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Abstract In this paper, we obtain a new iterative method for solving stochastic nonlinear
Volterra-Fredholm integral equations. Using Block-pulse functions and operational ma-
trix of integration, a nonlinear Volterra-Fredholm integral equation can be reduced to a
nonlinear system of algebraic equations, which can be solved by iterative method. Error
estimate and convergence analysis of the proposed method have been proved. Finally,
illustrative examples are included to demonstrate the validity and applicability of the
technique.

1 Introduction

Approximation by orthogonal families of basis functions such as Block-pulse functions,
Bernoulli polynomials, Fourier series, Taylor collocation, Legendre polynomials,..etc were
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used to estimate solutions of some equations and systems such as integral equations
[2, 3, 5, 6, 7]. This technique is an accurate and efficient computational method for
solving stochastic integral equations. We know that stochastic Volterra-Fredholm inte-
gral equations arise in many problems in mechanics, finance, biology, science medical,
social sciences.etc. So it is necessary to study such problems where there is an increasing
demand for studying the behavior of a number of sophisticated dynamical systems. These
systems are often dependent on a noise source, like e.g. a Gaussian white noise, governed
by certain probability laws, so that modeling such phenomena naturally requires the use
of various stochastic differential equations [1, 4, 9]. Recenlty, approximate solutions of
integral equations have been attracted the attention of many authors, and they obtained
solutions using various techniques, for examples with wavelets techniques with Cheby-
chev polynomials of block-pulse functions. Nonlinear integral equations oppear in many
problems of physical phenomena and engineering [11]. In this paper, we use Block-pulse
functions and their stochastic operational matrix of integration to the following nonlinear
Volterra-Fredholm stochastic integral equation

X(t) = f(t) +

∫ T

0

k1(s, t)N1(s,X(s))ds+

∫ t

0

k2(s, t)N2(s,X(s))ds (1)

+

∫ t

0

k3(s, t)N3(s,X(s))dB(s),

where X(t), f(t), k1(s, t), k2(s, t) and k3(s, t), for s, t ∈ [0, T ], T < 1 are the stochastic
processes defined on the same probability space (Ω,F , P ), and X(t) is unknown process.

B(t) is Brownian motion process and

∫ t

0

k3(s, t)N3(s,X(s))dB(s) is the Itô integral. This

work is inspired by [8], where the authors introduced a method for numerical solution of
linear Itô-Volterra integral equation. The paper is organized as follow, In section 2, we
give the basic properties of the block-pulse functions, functions approximation of smooth
functions of one and two variables by block-pulse functions and we introduce the deter-
ministic operational matrix of integration. In section 3, we derive block-pulse stochastic
operational matrix of integration. In section 4, we give the proposed technique for solving
nonlinear stochastic Fredholm-Volterra integral equations. Section 5 is devoted to solve
stochastic Itô Volterra-Fredholm integral equations with several independent white noise
sources. In section 6, the error in block-pulse approximation is obtained. Section 7 is
devoted to some numerical examples.

2 Block-pulse functions (BPFs)

We define the m set of BPFs as

ϕi(t) =

{
1 (i− 1)h ≤ t ≤ ih,
0 Otherwise ,

(2)

with t ∈ [0, T ), i = 1, 2, . . . ,m et h =
T

m
. The elementary properties of BPFs are as

follows
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1. Disjointness:
ϕiϕj = δijϕi(t), (3)

where i, j = 1, 2, . . . ,m and δij is Kronecker delta.

2. Orthogonality: The BPFs are orthogonal with each other in the interval t ∈ [0, T ]∫ T

0

ϕi(t)ϕj(t)dt = hδij, i, j = 1, 2, . . . ,m. (4)

3. Completeness: If m −→ ∞, then BPFs set is complete, i.e for every f ∈ L2([0, T ]),
Parseval’s identity holds, ∫ T

0

f 2(t)d(t) =
∞∑
i=1

f 2
i ∥ϕi(t)∥2, (5)

where

fi =
1

h

∫ T

0

f(t)ϕi(t)dt. (6)

Consider the first m terms of BPFs and write them as m vector

Φ(t) = (ϕ1(t), ϕ2(t), . . . , ϕm(t))
T , t ∈ [0, T ). (7)

From the above properties, we get

Φ(t)ΦT (t) =


ϕ1(t) 0 . . . 0
0 ϕ2(t) . . . 0
...

...
. . .

...
0 0 . . . ϕm(t)


m×m

, (8)

furthermore, we have

ΦTΦ(t) = 1 and Φ(t)ΦT (t)F T = AFΦ(t), (9)

where AF denotes a diagonal matrix whose diagonal entries are related to a constant
vector F = (f1, f2, . . . , fm)

T .

