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Abstract. The very singular diffusion equation

∂u

∂t
= −πu

(
−div

(
∇u
|∇u|

))
is called one-harmonic map flow equation. By effect of the very singular diffusivity term

div
(
∇u
|∇u|

)
, one-harmonic map flow equation admits piecewise constant solutions. Hence,

piecewise constant discretizations are one of natural discretizations which have consider-
ation of characteristics of this equation. In this paper, we study the piecewise constant
discretization, proposed by Y. Giga, H. Kuroda and N. Yamazaki (2005), for the Neu-
mann problem of the one-harmonic map flow equation. Since they formulated a discretized
version of one-harmonic map flow equations as differential inclusions, uniqueness and ex-
istence of its solutions are not clear. We establish existence and uniqueness of solutions
to this discretized problem.
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1. Introduction

Let Ω be a bounded Lipschitz domain in Rd and let M be a manifold embedded into Rn.
We consider the system of partial differential equations

∂u

∂t
= −πu

(
−div

(
∇u
|∇u|

))
(HF)

for vector fields u : Ω × (0, T ) → M ⊂ Rn, where ∇ is the gradient on Rd and πp is the
orthogonal projection from Rn to the tangent space TpM ⊂ Rn at p ∈M . The equation
(HF) is called the one-harmonic map flow equation from Ω to M . This equation and
related ones are commonly known as very singular diffusion equations ([15], [16]) since
the evolution speed is determined by a nonlocal quantity at ∇u = 0.

One-harmonic map flow equations are proposed as methods of image processing and
as a continuum model of grain boundary. In the case of M = S2, unite two-dimensional
sphere, such equations are proposed as a method of de-noising of color images with pre-
serving sharp edge and the chromaticity ([31],[32]). In the case of M = SO(3), the space
of three-dimensional rotations, such equations are suggested for continuum model of grain
boundary ([26], [24], [25]). In the case of M = SPD(3), the space of symmetric positive
definite three-dimensional matrices, such equations are proposed for denosing DT-MRI
([5], [9], [30], [33]).

1.1. Mathematical analysis

Mathematical analysis of one-harmonic map flows has been done by several authors. No-
tions of solutions to one-harmonic map flow equations are not clear because of a singularity
at ∇u = 0. In [20], Y. Giga and H. Kuroda proved that rotational symmetric solutions in
the classical sense to one-harmonic map flows equation from unit disk D to unit sphere S2

may break down in finite time. Moreover, in [12], L. Giacomelli and S. Moll established
the optimal blowup criterion for initial datum given in [20] and proved that so-called
reverse bubbling blowup may happen. On the other hand, we need to consider notions
of weak solution to treat solutions which admit singularities at ∇u = 0. In the case of
unconstraint equation version of (HF), that is to say the total variation flow equation of
the form

∂u

∂t
= div

(
∇u
|∇u|

)
, (TVF)

we can formulate (TVF) as an evolution equation with a monotone law associated with
a convex energy, so-called the total variation,∫

Ω

|∇u|.

For this model, we can apply a nonlinear semigroup theory initiated by Y. Kōmura ([27])
and developed by H. Brezis ([8]) and others to show well-posedness. However, in the case
of constraint equation, such approach is not available since the convexity of the energy is
lost because of the constraint of map with values into M . For (HF), two notions of weak
solution are proposed.
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1.1.1. Giga–Kobayashi solutions

In [19], Y. Giga and R. Kobayashi proposed a notion of solution as a solution of an evolu-
tion inclusion with the subdifferential of the convex energy in some real Hilbert space. We
shall refer to such a notion of solution as Giga–Kobayashi solution (for short, GK solu-
tion). In this formulation, they established existence and uniqueness of piecewise constant
solution to general manifold valued problems in bounded open interval when initial data is
piecewise constant by computing the sub-differential of the total variation in the space of
piecewise constant functions. Moreover, they proved a finite time stopping phenomenon
for S1-valued problem. However, in [21], Y. Giga and H. Kuroda constructed a counter
example of this phenomenon for a flow values into S2. In [20], Y. Giga, Y. Kashima and N.
Yamazaki established a local-in-time solution with small initial datum which is unneces-
sary piecewise constant. Unfortunately, uniqueness for local-in-time solutions is not clear.
On the other hand, in [22] and [23], Y. Giga, H. Kuroda and N. Yamazaki considered a
discretization of one-harmonic map flow equations with values into a unit sphere in multi-
dimensional domain and proved global solvability of this discretized problem by reducing
the problem to ordinary differential equations. Unfortunately, uniqueness was not clear.
In this paper, we establish uniqueness. We shall call such solutions to the discretized
problem discrete Giga–Kobayashi solutions (for short, discrete GK solution). Discrete
GK solutions may not correspond to GK solutions except one-dimensional problem. This
is also observed in unconstrained problem of crystalline flow ([7], [16]), for instance.

1.1.2. Giacomelli–Mazón–Moll solutions

In [4] and [10], X. Feng and his collaborators proposed a notion of a BV -solution to a
sphere-valued problem with Neumann boundary condition and presented an existence re-
sult. However, in [13], L. Giacomelli, M. Mazón and S. Moll pointed out that jump of
values of solution is not considered in their argument. They introduced an appropriate
notion of a BV -solution to S1-valued problem with the Neumann boundary condition
in [13] and [14]. We shall refer to their notion of solution as Giacomelli–Mazón–Moll
solution (simply, GMM solution). In [13], they established the time-global existence and
uniqueness of solution of a semicircle valued problem in a multi-dimensional bounded do-
main and time-global existence of solution to a circle valued problem in multi-dimensional
bounded domain with initial datum whose angle is bounded essentially and does not jump
larger than π. In [14], they generalized the notion of solutions in [13] to a hyper-octant
valued problem with the Neumann boundary condition and established an existence of
time-global solutions. Uniqueness for GMM solutions to a hyper-octant valued problem
is still open.

