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1 Introduction

The purpose of the paper is to establish the exact controllability of a strongly nonlinear
wave equation in bounded regions of Rn with boundary controls.

Let {u0, u1} be the initial values and let {v0, v1} be the target values with both in a
subset of H1(Ω) × L2(Ω), one wishes to find (i) a control χ acting on a portion of the
boundary ∂Ω and (ii) a weak solution w of the problem

w′′ −∆w+ | w |p−2 w = f in Ω× (0, T ),

w = 0 on (∂Ω/Γ)× (0, T ) , ν.∇w = χ on Γ× (0, T ), (1.1)

{w,w′} |t=0= {u0, u1} , {w,w′} |t=T= {v0, v1}

The exact controllability of the linear wave equation has been the subject of inves-
tigations in the late 80’s following the introduction of the HUM’s method of J.L.Lions
[11]. More recently, Carleman estimates were used to establish the exact controllability
of the wave equation with a potential by L.Baudoin,M de Buhanand and S.Ervedoza [2],
by I.Lasiecka,R.Triggiani and P.F. Rao [6] for a plate equation on a Riemann manifold
with energy level terms .

For nonlinear wave equations with Dirichlet-type controls, the problem has been stud-
ied by E.Zuazua [18,19 ] using a variant of HUM’s method. The nonlinear term is asymp-
totically linear and in C1 if the initial and target spaces are in H1(Ω)×L2(Ω), has at most
a linear growth if the spaces are in Hγ(Ω)×H−γ(Ω) for [0, 1], γ ̸= 1/2. The exact control-
lability for semi linear wave equations has been investigated by C.Bardos,G.Lebeau and
J.Rauch[1], X.Fu,J.Yong and X.Zhang [4], L.Hu [3],G.Leugering,T.Li and Y.Wang [5],T.T
Li and B.P.Rao [9], T.T.Li,B.P.Rao and P.F.Yao [10 ], L.Li and X.Zhang [7],R,Triggiani
[15],P.F.Yao [16], X.Zhang [17] and others. In the works on semi-linear wave equations
of [18 ,19] , the first step is the application of Lions’s result on the exact controllability
of a linear wave equation with Dirichlet-type controls. The solution is shown to be in
L2(0, T ;H1/2(Ω)) with the control in L2(0, T ;L2(Γ)) and appropriate initial and target
values.The lack of space regularity has been a major obstacle to the study of the exact
controllability of wave equations with a nonlinear polynomial growth.

The approach taken in this paper is different in several respects : (i) the study of
the exact controllability for a linear wave equation with an internal instead of boundary
controls, (ii) the use of techniques of the theory of variational inequalities to show the
existence of a special T-periodic solution with a control on the solution which turns out
to be the key to the establishment of the exact controllability with an internal control
,(iii)the use of the time-reversibility of the wave equation.

Similar ideas have been used by the writer in Ton [14] to study the exact controllability
of nonlinear wave and Schrodinger equations and for T-periodic solutions of nonlinear
wave equations in [ 13 ].

Notations are given in Section 2. The exact controllability of the linear wave equation
with an internal control with mixed Neumann-Dirichlet boundary conditions is established
in Section 3. A nonlinear problem is considered in Section 4 and the main result of the
paper is proved in Section 5.
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The writer is grateful to Professor J.I.Diaz for calling his attention to the research
potential of a proposed addendum to [6].

2 Notations

Let Ω be a bounded open subset of Rn with a smooth boundary and let Γ be a non-empty
closed subset of ∂Ω. Let H1

0(Ω) be the Hilbert space

H1
0(Ω) =

{
u : u ∈ H1(Ω), u = 0 on ∂Ω/Γ

}
.

We have

H1
0(Ω) ⊂ L2(Ω) ⊂ H−1(Ω).

Throughout the paper the pairing between various spaces are all denoted by ( ., .).
Let J be the duality mapping of L2(0, T ;L2(Ω)) into L2(0, T ;L2(Ω)) associated with

the gauge function Φ(r) = r. Then J is a hemi-continuous monotone operator and

∫ T

0

(Ju, u)dt = ∥Ju∥L2(0,T ;L2(Ω))∥u∥L2(0,T ;L2(Ω))

= ∥u∥2L2(0,T ;L2(Ω))

Let K be the set

K =
{
u : u ∈ L2(0, T ;L2(Ω)),

∫ T

0

u( ., t)dt = 0
}

K is a closed convex subset of L2(0, T ;L2(Ω)). We denote by β the penalty function
associated with the closed convex subset K of L2(0, T ;L2(Ω)). It is defined by

β(u) = J(u− PKu)

where PK is the projection of H(Ω) onto K. We know that β is a monotone hemi-
continuous mapping of L2(0, T ;L2(Ω)) into L2(0, T ;L2(Ω)).

3 The linear case

In this section we shall establish the exact controllability of the linear wave equation with
an interior control. The main result of the section is the following theorem.

Theorem 3.1. Let {y0, y1} and {z0, z1} be in H1
0(Ω) ∩H2(Ω)} ×H2(Ω) with

ν.∇y0 = ν.∇z0 = ν.∇y1 = ν.∇z1 = 0 on Γ.