2.1 Function approximation

An arbitrary real bounded function f(t) which is square integrable in the interval [0, T ],
can be written into a block-pulse series in the sense of minimizing the mean square error
between f(t) and its approximation

f(t) ≃ f̂m(t) = F TΦ(t) = ΦT (t)F, (10)

where F = (f1, . . . , fm)
T .

Let K(s, t) ∈ L2([0, T1]× [0, T2]), it can be wirtten with respect of BPFs as follow

K(s, t) = Ψ(s)TKΦ(t) = Φ(t)TKTΨ(s), (11)
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where Ψ(s) et Φ(t) are m1,m2 dimensional BPFs vectors and K = (Kij), i = 1, . . . ,m1,
j = 1, . . . ,m2 is the m1 ×m2 block pulse coefficients with

Kij =
1

h1h2

∫ T1

0

∫ T2

0

K(s, t)Ψi(s)Φj(t)dtds,

où h1 =
T1

m1

, h2 =
T2

m2

.

2.2 Integration operational matrix

In this subsection, we give deterministic operational matrix, we have∫ t

0

ϕi(s)ds =


0 0 ≤ t < (i− 1)h,
t− (i− 1)h (i− 1)h ≤ t < ih,
h ih ≤ t < T.

(12)

Since (i− 1)h ≤ t < ih then t = (1− λ)((i− 1)h) + λ(ih), λ ∈ [0, 1), we can approximate
t− (i− 1)h, for (i− 1)h ≤ t < ih by λh then∫ t

0

ϕi(s)ds ≃ (0, . . . , 0, λh, h, . . . , h) Φ(t),

where λh is the ith component. Therefore,∫ t

0

Φ(s)ds ≃ PΦ(t), (13)

where P is the deterministic operational matrix given by

P = h


λ 1 1 . . . 1
0 λ 1 . . . 1
0 0 λ . . . 1
...

...
...

. . .
...

0 0 0 . . . λ


m×m

. (14)

Then

∫ t

0

f(s)ds ≃
∫ t

0

F TΦ(s)ds ≃ F TPΦ(t).

3 Stochastic integration operational matrix

The integration of the components of Φ(t) can be given as follows,

∫ t

0

ϕi(s)dB(s) =

 0 0 ≤ t < (i− 1)h,
B(t)−B((i− 1)h) (i− 1)h ≤ t < ih,
B(ih)−B((i− 1)h) ih ≤ t < T.

(15)

We approximate B(t)−B((i− 1)h) for (i− 1)h ≤ t < ih by B((i+ (λ− 1))h)−B((i− 1)h), then∫ t

0

ϕi(s)dB(s) ≃

(
B((i+ (λ− 1))h)−B((i− 1)h)

)
ϕi(t) +

(
B(ih)−B((i− 1)h)

)
m∑

j=i+1

ϕj(t),
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which can be written as∫ t

0

ϕi(s)dB(s) ≃

(
0, . . . , 0, B((i+(λ−1))h)−B((i−1)h), B(ih)−B((i−1)h), . . . , B(ih)−B((i−1)h)

)
Φ(t),

with B((i+ (λ− 1))h)−B((i− 1)h) is the ith component. Therefore∫ t

0

Φ(s)dB(s) ≃ PsΦ(t), (16)

where Ps is given by

Ps =



B (λh) B(h) B(h) . . . B(h)
0 B ((λ+ 1)h)−B(h) B(2h)−B(h) . . . B(2h)−B(h)
0 0 B ((λ+ 2)h)−B(2h) . . . B(3h)−B(2h)
...

...
...

. . .
...

0 0 0 . . . B

(
(λ+m− 1)h

)
−B((m− 1)h)

)


m×m

.

(17)

4 Solving stochastic Itô Volterra-Fredholm integral

equation

We consider the following nonlinear stochastic Itô Volterra-Fredholm integral equation

X(t) = f(t) +

∫ T

0

k1(s, t)N1(s,X(s))ds+

∫ t

0

k2(s, t)N2(s,X(s))ds (18)

+

∫ t

0

k3(s, t)N3(s,X(s))dB(s), t ∈ [0, T ].

Our problem is to solve equation (18). First, we define

p1(t) = N1

(
t, f(t) +

∫ T

0

k1(s, t)p1(s)ds+

∫ t

0

k2(s, t)p2(s)ds+

∫ t

0

k3(s, t)p3(s)dB(s)
)

p2(t) = N2

(
t, f(t) +

∫ T

0

k1(s, t)p1(s)ds+

∫ t

0

k2(s, t)p2(s)ds+

∫ t

0

k3(s, t)p3(s)dB(s)
)

p3(t) = N3

(
t, f(t) +

∫ T

0

k1(s, t)p1(s)ds+

∫ t

0

k2(s, t)p2(s)ds+

∫ t

0

k3(s, t)p3(s)dB(s)
)
.

