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Abstract. In this paper we prove the convergence of a nonlocal version of the Cahn-
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using suitable approximations of a Dirac delta in a periodic boundary conditions setting.
This convergence result strongly relies on the dynamics of the problem. More precisely,
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1 Introduction

The Cahn-Hilliard equation [8, 9] is widely used in the study of phase field models as
well as diffuse interface theory and it was developed to describe the evolution of the
concentration of two components in a binary fluid. This equation typically arises in
connection with phase transitions which occur when a substance changes from a state
(e.g. solid, liquid, or gas) into a different one exhibiting different properties.

There are several examples for this kind of phenomena: the condensation of water
drops in mist, a homogeneous molten binary alloy that is rapidly cooled, mixtures in
general (two metallic, polymer or glassy components) as well as pattern formation. How-
ever, the Cahn-Hilliard equation is also relevant in many other applications like image
processing [10], population dynamics [13] or even the formation of Saturn rings [37].
In the literature two types of models have been proposed to study phase transitions:
sharp-interface and phase-field models. Where sharp-interface models describe the inter-
face as a (d− 1)-dimensional hypersurface, phase-field models replace the sharp interface
by a thin transition region in which a mixture of the two components is present.

Originally, the Cahn-Hilliard equation was introduced for modelling the phenomena
of spinodal decomposition, i.e. the loss of mixture homogeneity and the formation of pure
phase regions, and coarsening dynamics, which is the aggregation of pure phase regions
into larger domains. The model exhibits a gradient-flow structure (in the H−1-metric) in
terms of the free energy functional given by, cf. [9],

ECH(u(x)) =

∫
Ω

(τ 2
2
|∇u(x)|2 + F (u(x))

)
dx. (1)

Note that τ is a small positive parameter related to the transition region thickness. In
this paper, Ω denotes the d-dimensional (d = 3) flat torus and F is a double well potential
with two global minima representing the pure phases and with second derivatives bounded
from below. The most natural choice for F is the free energy density obtained through
the principles of statistical mechanics, defined by

F0(s) := θ0s(1− s) + θ[s log s+ (1− s) log(1− s)] , s ∈ (0, 1) ,

where the constants 0 < θ < θ0 are related to the temperature of the system and the
Boltzmann constant. A usual polynomial approximation of F0 is in the form

FP (s) := A1s
4 − A2s

2 ,

where A1 and A2 are positive constants depending on θ0 and θ. The corresponding evolu-
tion problem is given by the H−1-gradient flow with respect to the energy functional (1)

∂u

∂t
+∇ · JCH = 0,

JCH = −µ(u)∇vCH ,

vCH =
δECH(u)

δu
= −τ 2∆u+ F ′(u).

(2)

The function µ(·) in (2) is known as mobility.
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Even though in the existing literature the Cahn-Hilliard equation has been studied inten-
sively and also successfully, it still cannot be rigorously derived as a macroscopic limit of
microscopic models for interacting particles. A nonlocal version of the equation, proposed
by Giacomin and Lebowitz [21], attracted great interest in recent years. They consid-
ered the hydrodynamic limit of such a microscopic model and derived a nonlocal energy
functional of the form

ENL(u(x)) =
1

4

∫
Ω

∫
Ω

K(x, y)(u(x)− u(y))2dxdy +

∫
Ω

F (u(x))dx, (3)

where K(x, y) is a positive and symmetric convolution kernel. The associated evolution
problem is a nonlocal variant of the Cahn-Hilliard system

∂u

∂t
+∇ · JNL = 0,

JNL = −µ(u)∇vNL,

vNL =
δENL(u)

δu
= (K ∗ 1)u−K ∗ u+ F ′(u),

(4)

where (K ∗ 1)(x) :=
∫
Ω
K(x, y)dy and (K ∗ u)(x) :=

∫
Ω
K(x, y)u(y) dy. Being a choice

often considered in the existing literature, we take a constant mobility and, for simplicity,
we set µ = 1 both in (2) and (4).

