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Abstract. A first-order bi-projection scheme for the numerical simulation of two-
phase immiscible, incompressible and isothermal flows of viscoplastic media is presented.
As in the Uzawa-like algorithm, the definition of the stress tensor is rewritten in terms
of a pointwise projection. A pseudo-time relaxation term is added in order to obtain a
geometric convergence of the fixed-point iterations used for the computation of the plastic
part of the stress tensor. The coupling between pressure and velocity field is treated with
a fractional time-stepping scheme. The interface between the two phases is handled
with a level set formulation. Numerical simulations of Rayleigh-Taylor instabilities are
performed and presented. The first order rate of convergence with respect to the time
step is recovered both in the case of Newtonian and Bingham flows. Comparisons with
published results in the case of Newtonian flows validate the parallel implementation of
the bi-projection scheme.
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1 Introduction

Mixture of fluids with different rheology and different physical parameters commonly
occurs in geophysical phenomena and environmental problems. For instance, pyroclastic
flows are mixtures of granular matter and gas generated by volcanic eruptions in the case
of plume or dome collapses. They are a major source of volcanic hazards responsible of
considerable damages, injuries and even deaths of human beings in populations leaving
nearby volcanos. Pyroclastic flows may sweep along volcano’s hills over long distances
resulting in areas of several square kilometers covered by a deep layer of granular materials
as in the partial dome collapse of Soufrière Hills Volcano in 1997 (see [16]). Another
possible scenario is the entrance of a pyroclastic flow into water generating a tsunami
which can also be responsible of disasters and may have a deathly impact (see [29, 21]).

The rheology of granular flows is not well understood. Nevertheless, granular flows
share characteristic behaviours with flows of viscoplastic medium. Viscoplastic fluids flow
ony if the stress exceeds a thresholds otherwise they do not deform and behave like solids.
Granular material flows like a fluid over long runout distance but, unlike fluids, they stop
in finite time. A model with a rheology similar to the Bingham rheology but with a
yield stress depending on the pressure has been applied to the numerical study of the
collapse of granular columns (see [14]). The aim of this paper is to propose a new time
discretization scheme on a simpler model retaining the complexity of the mixture of two
fluids of viscoplastic medium with different physical parameters, namely density, viscosity
and yield stress.

In the Bingham rheology, the stress tensor becomes proportional to the strain rate if
its strength exceeds the yield stress otherwise it is not prescribed. This model reproduces
the peculiar behavior of viscoplastic medium which behaves as a solid when the stress
is below the yield stress and flows like a fluid otherwise. The main difficulty both for
theoretical and numerical studies of viscoplastic flows relies on the non-differentiable def-
inition of the rheology. From a numerical point of view, the most appealing method due
to its simplicity is the regularization method: a small parameter is introduced so that the
stress tensor becomes everywhere proportional to the strain rate with a spatially variable
viscosity which remains finite (see [3, 20] for instance). Regularization methods encounter
difficulties in accurately computing the rigid zones separating yielded and unyielded re-
gions (see [8] for detailed study and analysis). The other classical approach relies on the
variational formulation of the Navier-Stokes equations leading to an optimization (saddle-
point) problem which can be solved with Uzawa-like or augmented Lagrangian algorithms
(see [23] for a review). Both methods accurately compute contours of the plug regions but
they are quite expansive in terms of number of iterations required to achieve convergence.
In the implementation of the Uzawa-like algorithm, the plastic tensor is computed with
a pointwise projection operator. A possible way to increase the convergence rate of Pi-
card’s iterations used to solve the fixed-point problem coupling the plastic tensor and the
velocity field is to introduce a pseudo-time relaxation term. This has been investigated
in [6] in the context of projection schemes for the time semi-discretization of the Navier-
Stokes equations (see [12]) for incompressible and isothermal Bingham flows in the case
of homogeneous flows, i.e. with constant density, and recently extended in [4] to the case
of flows with spatially variable physical parameters, namely density, viscosity and yield
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stress. In [4], a bi-projection scheme has been proposed and analyzed. More precisely,
it has been proven to be stable and first-order accurate if the relaxation parameter is
properly chosen, i.e. if it equals the time step.