(19)

If we approximate the functions f(t), k1(s, t), k2(s, t), k3(s, t) and p1(t), p2(t), p3(t) in terms of block-
pulse functions, then we have

X(t) ≃ ΦT (t)X ≃ XTΦ(t), f(t) ≃ ΦT (t)F ≃ FTΦ(t),
p1(t) ≃ ΦT (t)P1 ≃ PT

1 Φ(t), p2(t) ≃ ΦT (t)P2 ≃ PT
2 Φ(t),

p3(t) ≃ ΦT (t)P3 ≃ PT
3 Φ(t), k1(s, t) ≃ ΨT (s)K1Φ(t) = ΦT (t)KT

1 Ψ(s),
k2(s, t) ≃ ΨT (s)K2Φ(t) = ΦT (t)KT

2 Ψ(s), k3(s, t) ≃ ΨT (s)K3Φ(t) = ΦT (t)KT
3 Ψ(s),

where the vectors X,F, P1, P2, P3 and matrix K1,K2 and K3 are stochastic block pulse coefficients
of X(t), f(t), p1(t), p2(t), p3(t) and K1(s, t),K2(s, t),K3(s, t) respectively.
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First, by taking m1 = m2 and with substituting above approximation in (18), we get

ΦT (t)X ≃ ΦT (t)F +

∫ T

0
ΦT (t)KT

1 Φ(s)Φ
T (s)P1ds

+

∫ t

0
ΦT (t)KT

2 Φ(s)Φ
T (s)P2ds+

∫ t

0
ΦT (t)KT

3 Φ(s)Φ
T (s)P3dB(s)

and

ΦT (t)X ≃ ΦT (t)F + P T
1

(∫ T

0
Φ(s)ΦT (s)ds

)
K1Φ(t) + P T

2

(∫ t

0
Φ(s)ΦT (s)ds

)
K2Φ(t)

+ P T
3

(∫ t

0
Φ(s)ΦT (s)dB(s)

)
K3Φ(t)

we have

∫ T

0
Φ(s)ΦT (s)ds = hI. Then

P T
1

(∫ T

0
Φ(s)ΦT (s)ds

)
K1Φ(t) = P T

1 hIK1Φ(t) = hP T
1 K1Φ(t), (20)

and

P T
2

(∫ t

0
Φ(s)ΦT (s)ds

)
K2Φ(t) = P T

2 A1Φ(t), (21)

where

A1 =


λhK11

2 hK12
2 hK13

2 . . . hK1m
2

0 λhK22
2 hK23

2 . . . hK2m
2

0 0 λhK33
2 . . . hK3m

2
...

...
...

. . .
...

0 0 0 . . . λhKmm
2


m×m

, (22)

and Kij
2 , i, j = 1, . . . ,m are the coefficients of the matrix K2. Also, we get

PT
3

(∫ t

0

Φ(s)ΦT (s)dB(s)

)
K3Φ(t) = PT

3 A3Φ(t), (23)

where

A3 =



K11
3 B (λh) K12

3 B(h) K13
3 B(h) . . . K1m

3 B(h)

0 K22
3

(
B ((λ + 1)h) − B(h)

)
K23

3

(
B(2h) − B(h)

)
. . . K2m

3

(
B(2h) − B(h)

)
0 0 K33

3

(
B ((λ + 2)h) − B(2h)

)
. . . K3m

3

(
B(3h) − B(2h)

)
.
.
.

.

.

.

.

.

.
. .
.

.

.

.

0 0 0 . . . Kmm
3

(
B

(
(λ + m − 1)h

)
− B((m − 1)h)

))


m×m

.

(24)

With substituting relations (20), (21) and (23) in equation (20), we obtain

X(t) ≃ f(t) + hPT
1 K1Φ(t) + PT

2 A1Φ(t) + PT
3 A3Φ(t). (25)

Now, with substituting relations (20), (21) and (23) in (19), we get

PT
1 Φ(t) = N1

(
t,ΦT (t)F + hPT

1 K1Φ(t) + PT
2 A1Φ(t) + PT

3 A3Φ(t)

)
PT
2 Φ(t) = N2

(
t,ΦT (t)F + hPT

1 K1Φ(t) + PT
2 A1Φ(t) + PT

3 A3Φ(t)

)
PT
3 Φ(t) = N3

(
t,ΦT (t)F + hPT

1 K1Φ(t) + PT
2 A1Φ(t) + PT

3 A3Φ(t)

)
.

