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1 Introduction

A plasma is an ionized gas in which the molecules are ionized into negatived charged
electrons and positive charged ions. The outer sphere of the Sun can be considered
as a plasma. A plasma can also be produced in neon signs, controlled nuclear fusion.
Particularly in nuclear fusion, the plasma physics plays a key role for simulation and
control of the plasma. A way to study plasma is to consider a plasma as an ’electrically
conducting fluid’. As we know in classic fluid like water, the frequent collisions of particles
make them flow as a whole part. While in a plasma, the collisions of ions and electrons
although infrequent, the magnetic field make ions and electrons move together so that
the plasma behaves like fluid. The plasma dynamics was first given by Braginskii [2]
1965. Consider a full ionized plasma consisting of two species of particles, i.e. ions and
electrons. We denote v±, ρ± the velocities and densities of ion and electron, and (E,B)
the electro-magnetic field. Then the whole system in R3 is the following. We also refer to
[9] for a derivation.

∂tρ− +∇ · (ρ−v−) = 0

∂tρ+ +∇ · (ρ+v+) = 0

ρ−∂tv− = ν−∆v− − ρ−v− · ∇v− − β−(E + v− ×B)−R−∇p−

ρ+∂tv+ = ν+∆v+ − ρ+v+ · ∇v+ + β+(E + v+ ×B) +R−∇p+

∂tE =
1

ε0µ0

∇×B − 1

ε0
(β+v+ − β−v−)

∂tB = −∇× E

p±n
−γ
± = constant

R := −α(v+ − v−)

divB = 0, divE =
1

ε0
(β+ − β−).

(1)

Here ρ± = m±n±, β− = en− and β+ = en+Z. The physical meaning of these parameters
are

• p: the pressure;

• m±: mass of ion and electro;

• n±: number density of ion and electro;

• e: the elementary charge;

• Z: charge number of ion;

• ν±: kinetic viscosities of ion and electro;

• ε0, µ0: vacuum dielectric constant and permeability;

• α: a positive coefficient for momentum change between ions and electrons. More
specifically, α = νein−m− = νien+m+ and νei, νie here are fixed coefficients;
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• γ: a constant depends on the heat flux assumption and the isotropy of the energy
distribution. For example, for isothermal plasma, the temperature is fixed and
γ = 1.

The first two equations of (1) are the continuity equations for fluids. The third and fourth
ones represent the momentum balance. The rest are Maxwell system and equations of
state. In physical application, usually the fifth equation in (1) is written in an approximate
way

∂tE =
1

ε0µ0

∇×B − β−

ε0
(v+ − v−),

where β− ≃ β+ is used since most of the plasma is quasi-neutral. However divE =
1
ε0
(β+ − β−) is kept due to the fact that in experiment even very small changes in divE

will lead to an observable changes in electromagnetic field. This is the so-called plasma
approximation (see [9]). The system has 16 unknowns (n±, v±, E,B, p±) and 18 equations.
Since the last two equations divB = 0, divE = 1

ε0
(β+ − β−) can be derived from fifth

and sixth equation in (1), the system (1) actually has 16 equations. So that this system
is closed.

In this paper, we mainly consider the incompressible isothermal neutral plasma so
that the two continuity equations simply become divv± = 0 and the whole system rereads

ρ−∂tv− = ν−∆v− − ρ−v− · ∇v− − β(E + v− ×B)−R−∇p−

ρ+∂tv+ = ν+∆v+ − ρ+v+ · ∇v+ + β(E + v+ ×B) +R−∇p+

∂tE =
1

ε0µ0

∇×B − β

ε0
(v+ − v−)

∂tB = −∇× E

R := −α(v+ − v−)

divv− = divv+ = divB = 0, divE = 0,

(2)

where β = en− = en+Z meaning that the plasma is strictly neutral.
A typical example of incompressible plasma is the outer core of the earth. The motion of
ions and electrons around the core of the earth creates the strong magnetic field around
the earth, protecting lives from high energy particles coming from the sun.

Mathematical analysis of system (2) started with the work of Giga-Yoshida [8] who
considered a three-dimensional bounded domain with no-slip and perfectly conductive
boundary condition. They proved the unique local solvability as well as global-in-time
solvability when the initial data is small and whose magnetic effect is small compared
with velocity. Recently, Giga, Ibrahim, Shen and Yoneda [7] improved Giga-Yoshida’s
result. They proved wellposedness in 2D and existence of global weak solution in 3D as
well as global wellposedness with small initial data in 3D. It is important here to note
that in this result, no additional constraint on the size of the initial electromagnetic field
was imposed. Moreover the regularity of the initial data is lower compared to [7].

Remark 1.1. Applying the scaling Ẽ =
√

ε0
2
E, B̃ =

√
1

2µ0
B and setting ε = 1

β
√
2µ0

, ν± =
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ν, ρ± = 1 our system becomes

∂tv− = ν∆v− − v− · ∇v− − 1

ε
(cẼ + v− × B̃)−R−∇p−

∂tv+ = ν∆v+ − v+ · ∇v+ +
1

ε
(cẼ + v+ × B̃) +R−∇p+

1

c
∂tẼ = ∇× B̃ − 1

2ε
(v+ − v−)

1

c
∂tB̃ = −∇× Ẽ

R := − 1

2σε2
(v+ − v−)

divv− = divv+ = divB̃ = 0, divẼ = 0,

(3)

where c = 1√
ε0µ0

is the speed of light, σ is the electrical conductivity.

In 2015, Arsénio, Ibrahim and Masmoudi [1] proved that the solution of (3) actually
converges to the standard MHD system under the relaxing limit limc→∞ c2ε = ∞, or
equivalently ε0µ0 → 0, 1

ε0µ0n−e
√
2µ0

→ ∞. For example, for the out core of the earth one

has n− ≃ 6 ∗ 1030. So that
1

ε0µ0n−e
√
2µ0

≃ 7 ∗ 107,

the relaxing limit makes sense physically.

Remark 1.2. Formally, the classic one fluid Navier-Stokes-Maxwell system,

∂tv + v · ∇v − ν∆u+∇p = j ×B,

∂tE −∇×B = −j,

∂tB +∇× E = 0,

σ(E + u×B) = ηj,

∇ · v = ∇ ·B = 0.

(4)

can be derived from our system (2)(see [12]). Indeed, if we define the bulk velocity by
v = ρ−v−+ρ+v+

ρ
where ρ = ρ+ + ρ− and current density by j = β(v+ − v−) , then adding

the two velocities equations in our original system (2) and dividing by ρ gives

∂tv =
ν− + ν+

ρ
∆v +

ρ−ν+ − ρ+ν−
βρ2

∆j

− 1

ρ
(ρ−v− · ∇v− + ρ+v+ · ∇v+) +

1

ρ
j ×B −∇p− + p+

ρ
.

Since m−/m+ ≪ 1, we have ρ ≈ ρ+, ρ−/ρ+ ≈ 0 so that formally

ρ−ν+ − ρ+ν−
βρ2

∆j ≈ 0,

1

ρ
(ρ−v− · ∇v− + ρ+v+ · ∇v+) = v · ∇v +

ρ+ρ−
β2ρ2

j · ∇j ≈ v · ∇v,
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which yield the first equation in (4) after normalizing some constants to 1.
Next we drive Ohm’s law formally (the fourth equation in (4)). Since v− = v− ρ+j

(ρ++ρ−)β
≈

v − j
β
, the first equation in (2) can be written as

m−

e
∂tv −

m−

e2n−
∂tj +

1

en−
v− · ∇v− = − 1

en−
∇p− − (E + (v − j

en−
)×B) +

α

e2n2
−
j.

