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1 Introduction and main result

The motion of a viscous incompressible capillary fluid in a two-dimensional space is gov-
erned by the nonhomogeneous incompressible Navier-Stokes-Korteweg equations which
read as follows:

Op + div(pu) =0,
O(pu) + div(pu @ u) — pAu+ VP + rdiv(Vp @ Vp) = 0, (1.1)
divu = 0,

where ¢t > 0 is time, x = (z1,79) € Q C R? is spatial coordinate. The unknown functions
plx,t),u(x,t) = (ui(x,t),us(x,t)) and P(x,t) represent the density, velocity field and
pressure of the fluid, respectively. The constants x > 0 and p > 0 stand for the capillary
and viscosity coefficients of the fluid respectively.

Let 2 = R? and we consider the Cauchy problem for (1.1) with the far field behavior
condition(in the weak sense):

(p,u) = (0,0), as |z|] — oo, (1.2)

and initial data:
(0, u)le=0 = (po,uo) in R%. (1.3)

The Navier-Stokes-Korteweg equations are widely studied by many mathematicians
since of its physical importance and mathematical complexity, especially a great of efforts
have been devoted to the mathematical theory for compressible capillary fluids, see the
references [4, 7, 8] and therein. In particular, if there is no capillary effect, that is k = 0,
the Navier-Stokes-Korteweg system reduces to the well-konown Navier-Stokes equations,
which have been studied extensively, see J. Simon [14], Cho, Choe-Kim [2, 3] and Huang-
Wang [6] for more details on the Navier-Stokes model. When the capillary coefficient x >
0, the study of the Navier-Stokes-Korteweg becomes rather difficult than the Navier-Stokes
model since of the appearance of capillary effect. For the nonhomogeneous incompressible
Navier-Stokes-Korteweg equations (1.1) over a bounded smooth domain  C R* | under
the following compatibility condition on the initial data:

1

— div(pu(po)(Vuo + (Vug)")) + VP + div(k(pe) Voo @ Vo) = p2g, divug =0, in Q,

(1.4)
for some (P, g) < H'Y(Q) x L*(Q2), Tan-Wang [15] and Wang [16] established the local
strong solutions to the initial and boundary value problem when the capillary x(p) and
viscosity u(p) are positive constants and variable functions of the density, respectively.
And very recently, the author [9] established a blow-up critrion for the strong solutions to
the initial boundary value probelm of two-dimensional nonhomogeneous Navier-Stokes-
Korteweg equations.

To my best knowledge, there is no any further results of establishing solutions to
the Cauchy problem of the Navier-Stokes-Korteweg equations (1.1). Using the ideas of
Chen-Tan-Wang [1] for 3D Cauchy problem of the nonhomogeneous MHD system, the
local strong solutions of the 3D Cauchy problem of Navier-Stokes-Korteweg (1.1) can be
established in a similar way. However, some difficulties will bring out when we apply
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these ideas to the 2D case, since the Sobolev inequality is critical. Recently, Li-Liang
[10] established the local strong solutions to the 2D Cauchy problem of the compressible
Navier-Stokes equations with vacuum as far field density by deriving some spatial weighted
energy estimates. Motivated by their work, Liang [11] proved the local existence of strong
solutions to the 2D Cauchy problem of the nonhomogeneous incompressible Navier-Stokes
equations, that is (1.1) with x = 0. The purpose of this paper is to establish local strong
solutions to the Cauchy problem (1.1)-(1.3) as an extension of Liang’s work [11] to Navier-
Stokes-Korteweg model. First we give the definition of strong solutions to the Cauchy
problem (1.1)-(1.3) as follows.

Definition 1.1 (Strong solutions). If all derivatives involved in (1.1) are regular distri-
butions, and equations (1.1) hold almost everywhere in R? x (0, T), then (p, u, P) is called
a strong solution to (1.1).

Now we are ready to state the main result of this paper, and we would like to point
out that, in this section, for 1 < r < oo and k € N, we denote the standard Lesbegue and
Sobolev spaces as follows:

L' = L'(R?), W =W (R?), H*=Wwk2,
Theorem 1.2. Let ny be a positive constant and
7= (e+ |2*)7 log" ™ (e + a]?). (1.5)
For constants ¢ > 2 and a > 1, assume that the initial data (po,ug) satisfies
0< 7% € L'NH* "W \/puy € L*,Vuy € L* and divuy = 0. (1.6)

Then there exist a small time Ty and a unique strong solution (p,u, P) to the Cauchy
problem (1.1)-(1.3) on R? x (0, Tp] satisfying