(26)
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Now, we collocate equation (26) at m Newton -Cotes nodes defined as ti =
2i− 1

2m
,

i = 1, 2, . . . ,m. Then, we obtain nonlinear system of algebraic equations, given by

PT
1 Φ(ti) = N1

(
ti,Φ

T (ti)F + hPT
1 K1Φ(ti) + PT

2 A1Φ(ti) + PT
3 A3Φ(ti)

)
PT
2 Φ(ti) = N2

(
ti,Φ

T (ti)F + hPT
1 K1Φ(ti) + PT

2 A1Φ(ti) + PT
3 A3Φ(ti)

)
PT
3 Φ(ti) = N3

(
ti,Φ

T (ti)F + hPT
1 K1Φ(ti) + PT

2 A1Φ(ti) + PT
3 A3Φ(ti)

)
,

(27)

where the unknown vectors are P1, P2 and P3.
The approximate solution of equation (1) can be obtained as

X(t) ≃ ΦT (t)F + hPT
1 K1Φ(t) + PT

2 A1Φ(t) + PT
3 A3Φ(t). (28)

5 Solving multidimensional stochastic Itô Volterra-

Fredholm integral equation

In this section, Block-pulse functions will be applied to find an approximate solution for the following
stochastic Volterra-Fredholm integral equation with multi-stochastic terms.

X(t) = f(t) +

∫ T

0

k1(s, t)N1(s,X(s))ds+

∫ t

0

k2(s, t)N2(s,X(s))ds (29)

+

l∑
j=1

∫ t

0

k3j(s, t)N3j(s,X(s))dBj(s),

where B(t) = (B1(t), B2(t), . . . , Bn(t)) is an l-dimensional Brownian motion process. Let

p1(t) = N1(t, f(t) +

∫ T

0
k1(s, t)p1(s)ds+

∫ t

0
k2(s, t)p2(s)ds+

l∑
j=1

∫ t

0
k3j(s, t)p3j(s)dBj(s))

p2(t) = N2(t, f(t) +

∫ T

0
k1(s, t)p1(s)ds+

∫ t

0
k2(s, t)p2(s)ds+

l∑
j=1

∫ t

0
k3j(s, t)p3j(s)dBj(s))

p3(t) = N3(t, f(t) +

∫ T

0
k1(s, t)p1(s)ds+

∫ t

0
k2(s, t)p2(s)ds+

l∑
j=1

∫ t

0
k3j(s, t)p3j(s)dBj(s)).

(30)

As in previous section, we approximate f(t), k1(s, t), k2(s, t), k3j(s, t) and p1(t), p2(t), p3j(t) in terms
of block-pulse functions, then we have, for j = 1, . . . , l,


X(t) ≃ ΦT (t)X ≃ XTΦ(t), f(t) ≃ ΦT (t)F ≃ FTΦ(t),
p1(t) ≃ ΦT (t)P1 ≃ PT

1 Φ(t), p2(t) ≃ ΦT (t)P2 ≃ PT
2 Φ(t),

p3j(t) ≃ ΦT (t)P3j ≃ PT
3jΦ(t), k1(s, t) ≃ ΨT (s)K1Φ(t) = ΦT (t)KT

1 Ψ(s),
k2(s, t) ≃ ΨT (s)K2Φ(t) = ΦT (t)KT

2 Ψ(s), k3j(s, t) ≃ ΨT (s)K3jΦ(t) = ΦT (t)KT
3jΨ(s),

where the vectors X,F, P1, P2, P3j and matrix K1,K2 and K3j are stochastic block pulse coefficients of
X(t), f(t), p1(t), p2(t), p3j(t) and K1(s, t),K2(s, t),K3j(s, t) respectively.

By taking m1 = m2 and with substituting above approximation in (29), we get

ΦT (t)X ≃ ΦT (t)F +

∫ T

0

ΦT (t)KT
1 Φ(s)Φ

T (s)P1ds+

∫ t

0

ΦT (t)KT
2 Φ(s)Φ

T (s)P2ds (31)

+

l∑
j=1

∫ t

0

ΦT (t)KT
3jΦ(s)Φ

T (s)P3jdBj(s),
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hence

ΦT (t)X ≃ ΦT (t)F + PT
1

(∫ T

0

Φ(s)ΦT (s)ds

)
K1Φ(t) + PT

2

(∫ t

0

Φ(s)ΦT (s)ds

)
K2Φ(t)

+

l∑
j=1

PT
3j

(∫ t

0

Φ(s)ΦT (s)dB(s)

)
K3jΦ(t).