The purpose of the paper is to implement the bi-projection scheme analyzed in [4] in
the context of the numerical study of two-phase immiscible, icompressible and isothermal
flows of viscoplastic medium. A level set formulation is used to track the interface of the
fluids. In this approach (see [26, 25]), the interface is the set of points where the level set
function vanishes and the latter is transported by the velocity field satisfying the Navier-
Stokes equations over the whole domain. For obvious reasons, it is desirable to transport
a smooth function rather than a discontinuous one. The level set function is therefore
initialized and maintained, with the help of a redistancing procedure, as the normal signed
distance function from the interface (see [19]). The reinitialization step consists in solving
a Hamilton-Jacobi equation with an artificial time: the stationary solution of which being
a distance function (see [25, 22]). It has been observed in [22] that, during iterations
of the reinitialization procedure the zeros off the level set function have the tendency
to move towards the closest grid point and a subcell fix method has been proposed to
remedy this numerical artifact. In [17], the effect of the temporal discretization of the
Hamilton-Jacobi coupled with the subcell fix algorithm was studied. These methods have
been implemented in the present study.

The paper is organized as follows. In the next section, the mathematical model for the
numerical study of two-phase immiscible, icompressible and isothermal flows of viscoplas-
tic medium is introduced. As in [6], the non-differentiable definition of the plastic part of
the stress tensor is reformulated with a pointwise projection operator. A non-dimensional
form of the equations is proposed. In Section 3, the bi-projection scheme derived from the
first-order scheme recently introduced and analyzed in [4] is described. The convergence
rate of the fixed-point procedure used to solve the coupling between the velocity field and
the plastic tensor is recalled. In Section 4, some details on numerical implementation and
spatial discretization are given. Finally, in Section 5, numerical results aiming to assess
the accuracy and efficiency of the bi-projection scheme are presented and discussed. The
rate of convergence of the time scheme is shown to be first-order for the velocity, the
density and the pressure. Numerical experiments of a Rayleigh-Taylor instability finally
demonstrate the performance of the bi-projection scheme.

2 A mathematical model for two-phase incompress-

ible Bingham flows

2.1 The level set formulation

In a domain Ω ∈ R2, we consider two immiscible, incompressible and isothermal flows of
viscoplastic media separated by an interface Γ(t) moving with time t > 0. The physical
parameters of each phase, i.e. the density, viscosity and yield stress, are respectively
denoted by ρi, µi and αi for i = 1, 2. We assume that ρ2 ≥ ρ1. The level set formulation
(see [26, 5, 25]) aims to write a system of equations governing both phases and satisfied on
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the whole domain Ω by one set of global unknowns, namely the velocity field u(x, t), the
pressure p(x, t) and the density ρ(x, t). In this framework, the interface Γ(t) corresponds
to the set of points where the level set function φ vanishes, i.e. Γ(t) = {x ∈ Ω; φ(x, t) =
0}. The level set function is a smooth function of x transported by the flow field. The
signed distance function from the interface is commonly used (see [18] and the reference
therein). In this context, the level set formulation for two immiscible, incompressible and
isothermal flows of viscoplastic media writes

∂φ

∂t
+ div (uφ) = 0 in Ω, (1)

ρ(φ)

(
∂u

∂t
+ div (u⊗ u)

)
+ ∇p = −ρ(φ)ge2 + div τ (φ) in Ω, (2)

div u = 0 in Ω, (3)

where g is the gravitational constant and e2 = (0, 1). Equations (1)-(3) are supplemented
by initial and boundary conditions. Note that the surface tension forces are not taken
into account. For Bingham type flows, the deviatoric stress tensor is related to the strain
rate tensor Du = 1

2

(
∇u+t∇u

)
by

τ (φ) = 2µ(φ)Du+ α(φ)Σ

with Σ = Du
‖Du‖ if Du 6= 0,

Σ ∈ Λ if Du = 0,
(4)

where Λ ≡ {λ ∈ R2×2; ‖λ‖ ≤ 1 a.e. in Ω, tr(λ) = 0, tλ = λ} and, for any tensor λ ∈

R2×2, ‖λ‖ =
(

1
2

∑
i,j λ

2
ij

) 1
2

is its Froebenius norm.