Note that the local Cahn-Hilliard system (2) is a fourth order PDE, whereas the
nonlocal one (4) is an integro-differential second order parabolic equation. However, they
share a lot of fundamental features ranging from the underlying gradient flow structure,
the lack of comparison principles, the separation of the solution from the pure phases [11,
27, 18] to the long time behaviour [26]. Moreover, both energy functionals allow the same
Γ-limit for vanishing interface thickness (see [1, 29] and [20, 25] for the sharp interface
limit of the local Cahn-Hilliard equation).

In this paper the local concentration of one of the two components is represented by
a real valued function u = u(x). The pure phases are chosen as 0 and 1. Compared to
sharp-interface models, we neither have to worry about complicated boundary conditions
across the interface nor being concerned with regularity issues.
We are interested in proving convergence of weak solutions of the nonlocal Cahn-Hilliard
equation (4) to weak solutions of the local version (2) as the convolution kernel K is
scaled by using suitable approximations of a Dirac delta. More precisely, we consider the
following family of convolution kernels, parametrized by a small positive parameter ε:

Kε(x, y) =
ε−d

|x− y|2
ρ

(
|x− y|
ε

)
, (5)

where ρ : R+ → R+ and ρ is a nonnegative, decreasing, continuous function with compact
support such that

∫
Ω
ρ(|z|) dz =

∫
Rd ρ(|z|) dz. A classical choice of ρ is

ρ(r) :=

{
ce

− 1

r20−r2 for 0 ≤ r < r0 ,

0 for r ≥ r0 ,
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where c is a renormalization constant and r0 > 0. With this choice, the convolution kernel
that we consider is of the form

Kε(x, y) =
ρε(|x− y|)
|x− y|2

,

where (ρε)ε is a suitable family of mollifiers on Rd. It is well known that, with this
choice for the kernel, the nonlocal energy functional ENL converges to the local one ECH

pointwise in H1(Ω), provided appropriate growth conditions on the potential F , see [6, 7].
Indeed the local term τ |∇u|2 can be obtained as the formal limit of the corresponding
nonlocal terms with kernel (5) as ε→ 0, where τ := 1

2

∫
Ω
ρ(|z|)dz, see [24].

Note that, by denoting

Eε(uε(x)) := Ẽε(uε(x)) +

∫
Ω

F (uε(x))dx ,

where

Ẽε(uε(x)) :=
1

4

∫
Ω

∫
Ω

K(x, y)(uε(x)− uε(y))
2dxdy ,

with kernel Kε as in (5) and uε is the solution to the corresponding nonlocal Cahn-
Hilliard equation, it is possible to show the uniform boundedness of the nonlocal energies
Eε(uε). Taking advantage of a result by Ponce [33] allows to obtain strong convergence
of a (not relabelled) subsequence uε in the L2-topology to a limit u ∈ H1(Ω). However,
it is not clear whether strong convergence in L2 suffices to pass to the limit. Moreover,
the Γ-convergence cannot directly be deduced from the pointwise convergence of Eε in
H1(Ω), since the energy functional is non convex and the domain of Eε is larger than
H1(Ω) (it is Lp(Ω) with p depending on the growth of the potential F ) or, in other words,
because of the lack of coercivity of Eε in H1(Ω). Nevertheless, Ponce proved a result on
Γ-convergence for the energy functionals, see [32]. Trying to approach the problem in the
evolutionary setting following the method in the spirit of Sandier and Serfaty [34, 35] is
by far not trivial and beyond the goal of this paper.