0<peC(0,Tp); L' N H* N W>9),
%p € L>(0,Ty; L' N H> N W>9),
Vvou, Vu, z tu, \/z_f\/ﬁut, \/EVP, ViViu e L*>(0, Tp; L2),
Vu € LX0, Ty; HYY N L7 (0, Ty; W), (1.7)
VP e L0, Ty; L) N L™ (0, Ty; LY),
ViVu e L20, Ty; W),
/P, ViV, Viz € L2(R? x (0,Ty)),

and

1
inf / p(:v,t)da:Z—/ po(z)dz, (1.8)
By 4 Jpe

0<t<To

for some constant N > 0 and By = {z € R?||z| < N}.
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We now make some comments on the key ingredients of the analysis of this paper.
It should be pointed out that, for the whole two-dimensional space, it seems difficult to
bound the LP(R?)-norm of u just in terms of ||\/pul|2@2) and ||V z2(r2). Furthermore,
the appearance of capillary term will bring out some new difficulties. In order to overcome
these difficulties, we will make goof use of some key ideas due to [10, 11] where they deal
with the compressible and nonhomogeneous Navier-Stokes equations, repectively. On the
other hand, motivated by [10], it is enough to bound the LP(R?)-norm of the momentum
pu instead just of u. More precisely, using a Hardy-type inequality which is originally
due to Lions [12], together with some careful analysis on the spatial weighted estimate of
the density, we can obtain the desired estimates on the LP(R?)-norm of the momentum
pu. Next, we then construct approximate solutions to (1.1) with density strictly positive,
consider an initial and boundary value problem in any bounded ball Br with radius
R. Finally, combining all key points mentioned before with the similar arguments as in
3, 10, 11], we derive the desired bounds on the gradient of velocity and spatial weighted
density, which are independent of both the radius of the balls B and the lower bound of
the initial density.

Remark 1. After this work was completed, we found a recent work of Y. Liu, W. Wang
and S. N. Zheng [13] closely related to ours. They also prove the local well-posedness of
strong solution with vacuum to the Cauchy problem of two-dimensional nonhomogeneous
incompressible Navier-Stokes-Korteweg equations. However, as is discussed in detail, see
Remark 2, they need a stronger assumption on the initial data than ours, that is, except
for the same regularity condition (1.6), the following compatibility condition on (pg,ug)
is also necessary.

1
— pAug + VP + kdiv(Vpo @ Vo) = pd g, (1.9)

for some (P, g) € H' x L*(R?).
The rest of the paper is arranged as follows. In Section 2, we collect some elementary
facts and inequalities which will be needed in the later analysis. In Section 3, we will derive

some a priori estimates which are used to obtain the local existence and uniqueness of
strong solutions. The proof of main result Theorem 1.2 will be given in Section 4.

2 Preliminaries

In this section, we will recall some known facts and elementary inequalities which will be
frequently used later. First of all, if the initial density is strictly away from vacuum, the
following local existence theorem on bounded balls can be shown by similar arguments as
in [3, 15].

Lemma 2.1. For R > 0 and Br = {z € R?||z| < R}, assume that (pg, ug) satisfies

Po € H3<BR),UO S H2<BR), leHBf po(l‘) >0, divuyg =0. (21)
z€BR

Then there exists a small time T > 0 such that the equations (1.1) with the following
wniatial and boundary conditions

(p,u)(z,t =0) = (po, ug), x € Bg,

2.2
u(z,t) =0, r € 0Bg,t >0, (2:2)
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has a unique strong solution (p,u, P) on Bgr x (0,Tg| satisfying

p € C([0,Tg]; H*), (Vu,P) e C([0,Tg]; H*) N L*(0,Tg; H?), (2.3)
where we denote H* = H*(Bg) for positive integer k.
~ Next, for Q C R?, the following weighted L™-bounds for elements of the Hilbert space
DY2(Q) :={v € H. (Q)|Vv € L*(2)} can be found in [12].

Lemma 2.2. For m € [2,00) and 0 € (1 4 %,00), there exists a positive constant C
independent of Q such that for either Q) = R? or Q = Br with R > 1 and for any
v € DM2(Q),

1

(/Q e+ |x|2(log(e + |q;|2)) Odx < CHU||L2(31) + O||VU||L2(Q). (24)

A useful consequence of Lemma 2.2 is the following crucial weighted bounds for ele-
ments of D?(2), which has been proved in [10].

Lemma 2.3. Let Q be as in Lemma 2.2, and T and ny be as in (1.5). Assume that
p € L' N L*>(Q) is a non-negative function such that

/ pdz > My, ol oz < M, (2.5)
By,

for positive constants My, My and Ny > 1 with By, C 2. Then for e > 0 and n > 0,
there is a positive constant C' depending only on €,m, My, My, N1, and 1o such that every
v € DY(Q) satisfies

[0~ perersnay < Cllp 0]l 20) + ClI V2 (2.6)

with 7 = min{1,n}.

