start with the inequality
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∑
j∈M

∥∥∥φkαj∥∥∥
H1
≤ (1− φmin)/C1,0. This inequality is transformed by the Sobolev embed-

ding theorem on [0, 1] into
∑

j∈M

∥∥∥φkαj∥∥∥
C0
≤ 1 − φmin. Hence, we obtain infz∈(0,1) φ

k
αd
≥

φmin from the volume fraction identity 1 =
∑

1≤l≤d φ
k
l . Since α was chosen arbitrarily,

we conclude that this result holds for all α ∈ Pd. Hence, min
1≤l≤d

inf
z∈(0,1)

φkl (z) ≥ φmin. With

the d infima established it yields that the d suprema follow automatically from the same
volume fraction identity.

We prove the simultaneous validity of the two inequalities of Lemma 4 with elementary
arguments based on the Intermediate Value Theorem (IVT) for the continuous functions
given as upper bounds in the inequalities of Lemma 3 having parameters T , V as variables.

Lemma 5.
Let 2 ≤ d ≤ C1,0/(C1,0 − 1) ≈ 4.194528, 0 < φmin ≤ 1 − C1,0(d − 1)/d and let φ0 =
(φ10, . . . , φd0)∈Φd(φmin,(1−φmin)/C1,0), where the set Φd(s, r) is defined as the non-empty
set of points (x1, . . . , xd) ∈ Rd satisfying

∑
j 6=i

xj < r for all 1 ≤ i ≤ d,

xi ≥ s for all 1 ≤ i ≤ d,

d∑
i=1

xi = 1.

Then there exist an open simply connected region S ⊂ R2 containing (0, 0) such that

(T, V ) ∈ S ⇒ Pα(T, V ) <
1− φmin

C1,0

for all α ∈ Pd,

(T, V ) ∈ ∂S ⇒ Pα(T, V ) ≤ 1− φmin

C1,0

for all α ∈ Pd,

(T, V ) /∈ S ⇒ Pα(T, V ) >
1− φmin

C1,0

for at least one α ∈ Pd,

where Pα(T, V ) denotes the upper bound of
∑

j∈M ‖φkαj‖H1 obtained from the a-priori
estimates of Lemma 3.

Proof.
First, we note that the set Φd(φmin, (1−φmin)/C1,0) is non-empty if the following inequal-
ities are satisfied

0 < (d− 1)φmin ≤
d− 1

d
<

1− φmin

C1,0

.

This is because (d− 1)φmin and (d− 1)/d are the minimal and the maximal value of the
sum

∑
j∈M xαj over all α ∈ Pd when minimizing for each α ∈ Pd over all (x1, . . . , xd)

satisfying min1≤i≤d xi ≥ φmin and
∑d

i=1 xi = 1. Hence, we obtain the inequalities

0 < φmin < 1− C1,0
d− 1

d
≤ 1

d
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for 2 ≤ d < C1,0/(C1,0 − 1) ≈ 4.194528 integer.
Second, from Lemma 3, Pα(T, V ) are monotonic increasing continuous functions with
respect to the product ordering on R2

+ for all α ∈ Pd. Therefore, there exists a simply
connected open set Sα such that Pα(T, V ) < (1−φmin)/C1,0 for all (T, V ) ∈ Sα. Moreover,
from Lemma 3 we deduce that Pα(0, 0) =

∑
j∈M φαj0 < (1 − φmin)/C1,0 for all α ∈ Pd,

which implies (0, 0) ∈ Sα for all α ∈ Pd. Thus S =
⋂
α∈Pd Sα is non-empty and satisfies

all the desired inequalities.

Lemma 6.
There exist a τ > 0 such that for all 0 < ∆t < τ there exists an open simply connected
region R∆t ⊂ R2 with the properties

(T, V ) ∈ R∆t ⇒ Q∆t(T, V ) < V 2,

(T, V ) ∈ ∂R∆t ⇒ Q∆t(T, V ) = V 2,

(T, V ) /∈ R∆t ⇒ Q∆t(T, V ) > V 2,

where Q∆t(T, V ) denotes the upper bound of
∑

tk∈[0,T ] ‖∂zvk‖2
L2∆t obtained from applying

the a-priori estimates of Lemma 3 to Equation (8b) and is given by

Q∆t(T, V ) = Q̃0∆t+ Q̃1T + (Q̃2 + Q̃3T )d0(T, V )

+ [Q̃4(T )T + (Q̃5 + Q̃6T )d0(T, V )]d1(T, V )ed2(T,V )

with Q̃0, Q̃1, Q̃2, Q̃3, Q̃4, Q̃5, Q̃6 > 0, if

1 > Q1 := Q̃2(a11 + a12) =
7d− 5

Γ2
φmin

max
m∈M

{
H2

1m

a3m(0)− a10m

}
(a11 + a12).

Moreover, the limit lim
∆t↓0
R∆t exists and is denoted by R0.

Proof.
We assume that ‖∂zv0‖2

L2∆t ≤ V 2 holds for a not yet determined value of V > 0. By

induction we will prove
∑k

j=0 ‖∂zvj‖2
L2∆t ≤ V 2 for the same value V > 0. By our as-

sumption this identity holds for k = 0.
Note, for all ∆t ≤ T we can choose any K such that K∆t ∈ [0, T ]. Thus, there are
sequences of ∆t decreasing to 0 such that T/∆t equals an integer for all ∆t in these se-
quences. Hence, the induction is valid for all k∆t = tk ∈ [0, T ] when 0 < ∆t < τ , where τ
has to be determined at a later stage. Remark, for ∆t > T we have

∑
tk∈[0,T ] ‖∂zvk‖2

L2∆t =

‖∂zv0‖2
L2∆t ≤ V 2 by assumption. In this case, the induction ends immediately at k = 0,

which is a reflection of the fact that the ∆t-sized temporal discretization is too coarse and
smaller ∆t should be chosen.
Thus for our induction step, we take 0 < k = K ≤ T/∆t for the case ∆t < T (a-priori
assumed to be valid, since T is not yet determined, but only defined.).
We integrate (8b) from 0 to z. This yields:

[
Γ(φk−1)vk

]z
0

=

∫ z

0

Gv(φ
k−1)dz −

[∑
m∈M

(
H0m(φk−1)wk−1

m +H1m(φk−1)Dk∆t(wm)
)]z

0

.
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Inserting the boundary conditions (9b) and using w0
m = 0 gives:

Γ(φk−1)vk =

∫ z

0

Gv(φ
k−1)dz −

∑
m∈M

(
H0m(φk−1)wk−1

m +H1m(φk−1)Dk∆t(wm)
)

+
∑
m∈M

(
H0m(φk−1

∣∣
z=0

)
k−1∑
K=1

ĴmL(φm,res − φKm
∣∣
z=0

)

H1m(φK |z=0)
∆t

+ĴmL(φm,res − φk−1
m

∣∣
z=0

)
)
.

Dividing both sides by Γ(φk−1) and then applying the derivative ∂z to both sides, leads
to the identity

∂zv
k = − 1

Γ(φk−1)2

(
d∑
i=1

∂Γi(φ
k−1
i )

∂φk−1
i

∂φk−1
i

∂z

∏
j 6=i

Γj(φ
k−1
j )

)
×

×

[∫ z

0

Gv(φ
k−1)dz −

∑
m∈M

(
H0m(φk−1)wk−1

m +H1m(φk−1)Dk∆t(wm)
)

+
∑
m∈M

(
H0m(φk−1

∣∣
z=0

)
k−1∑
K=1

ĴmL(φm,res − φKm
∣∣
z=0

)

H1m(φK |z=0)
∆t

+ĴmL(φm,res − φk−1
m

∣∣
z=0

)
)]

+
1

Γ(φk−1)

[
Gv(φ

k−1)−
∑
m∈M

(
H0m(φk−1)∂zw

k−1
m +H1m(φk−1)Dk∆t(∂zwm)

)
−
∑
m∈M

(
d∑
i=1

∂H0m,i(φ
k−1
i )

∂φk−1
i

∂φk−1
i

∂z

∏
j 6=i

H0m,j(φ
k−1
j )

)
wk−1
m

−
∑
m∈M

(
d∑
i=1

∂H1m,i(φ
k−1
i )

∂φk−1
i

∂φk−1
i

∂z

∏
j 6=i

H1m,j(φ
k−1
j )

)
Dk∆t(wm)

]
.

