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1 Introduction

Consider the following fully parabolic system:

ut = d1∆u− χ∇ · (u∇v) + ξ∇ · (u∇w) in Ω× (0,∞),

vt = d2∆v + αu− βv in Ω× (0,∞),

wt = d3∆w + γu− δw in Ω× (0,∞),

∂u

∂ν
=
∂v

∂ν
=
∂w

∂ν
= 0 on ∂Ω× (0,∞),

u(·, 0) = u0, v(·, 0) = v0, w(·, 0) = w0 in Ω,

(1)

in a bounded domain Ω ⊂ R2 with smooth boundary ∂Ω. The parameters χ, ξ, α, β, γ, δ, di
(i = 1, 2, 3) are positive. As to the initial data (u0, v0, w0) we assume that

u0 ∈ C0(Ω), u0 ≥ 0 in Ω,

v0 ∈ W 1,∞(Ω), v0 ≥ 0 in Ω,

w0 ∈ W 1,∞(Ω) u0 ≥ 0 in Ω.

(2)

When ξ = 0 the system (1) is the well-known Keller–Segel system, which is introduced
to describe a biological phenomenon chemotaxis in [10]. There are many mathematical
researches on the system (see surveys [7, 1]). Our system (1) describes the aggregation of
microglia in Alzheimer’s disease in [13] or the quorum sensing effect in the chemotactic
movement in [17].

Based on previous results, our system seems to be classified to three cases:

• χα− ξγ > 0 (attraction-dominant case);

• χα− ξγ < 0 (repulsion-dominant case);

• χα− ξγ = 0 (balanced case).

Actually for the simplified system (the second and the third equation are replaced by
elliptic equations, or only the third equation is replaced), the picture seems to be clear. In
the attraction-dominant case, the mass critical phenomenon occurs in the two dimensional
setting: when d1 = d2 = d3 = 1, small mass ‖u0‖L1(Ω) <

4π
χα−ξγ (‖u0‖L1(Ω) <

8π
χα−ξγ for

radial case) implies global existence and boundedness of solutions and also a finite time
blowup solution with large mass ‖u0‖L1(Ω) >

8π
χα−ξγ is constructed ([18, 4, 11, 9]). On

the other hand, solutions exist globally in time independently the magnitude of mass and
spacial dimensions in the repulsion-dominant case ([18]).

However, only few results on the fully parabolic system are available. In the attraction-
dominant case, global existence and boundedness of solutions for sufficiently small data
in the two dimensional setting are established in [4], but the critical number is not clear.
Moreover, there is no result on blowup phenomenon. Also, in the repulsion-dominant case,
global existence and boundedness of solutions in the lower dimensional setting (n ≤ 3)
are established in [8]. However there is no result for higher dimensions. Indeed even
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the repulsion system (χ = 0) has many open problems (see [2]). As to the balanced
case, global existence is established in the lower dimensional setting in [12]. Recently the
relationship of our system and the indirect signal substances chemotaxis system became
clear and it was proved that a critical phenomenon occurs in the four dimensional setting
in [5, 6].

In this paper we focus on the fully parabolic system in the attraction-dominant case
(χα − ξγ > 0). Since the previous work [4] applies the moment method, which was
introduced in [14], this method cannot be extend to the fully parabolic case. Moreover
in [9, 16] the authors construct Lyapunov functional to the simplified case and derive the
critical constant. However their construction of functional depends on the fact that the
lower equations are elliptic. Therefore we reconstruct Lyapunov functional to (1) and
derive the critical constant guaranteeing global existence of solutions.

The first result looks a natural extension of the global existence criterion of the Keller-
Segel system.

Theorem 1.1. Let d2 = d3, β = δ. Assume that χα− ξγ > 0. If∫
Ω

u0 <
4πd1d2

χα− ξγ

then the solution (u, v, w) of (1) exists globally in time. Moreover the solution remains
bounded:

sup
t>0

(
‖u(t)‖L∞(Ω) + ‖v(t)‖W 1,∞(Ω) + ‖w(t)‖W 1,∞(Ω)

)
<∞.