1.1.3. Giga–Kobayashi solutions vs Giacomelli–Mazón–Moll solutions

GK solutions and GMM solutions may not coincide. The difference of two notations
is how to measure the jump of values of solutions. GK solutions measure the jump of
values of solutions by an extrinsic metric. On other hand, GMM solutions measure it
by the intrinsic metric. In Section 5, we will construct a GK solution and two GMM
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solutions to a Neumann problem with certain piecewise constant initial datum to check
their difference.

1.2. Contribution of this paper

The main object of this paper is to show a existence and uniqueness of discrete Giga–
Kobayashi solution to an embedded manifold-valued problem with the Neumann boundary
condition in a multi-dimensional domain. Difficulty of this problem is that discrete Giga–
Kobayashi solutions are solutions to an evolution inclusion. We assume that manifolds
are compact, path-connected and embedded into Rn. This assumption is reasonable
because we are interested in S2 and SO(3)-valued problems for image processing and
grain boundary problem, respectively. We emphasize that only existence of S2-valued
problem was established in [22] and [23], so an existence and uniqueness for general
manifold valued problems were not considered. In particular, uniqueness was not clear
even if we considered S2-valued problem. On the other hand, we construct two examples of
piecewise constant GMM solutions. These examples show that difference of GK solutions
and GMM solutions, and GMM solutions do not hold similar uniqueness result in [19]
unlike GK solutions.

1.3. Organization

The plan of this paper is as follows. In Section 2, we explain the notations and the
mathematical tools which are used in this paper. In Section 3, we recall the notions of
solutions to the Neumann problem of (HF) proposed in [19] and its discretized problem
proposed in [22]. Moreover, we state our main result in this paper. In Section 4, we prove
the main result in this paper. We split this section into existence part and uniqueness
part. In existence part, we use the Moreau–Yosida approximation in order to construct
solutions. In uniqueness part, evolution variational inequalities have an important role.
These inequalities are used for formulating gradient flows in a metric space, and the def-
inition implies that uniqueness of gradient flows holds. We focus on this strong property,
and we prove that discrete one-harmonic map flows satisfy some evolution variational
inequality in order to obtain uniqueness. In Section 5, we give non-uniqueness example
by constructing explicit GMM solutions to the Neumann problem of one-harmonic map
flow equations with values into a circle.

2. Notation and Preliminaries

We explain and recall several notion, notation and tools in mathematics which are used in
this paper. We consider the space RN as the normed space associated with the standard
norm ‖ · ‖RN induced by the standard inner product 〈·, ·〉RN :

‖x‖RN := (〈x, x〉RN )1/2,

〈x, y〉RN :=
N∑
j=1

xjyj,
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where x := (x1, . . . , xN), y := (y1, . . . , yN) ∈ RN . A choice of norms of the vector space
RN plays important role since total variations of RN -valued functions depends on norms
of RN . On the other hand, we denote by

• LN : the N -dimensional Lebesgue measure for an integer N ≥ 0,

• HD : the D-dimensional Hausdorff measure for D ≥ 0.

2.1. Quantities in manifolds

Let M be a manifold embedded into Rn. For p ∈M , we denote by

• πp : the orthogonal projection from Rn to the tangent space TpM of M at p,

• π⊥p : the orthogonal projection from Rn to the normal space NpM of M at p.

We denote by diam(M) the diameter of M , i.e.,

diam(M) := sup
p,q∈M

‖p− q‖Rn .

On the other hand, we denote by distM the intrinsic distance on M , i.e., distM is defined
by the formula:

distM(p, q) := inf
γ

∫ 1

0

‖γ′(t)‖Rndt. (L)

Here γ : [0, 1]→M is a smooth curve in M with γ(0) = p and γ(1) = q. It is well known
that minimizers γ∗ : [0, 1] → M of the minimizing problem (L) satisfy that γ∗(0) = p,
γ∗(1) = q and πγ(t)γ

′′
∗ (t) = 0 for all t ∈ (0, 1). In general, a smooth curve γ : [t0, t1]→ M

is called a geodesic if γ satisfies that πγ(t)γ
′′(t) = 0 for all t ∈ (t0, t1). In addition, for

each two distinct points p and q in M , there exists an arc-length parameterized geodesic
γ : [0, distM(p, q)]→ M such that γ(0) = p and γ(distM(p, q)) = q when M is a compact
and path-connected manifold.

2.1.1. Curvature

Let p be a point in M and v be a vector in TpM with ‖v‖Rn = 1. Then we denote by
κ(p, v) the normal curvature of M at p with the direction v ∈ TpM is given by

κ(p, v) := ‖π⊥p γ
′′
(c)‖Rn ,

where γ is a curve such that γ(c) = p and γ′(c) = v with ‖v‖Rn = 1 for some c ∈ R.
This quantity is independent of a choice of curves. In addition, we denote by curv(M)
the normal curvature of M , i.e.,

curv(M) := sup
p∈M

sup
v∈TpM,‖v‖Rn=1

κ(p, v).
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2.1.2. Local feature size

We recall several notion and notation developed in the computation geometry. A point
x ∈ Rn is said to have the unique nearest point if there exists a unique point p(x) ∈ M
such that p(x) ∈ argminp∈M‖x−p‖Rn . Let S0(M) denote the set of all points in Rn which
do not have the unique nearest point. The closure of S0(M) is called the medial axis of
M and is denoted by S(M). Then the local feature size of M is the quantity defined by

lfs(M) := inf
p∈M

inf
q∈S0(M)

‖p− q‖Rn .

If M is a compact Ck manifold embedded into Rn with k ≥ 2, then lfs(M) is positive
([11]).

2.2. Function spaces

Here we explain the notations which are used in this paper.