Recalling (2) for f(φk−1) and the notation ‖f(·)‖C1([0,1])d ≤ f , using Minkowski’s inequal-
ity, Hölder’s inequality, the embedding H1(0, 1) ↪→ L∞(0, 1) with optimal constant C1,0,
the definition of Γφmin

and Hφmin
,and the inequality |(x1, . . . , xn)|21 ≤ n|(x1, . . . , xn)|22 for
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(x1, . . . , xn) ∈ Rn, we obtain

‖∂zvk‖2
L2 ≤

d(7d− 5)Γ2

Γ4
φmin

d∑
i=1

‖∂zφk−1
i ‖2

L2×

×

[
G2
v + C2

1,0

∑
m∈M

(
H2

0m‖wk−1
m ‖2

H1 +H2
1m

∥∥Dk∆t(wm)
∥∥2

H1

)

+
∑
m∈M

(
H0m

Ĵmφm,res
Hφmin

T + Ĵmφm,res

)2


+
7d− 5

Γ2
φmin

[
G2
v +

∑
m∈M

(
H2

0m‖∂zwk−1
m ‖2

L2 +H2
1m

∥∥Dk∆t(∂zwm)
∥∥2

L2

)
+ dC2

1,0

∑
m∈M

H2
0m

d∑
i=1

‖∂zφk−1
i ‖2

L2‖wk−1
m ‖2

H1

+dC2
1,0

∑
m∈M

H2
1m

d∑
i=1

‖∂zφk−1
i ‖2

L2

∥∥Dk∆t(wm)
∥∥2

H1

]
.

Summing over k = 1 to k = K with K∆t ≤ T , multiplying by ∆t, and using the
inequalities of Lemma 3, we obtain

K∑
k=0

‖∂zvk‖2
L2∆t ≤ ‖∂zv0‖2

L2∆t+
7d− 5

Γ2
φmin

G2
vT

+
7d− 5

Γ2
φmin

[
max
m∈M

{
H2

1m

a3m(0)− a10m

}
+ max

m∈M

{
H2

0m

a1m

}
T

]
d0(T, V )

+
d2(7d− 5)

Γ2
φmin

 Γ2

Γ2
φmin

G2
v +

∑
m∈M

[
H0m

Ĵmφm,res
Hφmin

T + Ĵmφm,res

]2
T

+C2
1,0

(
1 +

Γ2

Γ2
φmin

)(
max
m∈M

{
H2

1m

a2m(0)− a9m

+
H2

1m

a3m(0)− a10m

}
+ max

m∈M

{
H2

0m +
H2

0m

a1m

}
T

)
d0(T, V )

]
d1(T, V )ed2(T,V )

= Q∆t(T, V ).

Hence, we can rewrite Q∆t(T, V ) as

Q∆t(T, V ) = Q̃0∆t+ Q̃1T + (Q̃2 + Q̃3T )d0(T, V )

+ [Q̃4(T )T + (Q̃5 + Q̃6T )d0(T, V )]d1(T, V )ed2(T,V ).
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This yields

Q∆t(0, V ) = Q̃0∆t+ Q̃2d0(0, V ) + Q̃5d0(0, V )d1(0, V )ed2(0,V )

= ‖∂zv0‖2
L2∆t+

7d− 5

Γ2
φmin

max
m∈M

{
H2

1m

a3m(0)− a10m

}
(a11 + a12)V 2

+
d2(7d− 5)C2

1,0

Γ2
φmin

(
1 +

Γ2

Γ2
φmin

)
max
m∈M

{
H2

1m

a2m(0)− a9m

+
H2

1m

a3m(0)− a10m

}
×

×(a11 + a12)
(
c4 + d̃11(a11 + a12)

)
V 4e(

∑
l∈L c6l1+d̃21(a11+a12))V 2

.

Hence, we have
Q∆t(0, V ) = Q0∆t+Q1V

2 +Q2V
4eQ3V 2

with

Q1 =
7d− 5

Γ2
φmin

max
m∈M

{
H2

1m

a3m(0)− a10m

}
(a11 + a12).

If Q1 < 1, then by the Intermediate Value Theorem there is a V ∗ ∈
(

0, 4

√
1−Q1

Q2Q3

)
for all

∆t > 0 such that

∂Q∆t(0, V )

∂(V 2)

∣∣∣∣
V=V ∗

= 1 > Q1 =
∂Q∆t(0, V )

∂(V 2)

∣∣∣∣
V=0

,

because ∂Q∆t(0, V )/∂(V 2) = Q1 +Q2V
2(2 +Q3V

2)eQ3V 2 ≥ Q1 +Q2Q3V
4.

Immediately we see that Q∆t(0, V
∗) < (V ∗)2 for 0 < ∆t < τ if we choose

τ = min

{
1−Q1

Q0

(
1− 1

2 +Q3(V ∗)2

)
(V ∗)2, H

}
,

where H denotes the upper bound of ∆t > 0 as found in Lemma 3. Moreover, for
0 < ∆t < τ we have the inequalities Q∆t(0, 0) > 0, Q∆t(0, V

∗) < (V ∗)2, and Q∆t(0, Ṽ ) >
Ṽ 2 = (1 − Q1)/Q2 > (V ∗)2 due to Q∆t(0, V ) > Q1V

2 + Q2V
4 for V > 0. Hence, by the

Intermediate Value Theorem, there exist V1,∆t ∈ (0, V ∗) and V2,∆t ∈ (V ∗, Ṽ ) such that
Q∆t(0, V1,∆t) = V 2

1,∆t and Q∆t(0, V2,∆t) = V 2
2,∆t.

We see that Q∆t(T, V ) is a monotonic increasing continuous function with respect to the
product ordering on R2

+ for 0 < ∆t < τ . Therefore, there exists a simply connected open

set R∆t such that Q∆t(T, V ) < V 2 for all (T, V ) ∈ R∆t. Thus
K∑
k=0

‖∂zvk‖2
L2∆t ≤ V 2 for

(T, V ) ∈ R∆t

Hence, induction states that
∑

tk∈[0,T ]

‖∂zvk‖2
L2∆t ≤ V 2 for (T, V ) ∈ R∆t.

Our assumption of ‖∂zv0‖2
L2∆t ≤ V 2 for some V > 0 can now be lifted for ∆t ≤ T . We

have
‖∂zv0‖2

L2∆t = Q0∆t ≤ Q∆t(0, V1,∆t) = V 2
1,∆t ≤ V 2 for all (0, V ) ∈ R∆t

and, by monotonicity in T , this inequality holds for all (T, V ) ∈ R∆t. Do note that τ
depends on Q0 = ‖∂zv0‖2

L2 . Thus for all v0 ∈ L2(0, 1) with v0(0) = 0 there exist a τ > 0
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such that our assumption and, therefore, our induction holds if (T, V ) ∈ R∆t.
Note, the region R∆t contains the cylinder [0, T )× (‖∂zv0‖L2

√
∆t,∞) such that the case

∆t > T satisfies the assumption ‖∂zv0‖2
L2∆t ≤ V 2 and the three domain properties.

R0, the limit set of R∆t, exists because the construction of R∆t is only dependent on
∆t when using the Intermediate Value Theorem to guarantee the existence of V1,∆t and
V2,∆t, which directly follows from the fact that Q∆t(T, V ) is a right-continuous monotonic
increasing function in ∆t ∈ R+. Moreover, the cylinder [0, T ) × (‖∂zv0‖L2

√
∆t,∞) be-

comes the empty set in the limit ∆t = 0, since this cylinder represents the case ∆t > T
and is, therefore, ∆t-thick. Therefore, R0 can be seen as the limit of the part of the set
R∆t, where the case ∆t > T is satisfied.