In the radially symmetric setting the critical number can be relaxed.

Theorem 1.2. Let d2 = d3, β = δ, R > 0. Assume that χα − ξγ > 0. Suppose that
Ω = {x | |x| < R} and (u0, v0, w0) be radially symmetric. If∫

Ω

u0 <
8πd1d2

χα− ξγ

then the solution (u, v, w) of (1) exists globally in time. Moreover the solution remains
bounded:

sup
t>0

(
‖u(t)‖L∞(Ω) + ‖v(t)‖W 1,∞(Ω) + ‖w(t)‖W 1,∞(Ω)

)
<∞.

Without the restriction β = δ, we can establish global existence of solutions.

Theorem 1.3. Let d2 = d3. Assume that χα− ξγ > 0. If∫
Ω

u0 <
4πd1d2

χα− ξγ

then the solution (u, v, w) of (1) exists globally in time.

The radially symmetric version is the following:
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Theorem 1.4. Let d2 = d3, R > 0. Assume that χα−ξγ > 0. Suppose that Ω = {x | |x| <
R} and (u0, v0, w0) be radially symmetric. If∫

Ω

u0 <
8πd1d2

χα− ξγ

then the solution (u, v, w) of (1) exists globally in time.

Finally let us give a remark on the attraction-dominant case with d2 = d3, β = δ.

Remark 1.5. Let d2 = d3, β = δ. Assume that χα− ξγ > 0. Setting V := χv− ξw, then
(u, V ) satisfies 

ut = d1∆u−∇ · (u∇V ) in Ω× (0,∞),

Vt = d2∆V + (αχ− γξ)u− βV in Ω× (0,∞),

∂u

∂ν
=
∂V

∂ν
= 0 on ∂Ω× (0,∞),

u(·, 0) = u0, V (·, 0) = χv0 − ξw0 in Ω.

If we assume χv0−ξw0 ≥ 0 then the above system is the Keller-Segel system. Therefore in
the two dimensional setting the mass critical phenomenon occurs by the constant 4πd1d2

χα−ξγ .
Moreover we can construct a finite time blowup solution in the higher dimensional setting
independently the magnitude of mass ([19]).

2 Lyapunov functional

We first recall local existence of classical solutions to (1). The following proposition is
established in [18, Lemma 3.1].

Proposition 2.1. There exist Tmax ∈ (0,∞] and exactly one triplet (u, v, w) of positive
functions from C2,1(Ω × (0, Tmax)) ∩ C0([0, Tmax);C0(Ω)) that solves (1) in the classical
sense. Also, the solution (u, v, w) satisfies the mass conservation∫

Ω

u(t) =

∫
Ω

u0 for all t ∈ (0, Tmax). (3)

Moreover, if Tmax <∞, then

lim
t↗Tmax

(
‖u(t)‖L∞(Ω) + ‖v(t)‖W 1,∞(Ω) + ‖w(t)‖W 1,∞(Ω)

)
=∞.

We construct a Lyapunov functional to (1).

Lemma 2.2. Let d2 = d3, β = δ. Assume that D := χα − ξγ > 0. Let (u, v, w) be a
solution of (1) in Ω× (0, T ). The following identity holds

d

dt
F(u, v, w) +D(u, v, w) = 0,
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where

F(u, v, w) = d1

∫
Ω

u log u−
∫

Ω

u(χv − ξw) +
d2

2D

∫
Ω

|∇(χv − ξw)|2 +
β

2D

∫
Ω

|χv − ξw|2,

D(u, v, w) =
1

D

∫
Ω

|(χv − ξw)t|2 +

∫
Ω

u|∇(d1 log u− (χv − ξw))|2.

Proof. Testing the first equation of (1) by d1 log u− (χv − ξw) we have∫
Ω

ut(d1 log u− (χv − ξw)) = −
∫

Ω

u|∇(d1 log u− (χv − ξw))|2.