Using the approximation that m−
e
, m−
e2n−

, 1
en−

≈ 0 to eliminate the unnecessary terms and
letting η = α

e2n2
−
gives the Ohm’s law.

We emphasize that the derivation above is quite formal and refer to [12].

In this paper, we focus on the time decay or stability of the zero solution to (2).
In the case of Navier-Stokes equations, we refer to the pioneer works of Schonbek [14]
and [15] where the author derived the optimal decay rate of solutions to 2D and 3D
Navier-Stokes system. In [14], she established that for 2D Navier-Stokes equation, if
the initial data u0 ∈ Hs ∩ L1 (no smallness condition), then the solution u satisfies
∥Dku∥2L2 ≲ (1 + t)−1/2−k/2, where Dk is any spatial derivative with order k. Furthermoer
if the average of u0 is zero, i.e.

∫
u0dx = 0 then the lower bound holds ∥u0∥L2 ≳ (1+t)−1/2.

In the later work [15], a better result is given: if
∫
u0dx = 0 and u0 ∈ L1 ∩ H1 then it

holds that ∥u0∥2L2 ≈ (1 + t)−d/2+1, d = 2, 3. When d = 2, u is the classic solution. For
d = 3, u is a suitable Leray-Hopf solution in the sense of Caffarelli-Kohn-Nirenberg [3].
The idea is to decompose the frequency space into two time depended subset, then obtain
a first order differential inequality for the Hk norm of the solution. The difficulty here
is mainly the low frequency part which was overcame by taking advantages of the linear
system of Navier-Stokes equation.

For our system, one can observe that (2) is damped Navier-Stokes equations coupled
with Maxwell equations. Due to this coupling, the whole linear system requires more
regularity on initial data to get our desired decay result (see Lemma 3.1). Roughly
speaking, the solution of the linear system in Fourier side satisfies

Û(t, ξ) ≲ e−ρ(ξ)tÛ0(ξ),

where U = (v−, v+, E,B) and ρ(ξ) ≈ |ξ|2 for |ξ| ≤ 1, ρ(ξ) ≈ 1
|ξ|2 for |ξ| ≥ 1. So that at

the linear level one has

∥DkU∥L2 ≲ (1 + t)−3/4−k/2∥U0∥L2 + (1 + t)−l/2∥Dk+lU0∥L2 .

To get such an estimate, one can rewrite the system in Fourier side and obtain a Fourier
muliplier matrix. In gerneral, it is easy to explicitly compute the eigenvalues of this
Fourier muliplier matrix and thus obtain the linear decay. For example, this is the case in
[16], [17] and [18]. However in our case, the two velocity equations and the non-normalized
physical constants make such calculation very complicated and hard. To overcome such
complex computation, we introduce a Lyapunov function that gives in a more systemetic
way the linear decay. Such an idea can be implicitly found, for example, in [4] and [5],
for other models.
The bad behavior of the high frequency part requires the extra regularity on initial data to
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get the time decay. Thus our model is a system of regularity-loss type. There are plenty
of works studying the decay property of equations of regularity-loss type, for example
the work of Hosono and Kawashima [10] on some nonlinear hyperbolic-elliptic equation,
Houari [13] on a nonlinear Bresse system. Another well-know system of regularity-loss
type is one fluid compressible Euler-Maxwell system. We refer [16] and [17] for details.
Recently Xu and Cao [18] proved the decay of one fluid compressible Navier-Stokes-
Maxwell system. The time weighted energy method is a key tool to prove the decay for
regularity-loss type system. Here we choose a nonlinear hyperbolic-elliptic system from
[10] to briefly introduce and motivate the time weighted energy method. The system
reads {

∂tu+ ∂x(u
2/2) + ∂xq = 0,

∂4
xq − ∂2

xq + q + ∂xu = 0,
(5)

where (t, x) ∈ R+ × R. One can easily solve the linear system in Fourier side for u:

û(t, ξ) = e−ρ(ξ)tû0, where ρ(ξ) = ξ2

1+ξ2+ξ4
. Then the linear solution u satisfies

∥Dku∥L2 ≲ (1 + t)−1/4−k/2∥u0∥L2 + (1 + t)−l/2∥Dk+lu0∥L2 .

Hence system (5) is also a system of regularity-loss type. Now back to the nonlinear
system, we want to obtain the decay of k-th derivative of nonlinear solution u. If we
applied Dk to (5) and the classic energy method, one gets with initial data u0 ∈ Hs

∥u∥2Hs + 2

∫ t

0

∥q∥2Hs+2dτ ≲ ∥U0∥2Hs +

∫ t

0

∥∂xu(τ)∥L∞∥∂xu(τ)∥2Hs−1dτ.

To control the nonlinearity, we need to control the term
∫ t

0
∥∂xu(τ)∥2Hs−1dτ . Usually this

can be done by the help of dissipative term in second equation of (5). However, the
dissipative term only gives us∫ t

0

∥∂xu(τ)∥2Hs−2dτ ≲
∫ t

0

∥q(τ)∥2Hs+2dτ,

which can not control the nonlinearity due to the loss of regularity.
To overcome this difficult of regularity-loss, when applying the classic Hk energy method,
instead of multiplying by Dku, we multiply by (1 + t)αDku. This will give us

(1 + t)α∥∂k
xu∥2L2 + 2

∫ t

0

(1 + τ)α∥∂k
xq(τ)∥2H2dτ

≲ ∥∂k
xu0∥2L2 + α

∫ t

0

(1 + τ)α−1∥∂k
xu(τ)∥2L2dτ

+

∫ t

0

(1 + τ)α∥∂xu(τ)∥L∞∥∂k
xu(τ)∥2L2dτ.

If we choose α < 0, then the term α
∫ t

0
(1+τ)α−1∥∂t

xu(τ)∥2L2dτ is like an artificial dissipative
term and is good enough to control the nonlinearity if (1+t)∥∂xu∥L∞ is small. For system
(5), we refer to [10] for the detailed discussion.
Our first result is about the existence of smooth solution of system (2).
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Theorem 1.1. Let s ≥ 3 be an integer and the initial data of system (2) U0 = (v−,0, v+,0, E0, B0) ∈
Hs. Then there exists a constant δ > 0 such that if ∥U0∥Hs < δ, the Cauchy problem of
(2) has a unique solution and satisfies that for any T > 0, U ∈ C([0, T ];Hs). Furthermoer,
v± ∈ C1([0, T );Hs−2), E,B ∈ C1([0, T );Hs−1).

After that we apply the time weighted energy method and get the following decay
result.

Theorem 1.2. Let s ≥ 7 and U0 ∈ L1 ∩ Hs the initial data of system (2). Then there
exists a constant δ > 0 such that if ∥U0∥L1∩Hs ≤ δ the unique solution given by Theorem
1.1 satisfies the following decay property,

∥DkU∥Hs−2k−3 ≲ (1 + t)−3/4−k/2,

for all integers 0 ≤ k ≤ [(s− 1)/2]− 1.

Remark 1.3. Taking v±,0 = v0, E = B = 0 then the above decay result reads

∥Dkv∥Hs−2k−3 ≲ (1 + t)−3/4−k/2,

and thus one recovers Schonbek’s result (see [14] and [15]) for small k.

Remark 1.4. Unlike the Euler-Maxwell system ([16]), there is no uniformly time decay if
the initial data is only in Hs. The presence of the dissipation term requires that U0 ∈ L1

to get the uniform decay. See for example [14]

Remark 1.5. This remark compares our result with the decay result of classic one fluid
Navier-Stokes-Maxwell system (4). Ghoul, Ibrahim and Said-Houari [6] showed that for
s big enough and small initial data U0 ∈ L1∩Hs, it holds that ∥DkU∥L2 ≲ (1+ t)−3/4−k/2

for 0 ≤ k ≤ s. They use Lyapunov functional method to prove the decay of (E,B) in
linear level which actually behaves better than the solutions to hyperbolic system. So
that the whole system (4) is not regularity-loss type.