3 A priori estimates

Throughout this section, we omit the integration domain Br with R > 0 below for
notations simplicity. For 1 < r < oo and k£ € N, the Lesbegue and Sobolev spaces on
some ball By are defined in a standard way:

LT = LT(BR), W/c,r — Wk,T(BR)7 Hk — Wk’Q.
Moreover, for R > 4Ny > 4, assume that (pg, ug) satisifes, in addition to (2.1), that
1 3
- < / po(x)dr < / po(z)dr < =. (3.1)
2= iy, B 2

Lemma 2.1 thus yield that there exists some Tr > 0 such that the initial and bound-
ary value problem (1.1) and (2.2) has a unique strong solution (p,u, P) on B x [0, Tg]
satisfying (2.3).

Let Z,n9,a and ¢ be as in Theorem 1.2, the main goal of this section is to derive the
following key a priori estimate on (t) defined by

U(t) =1+ 0 %ull 2 + [IVull 2 + 2%l omrzamwea. (3.2)
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Proposition 1. Assume that (po,uo) satisfies (2.1) and (3.1). Let (p,u, P) be the solu-
tion to the initial and boundary value problem (1.1) and (2.2) on Bgr x (0,Tg| obtained
by Lemma 2.1. Then there exist positive constants Ty and M both depending only on
1, K, q,a,n9, No and Ey such that

sup ((6) + VLl iz + VAIVRulls + VE[ VP12 )

0<t<Top
7o 2 2 2 2 e L
b [ (Ipulis 4 IVl + 192053+ 19P1T ) (33)
To
+ [l + (TP + V) de < M,
0
where

By = |ly/Pouoll 2 + [ Vuollz2 + 12 poll imarawas.

The proof of Proposition 1 is composed of some lemmas. First, we give the following
standard energy estimate for (p,u, P) and the estimate on the LP-norm of the density.

Lemma 3.1. Under the conditions of Proposition 1, let (p,u, P) be a solution to the
initial and boundary problem (1.1) and (2.2). Then for any t > 0,

t
ollnw + Ivpulle + Vo) + [ [19uPdeas <. @)
0

sup
0<s<t
Proof. First, it is easy to deduce from (1.1); and divu = 0 that

sup |lpllzince < C. (3.5)
0<s<t

Then applying the standard energy estimate to (1.1) gives

t
sup (|pulls + Vol + [ [ 19upduds < c (36)
0<s<t 0
This together with (3.5) yields (3.4) and completes the proof of Lemma 3.1. O

Next, we will derive the key estimate on the ||Vul|12(0412).

Lemma 3.2. Under the conditions of Proposition 1, let (p,u, P) be a solution to the
initial and boundary problem (1.1) and (2.2). Then there exists a Ty = T1(Ny, Ey) > 0
such that for all t € (0,T1],

t t
(12l + [ Vulls) + / |/us|Zads < C + C / (s)ds. (37)
0 0

sup
0<s<t
Proof. First, for N > 1, define a family of functions ¢y € C§°(By) satisfying

0<o¢y <1, on(x)=1, if |z| < N/2, |[VFoy|<CN* keN, (3.8)
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it follows from (1.1), and (3.4) that

d
— | ppan,dx = /PU - Voon,dz

dt
o ([ (fare)”

> —C(FEy, Ny),

v

where we used the fact [ pdx = [ podz in the last inequality.
Integrating (3.9) over the time interval (0,¢) and using (3.1) gives

~ 1
inf / pdx > inf /pnggNde > /pogngodx - CT, > T (3.10)
Bany,

0<t<Ty T0<t<Ty

where we take T} := min{1, (4C)~'}. From now on, we will always assume that t < T}.
The combination of (3.10), (3.4) and (2.6) yields that for € > 0 and > 0, every v €
D'?(Bg) satisfies
vain||L(2+e)/ﬁ < Cle/ZUHLz + CHVUHLQ (3.11)
with 77 = min{1, n}.
Next, multiplying (1.1), by z* and integrating by parts imply that

d
%/fapda: < C’/p|u|ia_1 log'™™ (e + |z|?)dx
a1t a4
< C|lpz 1+8+a||L%||UI 5+a || ps+a (3.12)
1 T+a
< Cllollz= ozl (o™ ullz2 + [Vl 12)
< C(1 A+ [lpz®| ) (X + [IVull2)

due to (3.4) and (3.11). This combined with Gronwall inequality and (3.4) lead to

t
sup [[pz®]|;1 < Cexp {C/ (1+ ||Vu||%2)d8} <C. (3.13)
0

0<s<t

Now we are prepared to estimate the first order derivatives of the velocity. Multiplying
(1.1), by w; and integrating by parts, one has

d
/p|ut|2d$—i—,ua/]Vu|2dx

:—/(pu-Vu) -utd$+/</Vp®Vp:Vutd:n
p (3.14)
:RE/Vp(@ Vp: Vudr + Q/RV(U -Vp) ® Vp : Vudz