Lemma 7.
Let 1 < d ≤ C1,0/(C1,0 − 1), 0 < ∆t < τ , 0 < φmin ≤ 1 − C1,0(d − 1)/d and φ0 ∈
Φd(φmin, (1 − φmin)/C1,0), where the set Φd(s, r) is as defined in Lemma 5 and τ has the
value as determined in the proof of Lemma 6. Then there exists a τ ∗ > 0 such that

{(∆t,∞)×R+} ∩ S ∩R∆t 6= ∅ for all 0 ≤ ∆t < τ ∗,

where S is the set as defined in Lemma 5 and R∆t is the set as defined in Lemma 6.

Proof.
Due to the monotonicity of both S and R∆t with respect to T , we only have to check for
all α ∈ Pd that there exists a Vα > 0 such that Pα(0, Vα) < (1 − φmin)/C1,0. For T = 0
and using the equivalence of Rn-norms, we obtain

Pα(0, V ) ≤
∑
j∈M

φαj0 +
∑

j∈M,αj 6=d−1

√
b4αj + ẽ21(a11 + a12)V

+e

(∑
l∈L

c6l1+d̃21(a11+a12)

)
V 2

2
√

(d− 1)(c4 + d̃11(a11 + a12))V.

From Lemma 5 and condition (v) in Assumption 1, there exists φ0∈ Φd (φmin, (1− φmin)/C1,0)
such that

∑
j∈M φαj0 < (1 − φmin)/C1,0 for all α ∈ Pd. Since Pα(0, V ) is strictly in-

creasing in V , there exists a V̂α > 0 such that Pα(0, V̂α) = (1 − φmin)/C1,0. Construct

V̂ = minα∈Pd V̂α.

Now we have two cases: either V̂ ≥ V1,τ or 0 < V̂ < V1,τ , where V1,τ = lim∆t↑τ V1,∆t with
V1,∆t and τ from the proof of Lemma 6. In the first case, we can introduce τ ∗∗ = τ , because

({0}× (0, V̂ ])∩Rτ 6= ∅. In the second case, we have ({0}× (0, V̂ ])∩Rτ = ∅. Fortunately,
V1,∆t is a monotonically increasing function of ∆t, because Q∆t(T, V ) is monotonically
increasing in ∆t for all (T, V ) ∈ R2

+ and Q0(0, 0) = 0. Thus the Intermediate Value The-

orem states there exists a τ ∗∗ < τ such that V̂ = V1,τ∗∗ and thus ({0}× (0, V̂ ])∩Rτ∗∗ 6= ∅.
Hence S ∩ R∆t 6= ∅ for all 0 ≤ ∆t < τ ∗∗. However, T < ∆t is not allowed, as k > 0
integer such that k∆t ≤ T was implicitly used up to now in the proofs of Lemmas 3, 4,
5, and 6. Since (0, V ∗) ∈ R∆t, there are (T, V ) ∈ R∆t with T < ∆t. Thus, even though
S ∩R∆t 6= ∅ for all 0 ≤ ∆t < τ ∗∗, we still need to prove {(∆t,∞)×R+} ∩ S ∩R∆t 6= ∅.
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For all 0 ≤ ∆t < τ , we have Q∆t(0, V
∗) < (V ∗)2 with V ∗ the unique value, indepen-

dent of ∆t, for which dQ∆t(T,V )
d(V 2)

∣∣∣
V=V ∗

= 1. Since Q∆t(T, V ) is monotonic increasing in

both ∆t and T , we can define the new function Q(∆t) = Q∆t(∆t, V
∗) − (V ∗)2. Due to

Rτ = {0} × {V ∗} by construction, we find Q(τ) > 0, while Q(0) < 0. Hence, by the
Intermediate Value Theorem there exists a 0 < τ ∗∗∗ < τ such that Q(τ ∗∗∗) = 0 and,
therefore, {(∆t,∞)×R+}∩R∆t 6= ∅ for all 0 ≤ ∆t < τ ∗∗∗. Introduce Ṽ∆t as the minimal
value of V such that Q∆t(∆t, V ) ≤ V 2 if such a V exists. For 0 ≤ ∆t < τ ∗∗∗, there
exists a (∆t, Ṽ∆t) ∈ {(∆t,∞)×R+} ∩ R∆t. Introduce P(∆t) = maxα∈Pd Pα(∆t, Ṽ∆t).
For τ ∗∗∗ ≤ τ ∗∗, if lim∆t→τ∗∗∗ P(∆t) ≤ 1−φmin

C1,0
, then (∆t, Ṽ∆t) ∈ S for all 0 ≤ ∆t < τ ∗ =

τ ∗∗∗ = min{τ ∗∗, τ ∗∗∗). If lim∆t→τ∗∗∗ P(∆t) > 1−φmin

C1,0
, which also occurs for τ ∗∗ ≤ τ ∗∗∗,

then we recall Q0(0, 0) = 0 and Pα(0, 0) < 1−φmin

C1,0
for all α ∈ Pd. Hence, P(0) < 1−φmin

C1,0
.

By continuity of Q∆t(T, V ) and Pα(T, V ) in the parameters ∆t, T and V , follows the
continuity of P(∆t). Thus by the Intermediate Value Theorem, there is a τ ∗ ∈ (0, τ ∗∗) =
(0,min{τ ∗∗, τ ∗∗∗}) such that P(τ ∗) = 1−φmin

C1,0
. Thus there exists a τ ∗ ∈ (0,min{τ ∗∗, τ ∗∗∗}]

such that (∆t, Ṽ∆t) ∈ {(∆t,∞)×R+} ∩ R∆t ∩ S for all 0 ≤ ∆t < τ ∗.
Hence, for all 0 ≤ ∆t < τ ∗ ∈ (0,min{τ ∗∗, τ ∗∗∗}], we have {(∆t,∞)×R+} ∩ R∆t ∩ S 6= ∅
due to the monotonicity of Q∆t(T, V ) and Pα(T, V ) on the parameters ∆t, T and V .

We have shown that the conditions c5l < c1l, a9m < 1 and a10m < a3m(0) are satisfied
by the conditions (i), (viii) and (ix) in Assumption 1. Moreover, the conditions φmin ≤
1− C1,0(d− 1)/d and φ0 ∈ Φd(φmin, (1− φmin)/C1,0) of Lemma 5 follows from (v), while
the conditions (ii), (iii), (iv), (vi) and (vii) are needed for coercivity.
The condition Q1 < 1 of Lemma 6 is equivalent to

1 >
7d− 5

Γ2
φmin

max
m∈M

{
H2

1m

a3m(0)− a10m

}
(a11 + a12),

which can be satisfied if (x) in Assumption 1 is satisfied.

We finish the proof of Theorem 2 with remarking that we can choose any pair (T, V ) ∈
S ∩ int(R0) to satisfy the theorem, since lim

∆t↓0
{(∆t,∞)×R+} ∩ S ∩R∆t = S ∩ int(R0).