We have

∫ T

0

Φ(s)ΦT (s)ds = hI. Then, we obtain

PT
1

(∫ T

0

Φ(s)ΦT (s)ds

)
K1Φ(t) = PT

1 hIK1Φ(t) = hPT
1 K1Φ(t). (32)

PT
2

(∫ t

0

Φ(s)ΦT (s)ds

)
K2Φ(t) = PT

2 A1Φ(t), (33)

where the matrix A1 is given by (22) and Kij
2 , i, j = 1, . . . ,m are the coefficients of the matrix K2. Also

l∑
j=1

PT
3j

(∫ t

0

Φ(s)ΦT (s)dBj(s)

)
K3jΦ(t) =

m∑
j=1

PT
3jA3jΦ(t), (34)

where

A3j =



K11
3j Bj (λh) K12

3j Bj(h) K13
3j Bj(h) . . . K1m

3j Bj(h)

0 K22
3j

(
Bj ((λ + 1)h) − Bj(h)

)
K23

3j

(
Bj(2h) − Bj(h)

)
. . . K2m

3j

(
Bj(2h) − Bj(h)

)
0 0 K33

3j

(
Bj ((λ + 2)h) − Bj(2h)

)
. . . K3m

3j

(
Bj(3h) − Bj(2h)

)
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

0 0 0 . . . Kmm
3j

(
Bj

(
(λ + m − 1)h

)
− Bj((m − 1)h)

))


.

(35)

With substituting relations (32), (33) and (34) in equation (29), we obtain

X(t) ≃ ΦT (t)F + hPT
1 K1Φ(t) + PT

2 A1Φ(t) +

l∑
j=1

PT
3jA3jΦ(t). (36)

and we get 

PT
1 Φ(t) = N1

(
t,ΦT (t)F + hPT

1 K1Φ(t) + PT
2 A1Φ(t) +

l∑
j=1

PT
3jA3jΦ(t)

)
PT
2 Φ(t) = N2

(
t,ΦT (t)F + hPT

1 K1Φ(t) + PT
2 A1Φ(t) +

l∑
j=1

PT
3jA3jΦ(t)

)
PT
3jΦ(t) = N3j

(
t,ΦT (t)F + hPT

1 K1Φ(t) + PT
2 A1Φ(t) +

l∑
j=1

PT
3jA3jΦ(t)

)
.

(37)

Now, we collocate equation (37) at m Newton -Cotes nodes defined as ti =
2i− 1

2m
,

i = 1, 2, . . . ,m. Then, we get the following nonlinear system of algebraic equations

PT
1 Φ(ti) = N1

(
ti,Φ

T (ti)F + hPT
1 K1Φ(ti) + PT

2 A1Φ(ti) +

l∑
j=1

PT
3jA3jΦ(t)

)
PT
2 Φ(ti) = N2

(
ti,Φ

T (ti)F + hPT
1 K1Φ(ti) + PT

2 A1Φ(ti) +

l∑
j=1

PT
3jA3jΦ(t)

)
PT
3jΦ(ti) = N3j

(
ti,Φ

T (ti)F + hPT
1 K1Φ(ti) + PT

2 A1Φ(ti) +

l∑
j=1

PT
3jA3jΦ(t)

) (38)
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where the unknown vectors are P1, P2 and P3j . The approximate solution of equation (1) is as follow

X(t) ≃ ΦT (t)F + hPT
1 K1Φ(t) + PT

2 A1Φ(t) +

l∑
j=1

PT
3jA3jΦ(t).

6 Error Analysis

In this section, we will show that the rate of convergence of the proposed method for solving Itô-Volterra-
Fredholm integral equations with multi independant stochastic terms is O(h).

Theorem 6.1. Suppose that g(t) is an arbitrary real bounded function, which is square integrable in

the interval [0, 1], and e(t) = g(t) − ĝm(t), t ∈ I = [0, 1], where ĝm(t) =

m∑
i=1

giΦi(t) is the block pulse

series of g(t). Then, ∥e(t)∥ ≤ h

2
√
3
sup
t∈I

|g′(t)|.

Proof. See [8].

Theorem 6.2. Suppose that g(t, s) ∈ L2([0, 1]× [0, 1]) and e(s, t) = g(s, t)− ĝm(s, t),

(s, t) ∈ D = [0, 1]× [0, 1], where ĝm(s, t) =

m∑
i=1

m∑
j=1

gijΨi(t)Φj(t) is the bolck-pulse series of g(s, t).

Then, ∥e(s, t)∥ ≤ h

2
√
3

(
sup

(x,y)∈D

|g′s(x, y)|2 + sup
(x,y)∈D

|g′t(x, y)|2
) 1

2

.

Proof. See [8].
Suppose that g(t) is any arbitrary real bounded function which is square integrable in the interval [0, 1]
and ĝm(t) be the approximation of g(t) by using block-Pulse functions. Using theorem 6.1, we get

||e(t)|| = ||g(t)− ĝm(t)|| ≤ ch. (39)

Let g(s, t) ∈ L2([0, 1] × [0, 1]) and e(s, t) = g(s, t) − ĝ(s, t), s, t ∈ [0, 1] × [0, 1] and ĝm(s, t) is the
approximation of g(s, t) by using block-Pulse functions. Then, by theorem 6.2, we have

||e(s, t)|| ≤ c′h. (40)

In addition nonlinear terms N1(t,X(t)), N2(t,X(t)) and N3(t,X(t)) satisfy Lipschitz and linear growth
conditions such that

|Ni(t, x1)−Ni(t, x2)| ≤ Li|x1 − x2|, i = 1, 2, 3, (41)

and
3∑

i=1

|Ni(t, x)| < di
(
1 + |x|), (42)

these assumptions ensure the existence of a unique solution of the sde (1).