2.2.1. Spaces of Rn-valued functions

Let Ω be a bounded Lipschitz domain in Rd. Then we denote by

• C∞c (Ω; Rn) : the space of smooth Rn-valued functions with compact support,

• Lp(Ω; Rn) : the space of p-integrable Rn-valued functions on Ω endowed with
the norm ‖u‖Lp(Ω;Rn) := (

∫
Ω
‖u‖pRn)1/p for 1 ≤ p < ∞ and the space of essen-

tial bounded Rn-valued functions on Ω endowed with the norm ‖u‖L∞(Ω;Rn) :=
esssupx∈Ω‖u(x)‖Rn for p =∞.

• BV (Ω; Rn) : the space of integrable Rn-valued functions on Ω with finite total vari-
ation endowed with the norm ‖u‖BV (Ω;Rn) := ‖u‖L1(Ω;Rn) +

∫
Ω
|Du|, where

∫
Ω
|Du|

is the isotropic total variation of u := (u1, . . . , un) given by the formula

∫
Ω

|Du| := sup

{
d∑
j=1

n∑
k=1

∫
Ω

uj
∂ϕj,k
∂xj

dLd |
ϕj,k ∈ C∞c (Ω), 1 ≤ j ≤ d, 1 ≤ k ≤ n,

(
∑d

j=1

∑n
k=1 |ϕj,k(x)|2)1/2 ≤ 1, x ∈ Ω.

}
.

• M(Ω; Rn) : the space of Rn-valued finite Radon measures µ := (µ1, . . . , µn) on
Ω endowed with the norm ‖µ‖M(Ω;Rn) := |µ|(Ω), where |µ| is the total variation
measure of µ given by the formula:

|µ|(E) := sup

{
n∑
j=1

∫
E

f jµj | f := (f 1, . . . , fn) ∈ C∞c (Ω; Rn),
‖f(x)‖Rn ≤ 1 for all x ∈ Ω.

}
.

for all Borel sets E in Ω.
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2.2.2. Spaces of Banach space-valued functions

Let X be a real Banach space with a norm ‖ · ‖X . We denote by C([0, T ];X) the space of
continuous X-valued functions on [0, T ] and denote by C1([0, T ];X) the space of continu-
ous differentiable X-valued functions on [0, T ]. For p ∈ [1,∞), we denote by Lp((0, T );X)
the space of the strongly measurable X-valued functions on (0, T ) with∫ T

0

‖u(t)‖pXdt <∞,

and this space is a real Banach space with the norm

‖u‖Lp((0,T );X) :=

(∫ T

0

‖u(t)‖pXdt
)1/p

.

In the case of p = ∞, we also refer the Banach space L∞((0, T );X) with the usual
modification. On the other hand, L2((0, T );X) is a real Hilbert space with the inner
product

〈u, v〉L2((0,T );X) :=

∫ T

0

〈u(t), v(t)〉Xdt

when X is a real Hilbert space with an inner product 〈·, ·〉X .

Given u ∈ Lp((0, T );X), we say that u is weakly differentiable if there exists
du

dt
∈

Lp((0, T );X) such that ∫ T

0

du

dt
(t)ϕ(t)dt = −

∫ T

0

u(t)
dϕ

dt
(t)dt

for all smooth test ϕ : (0, T ) → R with compact support. We denote by W 1,p((0, T );X)
the space of functions in Lp((0, T );X) which are weak differentiable.

Proposition 2.1 ([3], Theorem 1.20, Aubin–Lions compact criterion). Let X0, X1 and
X2 be three Banach spaces with X0 ⊂ X1 ⊂ X2. Let 1 ≤ p, q ≤ ∞. Suppose that X0 is
compactly embedded in X1 and that X1 is continuously embedded in X2. Then the set

W :=

{
u ∈ Lp((0, T );X0) | du

dt
∈ Lq((0, T );X2).

}

is embedded compactly into

{
Lp((0, T );X1) if p <∞
C([0, T ];X1) if p =∞ and q > 1

.

2.3. Monotone operators and subdifferential of convex function-
als

2.3.1. Monotone operators

Let X be a real Hilbert space with an inner product 〈·, ·〉X . Let A : X → 2X be a
multi-valued operator in X. We often write (u, v) ∈ A as v ∈ A(u) and denote by D(A)
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the effective domain of A, D(A) := {u ∈ X | (u, v) ∈ A}(= {u ∈ X | A(u) 6= Ø.}). A
multi-valued operator A : X → 2X is said to be monotone if the inequalities

〈u− v, ζ − η〉X ≥ 0

hold for all (u, ζ), (v, η) ∈ A. In particular, A is said to be maximal if A satisfies that
A = Â if Â is a monotone operator such that A ⊂ Â. If X is a real Hilbert space, it is
well known that maximal monotone operators in X are characterized as follows:

Proposition 2.2 ([3], Proposition 2.2, Hilbert space version). Let A be a monotone
operator in a real Hilbert space X. Then A is maximal if and only if for any λ > 0 and
any f ∈ X there exists unique uλ,f ∈ D(A) such that

uλ,f + λAuλ,f 3 f.

By above proposition, for λ > 0, we define the resolvent operator JAλ : X → X given
by the formula :

JAλ f := uλ,f ,

and each resolvent operator is contractive on X, i.e.,

‖JAλ (u)− JAλ (v)‖X ≤ ‖u− v‖X

for all (u, v) ∈ X × X([3], Proposition 2.3). On the other hand, maximal monotone
operators have the following strong-weak closed property.

Proposition 2.3 ([3], Proposition 2.1, Hilbert space version). Let A be a maximal mono-
tone operator in a real Hilbert space X and let {(uj, ζj)} be a sequence in A. If {uj}
converges strongly to u in X and {ζj} converges weakly to ζ in X, then (u, ζ) ∈ A.