There exists
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(i) an internal control θ = θ̃ + θ̂ with

{θ̃, θ̂} ∈ C1(0, T ;L2(Ω))×H−1(Ω)

(ii) a weak solution α of the problem

α′′ −∆α + θ = 0 in Ω× (0, T ),

α = 0 on (∂Ω/Γ)× (0, T ) , ν.∇α = 0 on Γ× (0, T ) (3.1)

{α, α′} |t=0= {y0, y1} , {α, α′} |t=T= {z0, z1}

Moreover

∥α∥L∞(0,T ;H1
0(Ω)) + ∥α′∥L∞(0,T ;H1(Ω)) + ∥α′′∥L∞(0,T ;L2(Ω))

+ ∥θ̂∥C1(0,T ;L2(Ω)) + ∥θ̃∥H−1(Ω)

≤ C
{
∥y0∥H1

0(Ω)∩H2(Ω) + ∥y1∥H2(Ω) + ∥z0∥H1
0(Ω)∩H2(Ω)

+ ∥z1∥H2(Ω)

}

The proof of the theorem will be carried out in two steps. First we shall use the
penalty function and a regularization to study the problem

α̂′′ −∆α̂ + θ̂ = 0 in Ω× (0, T ),

α̂ = 0 on (∂ΩΓ)× (0, T ) , ν.∇α̂ = 0 on Γ× (0, T ), (3.2)

{α̂, α̂′} |t=0= {y0, ŷ1} , α̂( ., T ) = y0

In Step 2, we note that if the given data ŷ1 = 0 then we have a special T-periodic
solution as α̂′( ., T ) = 0 = α̂′( ., 0) and use that crucial fact to construct the internal
control θ̃

Step 1. Let 0 < ε and consider the problem

α′′
ε − ε∆α′

ε −∆αε + ε−1β(α′
ε) = 0 in Ω× (0, T ),

αε = 0 on (∂Ω/Γ)× (0, T ) , ν.∇αε = 0 on Γ× (0, T ) (3.3)

αε( ., 0) = y0 , α′
ε( ., 0) = ŷ1

Lemma 3.1. Let {y0, ŷ1} be in H1
0(Ω) × H1(Ω), then there exists a weak solution αε of

(3.3). Moreover
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∥α′
ε(t)∥2L2(Ω) + ∥∇αε(t)∥2L2(Ω) + 2ε∥∇αε∥2L2(0,t;L2(Ω)

+ 2ε−1

∫ t

0

(β(α′
ε) , , α

′
ε)ds

≤ ∥∇y0∥2L2(Ω) + ε∥∇ŷ1∥2L2(Ω) + ∥ŷ1∥2L2(Ω)

The constant C is independent of ε.

Proof. Let {φj} be an orthonormal basis of H1
0(Ω) and consider the Galerkin approx-

imating system

(α′′
n, φj) + ε(∇α′

n,∇φj) + (∇αn, ∇φj) + ε−1(β(α′
n), φj) = 0

αn( ., 0) = y0,n , α′( ., 0) = y1,n ; j = 1, .., n

The existence of a solution with the stated estimate is easy to establish and we shall
not reproduce it □

Lemma 3.2. Suppose all the hypotheses of Lemma 3.1 are satisfied and let αε be as in
Lemma 3.1. Then there is a subsequence such that

{αε, α
′
ε} → {α̂, α̂′}

in

{[L∞(0, T ;H1
0(Ω))]weak∗ ∩ C(0, T ;L2(Ω))} × [L∞(0, T ;L2(Ω))]weak∗

Moreover

∥α̂′(t)∥2L2(Ω) + ∥∇α̂(t)∥2L2(Ω) ≤ ∥ŷ1∥2L2(Ω) + ∥∇y0∥2L2(Ω)

and

α̂( ., 0) = y0 = α̂( ., T ).

Proof. 1) We have only to show that α̂( ., 0) = y0 = α̂ε as all the other assertions
follow from Lemma 3.1. We get

∥β(α′
ε)∥L2(0,T ;L2(Ω)) = ∥J(α′

ε − PKα
′
ε)∥L2(0,T ;L2(Ω))

= ∥α′
ε − PKα

′
ε∥L2(0,T ;L2(Ω))

≤ 2∥α′
ε∥L2(0,T ;L2(Ω))

≤ C

with C independent of ε. Thus,
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β(α′
ε) → χ in [L2(0, T ;L2(Ω))]weak.

On the other hand we have from the equation

ε
{
α′′
ε − ε∆α′

ε −∆αε

}
→ 0

in D′(0, T ;H−1(Ω)). Hence χ = 0.
2) From the estimate of Lemma 3.1 we have∫ T

0

(β(α′
ε) ., α

′
ε)dt → 0

as ε → 0. . Hence∫ T

0

(−β(v′), α′
ε − v′)dt ≥ 0 ∀v′ ∈ L2(0, T ;L2(Ω)).

With v′ = α̂′ + λu′ for u′ in L2(0, T ;L2(Ω)) we obtain∫ T

0

(β(α′
ε + λu′), u′)dt ≤ 0

Let λ → 0 and since β is hemi continuous, we deduce that∫ T

0

(β(α̂′), u′)dt ≤ 0 ∀u′ ∈ L2(0, T ;L2(Ω))

With −u′ instead of u′ and we have∫ T

0

(β(α̂′), u′)dt ≥ 0 ∀ u′ ∈ L2(0, T ;H1
0(Ω))

It follows that β(α̂′) = 0 i.e.