Theorem 6.3. Let X(t) be the exact solution and X̂m(t) be the approximation solution of equation
(1) which is the solution of (28), we suppose that, the conditions (41) and (42) are satisfied and

1. P {ω ∈ Ω : ||X(t, ω)|| < k} = 1,

2. ||Ni(t,X(t))|| ≤ ρi, i = 1, 2, 3, t ∈ [0, 1],

3. ||ki(s, t)|| ≤ Mi, (s, t) ∈ [0, 1]× [0, 1], i = 1, 2, 3,
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4.

2∑
i=1

Li

(
Mi + Γi(h)

)
+ L3

(
M3 + Γ3(h)

)
sup

t∈[0,1]

|B(t)| < 1.

then

||X(t)− X̂m(t)|| ≤
γ(h) +

2∑
i=1

(
Γi(h)ρi +

(
Mi + Γi(h)

)
γi(h)

)

1−
2∑

i=1

Li

(
Mi + Γi(h)

)
− L3

(
M3 + Γ3(h)

)
sup

t∈[0,1]

|B(t)|

+

[(
M3 + Γ3(h)

)
γ3(h) + Γ3(h)ρ3

]
sup

t∈[0,1]

|B(t)|

1−
2∑

i=1

Li

(
Mi + Γi(h)

)
− L3

(
M3 + Γ3(h)

)
sup

t∈[0,1]

|B(t)|

where

• ||X||2 = E[|X(t)|2],

• ||f(t)− f̂m(t)|| ≤ γ(h), ||pmi (s)− p̂i(s)|| ≤ γi(h), ||ki(s, t)− k̂mi (s, t)|| ≤ Γi(h).

and γ(h), γi(h) and Γi(h) are given by theorem 6.1 and theorem 6.2.

Proof. Let p̂i(s) = N̂i((s, X̂m(s)) and k̂mi (s, t), i = 1, 2, 3 are the approximation solution of pi(s) and

ki(s, t) by block-pulse functions. Also, let pmi (s) = Ni(s, X̂m(s)). From equation (1), we get

X(t)− X̂m(t) = f(t)− f̂m(t) +

∫ T

0

(
k1(s, t)p1(s)− k̂m1 (s, t)p̂1(s)

)
ds

+

∫ t

0

(
k2(s, t)p2(s)− k̂m2 (s, t)p̂2(s)

)
ds

+

∫ t

0

(
k3(s, t)p3(s)− k̂m3 (s, t)p̂3(s)

)
dB(s)

then by mean value theorem, we can write

||X(t)− X̂m(t)|| ≤ ||f(t)− f̂m(t)||+ T ||k1(s, t)p1(s)− k̂m1 (s, t)p̂1(s)||+ t||k2(s, t)p2(s)− k̂m2 p̂2(s)||
+ |B(t)|||k3(s, t)p3(s)− k̂m3 (s, t)p̂3(s)||

by using conditions (39) and (40) and conditions of the theorem 6.3, we get

||pi(s)− p̂i(s)|| = ||pi(s)− pmi (s) + pmi (s)− p̂i(s)||
≤ ||pi(s)− pmi (s)||+ ||pmi (s)− p̂i(s)|| ≤ Li||X(s)− X̂m(s)||+ γi(h), i = 1, 2, 3.

then

||k1(s, t)p1(s)− k̂m1 (s, t)p̂1(s)|| ≤ ||k1(s, t)|| ||p1(s)− p̂1(s)||

+ ||k1(s, t)− k̂m1 (s, t)||
(
||p1(s)− p̂1(s)||+ ||p1(s)||

)
.

Consequently

||k1(s, t)p1(s)− k̂m1 (s, t)p̂1(s)|| ≤
(
M1 + Γ1(h)

)(
L1||X(s)− X̂m(s)||+ γ1(h)

)
+ Γ1(h)ρ1,
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and

||k2(s, t)p2(s)− k̂m2 (s, t)p̂2(s)|| ≤
(
M2 + Γ2(h)

)(
L2||X(s)− X̂m(s)||+ γ2(h)

)
+ Γ2(h)ρ2,

and

||k3(s, t)p3(s)− k̂m3 (s, t)p̂3(s)|| ≤
(
M3 + Γ3(h)

)(
L3||X(s)− X̂m(s)||+ γ3(h)

)
+ Γ3(h)ρ3.