2.3.2. subdifferential of convex functionals

One of important classes of monotone operators is given by the subdifferential of func-
tionals. We recall two notations, (Fréchet) differential and subdifferential, since subdiffer-
ential is one of generalizations of differential of convex functions. Let I : X → (−∞,∞]
be convex on X, i.e., I satisfies

I(θu+ (1− θ)v) ≤ θI(u) + (1− θ)I(v)

for any (u, v) ∈ X × X and any θ ∈ [0, 1]. We say that I is differentiable at u ∈ X if
there exists ζ ∈ X such that

lim
‖h‖X→0

|I(u+ h)− I(u)− 〈ζ, h〉X |
‖h‖X

= 0,

and ∇XI(u) := ζ is called (Fréchet) gradient of I at u and denote by D(∇XI) the effective
domain of ∇XI:

D(∇XI) := {u ∈ X | I is differentiable at u}.
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On the other hand, we say that I is subdifferentiable at u if there exists ζ ∈ X such that

I(u+ h) ≥ I(u) + 〈ζ, h〉X for any h ∈ X,

and ζ is called subgradient of I at u and

∂XI(u) := {ζ ∈ X | ζ is subgradient of I at u}

and denote by D(∂XI) the effective domain of ∂XI:

D(∂XI) := {u ∈ X | I is subdifferentiable at u}.

Since I is convex on X, the inclusion D(∇XI) ⊂ D(∂XI) holds. In particular, if u ∈
D(∇XI), then ∂XI(u) = {∇XI(u)}.

Proposition 2.4 ([3], Theorem 2.8). Let I : X → (−∞,∞] be a proper, lower semi-
continuous and convex, i.e., I satisfies that
(i)(proper) The effective domain of I, D(I) := {u ∈ X | I(u) <∞}, is not empty.
(ii)(lower semi-continuity) If {uj}∞j=1 ⊂ X converges to u strongly in X, then

I(u) ≤ lim inf
j→∞

I(uj).

(iii)(convexity) For any (u, v) ∈ X ×X and any θ ∈ [0, 1], following inequality holds:

I(θu+ (1− θ)v) ≤ θI(u) + (1− θ)I(v).

Then ∂XI is maximal monotone in X ×X.

In this paper, we often consider functionals on space-time spaces. Let X be a real
Hilbert space with the inner product 〈·, ·〉X . Given functional I : X → (−∞,∞] which
is proper, lower semi-continuous and convex in X, we define a functional IT on the real
Hilbert space L2((0, T );X) associated with I by

IT (u) :=

∫ T

0

I(u(t))dt.

Proposition 2.5. Let I : X → [0,∞] be a proper, convex and lower semicontinuous in
X. Then
(i) IT is proper, lower semicontinuous and convex on L2((0, T );X).
(ii) ∂L2((0,T );X)I

T is maximal monotone in L2((0, T );X) and is characterized as follows:

∂L2((0,T );X)I
T (u) = {ζ ∈ L2((0, T );X) | ζ(t) ∈ ∂XI(u(t)) for a.e. t ∈ (0, T )}

for all u ∈ L2((0, T );X).

Proof of Proposition 2.5 Let A := ∂L2((0,T );X)I
T and

Bu := {ζ ∈ L2((0, T );X) | ζ(t) ∈ ∂XI(u(t)) for a.e. t ∈ (0, T )}.
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(i) This is immediate consequence of Fatou’s lemma and lower semi-continuity of I.
(ii) Monotonicity of A is immediate consequence of monotonicity of ∂XI. So, we prove
A = B. We split this into A ⊂ B and B ⊂ A. First, we prove B ⊂ A. Let (u, ζ) ∈ B.
Since ζ(t) ∈ ∂XI(u(t)) for a.e. t ∈ (0, T ), we have

〈ζ(t), h(t)〉X ≤ I(u(t) + h(t))− I(u(t))

for any h ∈ L2((0, T );X) and a.e. t ∈ (0, T ). Taking integration on (0, T ), we have

〈ζ, h〉L2((0,T );X) ≤ IT (u+ h)− IT (u).

This means that (u, ζ) ∈ A. Next, we prove that A ⊂ B. We prove that B is maximal
in L2((0, T );X). Proposition 2.2 implies that it is sufficient to prove that for any f ∈
L2((0, T );X) and λ > 0, there exits unique uλ,f such that uλ,f + λBuλ,f 3 f . Such uλ,f
is given by v := JTB,λf , where

JTB,λ : L2((0, T );X)→ L2((0, T );X); u(t) 7→ JBλ u(t).

We check this. By definition of resolvent, it follows that v is unique X-valued function
on (0, T ) satisfying

v(t) + λζ(t) = f(t) in X

for a.e. t ∈ (0, T ), where ζ(t) ∈ Bv(t) for a.e. t ∈ (0, T ). Hence, it is sufficient to check
to prove that v ∈ L2((0, T );X) and ζ ∈ L2((0, T );X). Since JBλ is contractive in X, the
operator JTB,λ is also contractive, and v(= JTB,λf) ∈ L2((0, T );X). On the other hand,
ζ ∈ L2((0, T );X) since ζ = λ−1(f − v).

2.4. Moreau–Yosida regularization

Let X be a real Hilbert space and let I : X → (−∞,∞] be a proper, lower semicontinuous
and convex functional on X and let J Iτ := J∂XIτ , τ > 0 be the resolvent operators of ∂XI.
Then the Yosida regularizations (∂XI)τ : X → X of ∂XI are defined as

(∂XI)τ :=
1

τ
(IdX − J Iτ ), (1)

where IdX is the identity operator in X. Then it is known that the following holds:

Proposition 2.6 ([3], Proposition 2.3). Let I : X → (−∞,∞] be a proper, convex and
lower semicontinuous in X. Then the following holds:
(i) (∂XI)τ (u) ∈ ∂XI(J Iτ (u)) for all τ > 0 and all u ∈ X.
(ii) Each J Iτ is contractive on X, i.e.,

‖J Iτ (u)− J Iτ (v)‖X ≤ ‖u− v‖X

for all (u, v) ∈ X ×X.
(iii) Each (∂XI)τ is Lipschitz continuous in X with constant τ−1, i.e.,

sup
‖u−v‖X 6=0

‖(∂XI)τ (u)− (∂XI)τ (v)‖X
‖u− v‖X

=
1

τ
.