The physical parameters being constant in each phase, we define

ρ(φ) = ρ1H(φ) + ρ2(1−H(φ)), (5)

where H(φ) is the Heaviside function given by

H(φ) =


1 if φ < 0,
1
2

if φ = 0,

0 if φ > 0,

and similarly for the viscosity µ(φ) and the yield stress α(φ).

2.2 The projection formulation for the Bingham rheology

We now introduce a projection formulation for the plastic part Σ of the stress tensor
which will be used for the construction of the time discretization. For this purpose, let us
introduce the projection operator PΛ : R2×2 −→ Λ. If λ ∈ R2×2 is a symmetric traceless
tensor, then its projection onto Λ is explicit. Indeed, we have, a.e. in Ω,

PΛ(λ) =

λ if ‖λ‖ ≤ 1,

λ/‖λ‖ if ‖λ‖ > 1.
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Note that if λ ∈ R2×2 is not traceless then we have PΛ(λ) = PΛ

(
λ− 1

2
tr(λ)Id

)
. With the

help of these definitions, it can be easily shown (see [6, 4]) that the following result holds.

Proposition 1 For any positive number `, definition (4) is equivalent to the relation

Σ = PΛ

(
Σ + `Du

)
.

With the help of Proposition 1, the mathematical model (1)-(4) can be rewritten as

∂φ

∂t
+ div(uφ) = 0, (6)

ρ(φ)

(
∂u

∂t
+ div(u⊗ u)

)
− div(2µ(φ)Du) + ∇p = −ρ(φ)ge2 + div(α(φ)Σ), (7)

Σ = PΛ

(
Σ + `Du

)
, ` > 0, (8)

divu = 0. (9)

2.3 A non-dimensional form of the mathematical model

In order to write the system (6)-(9) in dimensionless form, we introduce a characteristic
length L and we use the physical parameters of the heavier fluid as reference quantities,
namely ρ2, µ2 and α2. As reference velocity

√
gL is used so that the corresponding

reference time is
√

L
g

and the reference pressure is ρ2gL. By scaling all variables with

respect to these reference quantities, the mathematical model in dimensionless form reads

∂φ

∂t
+ div(uφ) = 0, (10)

ρ(φ)

(
∂u

∂t
+ div(u⊗ u)

)
− div

(2µ(φ)

Re
Du

)
+ ∇p = −ρ(φ)e2 +

Bi

Re
div(α(φ)Σ), (11)

Σ = PΛ

(
Σ + `Du

)
, ` > 0, (12)

divu = 0, (13)

where the dimensionless Reynolds and Bingham numbers are respectively defined as

Re =
ρ2

√
gL3

µ2

and Bi =
α2

√
L

µ2
√
g
.

The dimensionless density is derived from (5), that is

ρ(φ) =
ρ1

ρ2

H(φ) + (1−H(φ)), (14)

and similarly for the viscosity and the yield stress.



160

3 The first-order bi-projection scheme

Let δt > 0 a time step. We define a discrete time sequence {tn;n ≥ 0} by tn = nδt.
The time semi-discretization of Equations (10)-(13) presented hereafter defines sequences
{φn,un,undiv, p

n,Σn; n > 0} which are approximation of the time continuous solutions,
i.e. φn ≈ φ(tn). Both un and undiv are approximations of the velocity field u(tn). However,
undiv is a divergence-free velocity field while un is not. These sequences are initialized : ρ0

and u0 are given, Σ0 = 0, u0
div and p0 are computed from u0 so that div(u0

div) = 0, we
finally set p−1 = p0.

Let us assume that (φn,un,undiv, p
n,Σn) are known. The first-order bi-projection

scheme discretizing (10)-(13) is a fractional time-stepping method derived from [4] and
inspired from [10, 11]. It consists in the following successive steps.

1. The discrete level set function φn+1 is computed from the transport equation (10)
discretized with an explicit RK3 TVD time scheme [24, 9] using undiv as transport
velocity, i.e. we solve the following equations

φn,1−φn
δt

+ div
(
undivφ

n
)

= 0,

φn,2 = 3
4
φn + 1

4
φn,1 − δt

4
div
(
undivφ

n,1
)
,

φn,3−φn,2

δt
+ div

(
undivφ

n,2
)

= 0,

φn+1 = 1
3
φn + 2

3
φn,3.