In order to overcome this problem we argue as follows. First we note that for every
positive ε solutions to the associated H−1-gradient flow (namely of the nonlocal Cahn-
Hilliard equation (4)) belong to H1(Ω) almost everywhere in time, although solutions
to the stationary problem, i.e. minimizers of Eε, cannot be guaranteed to belong to
H1(Ω). Moreover, by suitable choices of the test functions in the weak formulation of
the equation (4), using a Poincaré-type inequality derived in [33] we can prove uniform-
in-ε bounds on uε in H1(Ω) in the case of periodic boundary conditions. Furthermore,
suitably applying a compactness inequality, we are able to prove also strong convergence
in H1(Ω), which allows us to pass to the weak limit in the equation. We finally note
that, by using the uniqueness of solutions, the limit u = limε→0 uε can be proved to enjoy
additional regularity (H2 in space) and hence to be a weak solution to the local Cahn-
Hilliard equation (2).
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2 Preliminaries and Main Result

In this paper we are interested in the convergence of solutions of the nonlocal Cahn-
Hilliard equation (4) to solutions of the local version (2) in a periodic setting.

We start by enlisting our assumptions.

H1 Ω is the d-dimensional (d = 3) flat torus.

H2 The kernel Kε is defined as in (5), i.e.

Kε(x, y) = K̃ε(x− y) =
ε−d

|x− y|2
ρ

(
|x− y|
ε

)
,

with

τ :=
1

2

∫
Ω

ρ(|z|) dz = 1

and ρ : R+ → R+ is a sufficiently smooth, nonnegative, decreasing and continuous
function with compact support such that

∫
Ω
ρ(|z|) dz =

∫
Rd ρ(|z|) dz.

H3 F ∈ C2(R) is a double well potential with two global minima at 0 and 1 such that
F (0) = 0 = F (1), and

F ′′(r) ≥ −B1 ∀ r ∈ R , (6)

|F ′′(r)| ≤ B2(|r|2 + 1) ∀ r ∈ R, (7)

for some constant B1, B2 > 0.

H4 The initial data u0,ε ∈ L2(Ω) converges strongly in L2(Ω) to the limit u0 ∈ H1(Ω)
and satisfies Eε(u0,ε), E(u0) ≤ C0 for some constant C0 > 0 independent of ε. For
example, if (u0,ε)ε ⊂ H1(Ω) and u0,ε ⇀ u0 weakly inH

1(Ω) this condition is satisfied.

Remark 2.1. Note that for dimension d = 3, the kernel Kε ∈ L1(Ω), so all the convolu-
tion terms appearing in the nonlocal equation are well defined. If d = 2, the form of the
convolution kernel implies that Kε does not belong to L1(Ω). In particular (Kε ∗ 1)(x) =∫
Ω

ρε(|z|)
|z|2 dz = ∞ for any x ∈ Ω for d = 2. However, even for d = 2 the formulation of

the nonlocal equation can be made rigorous by introducing a linear operator representing
the nonlocality φ 7→ (Kε ∗ 1)φ − Kε ∗ φ (see [14] for details). In our paper, we restrict
ourselves to dimension d = 3 to avoid technicalities.

Remark 2.2. Note that assumption (H3) is satisfied by the 4-th order polynomial double-
well potential FP mentioned in the introduction.

Before stating our main result, let us recall the notion of weak solution to the nonlocal
and local Cahn-Hilliard equation.
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Definition 1 (Weak solution to the nonlocal Cahn-Hilliard equation). Let ε > 0 and T >
0 be fixed. We define uε to be a weak solution to the nonlocal Cahn-Hilliard equation (4)
on [0, T ] associated with the initial datum u0,ε ∈ L2(Ω) if

uε ∈ H1(0, T ; (H1(Ω))∗) ∩ L2(0, T ;H1(Ω)),

satisfies

⟨∂tuε, φ⟩(H1(Ω))∗,H1(Ω) +

∫
Ω

∇[(Kε ∗ 1)uε −Kε ∗ uε + F ′(uε)] · ∇φ dx = 0 (8)

for all φ ∈ H1(Ω), almost everywhere in (0, T ), and uε(0) = u0,ε.

Definition 2 (Weak solution to the local Cahn-Hilliard equation). Let T > 0 be fixed.
We define u to be a weak solution to the Cahn-Hilliard equation (2) on [0, T ] associated
with the initial datum u0 ∈ H1(Ω) if

u ∈ H1(0, T ; (H1(Ω))∗) ∩ L2(0, T ;H2(Ω)),

satisfies

⟨∂tu, φ⟩(H1(Ω))∗,H1(Ω) +

∫
Ω

∆u∆φ dx−
∫
Ω

F ′(u)∆φ dx = 0 (9)

for all φ ∈ H2(Ω), almost everywhere in (0, T ), and u(0) = u0.