In particular, D((∂XI)τ ) = X.
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On the other hand, the Moreau–Yosida regularizations of I are defined by

Iτ (u) := inf
v∈X

{
I(v) +

1

2τ
‖v − u‖2

X

}
.

Then it is known that following holds:

Proposition 2.7 ([3], Theorem 2.9). Let I : X → (−∞,∞] be a proper, lower semicon-
tinuous and convex on X. Then the Moreau–Yosida regularizations {Iτ}τ>0 of I is also a
proper, continuous and convex on X, and the following holds for all u ∈ X and all τ > 0:
(i) Iτ (u) <∞,

(ii) Iτ (u) = I(J Iτ u) +
1

2τ
‖u− J Iτ u‖2

X ,

(iii) Iτ is differentiable at u, and ∇XIτ (u) = (∂XI)τu,
(iv) I(J Iτ u) ≤ Iτ (u) ≤ I(u) and lim

τ→0
Iτ (u) = I(u).

3. Setting and Main Result

In this section, first we will recall the notion of solutions proposed in [19] to the following
the Neumann problem for one-harmonic map flow equations:

(HFΩ,M,T ;u0)


∂u

∂t
= −πu

(
−div

(
∇u
|∇u|

))
in Ω× (0, T ),(

∇u
|∇u|

)
· ν = 0 on ∂Ω× (0, T ),

u(0) = u0 in Ω,

where Ω is a bounded Lipschitz domain in Rd, ∂Ω is the boundary of Ω and ν is the
unit outer vector of Ω, M is a compact manifold embedded into Rn, πp : Rn → TpM be
the orthogonal projection from Rn to the tangent space TpM of M at p ∈ M . Next, we
recall the notion of solutions to a discretized problem of (HFΩ,M,T ;u0) proposed in [22]
and state our main result. In the case of Dirichlet problems, their discretized problem
were proposed in [23].

3.1. Giga–Kobayashi solutions

We recall the formulation of one-harmonic map flow equation proposed by Y. Giga and R.
Kobayashi in [19], which formulate (HFΩ,M,T ;u0) as an evolution inclusion in a space-time
Hilbert space whose law is the composition of the subdifferential of total variation and
the projection associated with the orthogonal projections πp : Rn → TpM, p ∈M .

First, we explain notations of spaces to describe (HFΩ,M,T ;u0) as an evolution inclu-
sion:

• H := L2(Ω; Rn),

• HT := L2((0, T ); H),

• M := {u ∈ H | u(x) ∈M for a.e. x ∈ Ω},



92

• MT :=
{
u ∈ HT | u(t) ∈M for a.e. t ∈ (0, T )

}
.

Next, we explain notations to describe the law of the evolution inclusions. Let

Φ(u) :=

∫
Ω

|Du|, u ∈ H,

ΦT (u) :=

∫ T

0

∫
Ω

|Du(t)|dt, u ∈ HT .

Since the total variation is L1 lower semicontinuous ([1]) and convex on BV , Φ is lower
semicontinuous and convex on H. Moreover, Proposition 2.5 (i) implies ΦT is lower semi-
continuous and convex on HT . Hence its subdifferential ∂HTΦT (u) is maximal monotone

in HT , and corresponds to −div
(
∇u
|∇u|

)
with the Neumann boundary condition. On the

other hand, for v ∈ MT , P T
v : HT → HT denotes the projections associated with the

orthogonal projections πp : Rn → TpM defined by

P T
v η(x, t) := πv(x,t)η(x, t), (x, t) ∈ Ω× (0, T ),

where η ∈ HT . Of course, P T
v corresponds to πv.

Using these notations, Giga–Kobayashi solutions to the Neumann problem (HFΩ,M,T ;u0)
are defined as follows:

Definition 3.1 (Giga–Kobayashi solutions). Let T > 0. Let u0 ∈ M. Then u ∈
C([0, T ]; H) is called a Giga–Kobayashi solution to (HFΩ,M,T ;u0) if u(t) ∈ M for all
t ∈ [0, T ] and u ∈ W 1,2((0, T ); H) ∩D(∂HTΦT ) solves

(HFΩ,M,T
GK ;u0)

{
du

dt
∈ −P T

u ∂HTΦT (u) in HT ,

u(0) = u0 in H.

3.2. Discrete Giga–Kobayashi solutions and main result

We recall the discretization, proposed by Y. Giga, H. Kuroda and N. Yamazaki in [22],
of Giga–Kobayashi solutions, and state main theorem in this paper.

3.2.1. Discrete Giga–Kobayashi solutions

Y. Giga and his collaborators formulated discrete solutions to (HFΩ,M,T ;u0) as a Giga–
Kobayashi solutions whose associated energy ΦT replaced by the discrete energy associated
with a rectangle discretization. Note this notion of discrete solutions may not coincide
one of the original problems except for single-variable case. For related works, see [4], [19]
and [23].

Let us begin with explanation of a rectangle decomposition. Let Ω be a bounded
Lipschitz domain in Rd. We call a finite family Ω∆ := {Ωα}α∈∆ of subsets of Ω a
rectangle decomposition of Ω indexed by ∆ if Ω∆ satisfies

•
⋃
α∈∆ Ωα = Ω,
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• Ωα ∩ Ωβ = Ø for α 6= β, (α, β) ∈ ∆×∆,

• For each α ∈ ∆, there exists a rectangle Rα in Rd such that Ωα = Rα ∩ Ω.

For each Ωα ∈ Ω∆, the symbol 1Ωα denotes the characteristic function on Ωα in Ω:

1Ωα(x) :=

{
1 for x ∈ Ωα,
0 for x ∈ Ω \ Ωα.