α̂( ., 0) = y0 = α̂( ., T ).

Lemma 3.3. Suppose all the hypotheses of Lemma 3.1. Then there exists a time-independent
θ̂ in H−1(Ω) and α̂ is a solution of the problem

α̂′′ −∆α̂ + θ̂ = 0 in Ω× (0, T ),

α̂ = 0 on (∂Ω/Γ)× (0, T ) , ν.∇α̂ = 0 on Γ× (0, T ), (3.4)

α̂( ., 0) = y0 = α̂( ., T ) , α̂′( ., 0) = ŷ1.
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Furthermore∫ T

0

(θ̂, v)dt = lim
ε→0

ε−1

∫ T

0

(β(α′
ε), v)dt ∀v ∈ C∞

0 (0, T ;H1
0(Ω)).

Proof. 1) Let φ be in C∞
0 (0, T ;H1

0(Ω)) then φ′ is in K and therefore β(φ′) = 0. We
have

∫ T

0

(β(α′
ε)− β(φ′), α′

ε − φ′)dt =

∫ T

0

(β(α′
ε), α

′
ε − φ′)dt

≥ 0 ∀φ ∈ C∞
0 (0, T ;H1

0(Ω))

It follows from (3.3) that

∫ T

0

(α′′
ε , α

′
ε − φ′)dt + ε

∫ T

0

(∇α′
ε,∇(α′

ε − φ′))dt

+

∫ T

0

(∇αε,∇(α′
ε − φ′))dt

≤ 0 ∀φ ∈ C∞
0 (0, T ;H1

0(Ω)).

We rewrite it as

E(αε) ≤ Φ(αε, φ)

with

E(αε) =
1

2
∥α′

ε(T )∥2L2(Ω) −
1

2
∥y1∥2L2(Ω) + ε∥∇α′

ε∥2L2(0,T ;L2(Ω))

+
1

2
∥∇αε(T )∥2L2(Ω) −

1

2
∥∇y0∥2L2(Ω)

and

Φ(αε, φ) =

∫ T

0

(α′′
ε , φ

′)dt+ ε

∫ T

0

(∇α′
ε,∇φ′)dt+

∫ T

0

(∇αε,∇φ′)dt

Changing φ into −φ and we obtain

Φ(αε, φ) ≤ −E(αε)

Combining the two inequalities and we get
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E(αε) ≤ Φ(αε, φ) ≤ −E(αε) ∀φ ∈ C∞
0 (0, T ;H1

0(Ω))

Let λ > 0 and consider φ/λ instead of φ and we have

λE(αε) ≤ Φ(αε, φ) ≤ −λE(αε)

Hence

Φ(αε, φ) = 0 ∀ φ ∈ C∞
0 (0, T ;H1

0(Ω))

Let ε → 0 and we get

Φ(α̂, φ) = 0 ∀φ ∈ C∞
0 (0, T ;H1

0(Ω))

i.e.

{α̂′′ −∆α̂}′ = 0 in D′(0, T ;H−1(Ω)).

2) Hence there exists a time-independent θ̂ in H−1(Ω) such that

α̂′′ −∆α̂ + θ̂ = 0

and

∫ T

0

(α̂′′, φ)dt +

∫ T

0

(∇α̂,∇φ)dt (3.5)

= −
∫ T

0

(θ̂, φ)dt ∀φ ∈ L2(0, T ;H1
0(Ω))

Let ε → 0 in (3.3) and we get

∫ T

0

(α̂′′, φ)dt +

∫ T

0

(∇α̂,∇φ)dt (3.6)

= − lim
ε→0

ε−1

∫ T

0

(β(α′
ε) , φ)dt ∀φ ∈ L2(0, T ;H1

0(Ω))

It follows from (3.5)-(3.6) that∫ T

0

(θ̂, φ)dt = lim
ε→0

ε−1

∫ T

0

(β(α′
ε), φ) (3.7)

for all φ ∈ L2(0, T ;H1
0(Ω))
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3) We now show that the control θ̂ given by (3.7) is unique. Indeed if γ is another
element of H−1(Ω) such that

α̂′′ −∆α̂ = −γ

then ∫ T

0

(θ̂, φ)dt =

∫ T

0

(γ, φ)dt = lim
ε→0

ε−1

∫ T

0

(β(α′
ε) , φ)dt

for all φ ∈ L2(0, T ;H1
0(Ω))

Therefore θ̂ = γ □

Lemma 3.4. Let θ̂ be the time-independent control of Lemma 3.3 then

∥θ̂∥H−1(Ω) ≤ C
{
∥y0∥H1

0 (Ω) + ∥ŷ1∥L2(Ω)

}
Proof. Let ζ be a C∞

0 (0, T ) function and let v be in H1
0(Ω). From (3.5) we get

−(θ̂, v)

∫ T

0

ζdt =

∫ T

0

(α̂, vζ ′′)dt−
∫ T

0

(∇α̂, ζ∇v)dt

Hence

| (θ̂, v) | ≤ ∥α̂∥H1
0(Ω)∥v∥H1

0(Ω)