Remark 2.3. Note that since u0 ∈ H1(Ω), there is a unique solution u to the local Cahn-
Hilliard equation, which also satisfies the regularity L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H3(Ω)).
Moreover, let us point out that the solutions to both local and nonlocal Cahn-Hilliard
equations do not satisfy 0 ≤ |u(x, t)| ≤ 1 for all (x, t) ∈ Ω× (0, T ).

Existence and uniqueness of weak solutions to the local equation is well known with
different choices for the boundary conditions: we mention, between others [4, 15, 16, 28,
30, 31]. On the other hand, existence of solutions to the nonlocal equation is proven in the
literature for kernels in W 1,1(Ω) (or satisfying analogous assumptions) [2, 3, 17, 21, 23].
Indeed, typically, in the process of deriving a-priori estimates, the convolution product
is differentiated and the derivatives are placed on the term containing the kernel. This
allows controlling W 1,p norms of the convolution term with W 1,1 norms of the kernel
and Lp norms of u. In our case, however, taking advantage of the periodic boundary
conditions and of the specific form of Kε, H

1(Ω)-estimates for u can be derived without
differentiating the kernel Kε (see Section 3.1 for details). Additional estimates on the
chemical potential can be derived from classical energy estimates for the Cahn-Hilliard
equation. Thus, existence of solutions to (4) can be easily proved with our assumptions,
e.g., via a classical Galerkin approximation scheme. A detailed proof of the existence
results in a more general framework is given in [14] (also for dimension d = 2).

The local as well as the nonlocal Cahn-Hilliard equation have been largely studied
in the last years concerning for example qualitative properties [11, 18, 27], numerical
aspects [5, 22], long-time behaviour [12, 19, 26] or asymptotics [1, 20, 29] with different
kinds of boundary conditions and different potentials.

We now state our main result; the proof is shown in the following section.
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Theorem 2.1 (Convergence for weak solution in the periodic setting). Let assumptions
H1–H4 be satisfied. Then, for B1 sufficiently small, the weak solution uε to the nonlocal
Cahn-Hilliard equation (4) converges strongly in L2(0, T ;H1(Ω))∩C([0, T ]; (H1(Ω))∗) and
weakly in H1(0, T ; (H1(Ω))∗), to the weak solution of the local Cahn-Hilliard equation (2).

Remark 2.4. Note that the assumption “B1 sufficiently small” means B1 <
1

2Cp
, where

Cp is a constant depending on the dimension d and on the domain Ω coming from a
Poincaré type inequality derived in [33] (see inequality (12) below).

Remark 2.5. Theorem 2.1 is also valid for higher dimensions provided existence of
solutions to the corresponding equations and assuming appropriate growth conditions on
the potential F , i.e. modifying assumption H3 in order to be able to pass to the limit. In
particular the new condition on F would be

|F ′(u)|2 ≤ C(|u|2∗−2 + 1)

where 2∗ is the critical Sobolev exponent for the embedding H1(Ω) ↪→ L2∗(Ω).

3 Proof of Convergence Result

In this section, we prove Theorem 2.1. The proof is divided into several steps.

3.1 Uniform Estimates

We start by choosing φ = uε as a test function in equation (8), obtaining

1

2

d

dt
∥uε∥2L2(Ω) +

∫
Ω

∇ [(Kε ∗ 1)uε −Kε ∗ uε + F ′(uε)] · ∇uε dx = 0.