We use the following notation through out the whole paper.

• ·̂ , Fourier transform in space;

• ∥ · ∥Hs , the Hs inhomogeneous norm defined by

∥u∥2Hs :=

∫
ξ∈R3

(1 + |ξ|2)s|û|2dξ.

• f ≲ g, there is a universal constant C such that f ≤ Cg.

The paper is organized as following. In next section, we proved existence by energy
method. Then we do linear estimate to show our system is a regularity-loss type system.
And the proof of Theorem 1.2 follows in last section.
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2 proof of Theorem 1.1

By the similar fixed point argument as in [7], one can easily construct a unique solution
in U ∈ C([0, T ];Hs) with T small enough. We will prove that U ∈ C([0, T ];Hs) for any
T > 0 so that the global existence holds true. Then using the equation, it is clear that

∂tv± ∈ C([0, T ];Hs−2) , ∂tE, ∂tB ∈ C([0, T ];Hs−1).

Now, we prove that U ∈ C([0, T ];Hs) for any T > 0.
Recall that U = (v−, v+, E,B), v = (v−, v+). Fixing s > 0, we define the following norms:

N0(t) = sup
0≤τ≤t

∥U∥Hs

D2
0(t) =

∫ t

0

∥Dv∥2Hs + ∥v− − v+∥2Hs + ∥E∥2Hs−1 + ∥DB∥2Hs−2dτ

W0(t) = sup
0≤τ≤t

∥U∥W 1,∞ , J2
0 (t) =

∫ t

0

∥v∥2L∞dτ.

(6)

It is sufficient to prove the uniform bound of N0(t) and D0(t). Applying Dl to (2) we
have 

ρ−∂tD
lv− − ν−∆Dlv− + ρ−v− · ∇Dlv− + β(DlE +Dlv− ×B) + α(Dlv− −Dlv+)

= −ρ−[D
l(v− · ∇v−)− v− · ∇Dlv−]− β[Dl(v− ×B)−Dlv− ×B] +∇Dlp−,

ρ+∂tD
lv+ − ν+∆Dlv+ − ρ+v+ · ∇Dlv+ − β(DlE +Dlv+ ×B)− α(Dlv− −Dlv+)

= −ρ+[D
l(v+ · ∇v+)− v+ · ∇Dlv+] + β[Dl(v+ ×B)−Dlv+ ×B] +∇Dlp−,

∂tD
lE =

1

ε0µ0
∇×DlB − β

ε0
Dl(v+ − v−),

∂tD
lB = −∇×DlE.

(7)

Next, we will apply standard energy estimate in H l. Multiplying the first equation by
Dlv−, second equation by Dlv+, third equation by ε0D

lE, and the last equation by 1
µ0
DlB

then integrating in space and adding together yields.

ρ−
2

d

dt
∥Dlv−∥2L2 +

ρ+
2

d

dt
∥Dlv+∥2L2 +

ε0
2

d

dt
∥DlE∥2L2 +

d

dt

1

2µ0
∥DlB∥2L2

+ ν−∥∇Dlv−∥2L2 + ν+∥∇Dlv+∥2L2 + α∥Dlv− −Dlv+∥2L2

= −ρ−
(
Dl(v− · ∇v−)− v− · ∇Dlv−, D

lv−
)
− ρ+

(
Dl(v+ · ∇v+)− v+ · ∇Dlv+, D

lv+
)

− β
(
Dl(v− ×B)−Dlv− ×B,Dlv−

)
+ β

(
Dl(v+ ×B)−Dlv+ ×B,Dlv+

)
,

(8)

where (·, ·) is the L2 inner product. Applying the following lemma (we refer to Lemma
3.4 in [11]) to the right hand side of (8),

Lemma 2.1. For l > 0, it holds that

∥Dl(ab)∥L2 ≲ ∥a∥L∞∥Dlb∥L2 + ∥Dla∥L2∥b∥L∞

∥Dl(a · ∇b)− a · ∇Dlb∥L2 ≲ ∥Dla∥L2∥∇b∥L∞ + ∥∇a∥L∞∥Dlb∥L2
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we have the classic H l energy estimate,

ρ−
2

d

dt
∥Dlv−∥2L2 +

ρ+
2

d

dt
∥Dlv+∥2L2 +

ε0
2

d

dt
∥DlE∥2L2 +

d

dt

1

2µ0

∥DlB∥2L2

+ ν−∥∇Dlv−∥2L2 + ν+∥∇Dlv+∥2L2 + α∥Dlv− −Dlv+∥2L2

≲ ∥∇v±∥L∞∥Dlv±∥2L2 + ∥B∥L∞∥Dlv±∥2L2 + ∥v±∥L∞∥Dlv±∥L2∥DlB∥L2 ,

(9)

where 1 ≤ l ≤ s. When l = 0, (9) becomes the classic energy estimate in which the right
hand side of (8) vanishes.
Therefore summing (9) from l = 0 to s then integrating in time give us the first ápriori
energy estimate

N0(t) +

∫ t

0
∥Dv∥2Hs + ∥v− − v+∥2Hsdτ ≲ ∥U0∥2Hs +W0(t)D

2
0(t) +N0(t)J0(t)D0(t). (10)

Now we linearize (2) around the trivial solution U = 0. Namely, rewrite this system as

ρ−∂tv− − ν−∆v− + βE + α(v− − v+) +∇p− = −ρ−v− · ∇v− − v− ×B,

ρ+∂tv+ − ν+∆v+ − βE − α(v− − v+) +∇p+ = −ρ+v+ · ∇v+ + v+ ×B,

∂tE − 1

ε0µ0

∇×B +
β

ε0
(v+ − v−) = 0,

∂tB +∇× E = 0,

(11)

To estimate the dissipation term D0(t), apply Dl to (11), multiply the first three equations
by 1

ρ−
DlE,− 1

ρ+
DlE,Dl(v− − v+) respectively and summing them yields

∂t
(
Dl(v− − v+), D

lE
)
+ β(

1

ρ−
+

1

ρ+
)∥DlE∥2L2 =

(
ν−
ρ−

∆Dlv− − ν+
ρ+

∆Dlv+, D
lE)

−
(

α

ρ−
+

α

ρ+

)(
Dl(v− − v+), D

lE
)
+

β

ε0
∥Dl(v− − v+)∥2L2

+
1

ε0µ0

(
∇×DlB,Dl(v− − v+)

)
+ f1 + f2,

(12)

where,

f1 = −
(
Dl(div(v− ⊗ v−)− div(v+ ⊗ v+)), D

lE
)
,

f2 = −
(

1

ρ−
Dl(v− ×B) +

1

ρ+
Dl(v+ ×B), DlE

)
.

By Lemma 2.1, f1, f2 can be estimated as the following,

f1 ≲ ∥v±∥L∞∥Dl+1v±∥L2∥DlE∥L2 ,

f2 ≲ (∥Dlv±∥L2∥B∥L∞ + ∥v±∥L∞∥DlB∥L2)∥DlE∥L2 .
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Applying Cauchy-Schwarz and Young’s inequality to the other terms on the right hand
side of (12), then plugging the estimates of f1, f2 into (12) yields that for l = 0,

∂t ((v− − v+), E) + β(
1

ρ−
+

1

ρ+
)∥E∥2L2

≲ Cε∥D2
0v±∥2L2 + Cε∥(v− − v+)∥2L2 + ε∥E∥2L2 + ε∥DB∥2L2

+ ∥v±∥L∞∥Dv±∥L2∥E∥L2

+ (∥v±∥L2∥B∥L∞ + ∥v±∥L∞∥B∥L2)∥E∥L2 .