- /(pu -Vu) - wde.
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First, it follows from (3.4), (3.11), and (3.13) that for any ¢ > 0 and n > 0,

1P| serass < Cllp"zTE50 e

LA(2+¢) /37 HUQ_Zi
31

4(2-5:5)7]_1 —a 4(2+e) __ _37a
<C p 3 pxidr ||vz ™3+

4(2+€)n—37] 37

< Clipl """ Mozl (o ?vllze + V0] 2)
1
< Cllp2vllzz + Cl[Vvll 2,

LAC+e)/7

LA(2+e)/7

(3.15)

where 7 = min{1,7} and v € D“*(Bg). In particular, this together with (3.4) and (3.11)
derives
" ullLevarn + |uz ™| parosn < O+ [[Vul2). (3.16)

Then we estimate the terms in the right hand side of (3.14). First, the combination of
the Cauchy-Schwarz and Gagliardo-Nirenberg inequalities yields

1
/(pu -Vu) - udr < 1 /p|ut|2dx + C/p\u]Q\VuFdx

1 1
<7 [ pluPds + Cllobult | Vul?,
| 1 . . (3.17)
<5 [ plulds + Clptula | Vul B Tl

1
< 1 /p|ut|2dx + CY* + e\|V2uH%2,

where (and in what follows) we use @ > 1 to denote a generic constant, which may
different from line to line.

For the second term on the right hand side of (3.14), integration by parts together
with Gagliardo-Nirenberg inequality deduces that

/mV(u -Vp) ® Vp : Vudz

<C [ IVoPIvuPdn +C [ 19%]1Vplul[Valda .19

< OIVoli=IVulliz + ClIVpll o |29V pl Lo |2~ ull o | V] 2
< oy,

Here ¢ + - = 1. and ¢* > 2. Inserting (3.17) and (3.18) into (3.14) gives

1 d
3 /p]ut|2d:r; + = /(,u\Vu\Z — kVp® Vp: Vu)dz
<e|Vullts + Cu

(3.19)

Differentiating the continuity equation (1.1), with respect to x;,i = 1,2, we get

(O, )t + u - V(Op,p) + Op,u- Vp =0, (3.20)
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multiplying (3.20) by 4|0,,p

20,.p, integration by parts over the domain By yields

d
ol <C [ 190l[Vpljon ol
3.21
< C|Vull 21Vl 2 9r, e (3:21)
< CyPe(t).
Integrating (3.21) over the time interval (0,t) lead to
sup [|[Vpl|74 < C + C/zb%ls. (3.22)
0<s<t

On the other hand, since (p, u, P) satisfies the following Stokes system,
—puAu+ VP =—pu, — pu-Vu— rdiv(Vp ® Vp),
applying the standard LP-estimate yields

IV2ul2: + |V P| 22
< Cllpus22 + Cllpu - V|22 + C|||[ V| [ V20| |22
< Clly/pudll? + Cllowl) 2| Vull 2 | V2ull m + Cl V|2 | V20|22 (3.23)

]' (07
< Cllvpu|7s + §||V2u\|%z + Cy?,
which implies that,
IV2u|2. + |V P2 < C|lVpul|2e + Cb™. (3.24)

Substituting (3.24) into (3.19) and choosing € suitably small, one gets

t t
| V|2, +/ /p|ut|2dzvds < C+C|Vpllia +C/ V*ds
0 0 (3.25)

t
s0+0/ pods,
0

where in the second inequality we have used (3.22). Thus we complete the proof of Lemma
3.2.
O

Remark 2. Here we want to give some comments on the proof of Lemma 3.2. As the
same with Y. Liu et. al. [13], this lemma is used to derive the L*>-estimate on ||Vul| 2.
The different part is the treatment of the capillary term [ div(Vp ® Vp) - wudz. In the
paper of Y. Liu et. al. [13], they remark from the divergence free property of the velocity
that [div(Vp® Vp) - wdzr = [ ApVp - udz. Then combining the Hardy-type inequality
and Holder inequality, they complete the estimate in terms of i (t) and ||[Vul[z2. In
order to close the estimate, they have to derive the estimate of sup ||y/puy||r2 in the next
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step, therefore the initial value of sup ||\/pu¢|| 2 will be involved, to bound this term, the
compatibility condition (1.9) is necessary. My way is different, we observe that

d
/Vp ®@ Vp: Vude = %/Vp® Vp : Vudzr + 2/V(u -Vp) ® Vp: Vudr, (3.26)

and to bound the first term of the right-hand side in (3.26), we also derive a new estimate
for the density, see (3.22).