As a consequence of the periodic boundary conditions Kε ∗ 1 is constant over the domain.
Moreover, ∇(Kε ∗ uε) = Kε ∗ ∇uε = ∇Kε ∗ uε. Thus, the equation above reduces to

1

2

d

dt
∥uε∥2L2(Ω) +

∫
Ω

[(Kε ∗ 1)|∇uε|2 − (Kε ∗ ∇uε) · ∇uε + F ′′(uε)|∇uε|2] dx = 0

and we rewrite ∫
Ω

[(Kε ∗ 1)|∇uε|2 − (Kε ∗ ∇uε) · ∇uε] dx

=
1

2

∫
Ω

∫
Ω

Kε(x, y)|∇uε(x)−∇uε(y)|2 dx dy.

Using the definition of the kernel (5) we obtain

1

2

d

dt
∥uε∥2L2(Ω) +

1

2

∫
Ω

∫
Ω

ε−d

|x− y|2
ρ

(
|x− y|
ε

)
|∇uε(x)−∇uε(y)|2 dx dy

+

∫
Ω

F ′′(uε)|∇uε|2 dx = 0. (10)
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From H3 and (10), it follows that

1

2

d

dt
∥uε∥2L2(Ω) +

1

2

∫
Ω

∫
Ω

ε−d

|x− y|2
ρ

(
|x− y|
ε

)
|∇uε(x)−∇uε(y)|2 dx dy

≤ B1∥∇uε∥2L2(Ω). (11)

Using the Poincaré-type inequality in [33], we get for sufficiently small ε, recalling that
∇uε = 0,

∥∇uε∥2L2(Ω) ≤ Cp

∫
Ω

∫
Ω

ε−dρ

(
|x− y|
ε

)
|∇uε(x)−∇uε(y)|2

|x− y|2
dx dy, (12)

where Cp = Cp(d,Ω) is a positive constant depending on the dimension d ≥ 1, and on the
domain Ω, but independent of ε.

If B1 <
1

2Cp
, integrating (11) in time yields for every t ∈ [0, T ]

1

2
∥uε(t)∥2L2(Ω) +

(
1

2
−B1Cp

)∫ t

0

∫
Ω

∫
Ω

ε−d

|x− y|2
ρ

(
|x− y|
ε

)
|∇uε(x)−∇uε(y)|2 dx dy ds

≤ 1

2
∥u0∥2L2(Ω).

Due to assumption H4 on the initial data, recalling (12), we get

∥uε∥L∞(0,T ;L2(Ω)) + ∥uε∥L2(0,T ;H1(Ω)) ≤ C, (13)∫ T

0

∫
Ω

∫
Ω

ε−d

|x− y|2
ρ

(
|x− y|
ε

)
|∇uε(x)−∇uε(y)|2 dx dy dt ≤ C (14)

for some constant C > 0 independent of ε. Furthermore, from (13) and [33, Eq. (5)] it
also follows that∫ T

0

∫
Ω

∫
Ω

ε−d

|x− y|2
ρ

(
|x− y|
ε

)
|uε(x)− uε(y)|2 dx dy dt ≤ C . (15)

Now, setting

Bε(u)(x) := (Kε ∗ 1)uε − (Kε ∗ uε) =
∫
Ω

ε−dρ

(
|x− y|
ε

)
uε(x)− uε(y)

|x− y|2
dy,

by the Hölder inequality and [33, Eq. (5)] we get that for all ψ ∈ H1(Ω),

⟨Bε(uε), ψ⟩(H1(Ω))∗,H1(Ω) =
1

2

∫
Ω

∫
Ω

Kε(x, y)(uε(x)− uε(y))(ψ(x)− ψ(y))dydx

≤ 1

2

(∫
Ω

∫
Ω

Kε(x, y)|uε(x)− uε(y)|2
)1/2(∫

Ω

∫
Ω

Kε(x, y)|ψ(x)− ψ(y)|2
)1/2

≤ C∥∇uε∥L2(Ω)∥∇ψ∥L2(Ω),
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where C > 0 is some constant independent of ε and ψ. Hence by (13) we also obtain

∥Bε(uε)∥L2(0,T ;(H1(Ω))∗) ≤ C.