Here the mass conservation law (3) implies

d

dt

∫
Ω

u log u =

∫
Ω

ut log u+

∫
Ω

ut =

∫
Ω

ut log u,

so

d

dt

(
d1

∫
Ω

u log u−
∫

Ω

u(χv − ξw)

)
=

∫
Ω

ut(d1 log u− (χv − ξw))−
∫

Ω

u(χv − ξw)t

= −
∫

Ω

u|∇(d1 log u− (χv − ξw))|2 −
∫

Ω

u(χv − ξw)t. (4)

On the other hand, by the assumption d2 = d3, β = δ, the second and third equations
imply

(χv − ξw)t = d2∆(χv − ξw)− β(χv − ξw) + (χα− ξγ)u, (5)

and then we see that∫
Ω

u(χv − ξw)t

=
1

D

(∫
Ω

|(χv − ξw)t|2 − d2

∫
Ω

∆(χv − ξw)(χv − ξw)t + β

∫
Ω

(χv − ξw)(χv − ξw)t

)
=

1

D

∫
Ω

|(χv − ξw)t|2 +
1

2D

d

dt

(
d2

∫
Ω

|∇(χv − ξw)|2 + β

∫
Ω

|χv − ξw|2
)
. (6)

Therefore combining (4) and (6) we conclude that

d

dt

(
d1

∫
Ω

u log u−
∫

Ω

u(χv − ξw) +
d2

2D

∫
Ω

|∇(χv − ξw)|2 +
β

2D

∫
Ω

|χv − ξw|2
)

+
1

D

∫
Ω

|(χv − ξw)t|2 +

∫
Ω

u|∇(d1 log u− (χv − ξw))|2 = 0,

which is the desired inequality.
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3 Proof of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1 and Theorem 1.2. We can proceed the well-known classical way
in the context of study of the Keller-Segel system (see [15]), that is, by applying the
Trudinger-Moser inequality ([3] and [15, Theorem 2.1]) to Lyapunov functional we will
derive an useful energy estimate: if

∫
Ω
u0 <

4πd1d2
χα−ξγ or

∫
Ω
u0 <

8πd1d2
χα−ξγ for radially symmetric

setting, then there exists some C > 0 such that∫
Ω

u log u+

∫
Ω

|∇(χv − ξw)|2 +

∫
Ω

|χv − ξw|2 ≤ C,

and we handle with regularity estimates. Differently from the Keller-Segel system, in our
problem the following equation plays an important role:

(χv − ξw)t = d2∆(χv − ξw)− β(χv − ξw) + (χα− ξγ)u,

which implies L1 estimate from the mass conservation: there exists some C > 0 satisfying

‖χv − ξw‖L1(Ω) ≤ C.

Since the positivity of χv− ξw is not valid now, we need a small but natural modification
to apply the classical way in [15]. Indeed, Lemma 2.2 implies that there exists some C > 0
such that ∫

Ω

u log u− 1

d1

∫
Ω

u|χv − ξw|+ d2

2d1D

∫
Ω

|∇(χv − ξw)|2 ≤ C.

By introducing small δ > 0, which will be chosen later, the LHS of the above inequality
is written as∫

Ω

u log u−
(

1

d1

+ δ

)∫
Ω

u|χv − ξw|+ δ

∫
Ω

u|χv − ξw|+ d2

2d1D

∫
Ω

|∇(χv − ξw)|2

= −
∫

Ω

u log
e

( 1
d1

+δ)|χv−ξw|

u
+ δ

∫
Ω

u|χv − ξw|+ d2

2d1D

∫
Ω

|∇(χv − ξw)|2.

By Jensen’s inequality we arrive at

−
∫

Ω

u log
e

( 1
d1

+δ)|χv−ξw|

u
= M

∫
Ω

(
− log

e
( 1
d1

+δ)|χv−ξw|

u

)
· u
M

≥ −M log

(∫
Ω

e
( 1
d1

+δ)|χv−ξw|

u
· u
M

)
= −M log

∫
Ω

e
( 1
d1

+δ)|χv−ξw|
+M logM,

where M =
∫

Ω
u(t) =

∫
Ω
u0. Now by applying the Trudinger-Moser inequality, for any

ε > 0 there exists some Cε > 0 such that∫
Ω

e
( 1
d1

+δ)|χv−ξw|

≤ Cε exp

{(
1

2π∗
+ ε

)(
1

d1

+ δ

)2

‖∇(χv − ξw)‖2
L2(Ω) +

2( 1
d1

+ δ)

|Ω|
‖χv − ξw‖L1(Ω)