(13)

For l ≥ 1, using
(
∇×DlB,Dl(v− − v+)

)
=
(
DlB,∇×Dl(v− − v+)

)
, we get

∂t
(
Dl(v− − v+), D

lE
)
+ β(

1

ρ−
+

1

ρ+
)∥DlE∥2L2

≲ Cε∥Dl+2v±∥2L2 + Cε∥Dl(v− − v+)∥2H1 + ε∥DlE∥2L2 + ε∥DlB∥2L2

+ ∥v±∥L∞∥Dl+1v±∥L2∥DlE∥L2

+ (∥Dlv±∥L2∥B∥L∞ + ∥v±∥L∞∥DlB∥L2)∥DlE∥L2 .

(14)

Remark 2.1. Here we deal with the case l = 0 and l > 0 in sightly different ways.
Noting that we will integrate in time at last and the L2 norms of derivatives of B should
be controlled by the dissipation normD0(t), the terms ∥B∥L2 and ∥DsB∥L2 can not appear
on the right hand side of (13) and (14).

By choosing ε < β( 1
ρ−

+ 1
ρ+
), integrating (13), (14) in time and summing from l = 0

to l = s− 1 yields∫ t

0

∥E∥2Hs−1dτ ≲ ∥U∥2Hs +

∫ t

0

∥Dv∥2Hs + ∥v− − v+∥2Hsdτ

+ ∥U0∥2Hs + ε

∫ t

0

∥DB∥2Hs−2dτ

+

∫ t

0

s−1∑
l=0

∥v±∥L∞∥Dl+1v±∥L2∥DlE∥L2dτ

+

∫ t

0

s−1∑
l=0

(∥Dlv±∥L2∥B∥L∞ + ∥v±∥L∞∥DlB∥L2)∥DlE∥L2dτ

(15)

By (10) and∫ t

0

s−1∑
l=0

(∥v±∥L∞∥Dl+1v±∥L2 + ∥Dlv±∥L2∥B∥L∞ + ∥v±∥L∞∥DlB∥L2)∥DlE∥L2

≲ N0(t)J0(t)D0(t),

the inequality (15) becomes∫ t

0
∥E∥2Hs−1dτ ≲ ∥U0∥2Hs + ε

∫ t

0
∥DB∥2Hs−2dτ +W0(t)D

2
0(t) +N0(t)J0(t)D0(t). (16)
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For the dissipation estimate of B we only use maxwell equations in (11). Applying ∇×Dl

to third and fourth equations in (11) yields∂t∇×DlE +
1

ε0µ0

∆DlB +
β

ε0
∇×Dl(v− − v+) = 0,

∂t∇×DlB −∆DlE = 0.

(17)

Multiply the first equation by DlB and the second one by DlE then integrate in space
and add together yielding

∂t(∇×DlE,DlB)− 1

ε0µ0

∥Dl+1B∥2L2 +

∥Dl+1E∥2L2 +
β

ε0

(
Dl(v− − v+),∇×DlB

)
= 0.

Applying Cauchy-Schwarz inequality the above inequality becomes

∥Dl+1B∥2L2 ≲ ε∥Dl+1B∥2L2 + Cε∥Dl(v− − v+)∥2L2 + ∥Dl+1E∥2L2

+ ∂t(∇×DlE,DlB).
(18)

Choosing ε small, integrating (18) in time and summing from l = 0 to l = s− 2 give∫ t

0

∥DB∥2Hs−2dτ ≲ ∥U∥2Hs + ∥U0∥2Hs +

∫ t

0

∥E∥2Hs−1dτ

+

∫ t

0

∥v− − v+∥2Hsdτ.

(19)

Again using (10) and (16), (19) becomes∫ t

0

∥DB∥2Hs−2dτ ≲ ∥U0∥2Hs +W0(t)D
2
0(t) +N0(t)J0(t)D0(t). (20)

By a suitable linear combination of (10),(16) and (20) and choosing small ε in (16) we
have

N2
0 (t) +D2

0(t) ≲ ∥U0∥2L2 +W0(t)D
2
0(t) +N0(t)J0(t)D0(t). (21)

For s ≥ 3, it holds that W0(t) ≲ N0(t), J0(t) ≲ D0(t). Therefore, together with (21) there
exists a small constant δ > 0 such that if ∥U0∥Hs ≤ δ, then N0(t) +D0(t) ≲ δ uniformly
in time. This ends the proof of Theorem 1.1.

Remark 2.2. For s ≥ 3, it is clear that W0(t) ≲ N0(t). To prove J0(t) ≲ D0(t), it is
sufficient to prove ∥v∥2L∞ ≲ ∥v∥Ḣ1∥v∥Ḣ2 . Indeed, we have

|v| =
∣∣∣∣∫

ξ∈R3

eix·ξv̂dξ

∣∣∣∣ = ∣∣∣∣∫
|ξ|≤λ

+

∫
|ξ|≥λ

eix·ξv̂dξ

∣∣∣∣
≤
∫
|ξ|≤λ

|ξ||v̂|dξ
|ξ|

+

∫
|ξ|≥λ

|ξ|2|v̂| dξ
|ξ|2
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≤
(∫

|ξ|≤λ

|ξ|2|v̂|2dξ
) 1

2
(∫

|ξ|≤λ

1

|ξ|2
dξ

) 1
2

+

(∫
|ξ|≥λ

|ξ|4|v̂|2dξ
) 1

2
(∫

|ξ|≥λ

1

|ξ|4
dξ

) 1
2

≲λ1/2∥v∥Ḣ1 + λ−1/2∥v∥Ḣ2 .

Optimizing in λ leads to λ =
∥v∥Ḣ2

∥v∥Ḣ1
. Therefore the desired estimate holds.

3 Linear estimate

To get the decay result, we state the linear decay first. We can rewrite the system (2)
as ∂tU = LU + N (U), where L is the linear operator. We take advantages of a special
Lyapunov function to show the linear estimate which can avoid the complexity of the
calculation of the solution to the whole system. The linear estimate is the following.

Lemma 3.1. The solution to linear system of (2): ∂tU = LU , where

L =


ν−∆− α

ρ−
α
ρ−

− β
ρ−

0
α
ρ+

ν+∆− α
ρ+

β
ρ+

0
β
ε0

− β
ε0

0 1
ε0µ0

∇×
0 0 −∇× 0,


satisfies that for all integers k ≥ 0, l ≥ 0

∥Dk(etLU0)∥2L2 ≲ (1 + t)−3/2−k∥U0∥2L1 + (1 + t)−l∥Dk+lU0∥2L2 .

Proof. We rewrite the linear system of (2) in Fourier side,

ρ−∂tv̂− = −ν−|ξ|2v̂− − βÊ + α(v̂+ − v̂−)

ρ+∂tv̂+ = −ν+|ξ|2v̂+ + βÊ − α(v̂+ − v̂−)

∂tÊ = c1iξ × B̂ − c2β(v̂+ − v̂−)

∂tB̂ = −iξ × Ê

ξ · v̂± = ξ · B̂ = ξ · Ê = 0,

(22)

where c1 =
1

ε0µ0
, c2 = 1/ε0 and define the energy

Ê :=
1

2
ρ−|v̂−|2 +

1

2
ρ+|v̂+|2 +

1

2c2
|Ê|2 + c1

2c2
|B̂|2.