5 Proof of Theorem 1

The proof of Theorem 1 is straightforward. We use an interpolation function û∆t(t) :=
uk−1+(t−tk−1)Dk∆t(u) on each interval [tk−1, tk] ⊂ [0, T ] for all functions u ∈ {φl, v, wm,W}
with l ∈ L and m ∈M to extend the discrete-time solutions of Theorem 2 to [0, T ]× [0, 1]
and [0, T ]. We see that û∆t is measurable on [0, T ] × [0, 1] for u ∈ {φl, v, wm} and [0, T ]
for u = W , has a time-derivative on [0, T ]× [0, 1] a.e. for u ∈ {φl, v, wm} and [0.T ] a.e. for
u = W , and has a ∆t-independent bound in an appropriate Bochner space (cf. Theorem
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2). Hence, we obtain the following weak convergence results

(1) φ̂l,∆t ⇀ φ̂l ∈ H1(0, T ;L2(0, 1)) ∩ L∞(0, T ;H1(0, 1)) ∩ L2(0, T ;H2(0, 1)),

(2) v̂∆t ⇀ v̂ ∈ L2(0, T ;H1(0, 1)),

(3) ŵm,∆t ⇀ ŵm ∈ H1(0, T ;H1(0, 1)) ∩ L∞(0, T ;H2(0, 1)), and

(4) Ŵ∆t ⇀ Ŵ ∈ H1(0, T )

for l ∈ L and m ∈M.
As the time-continuous system has non linear terms, we need strong convergence of the
φ̂l,∆t and ŵm,∆t terms in order to pass to the limit ∆t → 0. The strong convergence
is obtained here by combining two versions of the Lions-Aubin-Simon lemma, see [10,
Theorem 1] for the version for piecewise constant functions and [32, Theorem 3] for the
standard Lions-Aubin-Simon, which is used for the piecewise linear functions.

Theorem 3 (Lions-Aubin-Simon lemma for piecewise constant functions).
Let X, B, and Y be Banach spaces such that the embedding X ↪→ B is compact and the

embedding B ↪→ Y is continuous. Furthermore, let either 1 ≤ p < ∞, r = 1 or p = ∞,
r > 1, and let (u∆t) be a sequence of functions, which are constant on each subinterval
(tk−1, tk), satisfying

‖D∆t(u∆t)‖Lr(∆t,T ;Y ) + ‖u∆t‖Lp(0,T ;X) ≤ C0 for all ∆t ∈ (0, τ), (21)

where C0 > 0 is a constant which is independent of ∆t. If p <∞, then (u∆t) is relatively
compact in Lp(0, T ;B). If p =∞, there exists a subsequence of (u∆t) which converges in
each space Lq(0, T ;B), 1 ≤ q <∞, to a limit which belongs to C0([0, T ];B).

Theorem 4 (Standard Lions-Aubin-Simon lemma).
Let X and B be Banach spaces, such that X ↪→ B is compact. Let f ∈ F ⊂ Lp(0, T ;B)

where 1 ≤ p ≤ ∞, and assume

(A) F is bounded in L1
loc(0, T ;X),

(B) ‖f(t+ ∆t)− f(t)‖Lp(0,T−∆t;B) → 0 as ∆t→ 0, uniformly for f ∈ F.

Then F is relatively compact in Lp(0, T ;B) (and in C(0, T ;B) if p =∞).

We apply Theorem 3 and Theorem 4 with the triples

(X,B, Y ) = (H2(0, 1), C1([0, 1]), L2(0, 1))

or
(X,B, Y ) = (H1(0, 1), C0([0, 1]), L2(0, 1)),

depending on the situation, together with the Rellich-Kondrachov theorem on [0, 1], see
[2, p.143] and [6], ensuing X ↪→ B compactly. We obtain the existence of a subsequence
∆t ↓ 0 for which we also have strong convergence next to the weak convergence:

φ̂l,∆t → φ̂l ∈ C0([0, T ];C0[0, 1]) for l ∈ L,

ŵm,∆t → ŵm ∈ C0([0, T ];C1[0, 1]) for m ∈M.
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The limit functions φ̂l, v̂ and ŵm satisfy the weak formulation of the continuous-time
equations (1a)-(1c).
Using the interpolation-trace inequality, ‖u‖C(Ω) ≤ C‖u‖1−θ

H1(Ω)‖u‖
θ
L2(Ω) (for θ = 1/2, see

[34, Example 21.62 on p.285]), the weak convergence for Theorem 2 applies up to the
boundary, which together with the smoothness of the functions satisfying Equation (2)
ensure the passage of the limit so that the boundary conditions are recovered. The initial
conditions are satisfied by construction.
Hence, there exist φmin > 0, T > 0, V > 0 such that φl := φ̂l, v := v̂, wm := ŵm and
W := Ŵ satisfy Theorem 1.

6 Numerical exploration of allowed parameter sets

In this section we simulate numerically the model (5), (8a)-(8c), (9a), and (9b). This
model is already in a format that allows a straightforward numerical implementation next
to allowing some analytical evaluation of observed (numerical) behaviors. The chosen
model has d = 3 and is determined by the following functions and constants, for all l ∈ L
and m ∈M

δl = δ Γ(φ) = 4φd
I1(φ) = 0 I3(φ) = ε

Bl10l(φ) = εφl Blijm(φ) = 0 for (i, j,m) 6= (1, 0, l)
H1m(φ) = φm H0m(φ) = 0
Em10j(φ) = 1

2
Djφm Eminj(φ) = 0 for (i, j) 6= (1, 0)

Fm(φ) = 1 γm = γ
Gφ,l(φ) = εκlGv(φ) Gv(φ) = L(φ1,sat − φ1)L(φ3 − φ3,thr)
Gw,m(φ) = 0 Am = A

The conditions of Assumption 1 have to be satisfied. To this end, we choose ηm = ζγ|A|
for m ∈ M with ζ > 0 in conditions (ix) and (x) of Assumption 1. This yields for
φmin ∈ (0, 1− 2 coth(1)/3) ≈ (0, 0.124643143) the conditions

(i) δ > 0

(ii) |A| < 1

(iii) 1
4
D2
jφ

2
m < 1

9
min{3, γ(1− A)}min{3/5, γ(1− A)}

(iv) 64φ2
d0 > 36φ2

l0 for all l ∈ L.

(v) φj0≥φmin,
∑
i 6=j

φi0<
1−φmin

coth(1)
and

d∑
i=1

φi0 =1 for all 1≤j≤d,

(vi) 77γA2 < 1,

(vii) γ > 77φ2
m

64φ2
d

,
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(viii) 0 < C1m = 1−
∑
j∈M

Dm
ηj01m1

4
,

(ix) 0 < C2m = γ
(
1−

(
1 + ζ

2

)
|A|
)
− ηm2

2
− 1

4

∑
j∈M

(
Dj

ηm01j1
+

Dj
ηm01j2

+Dmηj01m2

)
,

(x) 1 > 1
2

(
1−2φmin

φmin

)2

max
m∈M

{
1

C2m

} ∑
m∈M

(
γ|A|
ζ

+ 1
ηm2

)
.

An upper bound for |A| can be determined with (ix) and (x) by taking Dm = 0 and by
removing both the ηm2 terms and C1m. This yields the conditions

|A| < 2

2 + ζ
and 1 >

(
1− 2φmin

φmin

)2 |A|
ζ(2− (2 + ζ)|A|)

.

Using φmin < 1/8, we obtain for ζ = 6 the maximal value

|A| < 2

2 + ζ + 36
ζ

≤ 1

7
,

which is not even attainable due to the approximations made in the derivation. In any
case, (x) is a stronger condition than (ii).
For γ, we need to first determine the values of ηm01j1 and ηm01j2. For these we choose the
values that are the square root of the product of their lower and upper limits obtained
by letting all undetermined terms in (viii) and (ix) have an equal part such that C1m = 0
and C2m = 0 for ζ = 1. This yields, for |A| ≤ 1

7
, the positive numbers

ηm01j1 =

√
7d− 5

d− 1

1

γ(1− 3
2
|A|)

and ηm01j2 = 1

and the inequality

1 >

(
1− 2φmin

φmin

)2(
γ|A|+ 1

η

)
max
m∈M

 1

1− Dm
2

√
8

γ(1− 3
2
|A|)

+
1

γ(1− 3
2
|A|)− η

2
− Dm

2
− 1

4

∑
j∈M

(
Dj

√
γ(1− 3

2
|A|)

8
+Dj

)
 , (23)

where we have chosen ηm2 = η.
In the limit |A| ↓ 0, choosing Dm < 1, we obtain the condition

1 > 2

(
1− 2φmin

φmin

)2
1

η

 1

2−
√

8
γ

+
1

2γ − η − 2−
√

γ
8

 .
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The second term yields a minimal value for η = γ − 1−
√
γ/32, which leads to

1 > 2

(
1− 2φmin

φmin

)2
1

γ − 1−
√

γ
32

 1

2−
√

8
γ

+
1

γ − 1−
√

γ
32

 .