(15)

2. The physical parameters are computed from φn+1 using (14), that is we set

ρn+1 = ρ(φn+1), µn+1 = µ(φn+1), αn+1 = α(φn+1).

3. Let θ ∈ [0, 1) a given numerical parameter. The velocity field un+1 and the plastic
tensor Σn+1 are solutions of

ρn+1
(

un+1−un

δt

)
− div

(
2µn+1

Re
Dun+1

)
+ ρn+1 div(undiv ⊗ un)

+∇(2pn − pn−1) = −ρn+1e2 + Bi
Re

div(αn+1Σn+1),

Σn+1 = PΛ

(
Σn+1 + `αn+1Dun+1 + θ(Σn −Σn+1)

)
.

(16)

4. The pressure increment pn+1 − pn is solution of the Poisson equation∆(pn+1 − pn) =
ρ1

δt
div(un+1),

∂n(pn+1 − pn)|∂Ω = 0.
(17)

5. The divergence-free velocity field un+1
div is obtained by stating

un+1
div = un+1 − δt

ρ1

∇(pn+1 − pn). (18)

The fact that div un+1
div = 0 is a direct consequence of (17) and (18).
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In order to implement the computation of (un+1,Σn+1) solutions of the implicit equa-
tion (16) we solve, as in [6], the associated fixed-point problem through Picard’s itera-
tions. Indeed, let us set Σn,0 = Σn and assume that, for k ≥ 0, Σn,k ∈ Λ is known, we
compute un,k+1 by solving the linear diffusion equation

ρn+1
(un,k+1 − un

δt

)
− div

(2µn+1

Re
Dun,k+1

)
+ ρn+1 div(undiv ⊗ un)

+∇(2pn − pn−1) = −ρn+1e2 +
Bi

Re
div(αn+1Σn,k).

(19)

This is followed by an explicit and pointwise (a.e. in Ω) Bingham projection providing
the plastic part of the stress tensor Σn,k+1, namely

Σn,k+1 = PΛ

(
Σn,k + `αn+1Dun,k+1 + θ(Σn −Σn,k)

)
. (20)

By iterating over k through equations (19) and (20), the sequence (un,k,Σn,k) converges
geometrically to the solution of (16). Indeed we have proved in [4], the following result :

Theorem 1 If 8θ + rBimax(α1,α2)2

min(µ1,µ2)
≤ 8, then, for all n ≥ 0 the sequence (un,k,Σn,k)k

tends to (un+1,Σn+1) when k tends to infinity. Moreover the convergence is geometric
with common ratio 1− θ.

Note that in the case θ = 0, the sequence (un,k,Σn,k)k still tends to (un+1,Σn+1)
(see [7]) but the convergence is known to be very slow (see [6]).

4 Numerical implementation

Let Ω =
(
−1

2
, 1

2

)
×
(
−2, 2

)
the computational domain. We define a Cartesian uniform

mesh (xi, yj) and we denote by h = 1
nx

= 4
ny

the mesh size, where nx and ny are the number

of mesh cells in each spatial direction. Together with the mesh points, we associate the
midpoints

xi+ 1
2

=
1

2
(xi + xi+1) and yj+ 1

2
=

1

2
(yj + yj+1).

Let a computational cell Kij = (xi, xi+1)× (yj, yj+1). As in the classical MAC scheme for
the incompressible Navier-Stokes equations (see [13]) the discrete velocity unknowns uij =
(uij, vij) are located at the midpoint of the cell edges, that is uij ≈ u(xi, yj+1/2) and vij ≈
v(xi+1/2, yj). The discrete pressure pij and level set function φij are placed at the center
of the mesh cell Kij, namely pij ≈ p(xi+1/2, yj+1/2) and similarly for φij. The components
of the tensor Σ are also discretized at the center of the mesh cell. This choice is arbitrary
but allows to update all tensor components, through the local projection (20), at the
same mesh locations. Figure 1 summarizes the staggered arrangement of the unknowns.
Centered second-order finite volume schemes are applied to discretize the spatial partial
derivatives operator in Equations (15)-(18). The control volumes are: Kij for the level set
function (15) and the pressure increment (17), Ki,j+1/2 = (xi−1/2, xi+1/2)×(yj, yj+1) for the
horizontal component of the velocity uij and Ki+1/2,j = (xi, xi+1)× (yj−1/2, yj+1/2) for the
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vertical component of the velocity vij which correspond to Equations (16) and (18). The
Bingham projection (20) is enforced at points (xi+1/2, yj+1/2). Details on the discretization
of the plastic contribution in the momentum equation and on the discrete contribution,
with ghost points, of the boundary conditions are provided in [6].