≤ C
{
∥y0∥H1

0(Ω) + ∥ŷ1∥L2(Ω)

}
∥v∥H1

0(Ω) ∀v ∈ H1
0(Ω)

and the lemma is proved □

Lemma 3.5. Let {y0, ŷ1} be in {H1
0 (Ω) ∩H2(Ω)} ×H1(Ω) with

ν.∇y0 = ν.∇z0 = ν.∇z1 = 0 on Γ

and let α̂ be as in Lemmas 3.3-3.4, then

{α̂, α̂′, α̂′′}

in

L∞(0, T ;H1
0(Ω))× L∞(0, T ;H1(Ω))× L∞(0, T ;L2(Ω))

Moreover

∥∇α̂( .t)∥2L2(Ω) + ∥α̂′(t)∥2L2(Ω) ≤ ∥∇y0∥2L2(Ω) + ∥ŷ1∥2L2(Ω)

Furthermore if ŷ1 = 0 then α̂′( ., 0) = 0 = α̂′( ., T ).
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Proof.
The estimate is an immediate consequence of that of Lemma 3.1.
1) Let dh be the usual time difference quotient. Since θ is time-independent we get

from (3.4)

(dhα̂)
′′ −∆(dhα̂) = 0 in Ω× (0, T ),

dhα̂ = 0 on (∂Ω/Γ)× (0, T ) , ν.∇dhα = 0 on Γ× (0, T )

(dhα̂)( ., 0) = hŷ1 , (dhα̂)
′( ., 0) = h∆y0

We have

∥dhα̂∥L∞(0,T ;H1
0 (Ω)) + ∥(dhα̂)′∥L∞(0,T ;L2(Ω)) ≤ C

{
∥hŷ1∥H1(Ω) + ∥h∆y0∥L2(Ω)

}
It follows that {α̂′, α̂′′} is in L∞(0, T ;H1(Ω))× L∞(0, T ;L2(Ω))

3) It is clear from the estimate that if ŷ1 = 0 then α̂′( ., T ) = 0 as α̂( ., 0) = y0 =
α( ., T ) □

Step 2. We shall now construct the inner control F and establish the exact control-
lability of (3.1).

Proof of Theorem 3.1. Let

α̃( ., t) = t2T−2{z0 − y0} − t(t− T )T−1y1 (3.8)

− t2(t− T )T−2{−z1 − y1 + 2T−1[z0 − y0]}

Then

α̃( ., 0) = 0, α̃( ., T ) = z0 − y0, α̃
′( ., 0) = y1, α̃

′( ., T ) = z1

with

α̃′( ., t) = 2tT−2{z0 − y0} − (2t− T )T−1y1

− (3t2 − 2tT )T−2{−z1 − y1 + 2T−1[z0 − y0]}

Set

α = α̂ + α̃ with α̂ as in Lemma 3.5 with ŷ1 = 0

then

α( ., 0) = y0, α( ., T ) = y0 + z0 − y0 = z0,

α′( ., 0) = α̂′( ., 0) + α̃′( ., 0) = 0 + y1 = y1,

α′( ., T ) = α̂′( ., T ) + α̃′( ., T ) = 0 + z1 = z1
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With

ν.∇y0 = ν.∇z0 = ν.∇z1 = 0 on Γ

it is clear that

ν.∇α = 0 on Γ× (0, T )as y1 = 0.

Set

θ̃ = −{α̃′′ −∆α̃} (3.9)

It is trivial to check that α is a solution of (3.1) with all the stated properties □

4 A nonlinear problem

In this section we shall consider a nonlinear problem before establishing the exact control-
lability for the nonlinear wave equations. The main result of the section is the following
theorem.

Theorem 4.1. Let {u0, u1, f} be in H1
0(Ω)×L2(Ω)×L2(0, T ;L2(Ω)) and let {α, θ̂, θ̃} be

as in Theorem 3.1.

Suppose that 2 ≤ p ≤ 2(n− 1)/(n− 2) with 2 ≤ p < ∞ if n = 2. There exists

(i) a time-independent control g in H−1(Ω)

(ii) a weak solution w of the problem

w′′ −∆w+ | w + α |p−2 (w + α) = f + θ̂ + θ̃ in Ω× (0, T ), (4.1)

w = 0 on (∂Ω/Γ)× (0, T ) , ν.∇w = −g on Γ× (0, T ),

w( ., 0) = u0 − y0 = w( ., T ) , w′( ., 0) = u1 − y1

with {w,w′} in L∞(0, T ;H1
0(Ω))× L∞(0, T ;L2(Ω)).

We shall proceed as in Section 3 with some minor differences. In this section ,J is the
duality mapping of L2(0, T ;L2(Γ) into L2(0, T ;L2(Γ)) with gauge function Φ(r) = r and
β is the e penalty function associated with the closed convex subset K∗ of L

2(0, T ;L2(Γ))
with

K∗ =
{
u |Γ: u ∈ K, ∥u∥L2(0,T ;L2(Ω∪Γ)) ≤ C}

for a large positive constant C.