We obtain
γ>γ∗≈49.2186 with φmin<0.124643143. (24)

For a stricter upper bound of |A|, we takeDj = 2
3

√
min{3, γ(1− |A|)}min{3/5, γ(1− |A|)}.

With the γ∗ of Equation (24) and the rough upper bound |A| < 0.201, we see that
Dj = 2/

√
5. With this value of Dj, assuming γ > γ∗, η = 1/(γ|A|), γ � √γ and

1/γ � γ|A|, we can remove some terms of Equation (23) and obtain

1 > 2

(
1− 2φmin

φmin

)2

|A| (1 + γ) .

Hence, we obtain

1

γ2
�|A|<A∗γ =

1

2

(
φmin

1−2φmin

)2
1

1+γ
≈ 1

72.55(1+γ)
with φmin<0.124643143, (25)

and additionally

γ � γ∗∗ ≈ 73.55,
1

γ2
� |A| < A∗γ∗∗ ≈

1

5409
. (26)

Using the values of (26), we see that D2
j < 4/5 must hold and that (vi) and (vii) are

also automatically satisfied. Hence, there exists a non-empty parameter region where all
conditions of Assumption 1 are satisfied and, therefore, a continuous solution exists.

The analytically obtained parameter region is very restrictive due to the sometimes crude
estimates used in the proofs of the theorems. The actual parameter region is expected to
be much larger. Numerically, this region can be probed. Moreover, it allows us to probe
the size T of the time-interval satisfying the physical constraints (I), (II) and (III).

A fixed set of reference parameter values have been chosen after a deliberate numer-
ical search for parameter values around which T changes significantly. The reference
parameter values are

A = 0.388 γ = 104 δ = 1 ε = 0.0014
D1 = 0.38 D2 = 1 κ1 = 23.0 κ3 = −13.5

Ĵ1 = 0 Ĵ2 = 0.4 Ĵ3 = 2.0 φmin = 0.1
φ1,sat = 1 φ3,thr = 0 φ2,res = 1 φ3,res = 1
φ10 = 0.3 φ30 = 0.4

We solve the time-discrete system for the small time step ∆t = 0.001. This value has been
chosen arbitrarily, although it is large enough for keeping the computational costs and
duration of the simulation acceptable and small enough for showing continuous temporal
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behaviour.
Following the concept of Rothe method, we only need to solve numerically a 1D spatial
problem at each time slice {t = tk}. At {t = 0} we still need to solve a different 1D spatial
problem in order to obtain v0. We implemented the time-discrete system in MATLAB
using the BVP5c solver, although one can also use the bvp4c solver. These solvers take
a grid, a guess for the solution, and the BVP system as input. Then they automatically
readjust the grid and interpolate the guess solution to obtain a starting point for the
numerical scheme, controlling a certain error metric to determine the solution based on
user-defined-convergence criteria. For an in depth description and performance analysis
of the solvers, see [19, 30] for bvp4c and [20] for bvp5c.
Initially, we take a uniform grid of 300 intervals. As initial guess for the solution, we take
the solution at time slice {t = tk−1} or the zero function.

Tests that check the conditions of Theorem 1 at each time slice, including {t = 0}, are
incorporated in the numerical method. For these conditions, we use the value V = 106

and φmin = 0.1. At the start of our numerical method additional tests are implemented
to test the pseudo-parabolicity of the system. Failure to pass any of these tests ends the
simulation.
To guarantee the end of any simulation, we incorporate an end time Tend = 0.5, which
coincides with the time slice {t = t500}.

The criteria for stopping a simulation in this numerical program allow one to probe the
boundary of S ∩ int(R∆t) at fixed V -value lines and determine T in ∆t increments for
different parameter values. Smaller ∆t will yield better approximations to T .

The simulation of the time-discrete system for the reference parameter values gives inter-
esting results. All volume fractions φl are practically spatially constant functions at all
time slices. Numerically, we expect a much larger area in (γ,A)-space for which Theorem
1 holds. As (γ,A) = (104, 0.388) is well outside the analytically obtained existence re-
gion, we conclude that the conditions Assumption 1 are more restrictive than practically
necessary. The simulation ends at time slice {t = t194} due to a violation of one of the
condition of Theorem 1 with φ3 < 0.1 = φmin as shown in Figure 1. This indicates that
193∆t ≤ T < 194∆t for these parameter values.

Next to the volume fraction conditions, we have the conditions on the velocity v as stated
in Theorem 1. A clear supra-exponential growth of the L2(0, t;H1

0 (0, 1)) norm of v is
seen in Figure 2 in the region where in Figure 1 the volume fractions exhibited sudden
drastic changes in value. Surprisingly the supra-exponential growth was not large enough
to breach the V = 106 threshold of Theorem 1. Hence, the simulation was stopped only
because the volume fraction condition was breached. The graph of W (t) in Figure 2 looks
similar to the graph of the norm, which is due to (4b) and the logarithmic scale of the
axis.

We conclude that the reference parameter values allow a discrete solution that satisfies
Theorem 2, even though the reference parameter values do not satisfy Assumption 1.
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Figure 1: The time evolution of the volume fractions of the simulation at the reference
values. The simulation automatically ended at time slice {t = t194} due to φ3(0, t194) <
0.1 = φmin. The other volume fractions stayed between the two black-lines, which indicates
a guaranteed breach of φl < φmin by one of the volume fractions.
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Figure 2: The time evolution of W (t) and ‖v‖L2(0,t;H1
0 (0,1)) of the simulation at the reference

values. The simulation automatically ended at time slice {t = t194} due to φ3(0, t194) <
0.1 = φmin. The upper bound V = 106 was not yet reached. Both graphs show supra-
exponential growth in the region where the volume fraction values changed dramatically.

This result showed us a method of probing the parameter space dependence as the simula-
tion was ended prematurely at t = t194. From now on, we denote t = t194 with NR = 194,
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while a completed simulation is denoted by NR = 500. By tracking the value of NR

at different parameter values, we indicate the dependence of T on the parameters, i.e.
(NR − 1)∆t ≤ T < NR∆t. We probed a grid in (γ,A)-space, a grid in ε-space and a grid
in (φ10, φ20, φ30)-space. We restricted our attention to these parameters because ε should
highly affect the volume fractions φl, and we have specific existence restrictions given by
Assumption 1 for the other parameters.
It turns out that γ has a negligible effect on NR in our (γ,A)-space grid. We choose the
values γ ∈ {103.5, 104, 104.5, 105, 105.5, 106, 106.5, 107, 107.5, 108} and
A ∈ {0.376, 0.379, 0.382, 0.385, 0.388, 0.391, 0.394, 0.397, 0.400}.

0.37 0.38 0.39 0.4 0.41

1

10

100

1,000

500

A

N
R

with reference parameter values

Figure 3: The dependence of NR with respect to A with the other parameters taking their
reference values. An approximately exponential dependence of NR on A can be discerned.
Note that A can be much larger than 1

72.55(1+γ)
and still lead to a positive time T .

The dependence of A on NR with γ = 104 is shown in Figure 3. An approximately expo-
nential dependence of NR on A can be seen. Moreover, the values of NR decrease rapidly
to almost 0 for A approaching 0.4. This indicates that the actual threshold of A is much
larger than 1

72.55(1+γ)
.