sφij
pij Σij

--
ui+1,juij

6

vi,j+1

6

vij

(xi+1, yj+1)

(xi+1, yj)

(xi, yj+1)

(xi, yj)

Figure 1: Location of the discrete unknowns in the mesh cell Kij = (xi, xi+1)× (yj, yj+1).

The level set equations (15) are discretized with a finite volume WENO scheme of
order 5 (see [24, 15]). Even if it is initialized as the signed distance from the interface,
the level set function computed with the fully discrete transport equation will not remain
a distance function. As it is suggested in [26], a redistancing algorithm has to be applied
periodically in time. That is, knowing φn+1, the following Hamilton-Jacobi equation is
solved {

∂Φ
∂τ

+ sgn(φn+1)
(
‖∇Φ‖ − 1

)
= 0,

Φ(τ = 0) = φn+1,
(21)

where τ is a fictitious time and

sgn(φn+1) =


−1 if φ < 0,

0 if φ = 0,

1 if φ > 0.

Equation (21) is discretized as in [17] with a second-order TVD Runge-Kutta method
as time marching scheme and second-order ENO finite-differences are applied for the
spatial resolution. Stationary solutions Φs of (21) are distance functions, i.e. ‖∇Φs‖ = 1,
and share their interface {x ∈ Ω; Φs(x) = 0} with φn+1. This property is not preserve
with a standard second-order ENO spatial discretization. Indeed, displacement of the
interface has been observed during the fictitious time iterations of the reinitialization
procedure. In [17], a subcell resolution near the interface modifying the ENO scheme has
been proposed. The purpose of the subcell resolution is to fix the position of the interface,
the zeros of the level set function φn+1, during the reinitialization iterations.

As in [22], the Heaviside function used to evaluate the density, the viscosity and the
yield stress in terms of the level set function in (14) is replaced by the following regularized
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Heaviside function

Hε(φ) =


0 if φ < −ε,
1
2

(
1 + φ

ε
− 1

π
sin(πφ

ε
)
)

if − ε ≤ φ ≤ ε,

1 if φ > ε.

Regularization of the viscosity coefficient across the interface is required in order to ensure
the continuity of the viscous stress. Note that other regularization formulae could be
used (see [27]). In the spatial discretization of the viscous terms present in the discrete
momentum equation, the viscosity coefficient has to be evaluated both at the center of
the mesh cells Kij and at the mesh nodes (xi, yj). For the latter, second-order spatial
interpolation is applied.

The implementation has been done in the F90/MPI code written for one phase Bing-
ham flows [6]. The PETSc library [1, 2] is used to solve linear systems and to manage
data on structured grids. The communications between the MPI processes are explicitly
written with the help the MPI library.

5 Numerical results

In order to both estimate the convergence rate of the numerical scheme with respect to the
temporal discretization and illustrate the performance of the method, we have performed
simulations of the development of a Rayleigh-Taylor instability in the viscous regime.
This problem consists of a heavy fluid lying above a lighter one in the rectangular domain
Ω = (−1/2, 1/2) × (−2, 2) under the action of a vertical downward gravitational field of
intensity g. The density ratio is related to the Atwood number,

At = (ρ2 − ρ1)/(ρ2 + ρ1),

according to Tryggvason’s definition [28] and the initial position of the interface is

y(x) = −0.1 cos(2πx).

In the rest of the paper, the density ratio is 3, so that At = 0.5, and Re = 3000. We assume
that symmetry of the initial condition is maintained during the whole time evolution, so
that the computational domain can be restricted to (0, 1/2)× (−2, 2). No-slip condition
is enforced on the bottom and top walls and symmetry is imposed on the two vertical
ones.