By the definition of Ω∆, each Ωα has finite perimeter. Figure 1 shows an example of Ω∆.

Figure 1: Example of a decomposition

Next, we define the discretized versions of H and HT associated with Ω∆ as follows:

• H∆ :=

{∑
α∈∆

uα1Ωα | uα ∈ Rn.

}
⊂ H,

• HT
∆ := L2((0, T ); H∆) ⊂ HT .

Note that the inner product of these two discretized spaces is given by the formula:

〈u, v〉H∆
=
∑
α∈∆

〈uα, vα〉RnLd(Ωα), u, v ∈ H∆,

〈uT , vT 〉HT
∆

=

∫ T

0

〈uT (t), vT (t)〉H∆
dt, uT , vT ∈ HT

∆.

We also define the discretized versions of M and MT associated with Ω∆ as follows:

• M∆ :=

{∑
α∈∆

uα1Ωα | uα ∈M

}
⊂M,

• MT
∆ :=

{
u ∈ HT | u(t) ∈M∆ for a.e. t ∈ (0, T )

}
⊂MT .
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Next, we define the discrete functionals Φ∆ and ΦT
∆ of Φ and ΦT associated with Ω∆ given

by the formula, respectively:

Φ∆(u) :=


∫

Ω

|Du| if u ∈ H∆,

+∞, otherwise.

ΦT
∆(u) :=


∫ T

0

∫
Ω

|Du(t)|dt if u ∈ HT
∆,

+∞, otherwise.

Note that for u :=
∑

α∈∆ uα1Ωα ∈ H∆, its isotropic total variation
∫

Ω
|Du| is given by the

formula: ∫
Ω

|Du| =
∑

(α,β)∈∆×∆

‖uα − uβ‖Rnωα,β,

where ωα,β := Hd−1(∂Ωα ∩ ∂Ωβ ∩ Ω) for each (α, β) ∈ ∆ × ∆. On the other hand, Φ∆

(ΦT
∆, respectively) is proper, convex and lower semicontinuous on H∆ (HT

∆, respectively).
Next, for u ∈ M and v ∈ MT , we define the two projections Pu : H → H and

P T
v : HT → HT by

Puζ(x) := πu(x)ζ(x), x ∈ Ω,
P T
v η(x, t) := πv(x,t)η(x, t), (x, t) ∈ Ω× (0, T ),

where ζ ∈ H and η ∈ HT . Using these notation, the discrete solutions of (HFΩ,M,T ;u0)
are defined as follows:

Definition 3.2 (Discrete Giga–Kobayashi solution). Let Ω be a bounded Lipschitz do-
main in Rd and let Ω∆ be a rectangle decomposition of Ω. Let M be a manifold embedded
into Rn. Let T > 0. Let u0 ∈ M∆. Then a map u ∈ C([0, T ]; H) is a discrete Giga–
Kobayashi solution associated with Ω∆ of (HFΩ,M,T ;u0) if u(t) ∈M∆ for all t ∈ [0, T ] and
u ∈ W 1,2((0, T ); H) ∩D(∂HTΦT

∆) solves

(DHFΩ∆,M,T
GK ;u0)

{
du

dt
∈ −P T

u ∂HTΦT
∆(u) in HT ,

u(0) = u0 in H.

Remark 3.1. For a.e. t ∈ (0, T ), u(t) ∈ H∆ since u ∈ D(∂HTΦT
∆) ⊂ HT

∆.

Remark 3.2. In the case of d = 1, Giga–Kobayashi solutions and discrete Giga–Kobayashi
solutions coincide([19]).

3.2.2. Main result

Theorem 3.1. Let T > 0 and M be an m-dimensional compact and path-connected
C2 manifold embedded into Rn. Let Ω be a bounded Lipschitz domain in Rd and let
Ω∆ := {Ωα}α∈∆ be a rectangle decomposition of Ω. Then
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(i)(Existence) For every u0 ∈ M∆, there exists a discrete Giga–Kobayashi solution to
(HFΩ,M,T ;u0) associated with Ω∆.
(ii)(Uniqueness) Let u1

0, u2
0 be in M∆. Let u1, u2 ∈ C([0, T ]; H) be discrete Giga–Kobayashi

solutions to (HFΩ,M,T ;u1
0) and (HFΩ,M,T ;u2

0) associated with Ω∆, respectively. Then

‖u1(t)− u2(t)‖2
H ≤ e

∫ T
0 λΩ∆,M

(s)ds‖u1
0 − u2

0‖2
H (2)

holds for a.e. t ∈ (0, T ), where λΩ∆,M is a positive and square-integrable function on [0, T ]
depending only on Ω∆ and M . In particular, if u1

0 = u2
0 in H∆, then u1 = u2 in HT

∆.

Remark 3.3. Y. Giga et al. ([22]) proved global existence of discrete Giga–Kobayashi
solutions when n = 3, d = 2 and M = S2. Here, we shall explain their approach breifly.
First, they considered the the regularized energies of ΦT

∆ given by

Φ̃T,ε
∆ (u) :=


∫ T

0

∑
(α,β)∈∆×∆

√
‖uα − uβ‖2

R3 + ε2 ωα,βdt, if u :=
∑
α∈∆

uα1Ωα ∈ HT
∆,

+∞, otherwise,

where ωα,β := H1(∂Ωα ∩ ∂Ωβ ∩ Ω) for each (α, β) ∈ ∆×∆. Then, one can compute

∂HT Φ̃T,ε
∆ (u) :=

 ∑
(α,β)∈∆×∆

ωα,β
L2(Ωα)

uα − uβ√
‖uα − uβ‖2

R3 + ε2


for u :=

∑
α∈∆ uα1Ωα ∈ HT

∆. Subsequently, they considered the regularized problem

associated with ΦT,ε
∆ :

(DHFΩ∆,S
2,T

GK ;u0)ε

{
duε
dt
∈ −P T

uε∂HT Φ̃T,ε
∆ (uε) in HT ,

uε(0) = u0 in H.