We immediately have the following energy balance.

d

dt
Ê = −|ξ|2(ν−|v̂−|2 + ν+|v̂+|2)− α|v̂− − v̂+|2. (23)
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Define the Lyapunov function

L(ξ, t) := γ(1 + |ξ|2)Ê + F,

where

F := − 1

1 + |ξ|2
< iξ × B̂, Ê > + < v̂− − v̂+, Ê >,

γ is a constant which will be determined later. Now we calculate time derivative of L.
Noting that iξ × (iξ × Ê) = |ξ|2Ê and |ξ × B̂|2 = |ξ|2|B̂|2 under the divergence free
condition of E,B, we obtain

d

dt
(− 1

1 + |ξ|2
< iξ × B̂, Ê >)

=
|ξ|2

1 + |ξ|2
|Ê|2 − γ2c1

|ξ|2

1 + |ξ|2
|B̂|2

+ c2
1

1 + |ξ|2
< iξ × B̂, β(v̂+ − v̂−) >,

(24)

and

d

dt
(< v̂− − v̂+, Ê >)

= |ξ|2 < ν+
ρ+

v̂+ − ν−
ρ−

v̂−, Ê > −β(
1

ρ−
+

1

ρ+
)|Ê|2

+ α(
1

ρ−
+

1

ρ+
) < v̂+ − v̂−, Ê >

− c1 < v̂+ − v̂−, iξ × B̂ > +c2 < v̂+ − v̂−, β(v̂+ − v̂−) > .

(25)

Taking (23) into account we have

d

dt
L = − γ|ξ|2(1 + |ξ|2)(ν−|v̂−|2 + ν+|v̂+|2)− β(

1

ρ−
+

1

ρ+
)|Ê|2

− c1
|ξ|2

1 + |ξ|2
|B̂|2 − αγ(1 + |ξ|2)|v̂− − v̂+|2

+
|ξ|2

1 + |ξ|2
|Ê|2 + c2

1

1 + |ξ|2
< iξ × B̂, β(v̂+ − v̂−) >

+ |ξ|2 < ν+
ρ+

v̂+ − ν−
ρ−

v̂−, Ê > +α(
1

ρ−
+

1

ρ+
) < v̂+ − v̂−, Ê >

− c1 < v̂+ − v̂−, iξ × B̂ > +c2 < v̂+ − v̂−, β(v̂+ − v̂−) > .
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Cauchy-Schwarz inequality and Young’s inequality yields

d

dt
L ≤ − γ|ξ|2(1 + |ξ|2)(ν−|v̂−|2 + ν+|v̂+|2)− β(

1

ρ−
+

1

ρ+
)|Ê|2

− c1
|ξ|2

1 + |ξ|2
|B̂|2 − αγ(1 + |ξ|2)|v̂− − v̂+|2

+ |Ê|2 + εc2
|ξ|2

1 + |ξ|2
|B̂|2 + c(ε)c2β

2 1

1 + |ξ|2
|v̂+ − v̂−|2

+ c(ε)|ξ|4
((

ν+
ρ+

)2

|v̂+|2 +
(
ν−
ρ−

)2

|v̂−|2
)

+ ε|Ê|2

+ c(ε)α2

(
1

ρ−
+

1

ρ+

)2

|v̂+ − v̂−|2 + ε|Ê|2

+ c(ε)c21(1 + |ξ|2)|v̂+ − v̂−|2 + ε
|ξ|2

1 + |ξ|2
|B̂|2 + c2β|v̂+ − v̂−|2

≤ − (γ − c(ε, c2, β, ρ±, ν±)) |ξ|2(1 + |ξ|2)(ν−|v̂−|2 + ν+|v̂+|2)

−
(

β

ρ−
+

β

ρ+
− 1− 2ε

)
|Ê|2 − (c1 − εc2 − ε)

|ξ|2

1 + |ξ|2
|B̂|2

− (αγ − c(ε, α, ρ±, c1, c2)) (1 + |ξ|2)|v̂− − v̂+|2.

(26)

By choosing ε small enough, we have(
β

ρ−
+

β

ρ+
− 1− 2ε

)
> 0, (c1 − εc2 − ε) > 0.

After ε is fixed, we choose γ big enough so that

(γ − c(ε, c2, β±, ρ±, ν±)) > 0, (αγ − c(ε, α, ρ±, c1, c2)) > 0.

Therefore, there exists a positive constant d1 such that

d

dt
L ≤ − d1|ξ|2(1 + |ξ|2)(1

2
ρ−|v̂−|2 +

1

2
ρ+|v̂+|2)

− d1
3

4c2
|Ê|2 − d1

|ξ|2

1 + |ξ|2
c1
c2
|B̂|2.

(27)

Because

|ξ|2(1 + |ξ|2)
1 + |ξ|4

≤ |ξ|2(1 + |ξ|2), |ξ|2(1 + |ξ|2)
1 + |ξ|4

≤ 3

2
,

|ξ|2(1 + |ξ|2)
1 + |ξ|4

≤ 2|ξ|2

1 + |ξ|2
,

(27) implies
d

dt
L = − d1

|ξ|2(1 + |ξ|2)
1 + |ξ|4

(
1

2
ρ−|v̂−|2 +

1

2
ρ+|v̂+|2)

− d1
|ξ|2(1 + |ξ|2)

1 + |ξ|4
(
1

2c2
|Ê|2 + c1

2c2
|B̂|2)

≤ − d1
|ξ|2(1 + |ξ|2)

1 + |ξ|4
Ê .

(28)
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On the other hand, since

|F | ≲ (|v̂−|2 + |v̂+|2 + |Ê|2 + |B̂|2),

there exists d2, d3 such that

d2(1 + |ξ|2)Ê ≤ L ≤ d3(1 + |ξ|2)Ê . (29)

Furthermore, we could notice that d3 can be chosen as large as it can be, Plugging (29)
into (28) implies

d

dt
L ≤ −d1

d3

|ξ|2

(1 + |ξ|4)
L.

Gronwall’s Lemma gives us, for t ≥ 0,

L(ξ, t) ≤ L(ξ, 0)e
− d1

d3

|ξ|2

(1+|ξ|4)
t
.

Again, thanks to (29), we end up with

Ê(ξ, t) ≤ d3
d2

Ê(ξ, 0)e−
d1
d3

|ξ|2

(1+|ξ|4)
t
. (30)

By (30), for any k ≥ 0, it holds that

∥DkU∥2L2 ≲
∫
R3

|Û0|2|ξ|2ke−
d1
d3

ρ(|ξ|)t
dξ

≲
∫
|ξ|≤1

+

∫
|ξ|>1

|Û0|2|ξ|ke−
d1
d3

ρ(|ξ|)t
dξ.

Estimating the low and high frequency parts of the above inequality will prove our theo-
rem.
For |ξ| ≤ 1, ρ(|ξ|) ≥ |ξ|2

2
. Therefore, for any k > 0∫

|ξ|≤1

|Û0|2|ξ|2ke−
d1
d3

ρ(|ξ|)t
dξ ≤ ∥Û0∥2L∞

∫
|ξ|≤1

|ξ|2ke−
d1
d3

ρ(|ξ|)t
dξ

≲ c(k)(1 + t)−3/2−k∥U0∥2L1 (31)

For |ξ| > 1, ρ(|ξ|) ≥ 1
2|ξ|2 . Therefore, for any l > 0,∫

|ξ|>1

|Û |2|ξ|2ke−
d1
d3

ρ(|ξ|)t
dξ ≤

∫
|ξ|≥1

|Û |2|ξ|2ke−
d1
d3

1
2|ξ|2

t
dξ

≤ sup
|ξ|≥1

(e
− d1

d3
t

2|ξ|2
|ξ|−2l)

∫
|ξ|>1

|Û |2|ξ|2k+2ldξ

≤ c(l)(1 + t)−l∥U∥2
Ḣk+l (32)

Put (32) and (31) together and we finish the proof.
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4 Proof of Theorem 1.2

To prove the decay result, we introduce the following time weighted norm and the corre-
sponding dissipation norm.