5.1 Time convergence

We first estimate the convergence rate of the numerical scheme with respect to the tem-
poral discretization. We have performed numerical simulations with Bi = 1. The heavier
fluid is a viscoplastic medium, that is to say α2 = 1, and the lighter one is Newtonian,
i.e. α1 = 0. Values for r and θ are such that the hypothesis of Thereom 1 are satisfied
and θ = δt. With these parameters and starting from rest, a numerical simulation has
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Figure 2: Error for the velocity, pressure and density in L2(Ω)−norm. The slope of the
solid black line is 1 corresponding to an error in O(δt).

been performed up to the non-dimensional time t = 1.8 on a grid with 256 × 2048 mesh
points and a time step δt = 5×10−5. Let us denote by uref, pref and ρref the corresponding
(discrete) velocity field, pressure and density. Note that the flow is not stationary at time
t = 1.8. Indeed, the amplitude of the wave is of the order of 2.5d.
In order to estimate the numerical error due to the time discretization, we have plotted on
Figure 2 the L2-norm of the difference between uref, pref, ρref and uδt, pδt, ρδt computed
on the same mesh with various increasing time steps δt = 3.125× 10−4, 6.25× 10−4, . . . ,
5× 10−3. In order to highlight the convergence rate, logarithmic scales are used. For this
particular flow configuration, we recover the expected first order time accuracy for the
bi-projection scheme proved in [4].

5.2 Numerical simulations of Rayleigh-Taylor instabilities

We first compute the development of a Rayleigh Taylor instability in the (test) case of
Newtonian flows reported in [10], so that Bi = 0. Note that in our dimensionless model,
we choose ρ2 as reference density so that the Reynolds number is 3000 which corresponds
to Re = 1000 in [10]. As in [10], finite differences are used for the time discretization but
the front tracking method and the spatial discretization are different. The time evolution
of the interface is shown in Figure 3 at times 1, 1.5, 1.75, 2, and 2.5 in the time scale
of Tryggvason, which is related to ours by tTryg = t

√
At. By comparing the positions of

the falling and rising bubbles as the time evolves, a good agreement with the results in
the pioneering work of [28] and the more recent ones in [10] is obtained. Differences are
visible in the fine structures especially at the two last times but a similar behavior in the
vortex structures can be observed. The numerical methods used to compute the interface
are completely different: a level set formulation is used here while a stabilization with
a nonlinear viscosity is added in the mass conservation equation in [10]. Therefore, we
may not expect to obtain exactly the same (meaning with a pointwise comparison) fine
turbulent like structures of the interface motion.
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Figure 3: Re = 3000; Bi = 0, α1 = α2 = 0; density ratio 3. The interface is shown at
times 1, 1.5, 1.75, 2, 2.25 and 2.5. The heavier fluid (ρ2, α2) corresponds to the red zone.

Figure 4: Re = 3000; Bi = 10, α1 = 0, α2 = 1; density ratio 3. The interface is shown at
times 1, 1.5, 1.75, 2, 2.25 and 2.5. The heavier viscoplastic fluid (ρ2, α2) corresponds to
the red zone.
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Figure 5: Re = 3000; Bi = 75, α1 = 0, α2 = 1; density ratio 3. Interface (left) and defor-
mation rate ‖Du‖ in the viscoplastic phase (right) are shown at times 1, 1.5, 2, 2.5, 2.75
and 3. The heavier fluid (ρ2, α2) corresponds to the red zone.

We next compute a more challenging case, for the bi-projection scheme, where the heavier
fluid is a Bingham medium (α2 = 1) while the lighter fluid is modeled with a Newtonian
flow (α1 = 0). We first choose Bi = 10, and we report the time evolution of the interface
at the same times as in the previous test case (see Figure 4). At this Bingham number, we
first observe that the influence of this parameter on the positions of the falling and rising
bubbles is not visible. Differences between Figures 3 and 4 appear in the shape of the
falling structure in the early stage of the dynamics and also in the fine vortex structures
developing during the fall of heavier viscoplastic medium. Note that at tTryg = 1, the
head of the falling bubble has a different shape with an almost flat part.