These problems are regard as ordinary differential equations in S2
∆ and admit solutions

thanks to the computations of ∂HT Φ̃T,ε
∆ . Finally, they applied the abstract convergence

result established by Y. Giga et al. ([17]) to prove that the solutions to (DHFΩ∆,S
2,T

GK ;u0)ε
converge to a discrete Giga–Kobayashi solution.

Their approach is still available to our setting. In this paper, we prove that we can also
construct discrete Giga–Kobayashi solutions by the Moreau–Yosida regularizations. A dif-
ference of their regularizations and the Moreau–Yosida regularizations of Φ∆ is smoothness
of them. The Moreau–Yosida regularizations are not smoother than their regularizations.
Therefore, the Moreau–Yosida regularizations are considered to be preserve the singular-
ity of Φ∆. On the other hand, we do not use the abstract convergence result and prove
directy.

Remark 3.4. In the case of Dirichlet problem, Giga–Kuroda–Yamazaki ([23]) proved
global existence of discrete Giga–Kobayashi solutions when M = S2 and d = 2. we can
obtain a similar result.
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4. Proof of Theorem 3.1.

Here a proof of main theorem in this paper is given. We split a proof into Theorem 3.1
(i)(existence) and Theorem 3.1 (ii)(uniqueness).

4.1. Proof of Theorem 3.1.(i) (Existence).

We shall split a proof of existence to five steps again.

Step 1 : Reduction of the Problem

The multi-valued operator ∂HTΦT
∆ may take vales in HT . A purpose of this step is to

consider a reduced problem of (DHFΩ∆,M,T
GK ;u0) whose ∂H∆

ΦT
∆ replaced with the subd-

ifferential of the below reduced functionals on HT
∆, and we prove that solutions to the

reduced problem are also solutions to the original problem. Existence of solutions of the
reduced problem is proved in Step 4. Let us begin with next lemma:

Lemma 4.1. Let Ψ∆ : H∆ → R and ΨT
∆ : HT

∆ → R be functionals defined as the
formulae:

Ψ∆(u) := Φ∆(u), u ∈ H∆,

ΨT
∆(u) := ΦT

∆(u) =

∫ T

0

Ψ∆(u(s))ds, u ∈ HT
∆.

Then
(i) Ψ∆ is convex on H∆ and Lipschitz continuous on H∆, i.e.,

Lip(Ψ∆) := sup
‖u−v‖H∆

6=0

|Ψ∆(u)−Ψ∆(v)|
‖u− v‖H∆

<∞.

(ii) ΨT
∆ is also convex and Lipschitz continuous on HT

∆.

Proof of Lemma 4.1 (i) and (ii) are clear because of the definitions of Φ∆ and ΦT
∆.

Next, proposition states that it is enough to consider the problem associated with
∂H∆

Ψ∆ instead of (DHFΩ∆,M,T
GK ;u0).

Proposition 4.1. Assume the assumption in Theorem 3.1. If u ∈ C([0, T ]; H∆) is such
that u(t) ∈M∆ for all t ∈ (0, T ) and u ∈ D(∂HT

∆
ΨT

∆) ∩W 1,2((0, T ); H∆) solves

(DHFΩ∆,M,T
GK,red ;u0)

{
du

dt
∈ −P T

u ∂HT
∆

ΨT
∆(u) in HT

∆,

u(0) = u0 in H∆,

then u solves (DHFΩ∆,M,T
GK ;u0). In particular, u is a discrete Giga–Kobayashi solution

associated with Ω∆ to (HFΩ,M,T ;u0).
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This proposition is an immediately consequence of next lemma:

Lemma 4.2. Let Ψ∆ and ΨT
∆ be as in Lemma 4.1. Then the following inclusions hold:

(i) ∂H∆
Ψ∆(u) ⊂ ∂HΦ∆(u) for all u ∈ D(∂H∆

Ψ∆).
(ii) ∂HT

∆
ΨT

∆(u) ⊂ ∂HTΦT
∆(u) for all u ∈ D(∂HT

∆
ΨT

∆).

Proof of Lemma 4.2. (i) Let (u, ζ) ∈ ∂H∆
Ψ∆. We shall prove that (u, ζ) ∈ ∂HΦ∆,

i.e.,
〈ζ, h〉H + Φ∆(u) ≤ Φ∆(u+ h)

for all h ∈ H.
First, we assume h ∈ H∆. Then convexity of Φ∆ in H∆(Lemma 4.1. (i)) implies

〈ζ, h〉H = 〈ζ, h〉H∆

≤ Ψ∆(u+ h)−Ψ∆(u)

= Φ∆(u+ h)− Φ∆(u).

Next, we assume h ∈ H\H∆. Then 〈ζ, h〉H+Φ∆(u) <∞. On the other hand, Φ∆(u+h) =
∞ since u+h 6∈ D(Φ∆). Hence, 〈ζ, h〉H + Φ∆(u) ≤ Φ∆(u+h). Therefore, (u, ζ) ∈ ∂HΦ∆.

(ii) Let (u, ζ) ∈ ∂HT
∆

ΨT
∆. By Proposition 2.5 (ii), we see that (u(t), ζ(t)) ∈ ∂H∆

Ψ∆

for a.e. t ∈ (0, T ). Lemma 4.2 (i) implies that (u(t), ζ(t)) ∈ ∂HΦ∆ for a.e. t ∈ (0, T ).
Applying Proposition 2.5 (ii) again, we have (u, ζ) ∈ ∂HTΦT

∆.

Proof of Proposition 4.1. Let u be solution to (DHFΩ∆,M,T
GK,red ;u0). Then, by the

assumption of u, it is trivial that u satisfies the condition of discrete Giga–Kobayashi
solution except

du

dt
∈ −P T

u ∂HTΦT
∆(u) in HT .