Hence

||X(t)− X̂m(t)|| ≤ γ(h) + T

[(
M1 + Γ1(h)

)(
L1||X(s)− X̂m(s)||+ γ1(h)

)
+ Γ1(h)ρ1

]
+ t

[(
M2 + Γ2(h)

)(
L2||X(s)− X̂m(s)||+ γ2(h)

)
+ Γ2(h)ρ2

]
+ |B(t)|

[(
M3 + Γ3(h)

)(
L3||X(s)− X̂m(s)||+ γ3(h)

)
+ Γ3(h)ρ3

]
.

Then it follows from the last inequality that the conclusion of theorem is true.

7 Illustrative examples

To illustrate the effictiveness of the proposed method, some examples are carried out in this section. In
this regard, we have presented tables 1 to 6. All results are computed by using a program written in
Matlab. We compare the values of approximate solution and exact solution at some selected points via
definition of absolute error which defined as e(t) = |X(t)− X̂(t)|, t ∈ [0, 1], where X(t) and X̂(t) denote
exact and approximate solutions, respectively.

Example 7.1 Consider the linear Volterra integral equation

X(t) =
1

12
+

∫ t

0

cos(s)X(s)ds+

∫ t

0

sin(s)X(s)dB(s), s, t ∈ [0, 0.5).

The exact solution is X(t) = 1
12 exp(−

t
4 + sin(t) +

sin(2t)

8
+

∫ t

0

sin(s)dB(s)). In this example, we take

X0 = 1
12 , m = 5 and λ = 1/2. The results are summarized in Table 1.

Table 1: Computed errors for Example 7.1 for M = 10, 20, 40 simulations.

t M = 10 M = 20 M = 40

0 0.0087237 0.0089509 0.0090448

0.1 0.0168600 0.0153020 0.0160146

0.2 0.0284360 0.0267211 0.0271932

0.3 0.0389988 0.0343539 0.0306550

0.4 0.0471885 0.0506237 0.0446878

Example 7.2 Let us consider the problem

X(t) = X0 +

∫ t

0

a2 cos(X(s)) sin3(X(s))ds− a

∫ t

0

sin2(X(s))dB(s), t ∈ [0, 1].

The exact solution is X(t) = arccot(aB(s) + cot(X0)). By taking m = 8, a = 1/8, λ = 1/2, X0 =
1, 0.1, 0.01 and M = 30 simulations, the numerical results are given in table 2.
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Table 2: Errors obtained from block-pulse functions approximation of Example 7.2.

t X0 = 1 X0 = 0.1 X0 = 0.01

0 0.0000000000 0.00000000000 0.00000000000

0.1 2.0740618E − 2 3.0013044E − 4 2.9267713E − 6

0.2 3.144773E − 2 3.6286150E − 4 5.4044779E − 6

0.3 3.8726924E − 2 5.0387071E − 4 7.0485413E − 6

0.4 4.4614610E − 2 5.6967794E − 4 7.5217966E − 6

0.5 5.6207276E − 2 7.2342694E − 4 7.8643065E − 6

0.6 5.7219980E − 2 8.7314034E − 4 8.6918163E − 6

0.7 6.0158915E − 2 9.8637195E − 4 8.9194592E − 6

0.8 6.8378217E − 2 1.1110927E − 4 9.8411892E − 6

0.9 6.9958887E − 2 1.2330252E − 4 9.6181820E − 6

Example 7.3 Let given the logistic differential equation
u′(t) = ρu(t)(1− u(t)), t > 0, ρ > 0, u(0) = u0, u0 > 0. The exact solution to this problem is given by

u(t) =
u0

(1− u0)e−ρt + u0
. By taking m = 7, λ = 1/2, and with different values of ρ and u0 = 0.85. The

numerical results are given in Tables 3-4.

Table 3: Errors obtained from block-pulse functions approximation of Example 7.3.

t ρ = 1/20 ρ = 1/8 ρ = 1/2

0 9.06177 E-4 2.24858 E-3 8.66835 E-3

0.01 8.42438 E-4 2.08928 E-3 8.03197 E-3

0.02 7.78722 E-4 1.93011 E-3 7.39781 E-3

0.03 7.15027 E-4 1.77109 E-3 6.76588 E-3

0.04 6.51355 E-4 1.61220 E-3 6.13616 E-3

0.05 5.87706 E-4 1.45345 E-3 5.50866 E-3

0.06 5.24079 E-4 1.29484 E-3 4.83388 E-3

0.07 4.60473 E-4 1.13637 E-3 4.26030 E-3

0.08 3.9689 E-4 9.78045 E-4 3.63943 E-3

0.09 3.33330 E-4 8.19853 E-4 3.020 76 E-3

Example 7.4 (The basic Black-Scholes model) Let given the following linear stochastic equation
dX(t) = γX(t)dt + µX(t)dW (t), X(0) = X0, t ∈ [0, 1]. Where the exact solution is given by X(t) =
exp((γ− 1

2µ
2)t+µB(t)). The results obtained for m = 7, X0 = 1, and λ = 1/2 of this example are given

in Table 5.