We finally solve the same problem but for a much larger Bingham number Bi = 75.
In order to highlight the impact of the Bingham number on the flow, at each time, we
have simultaneously plotted on Figure 5 the position of the interface (on the left) and
the deformation rate ‖Du‖ (on the right) in the viscoplastic phase. The values of ‖Du‖
shown are in the range [10−15, 102]. There is almost no raising of the lighter fluid into
the heavier one at this Bingham number. The heavier viscoplastic medium falls slowly
and the shape of the falling bubble looks like a finger at times 2 ≤ tTryg ≤ 2.75, i.e. a
solid block almost rectangular sliding along the vertical symmetric axis. This is assessed
by the rigid zone filling most of this finger. Unlike in the previous cases, there are no
fine structures developing. The plastic zones (black regions on Figure 5) are located just
behind the interface in the domain occupied by the viscoplastic medium at times tTryg = 2
and 2.5 while further in time, a deformation of the head of the falling bubble can be seen.
Note, that at even larger Bingham number, we may expect that the heavier fluid will not
flow.
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6 Concluding remarks

We have proposed in this paper a first-order bi-projection scheme for the numerical simu-
lation of two-phase immiscible, incompressible and isothermal flows of viscoplastic media.
In order to track the interface between fluids a level set formulation is used. As in the
Uzawa-like algorithm, the definition of the stress tensor is rewritten in terms of a pointwise
projection and a pseudo-time relaxation term is added in order to achieve a geometric
convergence of the fixed-point (Picard) iterations used for the computation of the plastic
part of the stress tensor. A fractional time-stepping scheme is applied in order to handle
the coupling between pressure and velocity field in the momentum equations. The inter-
face between the two phases is tracked with a level set formulation and a redistancing
algorithm is employed in order to ensure that the level set function remains a distance
function, namely the normal signed distance from the interface. The spatial discretization
is achieved with a second-order cell-centered finite volume schemes on a staggered mesh.
The staggered location of the velocity unknowns allows to compute a free-divergence
velocity field, up to the computer accuracy, which is used as transport velocity in the
mass conservation equation. Numerical simulations of Rayleigh-Taylor instabilities are
performed and presented. The first order rate of convergence with respect to the time
step is recovered both in the case of Newtonian and Bingham flows. Comparisons with
published results in the case of Newtonian flows validate the parallel implementation of
the bi-projection scheme. Numerical simulations of a Bingham flow at Bi = 10 and 75
are reported and discussed. From the best of our knowledge, these results are the first
ones obtained for this problem. At even larger Bingham number, we may expect that the
heavier fluid will not flow. Investigating in more details the dynamics and behavior of
Rayleigh-Taylor instabilities when the Bingham number is increased could be the scope
of further works.

Acknowledgements This work is supported by the French Government Laboratory
of Excellence initiative noANR-10-LABX-0006, by the French National Research Agency
(ANR) RAVEX project, and by the French National Joint Research Program TelluS of
INSU and INSMI CNRS (National Center for Scientific Research). This is Laboratory of
Excellence ClerVolc contribution number 329.
The numerical simulations have been performed on a DELL cluster with 32 processors
Xeon E2650v2 (8 cores), 1 To of total memory and an infiniband (FDR 56Gb/s) connecting
network.

References

[1] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,
A. Dener, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, Dave A. May,
Lois Curfman McInnes, R. Tran Mills, T. Munson, K. Rupp, P. Sanan, B.F Smith,
S. Zampini, H. Zhang, and H. Zhang. PETSc Web page. http://www.mcs.anl.

gov/petsc, 2018.



168

[2] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,
A. Dener, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, Dave A. May,
Lois Curfman McInnes, R. Tran Mills, T. Munson, K. Rupp, P. Sanan, B.F Smith,
S. Zampini, H. Zhang, and H. Zhang. PETSc users manual. Technical Report ANL-
95/11 - Revision 3.10, Argonne National Laboratory, 2018.

[3] M. Bercovier and M. Engelman. A finite element method for incompressible non-
Newtonian flows. J. Comput. Phys., 36(3), 1980.

[4] R. Chalayer, L. Chupin, and T. Dubois. A bi-projection method for incompressible
bingham flows with variable density, viscosity, and yield stress. SIAM Journal on
Numerical Analysis, 56(4):2461–2483, 2018.

[5] Y.C. Chang, T.Y. Hou, B. Merriman, and S. Osher. A level set formulation of eulerian
interface capturing methods for incompressible fluid flows. J. Comput. Phys., 124,
1996.