Since condition (viii) of Assumption 1 has been shown to be an underestimation of the
actual existence region with respect to the parameter A, we expect a similar effect to
happen for the initial conditions (φ10, φ20, φ30). The restriction φ10 + φ20 + φ30 = 1 hints
at the use of barycentric coordinates to represent the dependence of NR on the initial
conditions in the best way. In Figure 4 a grid, where the cells have edge size 0.1, has been
placed on the region of nonnegative initial volume fractions. Additionally, the central
gridpoint, where all volume fractions have the identical value 1/3, has been added to the
grid. At each gridpoint the actual value of NR is shown for the simulation with that
particular set of parameters. The inner shaded small triangle represents the region where
Assumption 1 holds, while the shaded area between the two outer triangles represents the
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region where the initial conditions violate the condition of Theorem 1.

φ10 = 1

φ20 = 1 φ30 = 1

1 1 1 177 500 500 500 0

1 1 1 185 500 500 0

1 1 1 194 500 0

1 1 1 204 0

1 1 1 0

1 1 0

1 0

0

1

Figure 4: The dependence of NR with respect to the initial conditions (φ10, φ20, φ30) with
the other parameters taking their reference values. The inner triangle represents the
region where Assumption 1 holds, while the shaded area between the two outer triangles
represents the region where the initial conditions violate the condition of Theorem 1.

In Figure 4, the values of NR increase with larger values of φ30, which is expected since
φ3 is transformed in the reaction and can therefore decrease. Moreover, v is sensitive to
the values of φ3 and changes in v directly effect φ3. Larger values of φ30 deminishes the
influence of other terms on v and, therefore, the change in φ3 itself. As it was shown in
Figure 1 that φ3 crossed the lower threshold set by Theorem 1, we expect NR to increase
with larger φ30 due to both the stabilizing effect and the higher starting value of the
simulation.
Again, we see that the simulation gives NR > 1 outside of the region defined by Assump-
tion 1 indicating that the analytical condition in Assumption 1 is more restrictive than
practically necessary. It is worth noting that the outer triangle of NR values are on the
boundary of the region where the condition of Theorem 1 holds. Due to machine-precision
inaccuracies some simulations have NR = 0, what indicates an unlawful starting value, or
NR > 0, what indicates that the starting values satisfied all conditions of Theorem 1.

The parameter ε indicates how strong certain terms influence the time-derivative of the
volume fractions. In Figure 4, we see that there is a strong dependence between φ3 and
NR. Therefore, we expect ε to have a significant effect on NR as well. To this end we
took a set of ε values and solved the time-discrete system for each of these values sup-
plemented with the reference values of the other parameters. The used ε values here are:
{1.4 · 10−5, 1.4 · 10−4.5, 1.4 · 10−4, . . . , 1.4 · 10−0.5, 1.4}. In Figure 5 a polynomial relation
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between NR and ε can be discerned. This confirms our expectation that ε has a significant
effect on NR.

1 · 10−5 1 · 10−4 1 · 10−3 1 · 10−2 0.1 1 10

1

10

100

1,000

500

ε

N
R

with reference parameter values

Figure 5: The dependence of NR with respect to ε with the other parameters taking their
reference values. A polynomial relation between NR and ε can be discerned.

7 Conclusion

We have employed Rothe’s method to prove Theorem 1, which essentially states that there
exists a weak solution on [0, T ]× (0, 1) of the continuous-time system given by Equations
(1a)-(1c), (4a), (4b), and (5) for (T, V ) ∈ S ∩ int(R0) provided a suitable parameter
regime is chosen (cf. Assumption 1).

Numerically, we have validated that the conditions of Theorem 1 can be violated for
t large enough. Moreover, we have shown using numerical simulations that the parameter
region for the existence of weak solutions as given by Assumption 1 is restrictive. Both
in (γ,A)-space as in (φ10, φ20, φ30)-space the numerical simulations showed existence for
points well outside the regions given by Assumption 1. Additionally, we have shown that
A, φ30 and ε have a significant influence on T , as was expected. Moreover, we could indi-
cate that γ has no significant effect on T in the numerical simulations. This was against
the prediction of the shape of the existence region of Assumption 1.
This means that sharper inequality results probably hold, which would finally lead to a
relaxation of conditions (v) and (viii) in Assumption 1.
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A Existence of solutions to discrete-time system

The subsystem (8a) with (9a) is a standard elliptic system in φkl , which has a unique
solution in φkl ∈ H1(0, 1) if φk−1

l , vk−1, wk−1
m ∈ H1(0, 1) and wkm ∈ H1(0, 1). Similarly,

by direct integration, the subsystem (8b) with (9b) has a unique solution vk ∈ L2(0, 1)
if there are unique φk−1

l , vk−1, wk−1
m ∈ L2(0, 1), φmin ≤ φk−1

l ≤ 1 almost everywhere, and
wkm ∈ L2(0, 1). Moreover, this subsystem has a unique solution vk ∈ H1(0, 1) if there are
unique φk−1

l , vk−1, wk−1
m ∈ H1(0, 1) and wkm ∈ H1(0, 1).

The existence of a unique v0 ∈ H1(0, 1) is slightly more complicated. Even though any
v0 ∈ H1(0, 1) will give a unique solution, we do realize that the numerical method might
be highly sensitive to the choice of v0 ∈ H1(0, 1). Physically, we expect v0 ∈ H1(0, 1)
to be close to the solution of continuous-time system with the initial conditions filled
in. Unfortunately, we do not have sufficient temporal regularity to extend the system to
the t = 0 boundary. However, since any v0 ∈ H1(0, 1) would suffice, we just choose the
function v0 ∈ H1(0, 1) that would be the solution if there was sufficient regularity.
To this end, we integrate (1b) and insert the initial conditions (5) in the continuous-time
system. This yields, at t = 0, a system for v and ∂twm.

Γ(φ0)v +
∑
m∈M

H1m(φ0)∂twm = Gv(φ0)z +
∑
m∈M

ĴmL(φm,res − φm0), (27a)

∂twm − γm∂2
z∂twm + Fm(φ0)v +

∑
j∈M

Em01j(φ0)∂z∂twj = Gw,m(φ0), (27b)

with boundary conditions

v|z=0 = 0, (28a)

∂twm|z=0 =
Ĵm

H1m(φ0)
L(φm,res − φm0), (28b)

∂z∂twm|z=1 = Am

(
∂twm|z=1 +

∑
j∈M

H1j(φ0)

Γ(φ0)
∂twj|z=1

)
(28c)

− Am
Γ(φ0)

[
Gv(φ0)+

∑
j∈M

ĴjL(φj,res−φj0)+ĴdL(φd,res−φd0)

]z=1

.
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Inserting Equation (27a) in Equation (27b), we obtain

B(∂twm, ψ) =
∑
m∈M

Gm(ψ),

where

Bm(u, ψ) =

∫ 1

0

γm∂zum∂zψm +
∑
j∈M

Em01j(φ0)(∂zuj)ψm −
∑
j∈M

Fm(φ0)H1j(φ0)

Γ(φ0)
ujψm

+ umψm − γmAm

[
∂z(umψm) +

∑
j∈M

H1j(φ0)

Γ(φ0)
∂z(ujψm)

]
dz

and

Gm(ψ) = Gw,m(φ0)ψm −
Fm(φ0)

Γ(φ0)

[
Gv(φ0)z +

∑
j∈M

ĴjL(φj,res − φj0)

]
ψm

−

[
γmAm
Γ(φ0)

(
Gv(φ0) +

∑
j∈M

ĴjL(φj,res − φj0) + ĴdL(φd,res − φd0)

)
ψm

]z=1

.