M(t) =

[(s−1)/2]−1∑
k=0

sup
0≤τ≤t

(1 + τ)3/4+k/2∥DkU∥Hs−2k−3 ,

N2(t) =

[s/2]∑
k=0

sup
0≤τ≤t

(1 + τ)k∥DkU∥2Hs−2k ,

D2(t) =

[s/2]∑
k=0

∫ t

0

(1 + τ)k
(
∥Dk+1v∥2Hs−2k + ∥Dk(v− − v+)∥2Hk−2k

)
dτ

+

[s/2]−1∑
k=0

∫ t

0

(1 + τ)k
(
∥DkE∥2Hs−2k−1 + ∥Dk+1B∥2Hs−2k−2

)
dτ,

(33)

where U = (v−, v+, E,B), v = (v−, v+).
The goal is to bound M(t) uniformly in time when the initial data is small enough.
Using Duhamel principle and linear estimate, one could have a self control estimate of
M(t) provided that N(t) is bounded (see Lemma 4.4). The boundedness of N(t) can be
derived through time weighted energy method as well as D(t).
The proof is based on several lemmas.

Lemma 4.1. Let s ≥ 7, 0 ≤ k ≤ [s/2]. We have

(1 + t)k∥DkU∥2Hs−2k +

∫ t

0

(1 + τ)k
(
∥Dk+1v∥2Hs−2k + ∥Dk(v− − v+)∥2Hs−2k

)
dτ

≲ ∥U0∥2Hs + k

∫ t

0

(1 + τ)k−1∥DkU∥2Hs−2kdτ + (N(t) +M(t))D2(t).

Proof. Multiplying (9) by (1+t)k and integrating in time then summing over k ≤ l ≤ s−k
yields

(1 + t)k∥DkU∥2Hs−2k +

∫ t

0
(1 + τ)k

(
∥Dk+1v∥2Hs−2k + ∥Dk(v− − v+)∥2Hs−2k

)
dτ

≲ ∥U0∥2Hs + k

∫ t

0
(1 + τ)k−1∥DkU∥2Hs−2kdτ + T1 + T2,

(34)

where

T1 =

∫ t

0

(1 + τ)k∥Dv∥L∞

s−k∑
l=k

∥Dlv∥2L2dτ,

T2 =

∫ t

0

(1 + τ)k
s−k∑
l=k

(
∥B∥L∞∥Dlv∥2L2 + ∥v∥L∞∥Dlv∥L2∥DlB∥L2

)
dτ.
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Noting that when l = 0, (9) becomes the classic energy identity

ρ−
2

d

dt
∥v−∥2L2 +

ρ+
2

d

dt
∥v+∥2L2 +

ε0
2

d

dt
∥E∥2L2 +

d

dt

1

2µ0

∥B∥2L2

+ ν−∥∇v−∥2L2 + ν+∥∇v+∥2L2 + α∥v− − v+∥2L2 = 0.

So that when k = 0,

T1 =

∫ t

0

∥Dv∥L∞∥Dv∥2Hs−1dτ ≲ W0(t)D
2
0(t) ≲ N(t)D2(t),

T2 =

∫ t

0

∥B∥L∞∥Dv∥2Hs−1 + ∥v∥L∞∥Dv∥Hs−1∥DB∥Hs−1dτ

≲ W0(t)D
2
0(t) +N0(t)J0(t)D0(t) ≲ N(t)D2(t).

For 1 ≤ k ≤ [s/2], we estimate T1, T2 as

T1 =

∫ t

0

(1 + τ)k∥Dv∥L∞∥Dkv∥2Hs−2kdτ

≲ sup
0≤τ≤t

{(1 + τ)∥Dv∥L∞}
∫ t

0

(1 + τ)k−1∥Dkv∥2Hs−2kdτ

≲ M(t)D2(t),

T2 ≲
∫ t

0

(1 + τ)k
(
∥B∥L∞∥Dkv∥2Hs−2k + ∥v∥L∞∥Dkv∥Hs−2k∥DlB∥Hs−2k

)
dτ

≲ M(t)D2(t) +M(t)

∫ t

0

(1 + τ)k−1
(
∥Dkv∥Hs−2k∥DkB∥Hs−2k

)
dτ

≲ M(t)D2(t),

where we use sup0≤τ≤t(1 + τ)∥U∥W 1,∞ ≲ M(t) for s ≥ 7.
Substituting the estimates of T1, T2 into (34) proves our lemma.

Now comes the estimate of the dissipation of E and B. More precisely, we have

Lemma 4.2. Let s ≥ 7, 0 ≤ k ≤ [s/2]− 1. It holds that∫ t

0

(1 + τ)k
(
∥DkE∥2Hs−2k−1 + ∥Dk+1B∥2Hs−2k−2

)
dτ

≲∥U0∥2Hs + k

∫ t

0

(1 + τ)k−1∥DkU∥2Hs−2kdτ + (N(t) +M(t))D2(t).

Proof. The dissipation estimate for v±, v− − v+ are done in the previous lemma. Let us
first do estimate on E. Like the proof of Theorem 1.1 (see Remark 2.1), we deal with the
case l = k and l > k in different ways. Fixing 0 ≤ k ≤ [s/2] − 1, by (12) for l = k, we
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have

∂t
(
Dk(v− − v+), D

kE
)
+ β(

1

ρ−
+

1

ρ+
)∥DkE∥2L2

≲ Cε∥Dk+2v∥2L2 + Cε∥Dk(v− − v+)∥2L2 + ε∥DkE∥2L2 + ε∥Dk+1B∥2L2

+ ∥v∥L∞∥Dk+1v∥L2∥DkE∥L2 + ∥B∥L∞∥Dkv∥L2∥DkE∥L2

+ ∥v∥L∞∥DkB∥L2∥DkE∥L2 .

(35)

For l > k we have

∂t
(
Dl(v− − v+), D

lE
)
+ β(

1

ρ−
+

1

ρ+
)∥DlE∥2L2

≲ Cε∥Dl+2v∥2L2 + Cε∥Dl(v− − v+)∥2H1 + ε∥DlE∥2L2 + ε∥DlB∥2L2

+ ∥v∥L∞∥Dl+1v∥L2∥DlE∥L2 + ∥B∥L∞∥Dlv∥L2∥DlE∥L2

+ ∥v∥L∞∥DlB∥L2∥DlE∥L2 .

(36)

Multiplying (35) and (36) by (1 + t)k, integrating in time and summing over k ≤ l ≤
s− k − 1 yields∫ t

0

(1 + τ)k∥DkE∥2Hs−2k−1dτ

≲∥U0∥2Hs + (1 + t)k∥DkU∥2Hs−2k−1 + k

∫ t

0

(1 + τ)k−1∥DkU∥2Hs−2k−1dτ

+ Cε

∫ t

0

(1 + τ)k
(
∥Dk+2v∥2H2−2k−1 + ∥Dk(v− − v+)∥2Hs−2k

)
dτ

+ ε

∫ t

0

(1 + t)k∥Dk+1B∥2Hs−2k−2dτ + S,

(37)

where

S =
s−k−1∑
l=k

∫ t

0

(1 + τ)k
(
∥v∥L∞∥Dl+1v∥L2∥DlE∥L2 + ∥B∥L∞∥Dlv∥L2∥DlE∥L2

+ ∥v∥L∞∥DlB∥L2∥DlE∥L2

)
dτ.