}
,
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where π∗ := 4π for general setting; := 8π for radially symmetry setting. Thus we obtain

−
∫

Ω

u log
e

( 1
d1

+δ)|χv−ξw|

u
≥ −M

(
1

2π∗
+ ε

)(
1

d1

+ δ

)2

‖∇(χv − ξw)‖2
L2(Ω) + C

with some constant C. Combining above and Lyapunov functional, we infer that{
d2

2d1D
−M

(
1

2π∗
+ ε

)(
1

d1

+ δ

)2
}∫

Ω

|∇(χv − ξw)|2 + δ

∫
Ω

u|χv − ξw| ≤ C

with some C > 0. Thanks to the assumption on mass, we can choose small ε and δ
satisfying

d2

2d1D
−M

(
1

2π∗
+ ε

)(
1

d1

+ δ

)2

> 0,

and then conclude the proof.

4 Proof of Theorem 1.3 and Theorem 1.4

In this section we consider the case with β 6= δ. Differently from the previous case, the
key equation (5) breaks down. Hence we need a minor modification and unfortunately
cannot construct a Lyapunov functional. However the growth of the functional will be
controlled and it will help us to obtain global existence.

Lemma 4.1. Let d2 = d3. Assume that D := χα− ξγ > 0. Let (u, v, w) be a solution of
(1) in Ω× (0, T ). The following identity holds

d

dt
F ′(u, v, w) +D′(u, v, w) ≤ ξ2(δ − β)2

2D

∫
Ω

w2,

where

F ′(u, v, w) = d1

∫
Ω

u log u−
∫

Ω

u(χv − ξw) +
d2

2D

∫
Ω

|∇(χv − ξw)|2 +
β

2D

∫
Ω

|χv − ξw|2,

D′(u, v, w) =
1

2D

∫
Ω

|(χv − ξw)t|2 +

∫
Ω

u|∇(d1 log u− (χv − ξw))|2.

Proof. Since
−χβv + ξδw = −β(χv − ξw) + ξ(δ − β)w,

the second and third equations imply

(χv − ξw)t = d2∆(χv − ξw)− β(χv − ξw) + (χα− ξγ)u+ ξ(δ − β)w.

Hence proceeding the similar way as in Section 2 we see that∫
Ω

u(χv − ξw)t

=
1

D

∫
Ω

|(χv − ξw)t|2 +
1

2D

d

dt

(
d2

∫
Ω

|∇(χv − ξw)|2 + β

∫
Ω

|χv − ξw|2
)

− ξ(δ − β)

D

∫
Ω

w(χv − ξw)t,
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and then we conclude that

d

dt

(
d1

∫
Ω

u log u−
∫

Ω

u(χv − ξw) +
d2

2D

∫
Ω

|∇(χv − ξw)|2 +
β

2D

∫
Ω

|χv − ξw|2
)

+
1

D

∫
Ω

|(χv − ξw)t|2 +

∫
Ω

u|∇(d1 log u− (χv − ξw))|2

=
ξ(δ − β)

D

∫
Ω

w(χv − ξw)t

≤ 1

2D

∫
Ω

|(χv − ξw)t|2 +
ξ2(δ − β)2

2D

∫
Ω

w2.

which is the desired inequality.

Proof of Theorem 1.3 and Theorem 1.4. In view of the standard semigroup theory and
the mass conservation law (3), the growth of the functional is controlled:

F ′(u, v, w)(t) ≤ F ′(u, v, w)(0) +

∫ t

0

ξ2(δ − β)2

2D

∫
Ω

w2

≤ F ′(u, v, w)(0) + Ct t > 0,

with some C > 0, which depends on the initial data. Therefore on any interval [0, T ]
(T > 0) the functional is bounded and then we obtain the energy estimate on any fixed
interval [0, T ]. Therefore by the same way as in Section 3 global existence of solutions is
guaranteed.
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