Clearly, B(·, ·) =
∑

m∈MBm(·, ·) is a bilinear form on H1
0,free(0, 1)d−1, which is defined

as H1
0,free(0, 1)d−1 = {f ∈ H1(0, 1)d | f(0) = 0}. This bilinear form and

∑
m∈M Gm(·)

are obviously continuous. However, B(·, ·) is only coercive if the following conditions are
satisfied for all j,m ∈M:

Em01j(φ0)2 <
4γj

(3d− 2)(5d− 4)
, (29a)

4Γ(φ0)2 > (5d− 4)2Fm(φ0)2H1j(φ0)2. (29b)

γjA
2
j <

1

(3d− 2)(5d− 4)
, (29c)

H1m(φ0)2

Γ(φ0)2
<

4γj
(3d− 2)(5d− 4)

. (29d)

Condition (29a) follows from condition (iii) in Assumption 1, while conditions (29b),
(29c), (29d) are exactly conditions (iv), (vi) and (vii) in Assumption 1, respectively.
Unfortunately, due to the boundary conditions ∂twm is not an element of H1

0,free(0, 1)d−1.

However, using the decomposition ∂twm = w̃m + ãm(1− z)2 + b̃zAm sin
(
π
2
z
)

= w̃m + c̃m(z)
with

w̃ ∈

{
f ∈ H2(0, 1)d−1

∣∣∣∣∣ fm(0) = 0, (∂zf)m(1) = Am

(
fm(1) +

∑
j∈M

H1j(φ0)

Γ(φ0)
fj(1)

)}
= W̃

and the bounded values

ãm =
Ĵm

H1m(φ0)
L(φm,res − φm0),
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b̃ =
Gv(φ0)+

∑
j∈MĴjL(φj,res−φj0)+ĴdL(φd,res−φd0)∑

j∈MH1j(φ0)
,

which follow from the identities

∂twm(0) = w̃m(0)+ãm− lim
z→0

b̃
π

2Am

cos(π
2
z)

z−Am−1
=


w̃m(0) + ãm for Am > −1,

w̃m(0) + ãm +
π

2
b̃ for Am = −1,

∞ for Am < −1,

∂twm(1) = w̃m(1) + b̃,
∂z∂twm(1) = ∂zw̃m(1) + Amb̃,

we see that W̃ ⊂ H1
0,free(0, 1)d−1.

Via Lax-Milgram we obtain a unique solution w̃ in H1
0,free(0, 1)d−1 that satisfies

B(w̃, ψ) = −B(c̃(z), ψ) +
∑
m∈M

Gm(ψ). (30)

Since, B(·, ·) is a coercive bilinear form, there exists a constant C > 0 such that the

inequality
∣∣∣∑m∈M

∫ 1

0
∂zw̃m∂zψmdz

∣∣∣ ≤ C‖ψ‖C1
c (0,1)d−1 holds for ψm ∈ C1

c (0, 1), the space

of C1 functions with compact support on (0, 1). Hence, by Proposition 8.3 of [6], we have
w̃ ∈ H2(0, 1)d−1.
Applying a partial integration to (30), we see that w̃ + c̃(z) can only satisfy (27a)-(28c)
if w̃ ∈ W̃. Hence, there exists a unique solution ∂twm ∈ H2(0, 1) and, therefore, a unique
solution v0 ∈ H1

0,free(0, 1) satisfying (27a)-(28c).

For the existence of a unique weak solution wk ∈ H2(0, 1)d−1, we follow a similar procedure
and use induction on k. Of course, k = 0 is satisfied by w = 0. For the induction step we
use 0 < k = K ≤ T/∆t and assume that wk−1 ∈ H2(0, 1)d−1. We test Equation (8c) with
ψ ∈ H1(0, 1)d−1. Using the decomposition wkm = ŵkm + âkm(1 − z)2 + b̂kzAm/2 sin

(
π
2
z
)

=
ŵk + ĉk(z) with

ŵk ∈
{
f ∈ H2(0, 1)d−1

∣∣ fm(0) = 0, (∂zf)m(1) = Am(fm(1))
}

= Ŵ ⊂ H1
0,free(0, 1)d−1

and

âkm = wk−1
m (0) +

Ĵm∆t

H1m(φk−1)
L(φm,res − φk−1

m ),

b̂k = 2W k,

which are straightforwardly bounded from (9b), we obtain a bilinear form A∆t(ŵ, ψ) on
H1

0,free(0, 1)d−1:

Ak∆t(ŵ
k, ψ) =

∑
m∈M

∫ 1

0

(γm +Dm∆t)∂zŵ
k
m∂zψm + ŵkmψm −

∑
j∈M

Em01j(φ
k−1)ŵkj ∂zψmdz.
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Unfortunately, this bilinear form is used in the equation

Ak∆t(ŵ
k, ψ) = Ak∆t(w

k−1, ψ)− Ak∆t
(
ĉk(z), ψ

)
+
∑
m∈M

[
(γm +Dm∆t)(∂zŵ

k
m)ψm −

∑
j∈M

Em01j(φ
k−1)ŵkjψm

]1

0

+
∑
m∈M

[
(γm +Dm∆t)(∂z ĉ

k
m)ψm −

∑
j∈M

Em01j(φ
k−1)ĉkjψm

]1

0

−
∑
m∈M

[
γm(∂zw

k−1
m )ψm −

∑
j∈M

Em01j(φ
k−1)wk−1

m ψm

]1

0

+ ∆t
∑
m∈M

∫ 1

0

Gw,m(φk−1)ψm − Fm(φk−1)vk−1ψm +
∑
j∈M

1∑
i=0

Emi0j∂
i
zw

k−1
j ∂zψmdz

−∆t
∑
m∈M

[∑
j∈M

1∑
i=0

Emi0j∂
i
zw

k−1
j ψm

]1

0

=
∑
m∈M

[
(γm +Dm∆t)(∂zŵ

k
m)ψm −

∑
j∈M

Em01j(φ
k−1)ŵkjψm

]1

0

+ Fk(ψ),

which has a right-hand-side that violates the conditions of Lax-Milgram. However, we
can create a new bilinear form ak∆t(ŵ

k
m, ψ) on H1

0,free(0, 1)d−1 such that we can apply Lax-

Milgram. Due to the behaviour of elements of Ŵ on the boundary of (0, 1), we obtain

ak∆t(ŵ
k, ψ) = Ak∆t(ŵ

k, ψ)−
∑
m∈M

(γm +Dm∆t)Am

∫ 1

0

∂z(ŵ
k
mψm)dz

+
∑
m∈M

∑
j∈M

Em01j(φ
k−1(1))

∫ 1

0

∂z(ŵ
k
jψm)dz = Fk(ψ). (31)

Remark that the trace φk−1(1) exists due to φk−1 ∈ H1(0, 1).
The continuity of ak∆t(ŵ, ψ) and Fk(ψ) is straightforward. The coercivity of ak∆t(ŵ, ψ) is
equivalent to the conditions

0 < 1−
∑
j∈M

Ej01m
ηj01m1

2
,

0 < γm(1−|Am|)−
1

2

∑
j∈M

(
Em01j

ηm01j1

+
Em01j

ηm01j2

+Ej01mηj01m2

)
,

for ηm01j1, ηm01j2 > 0, which follow from conditions (ii), (viii) and (ix) in Assumption 1 if
Em01j, γm and Am satisfy condition (iii) in Assumption 1.
Thus Lax-Milgram gives a unique solution ŵk ∈ H1

0,free(0, 1)d−1. By the coercivity, we ob-

tain again via proposition 8.3 of [6] that ŵk ∈ H2(0, 1)d−1. Applying a partial integration
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to (31), we see that equation (8c) with boundary conditions (4b) can only be satisfied if
ŵk ∈ Ŵ. Hence, there is a unique weak solution wk ∈ H2(0, 1)d−1. Thus induction gives
us that there is a unique weak solution wk ∈ H2(0, 1)d−1 for all tk ∈ [0, T ].

B Derivation of discrete-time quadratic inequalities

In the derivation of the quadratic inequalities (12), (13), (11), we use the following iden-
tities

2(a− b)a = a2 − b2 + (a− b)2, (33a)

2(a− b)b = a2 − b2 − (a− b)2, (33b)

which are valid for all a, b ∈ R.