Lemma 3.3. Let (p,u, P) and Ty be as in Lemma 3.2. Then there erxists a positive
constant o > 1, such that for all t € (0,T1],

t q+1 t
s (sl + [ 72+ sl + sVl < Coxp (0 [ veas).
SsS 0 0
(3.27)

Proof. Differentiating the momentum equations (1.1), with respect to ¢, using the conti-
nuity equation (1.1),, we derive

pug + pu - Vug — pAuy + VP,

3.28
=—pi(us +u-Vu) — puy - Vu — kApV(u - Vp) — kA(u - Vp)Vp. (3.28)
Multiplying (3.28) by u;, we get after integration by parts over By that
1d
Sdt p|ut|2dzL‘+,u/|Vut|2dx
<C [ plul(Vus] + 90 + ol Vul)d + C [ pluf? (V][ Vulda
2 (3.29)
+C [ pluPIVuds + [ 120190 Vollulds +| [ A Vo) (Tp-uids
5
i=1
Now let us estimate the terms on the right hand side of (3.29) one by one. First
1 I N T
Ji < Cllp2ullzsllp2uell 72 llp2 el 7o (I Vel 2 + [ Vull74)
1 1 1 1 1
+ CllpruloallpZucl 22l pZuel 26l V0l 2
1
< OO+ (| Vullia)llo2ud Falp= el 2 + [ Vel 12)2 (3:30)
< (IVuellzz + [IVullze + [Vull e [VZull e + [V2ull2)
lLL (0% «
< SIVwlie + Co®lvpulze + Co® + C1 + [[Vullze) [VZul 72
Then, Hélder inequality combined with (3.16) leads to
3 1
Jo + I < Cllpzullis ]| Vullsl Varll e + ClIVul ellpz |l o7l - a1

ILL (64 (03
< SIVwllze + Co*llvpulze + C* + | Vullze).
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L <C / V2]l | 2 pl [y dx + C / Vo[Vl | 2] e | e
< O)7°V2p|a|7
+ C|IVpll oo |17 Al 1l Ve 2|7 | o
< Oy (1 + [ Vullg2) (2 udll 2 + [Vl z2) + Co* (o2 2 + |V 12)
< SIVudlfz + v o 7o

Finally,
Ji=| [ B V)T w)dal

<c [ 1VoPlulusds + [ 1V6lI9p|Valfulda
+ [ IVlIVpllal Vuslds + [ Vo2V ulda

< LIVu2: + Cully/pul 2 + Cue.

(=)

Inserting the estimates (3.30)-(3.33) into (3.29), we get

1d

2dt plue|da +,u/ V| *de < Cy*(1+ ||qut||L2)-

Multiplying (3.34) by ¢, using Gronwall inequality, we get

sup( v/pus|72) + /O(SHVusH%Q)dt < Cexp (C/o wads) )

Finally, we show that

t qt1 qt+1
/ (nv?uan L IvPl +s||v2u||%q+s||vp||%q) ds
0

< cexp{c/otwa@)ds}.

Applying the Stokes estimate and Gagliardo-Nirenberg inequality, we have

IV2ullzs + IV Pllzs < Cllpuell e + llpw - Vulza + [Vl V2l 20)
< Cllpuellze + lowll 2l |Vl 20 + [V pl| o2 | V2 £a)

2(q 1) 2-2q

g=1
< Cllowll ~ llpull fa® + O (L + [IVPu 2 )

2(q 1) a®—2q
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(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

< ClIVpuell & IVl + lpullze) + Co(1+ [ V2ull 2 ),

(3.37)
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which together with (3.7) and (3.35) implies that

t - q+1
/ (I92ll,z + IV P[e )ds

(q )(thL )

< 0 [ Gl 19wl T s

g+1 t —1
T / | pudl ot ds+C / po(1+ |Vl )ds
0 0

LS B L) 5 | a=2)atD)
< C sup (8||\/5Ut||L2)"“’2_2)/ s~ 20 (s]|Va|[72) 2@-2 ds (3.38)
0<s<t 0

t
c / (6 + /pudlZe + [IV2ul22)ds
t ¢ ot
SCeXp{C ws)czs} (1+ [T )
0

t
< Cexp {C’ @/J“(s)ds}.
0
and
t
[ 6Vl + sV PR )ds
0
< ¢ [ livpuliads +C [ Gl ypuli) ¥ (1 7uli = o
2(g—1)
C / (L4 [Vl )ds (3.39)
tO t t
< c/ s||\/ﬁut||%2d8+0/ s||Vut||%2ds+C'/ (% + ][ V2ul[2)ds
0 0 0
t
gCeXp{C/ wo‘(s)ds}.
0
Therefore we complete the proof of Lemma 3.3. n