Finally, testing the equation (8) by (−∆)−1∂tuε immediately yields, after integration
in time, ∫ T

0

∥∂tuε(t)∥2(H1(Ω))∗ dt+ Eε(uε(T )) = Eε(u0,ε),

which implies thanks to H4 that

∥∂tuε∥L2(0,T ;(H1(Ω))∗) ≤ C.

3.2 Convergence

Let uε be the weak solution to the nonlocal Cahn-Hilliard equation (4). Thanks to the
uniform bounds derived above and the classical Aubin-Lions and Simon compactness
results (see [36]), we have the following convergences for the (not relabelled) subsequences:

uε → u strongly in L2(0, T ;L2(Ω)) ∩ C0([0, T ]; (H1(Ω))∗), (16)

∂tuε ⇀ ∂tu weakly∗ in L2(0, T ; (H1(Ω))∗), (17)

uε ⇀ u weakly* in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), (18)

Bε(uε)⇀ ξ weakly* in L2(0, T ; (H1(Ω))∗), (19)

for some u ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))∗) and ξ ∈ L2(0, T ; (H1(Ω))∗).
Let us show now that it also holds that

uε → u strongly in L2(0, T ;H1(Ω)). (20)

In order to prove (20) we need the following lemma.

Lemma 1. For every δ > 0 there exist constants Cδ > 0 and εδ > 0 such that for every
sequence (fε)ε ⊂ H1(Ω) there holds

∥fε1 − fε2∥2H1(Ω) ≤ δ

∫
Ω

∫
Ω

ε−d
1

|x− y|2
ρ

(
|x− y|
ε1

)
|∇fε1(x)−∇fε1(y)|2dxdy

+ δ

∫
Ω

∫
Ω

ε−d
2

|x− y|2
ρ

(
|x− y|
ε2

)
|∇fε2(x)−∇fε2(y)|2dxdy

+ Cδ∥fε1 − fε2∥2L2(Ω)

for every pair 0 < ε1, ε2 < εδ.

Proof. By contradiction suppose that there exists a δ̄ > 0 such that for every n ∈ N there
is a sequence (fn

ε )ε ⊂ H1(Ω) and parameters ε1n, ε2n <
1
n
such that

∥fn
ε1n

− fn
ε2n

∥2H1(Ω) > δ̄

∫
Ω

∫
Ω

ε−d
1n

|x− y|2
ρ

(
|x− y|
ε1n

)
|∇fn

ε1n
(x)−∇fn

ε1n
(y)|2 dx dy

+ δ̄

∫
Ω

∫
Ω

ε−d
2n

|x− y|2
ρ

(
|x− y|
ε2n

)
|∇fn

ε2n
(x)−∇fn

ε2n
(y)|2 dx dy

+ n∥fn
ε1n

− fn
ε2n

∥2L2(Ω) .
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Noting that ∥fn
ε1n

− fn
ε2n

∥H1(Ω) > 0 for every n and setting

g1n :=
fε1n

∥fε1n − fε2n∥H1(Ω)

, g2n :=
fε2n

∥fε1n − fε2n∥H1(Ω)

,

we have

δ̄

∫
Ω

∫
Ω

ε−d
1n

|x− y|2
ρ

(
|x− y|
ε1n

)
|∇g1n(x)−∇g1n(y)|2 dx dy

+ δ̄

∫
Ω

∫
Ω

ε−d
2n

|x− y|2
ρ

(
|x− y|
ε2n

)
|∇g2n(x)−∇g2n(y)|2 dx dy + n∥g1n − g2n∥2L2(Ω) < 1 ∀n ∈ N.

Such inequality immediately yields that g1n − g2n → 0 strongly in L2(Ω) and the families
(∇g1n)n and (∇g2n)n are relatively strongly compact in L2(Ω;Rd) by [33, Thm. 1.2]. We
deduce that g1n−g2n → 0 strongly in H1(Ω), but this is a contradiction since by definition
we have ∥g1n − g2n∥H1(Ω) = 1 for all n.