First we consider the problem
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w′′
ε,η − ε∆w′

ε,η −∆wε,η + | wε,η + α |p−2 (wε,η + α) = f + θ̂ + θ̃

wε,η = 0 on (∂Ω/Γ)× (0, T )

ν.∇(εw′
ε,η + wε,η) = −η−1β(w′

ε,η) on Γ× (0, T ), (4.2)

wε,η( ., 0) = u0 − y0 , w′
ε,η( ., 0) = u1 − y1

Lemma 4.1. Suppose all the hypotheses of Theorem 4.1 are satisfied. There exists a
solution wε,η of (4.2) and

∥w′
ε,η(t)∥2L2(Ω) + 2ε∥∇w′

ε,η∥2L2(0,t;L2(Ω)) + ∥∇wε,η(t)∥2L2(Ω)

+
2

p
∥(wε,η + α)(t)∥pLp(Ω) + 2η−1

∫ t

0

∫
Γ

β(w′
ε,η).w

′
ε,ηdσdt

≤ ∥u1 − y1∥2L2(Ω) + ∥∇(u0 − y0)∥2L2(Ω) +
2

p
∥u0∥pLp(Ω)

+

∫ t

0

(f − θ̂ − θ̃, w′
ε,η)ds+

p− 1

p

∫ t

0

∥(wε,η + α)(s)∥pLp(Ω)ds

+
1

p
∥α′∥p

L∞(0,T ;H1
0(Ω))

Proof. Let φj be an orthonormal basis of H1
0(Ω) and consider the Galerkin approxi-

mation system

(w′′
n, φj) + ε(∇w′

n,∇φj) + (∇wn,∇φj) + (| wn + α |p−2 (wn + α), φj)

+ η−1

∫
Γ

β(w′).φjdσ = (f + θ̂ + θ̃, φj), j ≤ n

with

{wn( ., 0), w
′
n( ., 0)} = {wn,0, wn,1} → {u0 − y0, u1 − y1} in H1

0(Ω)× L2(Ω)

The existence of a solution is known and we have

∥w′
n(t)∥2L2(Ω) + 2ε∥∇w′∥2L2(0,t;L2(Ω) + ∥∇wn(t)∥2L2(Ω)

+
2

p
∥(wn + α)(t)∥pLp(Ω) −

∫ t

(| wn + α | (wn + α), α′)dt

+ 2η−1

∫ t

0

∫
Γ

β(w′
n).w

′
ndσds =

∫ t

0

(f + θ̂ + θ̃, w′
n)ds

+ ∥u1 − y1∥2L2(Ω) + ∥∇(u0 − y0)∥2L2(Ω) +
2

p
∥u0∥pLp(Ω)
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Since 2 ≤ p ≤ 2n/(n− 2) we have

H1
0(Ω) ⊂ Lp(Ω).

With α′ in L∞(0, T ;H1
0(Ω)) we get

|
∫ t

0

(| wε,η + α |p−2 (wε,η + α), α′)ds | ≤ p− 1

p

∫ t

0

∥wε,η + α∥pLp(Ω)ds

+
1

p
∥α′∥p

L∞(0,T ;H1
0(Ω))

.

Hence

∥w′
n(t)∥2L2(Ω) + 2ε∥∇w′

n∥2L2(0,t:L2(Ω)) + ∥∇wn(t)∥2L2(Ω)

+
2

p
∥(wn + α)(t)∥pLp(Ω) + 2η−1

∫ t

0

∫
Γ

β(w′
n) .w

′
ndσds

≤ p− 1

p

∫ t

0

∥(wn + α)(s)∥pLp(Ω)ds+ ∥u1 − y1∥2L2(Ω) + ∥∇(u0 − y0)∥2L2(Ω)

+
2

p
∥u0∥pLp(Ω) +

∫ t

0

(f − θ̂ − θ̃, w′
n)ds+

1

p
∥α′∥p

L∞(0,T ;H1
0(Ω))

Taking the Gronwall’s lemma into account, then let n → ∞ and we get the stated
estimate □

Lemma 4.2. Let wε,η be as in Lemma 4.1.Then there exists a subsequence such that

{wε,η, w
′
ε,η} → {wε, w

′
ε}

in

[L∞(0, T ;H1
0(Ω))]weak∗ × [L∞(0, T ;L2(Ω))]weak∗

with β(w′
ε) = 0 i.e. wε( ., 0) = u0 − y0 = wε( ., T ).

Moreover

∥w′
ε(t)∥2L2(Ω) + 2ε∥∇w′

ε∥2L2(,t;L2(Ω)) +
2

p
∥(wε + α)(t)∥pLp(Ω))

≤ ∥u1 − y1∥2L2(Ω) + ∥∇(u0 − y0)∥2L2(Ω) +
2

p
∥u0∥pLp(Ω)

+

∫ t

0

(f + θ̃, w′
ε)ds+ (θ̂, w′

ε(t)− u1) +
1

p
∥α′∥p

L∞(0,T ;H1
0(Ω))
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Proof. 1) The first assertion of the lemma is an immediate consequence of the estimate
of Lemma 4.1. We have

∥β(w′
ε,η)∥L2(0,T ;L2(Γ)) = ∥J(w′

ε,η − PK∗w
′
ε,η)∥L2(0,T ;L2(Γ))

= ∥w′
ε,η − PK∗w

′
ε,η∥L2(0,T ;L2(Γ)

≤ 2∥w′
ε,η∥2L2(0,T ;H1(Ω))

≤ 2ε−1C

Hence

β(w′
ε,η) → χε in [L2(0, T ;L2(Γ))]weak.