Lemma 3.4. Let (p,u, P) and Ty be as in Lemma 3.3. Then there exists a positive
constant a > 1 such that for all t € (0,1],

t
sup || Z%p|lLinmzawzae < exp {C’exp {C’/ wads}} . (3.40)
0<s<t 0
Proof. First, it follows from Sobolev inequality and that for § € (0, 1),
e <€) (lua™ |, g + IV (a1 15)

< CO) (Il g + [ Vullps + ua~| g™ Vall s, ) (B4D)
CE)W* + IV2ul]12).
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Multiplying the continuity equation (1.1), by 2%, after some simple calculation, we get
0(Z%) +u-V(T) — azpu - Vlegz = 0. (3.42)

To obtain the estimate of first order spatial derivatives of z%p, we differentiate (3.42) with
respect to x;,t = 1,2:

01, (%) + - VI, (2°0) + Oy - V(")

3.43
— a0y, (Z%p)u - Vlogz — azpd,, (u - Vlogz) = 0. (3.43)

Multiplying (3.43) by r|9;(z%)|"20;(z%p) for r € [2,q|, and integrating the resulting
equality over Bg, we get

d . _ .
SNV @)l < CO+ [Vl e+ llu- Viog 2l V(@0) 1
T Cll2 pll o [V (uV log 2) | 1.

(3.44)

To obtain the second order spatial derivatives of z%p, differentiate the equation (3.43)
with respect to x;, 7 = 1,2, after some calculation, one has

ataxialj (i)ap) tu- vaxza% (jap) + aju ’ v(aﬂfz (a_:ap)) + O - V(axg (fap))
+ 02, 0p;u - V(Zp) — a0y, 0, (2 p)u - V1og T — a0y, (2%p) 0, (u - Vlog ) (3.45)
— a0y, (T0) 0y, (u - V1ogT) — a(2°p) 0y, 0, (u - Vlog z) = 0,

multiplying (3.45) by r|9;0;(zp)|"~20;0,(z"p) for r € [2,q], and integrating the resulting
equality over Bp, and using (1.1),, we derive

d oy . i i
ZIV2 (@)l < CU+ [|Vullpe + [[u- Viog 2] 1<) [ V(& p) |-

+ O3 pll | V3wV log 7)1 (3.46)
+ V(@ )= (V2ullr + [V (uV log 7)),
combining it with (3.44), and summing up for 7,5 = 1,2, leads to
d._ . i} Y
V@ P)llwrr < CA+ VUl + [lu- ViegZ|l1=) |V (z°p) w2
+ Ol pll (19 (¥ g )1 + [ V2(uV log ) 1) (3.47)

+CIIV (@)l (V2] - + [V (uV log 2)]| )
< CW* +1IV2ullz2nza) (1 + [V (@) lwrr + V(27 p) wra)

Using (3.7), (3.36), (3.13), (3.44), (3.47), and Gronwall inequality, one thus get (3.40) ,
therefore we complete the proof of Lemma 3.4. O

Now, we are in a position to give a proof of Proposition 1, which is a direct consequence
of Lemmas 3.1-3.4.
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Proof of Proposition 1. It follows from (3.4), (3.7), and (3.40) that

(t) < exp {Cexp {c/ot wads}}.

Standard arguments yield that for M := e¢“® and Ty := min{T}, (CM*)~1},

sup ¥(t) < M.

0<t<Tp
This combines with (3.24) and (3.27) gives

sup (¢[|V2ullZ: + t[IVP]Z) < C(M),

0<t<Ty

which together with (3.7), (3.27), (3.40) gives (3.3). Therefore the proof of Proposition 1

is completed.

]

4 Local existence and uniqueness of strong solutions

This section is devoting to prove the main result Theorem 1.2 with the aid of the a priori

estimates obtained in Section 3.

Let (po,up) be as in Theorem 1.2. Without loss of generality, the initial density pq is

assumed to satisfy

/ podr =1,
RZ

which implies that there exists a positive constant Ny such that

/ podz > §/ podxr = §

We construct pff = pf + R~'e 1 where 0 < pf € C5°(R?) satisfies
1
| iz,
By, 2
T8 — 7%  in LY(R?) N H*R*) N W?(R?),as R — oo.
Since Vugy € L*(R?), choosing v € C3°(Br)(i = 1,2) such that

. R . .
}%1—{20 ||UZ - 8¢u0||L2(R2) = 0, 1= 1, 2.