From the previous lemma it follows that for every δ > 0, there is Cδ > 0 and εδ > 0
such that for every pair 0 < ε1, ε2 < εδ such that

∥uε1 − uε2∥2L2(0,T ;H1(Ω))

≤ δ

∫ T

0

∫
Ω

∫
Ω

ε−d
1

|x− y|2
ρ

(
|x− y|
ε1

)
|∇(uε1)(x)−∇(uε1)(y)|2 dx dy

+ δ

∫ T

0

∫
Ω

∫
Ω

ε−d
2

|x− y|2
ρ

(
|x− y|
ε2

)
|∇(uε2)(x)−∇(uε2)(y)|2 dx dy

+ Cδ∥uε1 − uε2∥2L2(0,T ;L2(Ω)).

Thanks to the estimate (14), we infer that

∥uε1 − uε2∥2L2(0,T ;H1(Ω)) ≤ 2Cδ + Cδ∥uε1 − uε2∥2L2(0,T ;L2(Ω))

for a certain constant C > 0. Since δ is arbitrary and we already know that uε → u
strongly in L2(0, T ;L2(Ω)), the strong convergence (20) is proved.

We now prove the limit u to be a weak solution of the local Cahn-Hilliard equation (2).
We start from the Definition 1 of weak solution for the nonlocal Cahn-Hilliard and we
test it with a function φ ∈ C∞([0, T ]× Ω). By integrating by parts, we get∫ T

0

∫
Ω

(∂tuε)φ dx dt−
∫ T

0

∫
Ω

[(Kε ∗ 1)uε −Kε ∗ uε + F ′(uε)]∆φ dx dt = 0.

Now, let us show that F ′(uε) → F ′(u) in L1(0, T ;L1(Ω)). Indeed, by H3, the mean
value theorem and the Hölder inequality we have that∫ T

0

∫
Ω

|F ′(uε)− F ′(u)| ≤ C

∫ T

0

∫
Ω

(1 + |u|2 + |uε|2)|uε − u|

≤ C

∫ T

0

∥uε − u∥L6(Ω)(1 + ∥u∥2L12/5(Ω) + ∥uε∥2L12/5(Ω))

≤ C∥uε − u∥L2(0,T ;H1(Ω))

(
1 + ∥u∥2L4(0,T ;L3(Ω)) + ∥uε∥2L4(0,T ;L3(Ω))

)
.
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The term in bracket on the right-hand side is bounded uniformly in ε since by interpolation
we have

∥uε∥2L4(0,T ;L3(Ω)) ≤ C

(∫ T

0

∥uε(t)∥2L6(Ω)∥uε∥2L2(Ω)

)1/2

≤ C∥uε∥L∞(0,T ;L2(Ω))∥uε∥L2(0,T ;H1(Ω)),

and by the estimate (13). Hence, F ′(uε) → F ′(u) in L1(0, T ;L1(Ω)) by (20).
Now, by the convergence results above, we can pass to the limit in the variational

formulation and get∫ T

0

⟨∂tu, φ⟩(H1(Ω))∗,H1(Ω) dt−
∫ T

0

⟨ξ,∆φ⟩(H1(Ω))∗,H1(Ω) dt−
∫ T

0

∫
Ω

F ′(u)∆φ dx dt = 0.

It remains to identify the limit ξ as −∆u. To this end, we note that the variational
derivative of the convex energy part is given by

∂Ẽε

∂u
= Bε(u)

and use the definition of subdifferential that reads

Ẽε(z1) + ⟨Bε(z1), z2 − z1⟩(H1(Ω))∗,H1(Ω) ≤ Ẽε(z2), (21)

for all z1, z2 ∈ H1(Ω). Hence, for all z ∈ L2(0, T ;H1(Ω)) we have that (21) reads∫ T

0

Ẽε(uε) +

∫ T

0

⟨Bε(uε), z − uε⟩(H1(Ω))∗,H1(Ω) ≤
∫ T

0

Ẽε(z). (22)

The right hand side converges to
∫ T

0
Ẽ(z) by [33, Eqs. (3) and (5)] and the dominated

convergence theorem, where

Ẽ(·) = 1

2

∫
Ω

|∇ · |2dx.