The quadratic inequality (12) is obtained by testing Equation (8a) with φl, partially
integrating the Laplacian terms, and using Young’s inequality, leading to the following
identities for the ”b”-coefficients, where η1, η2, η3n, ηlijm, ηl1jmn > 0.

b1l = 2δl, b6ln = η3n +
∑
m∈M

1∑
j=0

ηl1jmn,

b2l(∆t) = ∆t, b7l0m =
B2
l00m

ηl00m
+
∑
n∈L

4B2
l10m

ηl10mn
,

b3l =
G2
φ,l

η1
, b7l1m =

B2
l10m

ηl10m
,

b4l =
4I2
l Γ2

η2
+ I2

l Γ2
∑
n∈L

1
η3n
, b8l0m =

B2
l01m

ηl01m
+
∑
n∈L

4B2
l11m

ηl11mn
,

b5l = η1 + η2 +
∑
m∈M

1∑
i,j=0

ηlijm, b8l1m =
B2
l11m

ηl11m
.

(34)

Similarly, the quadratic inequality (13) is obtained by testing Equation (8a) with Dk∆t(φl),
partially integrating the Laplacian terms, and using Young’s inequality, leading to the
following identities for the ”c”-coefficients, where η1, η2, η3n, ηlijm, ηl1jmn > 0.

c1l = 2
δl
, c5l = 2

δl

(
η1 + η2 +

∑
n∈L

η3n

+
∑
n∈L

∑
m∈M

1∑
j=0

ηl1jmn +
∑
m∈M

1∑
j=0

1∑
i=0

ηlijm

)
,

c2l(∆t)= ∆t, ck6l =
∑
n∈L

[
2I2
l Γ2

δlη3n
‖∂zvk−1‖2

L2 +
∑
m∈M

[
2B2

l10mC
2
1,0

δlηl10mn
‖wk−1

m ‖2
H1

+
2B2

l11mC
2
1,0

δlηl11mn

∥∥Dk∆t(wm)
∥∥2

H1

]]
,

c3 =
G2
φ,l

2δlη1
, c7im=

B2
li0m

2δlηli0m
,

c4 =
I2
l Γ2

2δlη2
, c8im=

B2
li1m

2δlηli1m
.

(35)
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Note that

∑
tk∈[0,T ]

ck6l∆t ≤
∑
n∈L

2I2
l Γ2

δlη3n

V 2 +
∑
m∈M

2B2
l10mC

2
1,0

δlηl10mn

 ∑
tk∈[0,T ]

‖wk−1
m ‖2

H1∆t


+

2B2
l11mC

2
1,0

δlηl11mn

 ∑
tk∈[0,T ]

∥∥Dk∆t(wm)
∥∥2

H1 ∆t


= c6l1V

2+
∑
m∈M

c6l2m

 ∑
tk∈[0,T ]

‖wk−1
m ‖2

H1∆t

+c6l3m

 ∑
tk∈[0,T ]

∥∥Dk∆t(wm)
∥∥2

H1∆t

 . (36)

The quadratic inequality (11) is not so easy to obtain. First, we rewrite Equation (8c)
into a more structured form:

Dk∆t(wm)− ∂zSkm = Gw,m(φk−1)− Fm(φk−1)vk−1, (37)

where Skm = Skm0 + Skm1 is given by
Skm0 = −

∑
j∈M

[
Em00j(φ

k−1)wk−1
j + Em01j(φ

k−1)Dk∆t(wj)
]
,

Skm1 = Dm∂zw
k
m + γmDk∆t(∂zwm)−

∑
j∈M

Emi0j(φ
k−1)∂zw

k−1
j ,

a term with boundary evaluations at only z = 0, Skm0, and a term with boundary eval-
uations at only z = 1, Skm1. Second, we test Equation (37) with both wkm and Dk∆t(wm),
apply a partial integration to the ∂zSkm term, obtain two quadratic inequalities and sum
them. The partial integration of the ∂zSkm term yields a boundary evaluation, which we
can bound:∣∣∣[Skmψ]10∣∣∣ ≤ ∣∣Skm(1)−Skm(0)

∣∣|ψ(0)|+
[∣∣Skm0(0)

∣∣+∣∣Skm1(1)
∣∣+∣∣Skm0(1)−Skm0(0)

∣∣]‖∂zψ‖L2 ,

where we use the following bounds∣∣Skm(1)−Skm(0)
∣∣ ≤ ‖Dk∆t(wm)‖L2 +Gw,m + Fm‖vk−1‖L2 ,∣∣Skm0(0)
∣∣ ≤ ∑

j∈M

Ĵjφj,res
Hφmin

[Em00jT + Em01j] ,

∣∣Skm1(1)
∣∣ ≤ |Am|(γm +DmT )

[
Ĵmφm,res
Hφmin

+
Ĵdφd,res
Γφmin

]
+Dm|Am|

[
|W0|+ V

√
T
]

+ γm|Am|
[
‖Dk∆t(∂zwm)‖L2 + ‖∂zvk−1‖L2

]
,∣∣Skm0(1)−Skm0(0)

∣∣ ≤ ∑
j∈M

[
Em00j‖∂zwk−1

j ‖L2 + Em01j‖Dk∆t(∂zwj)‖L2

+
Ĵjφj,res
Hφmin

(Em00jT + Em01j)

]
.
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With the above bounds, we can test Equation (37) with both wkm and Dk∆t(wm), apply
Young’s inequality and sum the two inequalities. This leads to the following identities for
the ’a’-coefficients with all η’s positive:

a1m = γm +Dm, (38)

a2m(∆t) = 2 + ∆t,
a3m(∆t) = 2γm + (γm +Dm)∆t,

a4 = D2
m|Am|2|W0|2

(
1

ηm8

+
1

ηam8

)
+D2

m|Am|2V 2T

(
1

ηm9

+
1

ηam9

)
+G2

w,m

(
1

ηm1

+
1

ηam1

)
+

(
Ĵmφm,res
Hφmin

T

)2(
1

ηm3

+η0+
1

ηam3

+ηa0

)
+

(∑
j∈M

Ĵjφj,res
Hφmin

(Em00jT + Em01j)

)2(
4

ηm4

+
4

ηam4

)

+

(
Ĵmφm,res
Hφmin

+
Ĵdφd,res
Γφmin

)2

(DmT + γm)2|Am|2
(

1

ηm5

+
1

ηam5

)
+2Gw,m

Ĵmφm,res
Hφmin

(T + 1),

a5m = ηm1 + ηm2,

a6m = max

{
0,

9∑
i=4

ηmi − 2Dm(1− |Am|) +
D2
m|Am|2

ηam6

+
∑
j∈M

(ηm00j + ηm10j + ηm01j + ηm00j1 + ηm01j1)

}
,

a7m =
∑
j∈M

E2
j00m

(
1

ηj00m

+
1

ηaj00m

)
,

a8m =
∑
j∈M

[
E2
j10m

(
1

ηj10m

+
1

ηaj10m

)
+ E2

j00m

(
1

ηj00m1

+
1

ηaj00m1

)]
,

a9m = ηm3 + ηam3 +
∑
j∈M

(
E2
j01m

ηj01m

+ Ej01mηaj01m

)
,

a10m =
γ2
m|Am|2

ηm6

+ 2γm|Am|+ ηam1 + ηam2 +
9∑
i=4

ηami

+
∑
j∈M

(
E2
j01m

ηj01m1

+ ηam00j1 + ηam00j + ηam10j

)
+
∑
j∈M

(
Em01j

ηam01j

+
Ej01m

ηaj01m1

+ Em01jηam01j1

)
,

a11 = F 2
m

(
1

η0

+
1

ηm2

+
1

ηa0

+
1

ηam2

)
,

a12 = γ2
m|Am|2

(
1

ηm7

+
1

ηam7

)
.
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