On the other hand from the equation we get∫ T

0

∫
Γ

β(w′
ε,η)φdσdt → 0 ∀φ ∈ L2(0, T ;H1

0(Ω))

Therefore χε |Γ= 0.

2) With φ ∈ L2(0, T ;H1
0 (Ω)) we have

(w′′
ε,η, φ) + ε(∇w′

ε,η,∇φ) + (∇wε,η,∇φ)

+ (| wε,η + α |p−2 (wε,η + α), φ) = (f + θ̃ + θ̂, φ)

The boundary term disappears as φ = 0 on Γ. Thus,

∥w′′
ε,η∥L2(0,T ;H−1(Ω)) ≤ Cε

and

w′
ε,η → w′

ε in L2(0, T ;L2(Γ)) ∩ L2(0, T ;Hγ(Ω)), ∀γ, 0 < γ < 1.

We deduce that

β(w′
ε,η) → β(w′

ε) = χε = 0 in [L2(0, T ;L2(Γ))]weak

Therefore w′
ε ∈ K, i.e wε( ., 0) = wε( ., T ).

3) Let φ be in C∞
0 (0, T ;H1

0(Ω)) with

∥φ′∥L2(0,T ;H1(Ω)) ≤ R
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then φ′ ∈ K and φ′
|Γ ∈ K∗. We have

∫ T

0

∫
Γ

{β(w′
ε,η)− β(φ′)}{w′

ε,η − φ′}dσdt =

∫ T

0

∫
Γ

β(w′
ε,η) {w′

ε,η − φ′}dσdt

≥ 0

It now follows from (4.2) that

E(wε,η) ≤ Φ(wε,η, φ) ∀φ ∈ C∞
0 (0, T ;H1

0(Ω)).

with

E(wε,η) =
1

2
∥w′

ε,η(T )∥2L2(Ω) −
1

2
∥u1 − y1∥2L2(Ω) + ε∥∇w′

ε,η∥2L2(0,T ;L2(Ω))

+
1

2
∥∇wε,η(T )∥2L2(Ω) −

1

2
∥∇(u0 − y0)∥2L2(Ω) +

1

p
∥wε,η(T ) + α(T )∥pLp(Ω)

− 1

p
∥u0∥pLp(Ω) −

∫ T

0

(f − θ̃, w′
ε)dt

−
∫ T

0

(| wε,η + α |p−2 (wε,η + α), α′)dt+ (θ̂, w′
ε,η(T ))− (θ̂, u1 − y1)

and

Φ(wε,η, φ) =

∫ T

0

(w′′
ε,η, φ

′)dt+ ε

∫ T

0

(∇w′
ε,η,∇φ′)dt+

∫ T

0

(∇wε,η,∇φ′)dt

+

∫ T

0

(| wε,η + α |p−2 (wε,η + α), φ′ −
∫ T

0

(f + θ̃ + θ̂, φ′)dt

for all φ inC∞
0 (0, T ;H1

0(Ω)) with

∥φ′∥L2(0,T ;H1(Ω)) ≤ R

Changing φ into −φ and we obtain

Φ(wε,η, φ) ≤ −E(wε,η)

Therefore

E(wε,η) ≤ Φ(ε, η) ≤ −E(wε,η)
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for all φ in C∞
0 (0, T ;H1

0(Ω)) with

∥φ′∥L2(0,T ;H1(Ω)) ≤ R

Let R → ∞ and we get

E(wε,η) ≤ Φ(wε,η, φ) ≤ −E(wε,η) ∀φ ∈ C∞
0 (0, T ;H1

0(Ω)).

With λ > 0 and λ−1φ instead of φ , we obtain by combining the two cases

λE(wε,η) ≤ Φ(wε,η, φ) ≤ −λE(wε,η)

Hence

Φ(wε,η, φ) = 0 ∀φ ∈ C∞
0 (0, GT ;H1

0(Ω))

Let η → 0 and a simple argument gives

Φ(wε, φ) = 0 ∀φ ∈ C∞
0 (0, T ;H1

0(Ω))

i.e.

{w′′
ε − ε∆w′

ε −∆wε+ | wε + α |p−2 (wε + α)− f − θ̃ − θ̂}′ = 0 in D′(0, T ;H−1
0 (Ω))

Thus there exists gε in H−1(Ω) such that

w′′
ε − ε∆w′

ε −∆wε+ | wε + α |p−2 (wε + α) = f − gε + θ̃ + θ̂ (4.3)

We now show that gε has its support in Γ and that it is uniquely defined. From
(4.2)-(4.3) we deduce that∫ T

0

(gε, φ)dt = lim
η→0

η−1

∫ T

0

∫
Γ

β(w′
ε,η) .φdσdt ∀φ ∈ L2(0, T ;H1

0(Ω))

It is clear from the above equation that the support of gε is in Γ.
Suppose that hε in H−1(Ω) is such that

w′′
ε − ε∆w′

ε −∆wε+ | wε + α |p−2 (wε + α) = f − hε + θ̃ + θ̂

then ∫ T

0

(gε, φ)dt =

∫ T

0

(hε, φ)dt = lim
η→0

η−1

∫ T

0

∫
Γ

β(w′
ε,η) .φdσdt

for all φ in L2(0, T ;H1
0(Ω)). Hence gε = hε □
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Lemma 4.3. Let gε be as in Lemma 4.2 then

∥gε∥H−1(Ω) ≤ C{∥f∥L2(0,T ;L2(Ω)) + ∥u0∥H2(Ω) + ∥u1∥H1(Ω)}

C is a constant independent of ε.