Moreover, thanks to the strong convergence (20) and the weak convergence (19), we have
that ∫ T

0

⟨Bε(uε), z − uε⟩(H1(Ω))∗,H1(Ω) →
∫ T

0

⟨ξ, z − u⟩(H1(Ω))∗,H1(Ω).

Next, we want to show that Ẽε(uε) → Ẽ(u) in L1(0, T ). In order to get this we first note
that

Ẽε(uε)− Ẽε(u)

≤ 1

4

∫
Ω

∫
Ω

Kε(x, y)
(
(uε − u)(x)− (uε − u)(y)

)(
(uε + u)(x)− (uε + u)(y)

)
≤ 1

4

(∫
Ω

∫
Ω

Kε(x, y)|(uε − u)(x)− (uε − u)(y)|2
)1/2

(∫
Ω

∫
Ω

Kε(x, y)|(uε + u)(x)− (uε + u)(y)|2
)1/2

≤ C∥∇(uε − u)∥L2(Ω)∥∇(uε + u)∥L2(Ω),
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where the first term converges to zero in L2(0, T ) and the second one is bounded in
L2(0, T ). Hence Ẽε(uε)− Ẽε(u) → 0 in L1(0, T ), and writing

Ẽε(uε)− Ẽ(u) =
(
Ẽε(uε)− Ẽε(u)

)
+
(
Ẽε(u)− Ẽ(u)

)
→ 0

we get the desired convergence as the second term on the right-hand side goes to zero in
L1(0, T ) thanks again to [33] and the dominated convergence theorem.

Hence, letting ε→ 0 in the definition of the subdifferential of Ẽ, we deduce that∫ T

0

Ẽ(u) +

∫ T

0

⟨ξ, z − u⟩(H1(Ω))∗,H1(Ω) ≤
∫ T

0

Ẽ(z)

for every z ∈ L2(0, T ;H1(Ω)), so that ξ = ∂Ẽ(u) = −∆u ∈ L2(0, T ; (H1(Ω))∗).

Thus, the limit u satisfies an equivalent integrated-in-time variational formulation of
the local problem, that reads∫ T

0

∫
Ω

(∂tu)φ dx dt−
∫ T

0

∫
Ω

∇u · ∇∆φ dx dt−
∫ T

0

∫
Ω

F ′(u)∆φ dx dt = 0

for all φ ∈ C∞([0, T ] × Ω). Note that the limit u belongs to L2(0, T ;H2(Ω)) thanks to
the result of Ponce [33], hence we can integrate the second term by parts getting that u
satisfies equation (9) in the sense of definition 2. This convergence result together with
assumption H4 and the density of C∞(Ω) in H2(Ω) implies that u is a weak solution to
the Cahn-Hilliard equation (2) and concludes the proof of Theorem 2.1.

4 Conclusions and Further Remarks

In this paper we proved the convergence of weak solutions of the nonlocal Cahn-Hilliard
equation (4) to weak solutions of the local version (2) as the convolution kernel K ap-
proximates a Dirac delta in the case of periodic boundary conditions for dimension d = 3.
These conditions are physically relevant since the nonlocal energy functional has been de-
rived starting from a lattice structure in the periodic setting, see [21]. The proof uses the
dynamic structure to obtain the appropriate estimates and regularity results. Moreover,
an important key point in the proof is the application of an inequality in the spirit of
Poincaré [33] and the definition of subdifferential.

A natural question would be to investigate the case with other boundary conditions,
as Dirichlet or Neumann conditions. Typically, boundary conditions (e.g. of Neumann
type) for the local Cahn-Hilliard are imposed on the chemical potential v as well as on
u, whereas for the nonlocal Cahn-Hilliard are imposed only on v. Hence, it is not clear
if, in the passage to the limit ε → 0, (any type of) boundary conditions for u has to
be expected at all. Technically, this is related to difficulties in deriving uniform H1(Ω)
estimates and in proving H2 regularity of the limit due to hard-to-handle boundary terms
appearing when performing integration by parts.
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