By Lemma 4.1, the inequality (37) becomes∫ t

0

(1 + τ)k∥DkE∥2Hs−2k−1dτ ≲∥U0∥2Hs + k

∫ t

0

(1 + τ)k−1∥DkU∥2Hs−2kdτ

+ ε

∫ t

0

(1 + t)k∥Dk+1B∥2Hs−2k−2dτ + S

+ (N(t) +M(t))D2(t),

(38)

Like the proof of previous lemma, we estimate the remaining term S by the case k = 0
and k ≥ 1. When k = 0, one has

S ≲
∫ t

0

∥v∥L∞∥Dv∥Hs−1∥E∥Hs−1 + ∥B∥L∞∥v∥Hs−1∥E∥Hs−1



189

+ ∥v∥L∞∥B∥Hs−1∥E∥Hs−1dτ

≲N0(t)J0(t)D0(t) ≲ N(t)D2(t).

For 1 ≤ k ≤ [s/2]− 1, we have

S ≲
∫ t

0

(1 + τ)k
(
∥v∥L∞∥Dk+1v∥Hs−2k−1∥DkE∥Hs−2k−1

+∥B∥∞∥Dkv∥Hs−2k−1∥DkE∥Hs−2k−1

+ ∥v∥L∞∥DkB∥Hs−2k−1∥DkE∥Hs−2k−1

)
dτ

≲ M(t)

∫ t

0

(1 + τ)k−1∥DkE∥Hs−2k−1

(
∥Dkv∥Hs−2k + ∥DkB∥Hs−2k−1

)
dτ

≲ M(t)D2(t).

Therefore, plugging the estimate of S into (38) yields for 0 ≤ k ≤ [s/2]− 1∫ t

0

(1 + τ)k∥DkE∥2Hs−2k−1dτ ≲∥U0∥2Hs + k

∫ t

0

(1 + τ)k−1∥DkU∥2Hs−2kdτ

+ ε

∫ t

0

(1 + t)k∥Dk+1B∥2Hs−2k−2dτ

+ (N(t) +M(t))D2(t).

(39)

For dissipation estimate on B, multiplying (18) by (1 + t)k, integrating in time and
summing l from k to s− k − 2 yield∫ t

0

∥Dk+1B∥2Hs−2k−1dτ

≲∥U0∥2Hs + (1 + t)k∥DkU∥2Hs−2k

+k

∫ t

0

(1 + τ)k−1
(
∥Dk+1E∥2Hs−2k−2 + ∥DkB∥2Hs−2k−2

)
dτ

+

∫ t

0

(1 + τ)k
(
Cε∥Dk(v+ − v+)∥2Hs−2k−2 + ∥Dk+1E∥2Hs−2k−2dτ

)
.

(40)

By Lemma 4.1 inequality (40) becomes∫ t

0

∥Dk+1B∥2Hs−2k−1dτ ≲∥U0∥2Hs + k

∫ t

0

(1 + τ)k−1∥DkU∥2Hs−2kdτ

+(N(t) +M(t))D2(t).

(41)

Choosing ε small enough and a suitable linear combination of (39) and (41) prove this
lemma.

Using Lemma 4.1 and Lemma 4.2 we can derive the following key inequality that
shows the self control of N(t) and D(t).

Lemma 4.3. Let s ≥ 7. Then it holds that

N2(t) +D2(t) ≲ ∥U0∥2Hs + (N(t) +M(t))D2(t).
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Proof. It is sufficient to prove that for 0 ≤ k ≤ [s/2]− 1,

(1 + t)k∥DkU∥2Hs−2k +

∫ t

0

(1 + τ)k
(
∥Dk+1v∥2Hs−2k + ∥Dk(v+ − v+)∥2Hs−2k

∥DkE∥2Hs−2k−1 + ∥Dk+1B∥2Hs−2k−2

)
dτ

≲ ∥U0∥2Hs + (N(t) +D(t))D2(t),

(42)

and for k = [s/2],

(1 + t)k∥DkU∥2Hs−2k +

∫ t

0

(1 + τ)k
(
∥Dk+1v∥2Hs−2k + ∥Dk(v+ − v+)∥2Hs−2k

≲ ∥U0∥2Hs + (N(t) +D(t))D2(t).

(43)

The proof can be done easily using an induction argument. Clearly (42) is true for k = 0.
Assume that (42) is true for k = l − 1, 1 ≤ l ≤ [s/2]− 1. Then for k = l,

(1 + t)l∥DlU∥2Hs−2l +

∫ t

0

(1 + τ)l
(
∥Dl+1v∥2Hs−2l + ∥Dl(v+ − v+)∥2Hs−2l

∥DlE∥2Hs−2l−1 + ∥Dl+1B∥2Hs−2l−2

)
dτ

≲ ∥U0∥2Hs + (N(t) +M(t))D2(t) + l

∫ t

0

(1 + τ)l−1∥DlU∥2Hs−2ldτ.

Since ∫ t

0

(1 + τ)l−1∥DlU∥2Hs−2ldτ

≲
∫ t

0

(1 + τ)l−1
(
∥Dlv∥2Hs−2(l−1) + ∥Dl−1(v− − v+)∥2Hs−2(l−1)

+∥Dl−1E∥2Hs−2(l−1)−1 + ∥DlB∥2Hs−2l

)
dτ

≲∥U0∥2Hs + (N(t) +M(t))D2(t),

inequality (42) holds for k = l.
When k = [s/2], inequality (43) holds for the same reason.

To proof our main theorem, we still need another inequality that controls M(t).

Lemma 4.4. Let s ≥ 3. Then it holds that

M(t) ≲ ∥U0∥L1∩Hs +M2(t) +M(t)N(t).

Proof. By Duhamel principle,

U = etLU0 +

∫ t

0

e(t−τ)LPN (U(τ))dτ, (44)

Where P is Leray projection. Fixing 0 ≤ k ≤ [ s−1
2
]− 1, for 0 ≤ m ≤ s− 2k − 3 applying

Dk+m to (44) and taking L2 norm yields

∥Dk+mU∥L2 ≲ ∥Dk+metLU0∥L2 +R1(m) +R2(m), (45)



191

where,

R1 =

∫ t/2

0

∥Dk+m+1e(t−τ)L(v− ⊗ v−, v+ ⊗ v+, 0, 0)
T (τ)∥L2dτ

+

∫ t

t/2

∥Dm+1e(t−τ)LDk(v− ⊗ v−, v+ ⊗ v+, 0, 0)
T (τ)∥L2dτ

:= R11 +R12,

R2 =

∫ t/2

0

∥Dk+me(t−τ)L(−v− ×B, v+ ×B, 0, 0)T (τ)∥L2dτ

+

∫ t

t/2

∥Dme(t−τ)LDk(−v− ×B, v+ ×B, 0, 0)T (τ)∥L2dτ

:= R21 +R22.

For the estimate of the linear part, applying Lemma 3.1 by replacing k by k +m and l
by k + 2 the summing in m over 0 ≤ m ≤ s− 2k − 3 yields

∥DketLU0∥Hs−2k−3 ∼
s−2k−3∑
m=0

∥Dk+metLU0∥L2

≲
s−2k−3∑
m=0

(1 + t)−3/4−(k+m)/2∥U0∥L1 + (1 + t)−1−k/2∥D2k+m+2U∥L2

≲(1 + t)−3/4−k/2∥U0∥L1∩Hs .