We consider the unique smooth solution u{f of the following elliptic problem:

— Ault + plull + VP = \/pliht — Of, in Bg,
divul =0, in B,

u(lf =0, on 0Bp,

(4.1)

(4.2)

(4.3)

(4.4)
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where b = (\/pouo) * ji/r With js being the standard mollifying kernel with width 4.
Extending uf to R? by defining 0 outside Bg and denoting it by @, we claim that

lim <||V(ﬂ0R — uO)||L2(R2) + ||\/ pgﬂoR - \/%UOHLQ(R2)> = 0. (45)

R—o0

In fact, it is easy to find that @ is also a solution of (4.4) in R?. Multiplying (4.4) by @
and integrating the resulting equation over R? lead to

/ p§|ﬂ0R|2dx+/ Vi [*dz
R2 R2
< I/ efad | r2mm 1P | z2Br) + Cllofl z2sm 10785 || 22(5 ) (4.6)

1.
< §HVUORH%2(BR) +

1 .
3 [, AN+ CIN g + Cl g,

which implies
/ R 2 + / Vil 2z < ¢ (@7
R2 R2

for some C' independent of R. This together with (4.2) yields that there exist a subse-
quence R; — oo and a function 4y € {uy € H} (R?)|\/potio € L*(R?),Vi, € L*(R?)}
such that

\/ pff‘faffj — /polip weakly in L*(R?), (4.8)
Vil — Vig weakly in L?(R).

Next we will show
710 = Ugp. (49)

Indeed, multiplying (3.12) by a test function 7 € C{°(R?) with divr = 0, it holds that

B,(al — ug) - Oywd —I—/ Vol plals — hB) - rde = 0. (4.10)
R? R?

Let R; — o0, it follows from (4.2), (4.3) and (4.8) that

82(120 — Uo) . 8Z7Td.CE +/ ,00(120 - UO) -dr = 0, (411)

R2 R2

which implies (4.9).
Furthermore, multiplying (4.4) by 4f and integrating the resulting equation over R?,
by the same arguments as (4.11), we have

lim /2(p§j|&§j]2 + |V [P de = /Z(Po\uo’2 + |Vuo|*)de,
R

which combined with (4.8) leads to

lim / Vi |Pde = / Viio|?dz,  lim / P e |Pde = / polio|?d.
Rj—o0 R2 R2 Rj—o0 R2 R2
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This, along with (4.9) and (4.8), gives (4.5).
Hence, by virtue of Lemma 2.1, the initial and boundary value problem (1.1) and
(2.2) with the initial data (pf, ul) has a classical solution (p®,uft, PR) on By x [0, Tg].

Moreover, Proposition 1 shows that there exists a 7T independent of R such that holds
for (pft, u®, PR).
For simplicity, in what follows, we denote

LP = [P(R?), WHk? = WkP(R?).
Extending (p%, u®, P®) by zero on R?/Bx and denoting it by
(3% = opp®, @k, PR)
with ¢p satisfying (3.8). First, (3.3) leads to

sup (VAR 12+ V1) < sup (IVpRullszqm) + Va2 ) < C.

0<t<Ty
(4.12)

and

sup [|75" | pinze < C. (4.13)
0<t<To

Similarly, it follows from (3.3) that for ¢ > 2,

1 ~D ~ ~
sup 13 (/AR + 1V2a" 2 )

0<t<Top
¥ / (IVFRfI: + 120 + 1920015 ) at (114)
+ [ IV + Vi) de < c.

Next, for p € [2, ¢, we obtain from (3.3) and (3.40) that

sup [|V2(z°5™)|r < C sup ([V*(zp™) | Le(8a)
0<t<T,

0<t<Ty
+ ROV @ 0 o(sr) + BT 0" o(51)) (4.15)
< C sup (20" g2 (ryrwre(r) < O
0<t<Ty

which together with (3.41) and (3.3) yields

To To
| 10 e < C [ a9
0 0

o Y (4.16)
<C [ I e 8V
<C.
By virtue of the same arguments as those of (3.27) and (3.36) , one gets
1 PR o pDR||2 SR e
sup t2[|[VP%|2+ [ (VP72 + [[VPY i )dt < C. (4.17)
0<t<T 0
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With the estimates (4.13)-(4.17) at hand, we find that the sequence (p%, @', P) con-
verges, up to the extraction of subsequences, to some limit (p,u, P) in the weak sence,
that is, as R — oo, we have