Proof Let ζ be in C∞
0 (0, T ) and let v be in H1

0(Ω) then we have

(gε, v)

∫ T

0

ζdt = −
∫ T

0

(w′
ε, ζ

′v)dt− ε

∫ T

0

(∇wε, ζ
′∇v)dt

+

∫ T

0

(∇wε, ζ∇v)dt+

∫ T

0

(| wε + α |p−2 (wε + α), ζv)dt

=

∫ T

0

(f + θ̃, ζv)dt.

Hence

| (gε, v) | ≤ C
{
∥w′

ε∥L2(0,T ;L2(Ω)) + ∥∇wε∥L2(0,T ;L2(Ω)) + ∥wε + α∥p−1
L∞(0,T ;Lp(Ω))

+ ∥f∥L2(0,T ;L2(Ω)) + ∥θ̃∥L2(0,T ;L2(Ω)

}
∥v∥H1

0(Ω)

}
Taking into account the estimate of Lemma 4.2 and of Theorem 3.1 , we get the stated

result □
Proof of Theorem 4.1 1) Let {wε, gε} be as in Lemmas 4.2-4.3. Then there exists

a subsequence such that

{wε, w
′
ε, gε} → {w,w′, g}

in

[L∞(0, T ;H1
0(Ω))]weak∗ × [L∞(0, T ;L2(Ω))]weak∗ × [H−1(Ω)]weak.

Furthermore

{wε, w
′
ε} → {w,w′} in C(0, T ;L2(Ω))× C(0, T ;H−1(Ω)).

It follows that w( ., 0) = u0 − y0 = w( ., T ) and w′( ., 0) = u1 − y1.
A standard argument gives

| wε + α |p−2 (wε + α) →| w + α |p−2 (w + α) in[Lq(0, T ;Lq(Ω))]weak

2) With

(g, φ) = lim
ε→0

(gε, φ) ∀φ ∈ H1
0(Ω)

and support of gε in Γ, it is clear that the support of g is also in Γ.
It is now trivial to check that {w, g} is a solution of (4.1) □
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5 Exact controllability

In this section we shall establish the exact controllability of a strongly nonlinear wave
equation with Dirichlet boundary controls. The main result of the paper is the following
theorem

Theorem 5.1. Let f be in L2(0, T ;L2(Ω)) and let {u0, u1}, {v0, v1} be in {H1
0(Ω) ∩

H2(Ω)} × H1(Ω). Suppose that 2 ≤ p ≤ 2(n − 1)/(n − 2) with 2 ≤ p < ∞ if n = 2.
Then there exists

(i) a time independent control χ in H−1(Ω)), support on Γ
(ii) a weak solution w of the problem

w′′ −∆w+ | w |p−2 w = f in Ω× (0, T ),

w = 0 on (∂Ω/Γ)× (0, T ) , ν.∇w = χ on Γ× (0, T ), (5.1)

{w,w′} |t=0= {u0, u1} , {w,w′} |t=T= {v0, v1}

Moreover {w,w′} ∈ L∞(0, T ;H1
0(Ω))× L∞(0, T ;L2(Ω))

Let α be as in Theorem 3.1 with y1 = 0 and denote by α∗ the extension of α to (−T, 0)
as an even function

α∗( ., t) = α( ., t) for t ∈ [0, T ], α∗( ., t) = α( .,−t) for t ∈ [−T, 0]

Since α′( ., 0) = y1 = 0 we have α′
∗( ., 0) = 0. and α∗ is in L∞(−T, T ;H1(Ω)). Similarly

we denote by f∗, θ∗ the extension of f, θ = θ̂ + θ̃ to (−T, 0) as even functions.

First we consider the nonlinear problem

ŵ′′ −∆ŵ+ | ŵ + α∗ |p−2 (ŵ + α∗) = f∗ + θ∗ in (−T, 0)× Ω, (5.2)

ŵ = 0 on (∂Ω/Γ)× (−T, 0) , ν.∇ŵ = −g on Γ× (−T, 0),

ŵ( .,−T ) = u0 − y0 = ŵ( ., 0) , ŵ′( .,−T ) = −(v1 − z1)

Lemma 5.1. Let u0, v0, z0, α be as in Theorem 4.1 with y1 = 0.Then there exists
(i) a time-independent control g in H−1(Ω) with support in Γ,
(ii) a weak solution ŵ of (5.2) with {ŵ, ŵ′} in

L∞(−T, 0;H1
0(Ω))× L∞(−T, 0;L2(Ω)).