Example 7.5 Consider the following Volterra integral equation

dX(t) =
1

1000
t3X(t)dt− 1

20
t3X(t)dB(t), X(0) = − 1

50
. (43)

The exact solution is X(t) = − 1
50 exp(

1
4000 t

4 − 1
2800 t

7 − 1
20

∫ t

0

s3dB(s)), s ∈ [0, T ], T < 1. The numerical

results of this example by taking m = 7 and m = 5 with different values of λ are given in Tables 6-7.
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Table 4: Errors obtained from block-pulse functions approximation of Example 7.3.

t ρ = 1/20 ρ = 1/8 ρ = 2

0 9.06177 E-4 2.24858 E-3 3.01408 E-2

0.1 2.69792 E-4 6.61800 E-4 6.38301 E-3

0.2 8.02490 E-4 1.94310 E-3 1.29611 E-2

0.4 1.72776 E-4 3.97798 E-4 1.86854 E-3

0.5 4.37912 E-4 1.03124 E-3 3.80215 E-3

0.6 7.00768 E-4 1.46466 E-4 4.96487 E-3

0.8 6.00998 E-4 7.65879 E-4 2.19125 E-3

0.9 6.26407 E-4 1.37164 E-3 3.00982 E-4

Table 5: Errors obtained from block-pulse functions approximation of Example 7.4.

t γ = −100, µ = 1 γ = −100, µ = 10 γ = −100, µ = 0

0 9.33523 E-1 9.22224 E-1 9.34579 E-1

0.1 6.64558 E-2 7.77751 E-2 6.53751 E-2

0.2 3.73369 E-5 3.26583 E-2 4.27984 E-3

0.3 4.60091 E-6 2.03320 E-2 2.79990 E-4

0.4 4.60091 E-6 2.03320 E-2 2.79990 E-4

0.4 4.04514 E-7 5.95492 E-3 1.83172 E-5

0.5 3.43206 E-8 1.27450 E-3 1.19831 E-6

0.6 3.43206 E-8 1.27450 E-3 1.19831 E-6

0.8 5.06274 E-9 1.07329 E-3 7.83944 E-8

0.9 2.69752 E -10 5.84276 E-5 5.12861 E-9

Table 6: Errors obtained from block-pulse functions approximation of Example 7.5.

t λ = 1/4, m = 7 λ = 1/2, m = 7 λ = 3/4, m = 7

0 1.23058 E-7 1.74893 E-7 2.14667 E-7

0.1 5.13511 E-7 5.65345 E-7 6.05119 E-7

0.2 1.27859 E-5 1.46883 E-5 1.61483 E-5

0.3 2.72661 E-5 2.81524 E-5 2.88325 E-5

0.4 3.97351 E-5 4.06214 E-5 4.13016 E-5

0.4 5.58231 E-6 6.27466 E-6 6.80589 E-6

0.5 6.82685 E-5 1.11223 E-4 1.44309 E-4

0.6 4.98187 E-5 6.86356 E-5 2.62221 E-5

0.8 6.75617 E-4 6.62710 E-4 6.52796 E-4

0.9 4.68001 E -4 4.64133 E-4 4.61167 E-4
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Table 7: Errors obtained from block-pulse functions approximation of Example 7.5.

t λ = 1/2, m = 5 λ = 3/4, m = 5

0 5.66585 E-7 6.95715 E-7

0.1 4.52901 E-7 5.82017 E-7

0.2 2.88211 E-5 3.35683 E-5

0.3 2.20147 E-5 2.67619 E-5

0.4 2.34378 E-5 2.56531 E-5

0.4 7.22459 E-5 7.00306 E-5

0.5 3.49573 E-5 3.71726 E-5

0.6 4.43868 E-4 4.42164 E-4

0.8 1.22716 E-3 1.34211 E-3

0.9 8.35702 E -4 9.50645 E-4

8 Conclusion

In this paper, an integral collocation approach based on block-pulse functions is introduced for solving
numerically stochastic Itô-Fredholm-Volterra integral equations. The properties of block-pulse functions
are used to reduce the proposed problems to system of algebraic equations which is solved by suitable
numerical method. Some advantages of the proposed method are: The implementation of the method is
easier and the effort required is very low, while the accuracy is high. When the solution is sufficiently
smooth, a small number of basis functions is enough to obtain a high accuracy solution. Using block-pulse
functions as basis functions to solve nonlinear stochastic Itô-Volterra-Fredholm integral equations with
white noise source is very simple and effective in comparaison with other methods. Its applicability and
accuracy is checked on some examples.
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