(46)

To estimate R1 and R2, we separate the time integral into two parts: from 0 to t/2 and
t/2 to t, as we showed in the definition of R1 and R2. The decay of the first part comes
from the linear estimate while the decay of the second part is due to the definition of our
weighted norms.
For R11, applying the linear estimate Lemma 3.1 with k = k + m + 1, l = k + 2 and
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summing m over 0 ≤ m ≤ s− 2k − 3 we have

s−2k−3∑
m=0

R11(m)

≲
s−2k−3∑
m=0

∫ t/2

0

(1 + t− τ)−5/4−(k+m)/2∥v ⊗ v∥L1dτ

+
s−2k−3∑
m=0

∫ t/2

0

(1 + t− τ)−1−k/2∥D2k+m+3(v ⊗ v)∥L2dτ

≲
s−2k−3∑
m=0

∫ t/2

0

(1 + t− τ)−5/4−(k+m)/2∥v∥2L2dτ

+
s−2k−3∑
m=0

∫ t/2

0

(1 + t− τ)−1−k/2∥D2k+m+3v∥L2∥v∥L∞dτ

≲M2(t)

∫ t/2

0

(1 + t− τ)−5/4−k/2(1 + τ)−3/2dτ

+ sup
0≤τ≤t/2

{(1 + τ)∥v∥L∞}N(t)

∫ t/2

0

(1 + t− τ)−1−k/2(1 + τ)−1dτ

≲(1 + t)−3/4−k/2M2(t) + (1 + t)−3/4−k/2M(t)N(t)(1 + t)−1/4 ln(1 + t)

≲(1 + t)−3/4−k/2
(
M2(t) +M(t)N(t)

)
,

where we use Lemma 2.1 in the second step. Noting that in above inequality, we need
2k +m + 3 ≤ s for all 0 ≤ m ≤ s − 2k − 3 and this is where the restriction on k comes
from.
For R12 we do the similar procedure as we did for R11. When applying the linear estimate,
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we set k = m+ 1, l = 1 in Lemma 3.1 which leads to

s−2k−3∑
m=0

R12(m)

≲
s−2k−3∑
m=0

∫ t

t/2
(1 + t− τ)−5/4−m/2∥Dk(v ⊗ v)∥L1dτ

+

s−2k−3∑
m=0

∫ t

t/2
(1 + t− τ)−1/2∥Dk+m+2(v ⊗ v)∥L2dτ

≲
s−2k−3∑
m=0

∫ t

t/2
(1 + t− τ)−5/4−m−2∥Dkv∥L2∥v∥L2dτ

+

s−2k−3∑
m=0

∫ t

t/2
(1 + t− τ)−1/2∥Dk+m+2v∥L2∥v∥L∞dτ

≲M2(t)

s−2k−3∑
m=0

∫ t

t/2
(1 + t− τ)−5/4−m/2(1 + τ)−3/2−k/2dτ

+ sup
t/2≤τ≤t

{(1 + τ)∥v∥L∞}
s−2k−3∑
m=0

∫ t

t/2
(1 + t− τ)−1/2(1 + τ)−1∥Dk+m+1v∥H1dτ

≲(1 + t)−3/4−k/2M2(t)

+M(t)N(t)

∫ t

t/2
(1 + t− τ)−1/2(1 + τ)−1(1 + τ)−(k+1)/2dτ

≲(1 + t)−3/4−k/2M2(t)

+M(t)N(t)

∫ t

t/2
(1 + t− τ)−1/2(1 + τ)−3/4(1 + τ)−k/2−3/4dτ

≲(1 + t)−3/4−k/2
(
M2(t) +M(t)N(t)

)
.

Together with the estimate of R11, R12, we have

s−2k−3∑
m=0

R1(m) ≲ (1 + t)−3/4−k/2
(
M2(t) +M(t)N(t)

)
. (47)

We estimate R2 in a similar way. For R21 applying the linear estimate Lemma 3.1 with
k = k +m, l = k + 2 and summing m over 0 ≤ m ≤ s− 2k − 3 yield

s−2k−3∑
m=0

R21(m)

≲
s−2k−3∑
m=0

∫ t/2

0

(1 + t− τ)−3/4−(k+m)/2∥v ×B∥L1dτ

+
s−2k−3∑
m=0

∫ t/2

0

(1 + t− τ)−1−k/2∥D2k+m+2(v ×B)∥L2dτ
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≲
s−2k−3∑
m=0

∫ t/2

0

(1 + t− τ)−3/4−(k+m)/2∥U∥2L2dτ

+
s−2k−3∑
m=0

∫ t/2

0

(1 + t− τ)−1−k/2∥D2k+m+2U∥L2∥U∥L∞dτ

≲M2(t)

∫ t/2

0

(1 + t− τ)−3/4−k/2(1 + τ)−3/2dτ

+ sup
0≤τ≤t/2

{(1 + τ)∥U∥L∞}N(t)

∫ t/2

0

(1 + t− τ)−1−k/2(1 + τ)−1dτ

≲(1 + t)−3/4−k/2M2(t) + (1 + t)−3/4−k/2M(t)N(t)(1 + t)−1/4 ln(1 + t)

≲(1 + t)−3/4−k/2
(
M2(t) +M(t)N(t)

)
.

For R21, just like the way we estimate R12 but choosing k = m, l = 1 when applying
Lemma 3.1 we get

s−2k−3∑
m=0

R22(m)

≲
s−2k−3∑
m=0

∫ t

t/2
(1 + t− τ)−3/4−m/2∥Dk(v ×B)∥L1dτ

+

s−2k−3∑
m=0

∫ t

t/2
(1 + t− τ)−1/2∥Dk+m+1(v ×B)∥L2dτ

≲
s−2k−3∑
m=0

∫ t

t/2
(1 + t− τ)−3/4−m−2∥DkU∥L2∥U∥L2dτ

+
s−2k−3∑
m=0

∫ t

t/2
(1 + t− τ)−1/2∥Dk+m+1U∥L2∥U∥L∞dτ

≲M2(t)

s−2k−3∑
m=0

∫ t

t/2
(1 + t− τ)−3/4−m/2(1 + τ)−3/2−k/2dτ

+ sup
t/2≤τ≤t

{(1 + τ)∥U∥L∞}
s−2k−3∑
m=0

∫ t

t/2
(1 + t− τ)−1/2(1 + τ)−1∥Dk+m+1v∥H1dτ

≲M2(t)

∫ t

t/2
(1 + t− τ)−3/2(1 + τ)−3/4−k/2dτ

+M(t)N(t)

∫ t

t/2
(1 + t− τ)−1/2(1 + τ)−1(1 + τ)−(k+1)/2dτ

≲(1 + t)−3/4−k/2
(
M2(t) +M(t)N(t)

)
.

So that we have

R2 ≲ (1 + t)−3/4−k/2
(
M2(t) +M(t)N(t)

)
. (48)

The lemma is proved when we put (46), (47) and (48) together.
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Now we have all the ingredients to prove Theorem 1.2. By Lemma 4.3 and Lemma
4.4, we have for s ≥ 7

N2(t) +D2(t) ≲ ∥U0∥2Hs + (N(t) +M(t))D2(t),

M(t) ≲ ∥U0∥L1∩Hs +M2(t) +M(t)N(t).

Let Y = N(t) +M(t) +D(t). So that the above inequalities imply that

Y 2(t) ≲ ∥U0∥2Hs + Y 3(t) + Y 4(t).

Thus by choosing ∥U0∥L1∩Hs ≤ δ with δ small enough, one has

Y = M(t) +N(t) +D(t) ≲ δ,

for all t ≥ 0 which proves the theorem.
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