[6] L. Chupin and T. Dubois. A bi-projection method for Bingham type flows. Comput.
Math. Appl., 72(5):1263–1286, 2016.

[7] J.D. Edward, R. Glowinski, and G. Guidoboni. On the numerical simulation of
Bingham visco-plastic flow: Old and new results. Journal of Non-Newtonian Fluid
Mechanics, 142(1–3):36 – 62, 2007. Viscoplastic fluids: From theory to application.

[8] I.A. Frigaard and C. Nouar. On the usage of viscosity regularisation methods for
visco-plastic fluid flow computation. J. Non-Newton. Fluid Mech., 127(1):1 – 26,
2005.

[9] S. Gottlieb and C.-W. Shu. Total variation diminishing Runge-Kutta schemes. Math.
Comp., 67(221):73–85, 1998.

[10] J.-L. Guermond and A.J. Salgado. A splitting method for incompressible flows
with variable density based on a pressure Poisson equation. J. Comput. Phys.,
228(8):2834–2846, 2009.

[11] J.-L. Guermond and A.J. Salgado. Error analysis of a fractional time-stepping
technique for incompressible flows with variable density. SIAM J. Numer. Anal.,
49(3):917–944, 2011.

[12] J.L. Guermond, P. Minev, and J. Shen. An overview of projection methods for
incompressible flows. Comput. Methods Appl. Mech. Engrg., 195(44-47):6011–6045,
2006.

[13] F.H. Harlow and J.E. Welch. Numerical calculation of time-dependent viscous in-
compressible flow of fluid with free surface. Phys. Fluids, 12(8).

[14] Ioan R. Ionescu, Anne Mangeney, François Bouchut, and Olivier Roche. Viscoplastic
modeling of granular column collapse with pressure-dependent rheology. Journal of
Non-Newtonian Fluid Mechanics, 219:1 – 18, 2015.



169

[15] G.S. Jiang and D. Peng. Weighted eno schemes for hamilton-jacobi equations. SIAM
J. Sci. Comput, 21(6):2126–2143, 2000.

[16] S. C. Loughlin, E. S. Calder, A. Clarke, P. D. Cole, R. Luckett, M. T. Mangan, D. M.
Pyle, R. S. J. Sparks, B. Voight, and R. B. Watts. Pyroclastic flows and surges
generated by the 25 june 1997 dome collapse, soufrière hills volcano, montserrat.
Geological Society, London, Memoirs, 21(1):191–209, 2002.

[17] C. Min. On reinitializing level set functions. J. Comput. Phys., 229, 2010.

[18] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces, volume
153 of Applied Mathematical Sciences. Springer-Verlag, New-York, 2003.

[19] S. Osher and R.P. Fedkiw. Level set methods: An overview and some recent results.
J. Comput. Phys., 169(2):463–502, 2001.

[20] T.C. Papanastasiou. Flows of materials with yield. J. Rheol., 31(5):385–404, 1987.

[21] R. Paris. Source mechanics of volcanic tsunamis. Phil. Trans. R. Soc. A,
373:20140380, 2015.

[22] G. Russo and P. Smereka. A remark on computing distance functions. J. Comput.
Phys., 163, 2000.

[23] P. Saramito and A. Wachs. Progress in numerical simulation of yield stress fluid
flows. Rheologica Acta, 56(3):211–230, 2017.

[24] C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-
capturing schemes. J. Comput. Phys., 77(2):439–471, 1988.

[25] M. Sussman, E. Fatemi, P. Smereka, and S. Osher. An improved level set method
for incompressible two-phase flows. Comp. Fluids, 27(5-6), 1998.

[26] M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solutions
to incompressible two-phase flow. J. Comput. Phys., 114, 1994.

[27] M. Sussman, K.M. Smith, M.Y. Hussaini, M. Otha, and R. Zhi-Wei. A sharp interface
method for incompressible two-phase flows. J. Comput. Phys., 221(2).

[28] G. Tryggvason. Numerical simulations of the rayleigh-taylor instability. J. Comput.
Phys., 75(2):253–282, April 1988.

[29] P. Watts and C. F. Waythomas. Theoretical analysis of tsunami generation by py-
roclastic flows. Journal of Geophysical Research: Solid Earth, 108(B12).