zp™ = Zp,in CY(By x [0,Tp]), for any N > 0, (4.18)
5" — 2%, weakly * in L>(0, Ty; H> N W>9), (4.19)
VRt — \/pu, Vit — Vu, weakly * in L>(0, Ty; L?) (4.20)
V2t V2, VPR - VP, weakly in L' (0, To; L9) N L2(R? x (0,Tp)),  (4.21)
VIV — V/tV2u, weak in L2(0, Ty; LY), weak * in L>(0, Tp; L?), (4.22)
Vil — Viy/pug, VIV PR —~ VIV P, weak * in L=(0, Ty; L?), (4.23)
VIVl — VtV2u,, weak * in L*(R? x (0,Ty)), (4.24)

with
zp € L™(0,Ty; LY, Osi?SfTo /Bz px, t)de > i (4.25)

Then letteing R — oo, standard arguments together with (4.18)-(4.25) show that (p, u, P)
is a strong solution of on R? x (0, Tp) satisfying (1.7) and (1.8). Indeed, the existence of
a pressure P follows immediately from (1.1); (1.1), and by a classical consideration. The
proof of the existence part of Theorem 1.2 is finished.

The final work is only to prove the uniqueness of the strong solution satisfying (1.7)
and (1.8). Let (p,u, P) and (p, @, P) be two strong solutions satisfying (1.7) and (1.8)
with the same initial data, and denote

O:=p—p,U :=u—u.
First, subtracting the mass equation satisfied by (p,u, P) and (p, @, P) gives
O;+u-VO+U-Vp=0. (4.26)

Multiplying (4.26) by 20z* for r € (1,a) with @ = min{2,a}, and integrating by parts
yield

d
z / 07" [2dx

1 ~ .
< 07725 oo =T =T ——(a—r) =0 (427)
< Ol 1~ O 2 + CIOF o |lUF | 8l

< C(L+ [Valwal| O[22 + CllO" (VU 22 + VU ]| 2)

due to Sobolev inequality, (1.8), (3.16), (3.41). This combined with Gronswall inequality
shows that for all 0 <t < Ty,

t
lex|l,» < C / (IVUlze + /5U 1 12)ds. (4.28)
0
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Next, taking the gradient in (4.26), multiplying the resulting equation by VO, and inte-
grating over the R?, we get

1d

(4.29)
Observe that
—/A@Vp-Uda: = /V@ (Vp-U)dx = /V@ (V20 - U)dz + /V@ (Vp-VU)dx.

(4.30)
Next, subtracting the momentum equation satisfied by (p, u, P) and (p, 4, P) leads to

pUs+pu-VU —uAU = —pU -Vii—O (g +1- Vi) — V(P —P)+kAOVp+rApVO. (4.31)
Multiplying by U, integration by parts and combine with (4.29) yield
d 1

A
:/—pU-Vu-U—@(ut—l—u-Vu)-U—/iApV@-U—/i(V@-u)-V@da:

plU + g|V@|2)dx + / g|VU|2dac

(4.32)
< C|Valu~ [(IUP + [vOP)ds +C [ []Ul(al +|al|Val)da

+ 0/ AF|VO||Udz.
To finish the proof, we estimate the last two terms on the right hand side of (4.32). First,

/I@IIUI(IutI +lallVal)de < Cll0z" || Uz~ 2| (a2l s + | Val| =] az "2 1)

< COIVpulzz + IVarlLs + [ValL<) 0277,
+e(lvpUllz: + IVUIZ)

t
< Cl)(1+ ]| Vig[7> + tIIVQUII%q)/O (IVUIZ2 + lvPUIZ2)ds
+e(lvpUlL: + IVUIIZ),

(4.33)
and
/'APHV@IIUld:v < Cllz"2plla|UZ™) 1o [V O 2
. 4.34
< C(IVpU 72 + IVUIZ) 12" 2pll 4l VO 2 (4.34)
< e(lvpUlz +1IVU(72) + Cle) " Apl LI VOII7--
Denoting

t
G(t) = lvpUll1: +/O (IVUIIZ2 + IvpU lIZ2)ds,
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then substituting the above into (4.32) and choosing € suitably small lead to
G'(t) < C(L+ |77 DpllZa + IVl + | Vel|Z2 + ¢ VullZ) G (1),

which together with Gronwall inequality and (1.7) implies that G(t) = 0. Hence, U(z,t) =
0 for almost everywhere (z,t) € R? x (0,7). Finally, one can deduce from (4.28) that
© = 0 for almost everywhere (z,t) € R? x (0, T). The proof of Theorem 1.2 is completed.
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