Proof. It is Theorem 4.1 when we start at −T instead of 0 □
Let

w̃( ., s) = ŵ( ., t) for s = −t, −T < t < 0
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Then

∂2w̃

∂s2
= ŵ′′, ∆w̃ = ∆ŵ

and (5.2) becomes

w̃′′( ., s)−∆w̃+ | w̃ + α∗ |p−2 (w̃ + α∗) = f∗ + θ∗ in (0, T )× Ω,

w̃ = 0 on (∂Ω)× (0, T ) , ν.∇w̃ = −g on Γ× (0, T ),

w̃( ., T ) = u0 − y0 = w̃( ., 0) , w̃′( ., T ) = v1 − z1 (5.3)

Set

w∗( ., t) = ŵ( ., t) for − T < t ≤ 0

= w̃( ., t) = ŵ( .,−t) for 0 ≤ T.

From (5.2)-(5.3) we get

w′′
∗ −∆w∗+ | w∗ + α∗ |p−2 (w∗ + α∗) = f∗ + θ∗ on (−T, T )× Ω,

w∗ = 0 on (∂Ω/Γ)× Ω , ν.∇w∗ = −g on (−T, T )× Γ

w∗( .,−T ) = u0 − y0 = w∗( ., 0) (5.4)

w′
∗( .,−T ) = −(v1 − z1) , w′

∗( ., T ) = v1 − z1

We now consider the initial boundary value problem

v′′ −∆v+ | v + α∗ |p−2 (v + α∗) = f∗ + θ∗ in (−T, T )× Ω,

v = 0 on (∂Ω/Γ)× (0, T ) , ν.∇v = −g on Γ× (−T, T )

v( .,−T ) = u0 − y0 , v′( .,−T ) = −(v1 − z1) (5.5)

Lemma 5.2. Suppose all the hypotheses of Theorem 5.1 are satisfied then there exists a
unique solution v of (5.5) with {v, v′, v′′} in

L∞(−T, T ;H1
0(Ω))× L∞(−T, T ;L2(Ω))× L2(−T, T ;H−1(Ω))

Proof. The proof of the existence of a solution is standard and we shall not reproduce
it.

Suppose that ṽ and v̂ are two solutions of (5.5) and set

v∗ = ṽ − v̂ = {ṽ + α∗} − {v̂ + α∗}
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We have as in Lions [ 5 ], p.15 (1.55)

| (| ṽ + α∗ |p−2 (ṽ + α∗)− | v̂ + α∗ |p−2 (v̂ + α∗), v
′
∗) |

≤ C sup{∥ṽ + α∗∥p−2
L∞(0,T ;Ln(Ω)), ∥v̂ + α∗∥p−2

L∞(0,T ;Ln(Ω))}
×∥(ṽ + α∗)(t)− (v̂ + α∗)(t)∥Lq(Ω)∥v′(t)∥L2(Ω)

≤ C{∥ṽ + α∗∥L∞(0,T ;H1(Ω)) + ∥v̂ + α∗∥L∞(0,T ;H1(Ω))}∥v(t)∥H1(Ω)∥v′t∥L2(Ω)

with 1/q + 1/n+ 1/2 = 1.

Now the same proof as in [12], p.15 shows that the solution is unique .

Proof of Theorem 5.1 1) We deduce from Lemma 5.2 that v = w∗ and thus

w′
∗ ∈ C(−T, T ;H−1(Ω))

and since w∗ is an even function we have

D+
t w∗( ., 0) = −D−

t w∗( ., 0)

On the other hand w′
∗ is in C(−T, T ;H−1(Ω)), therefore w′

∗( ., 0) = 0.
2) We now have from (5.3)

w̃′′ −∆w̃+ | w̃ + α |p−2 (w̃ + α) = f + θ on Ω× (0, T ),

w̃ = 0 on (∂Ω/Γ)× (0, T ) , ν.∇w̃ = −g on Γ× (0, T ),

{w̃, w̃′} |t=0= {u0 − y0, 0} , {w̃, w̃′} |t=T= {z0 − y0, v1 − z1}

Set

w = w̃ + α

with α as in Theorem 3.1. Then

{w,w′} |t=0 = {y0 + u0 − y0, 0 + u1} = {u0, u1}
{w,w′} |t=T = {y0 + v0 − y0, z1 + v1 − z1} = {v0, v1}

and taking (3.1) into account we have

w′′ −∆w+ | w |p−2 w = f in Ω× (0, T )

with

w = 0 on (∂Ω/Γ)× (0, T )
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and

∇w |Γ= ν.∇w̃ |Γ +ν.∇α |Γ= −g + 0

The theorem is proved □
Remark One may wish to have Dirichlet type of boundary control.Let α be as in

Theorem 3.1 but with null Dirichlet boundary conditions instead of mixed Neumann-
Dirichlet null boundary conditions and let w = w̃ + α, then we have

w′′ −∆w+ | w |p−2 w = f in Ω× (, T ),

{w,w′} |t=0= {u0, u1} , {w,w′} |t=T= {v0, v1}
w = 0 on (∂Ω/Γ)× (0, T ) , w = χ on Γ× (0, T )

where

χ = w̃ |Γ +α |Γ= w̃ |Γ
Since w̃ is in L∞(0, T ;H1

0(Ω)), we get χ in L∞(0, T ;Hγ(Γ)) with 0 < γ < 1/2. The
control is time-dependent.
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