This condition is immediate conclusion of Lemma 4.2. Indeed, Lemma 4.2 and u ∈M∆

imply −P T
u ∂HT

∆
ΨT

∆(u) ⊂ −P T
u ∂HTΦT

∆(u), and this and (DHFΩ∆,M,T
GK,red ;u0) imply that

du

dt
∈ −P T

u ∂HT
∆

ΨT
∆(u) ⊂ −P T

u ∂HTΦT
∆(u) in HT .

Hence, u is a discrete Giga–Kobayashi solution associated with Ω∆ to (HFΩ,M,T ;u0).

Step 2 : Approximation of the Reduced Problem

A purpose of this step, we consider the approximation problems of (DHFΩ∆,M,T
GK,red ;u0)

with the Moreau–Yosida approximations of Ψ∆ and construct solutions to their approxi-
mation problems.

Let us begin with the notations to state approximation problems. Let {JΨ∆
τ }τ>0 be

the resolvents of ∂H∆
Ψ∆ where Ψ∆ is as in Lemma 4.1. Let Ψτ

∆ := (Ψ∆)τ , τ > 0 be the
Moreau–Yosida approximations of Ψ∆(See Section 2.4):

Ψτ
∆(u) := inf

v∈H∆

{
Ψ∆(v) +

1

2τ
‖u− v‖2

H∆

}
, τ > 0.
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We define the space-time energy ΨT,τ
∆ on HT

∆ associated with Ψτ
∆ by

ΨT,τ
∆ (u) =

∫ T

0

Ψτ
∆(u(t))dt, u ∈ HT

∆.

Then our approximation problems of the reduced problem are as follows:

Proposition 4.2. Assume the assumption in Theorem 3.1. Let τ > 0. Then there exists
a map uτ ∈ C1([0, T ]; H∆) such that uτ (t) ∈M∆ for all t ∈ [0, T ] and uτ solves

(DHFΩ∆,M,T
GK,red ;u0)τ

{
duτ
dt

(t) = −Puτ (t)∇H∆
Ψτ

∆(uτ (t)), in H∆, t ∈ (0, T ),

uτ (0) = u0 in H∆.

In particular, uτ satisfies that the energy estimate, i.e.,∫ t

0

∥∥∥∥duτdt (s)

∥∥∥∥2

H∆

ds+ Ψτ
∆(uτ (t)) ≤ Ψ∆(u0) (3)

for all t ∈ [0, T ].

Proof of Proposition 4.2. Proposition 2.7 (iii) and Proposition 2.6 (iii) imply that
∇H∆

Ψτ
∆ is Lipschitz continuous on H∆. Moreover, for u ∈M∆, Pu∇H∆

Ψτ
∆(u) is tangent

vector at u since Pu is the orthogonal projection from H∆ to the tangent space TuM∆.
Hence, the problems (DHFΩ∆,M,T

GK,red ;u0)τ are considered as the ordinary differential equa-
tions with the continuous law in finite dimensional compact manifold M∆. Hence each
problem (DHFΩ∆,M,T

GK,red ;u0)τ admits at least one global solution uτ .
Next, we establish the energy estimate (3). Since Ψτ

∆ is Fréchet differentiable on
H∆(Proposition 2.7 (iii)) and uτ ∈ C1([0, T ]; H∆), Ψτ

∆(uτ ) is differentiable on (0, T ).
Hence,

d

dt
Ψτ

∆(uτ (t)) =

〈
∇H∆

Ψτ
∆(uτ (t)),

duτ
dt

(t)

〉
H∆

=
〈
∇H∆

Ψτ
∆(uτ (t)),−Puτ (t)∇H∆

Ψτ
∆(uτ (t))

〉
H∆

= −
〈
Puτ (t)∇H∆

Ψτ
∆(uτ (t)), Puτ (t)∇H∆

Ψτ
∆(uτ (t))

〉
H∆

= −
∥∥∥∥duτdt (t)

∥∥∥∥2

H∆

for t ∈ (0, T ). Taking integral on [0, t] of the above identity, we have the energy identity∫ t

0

∥∥∥∥duτdt (s)

∥∥∥∥2

H∆

ds+ Ψτ
∆(uτ (t)) = Ψτ

∆(u0).

By Proposition 2.7 (iv), we have∫ t

0

∥∥∥∥duτdt (s)

∥∥∥∥2

H∆

ds+ Ψτ
∆(uτ (t)) ≤ Ψ∆(u0).
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Step 3 : Estimates for approximation solutions

In this step, we establish inequalities for approximation solutions.

Lemma 4.3. Let {uτ}τ>0 be as in Proposition 4.2. Then the following inequalities hold
for a.e. t ∈ (0, T ):

sup
τ>0
‖∇HT

∆
ΨT,τ

∆ (uτ )‖HT
∆
≤ T 1/2Lip(Ψ∆).

Proof of Lemma 4.3. Set ζτ := ∇HT
∆

ΨT,τ
∆ (uτ ). By Proposition 2.5 (ii) and Proposition

2.6 (i) and convexity of Ψ∆ in H∆, the following inequalities hold for a.e. t ∈ (0, T ):

‖ζτ (t)‖H∆
= ‖∇H∆

Ψτ
∆(uτ (t))‖H∆

= sup
‖h‖H∆

≤1

〈∇H∆
Ψτ

∆(uτ (t)), h〉H∆

≤ sup
‖h‖H∆

≤1

( Ψ∆(JΨ∆
τ (uτ (t)) + h)−Ψ∆(JΨ∆

τ (uτ (t))) )

≤ sup
0<‖h‖H∆

≤1

|Ψ∆(JΨ∆
τ (uτ (t)) + h)−Ψ∆(JΨ∆

τ (uτ (t)))|
‖h‖H∆

‖h‖H∆

≤ Lip(Ψ∆).

Taking the L2((0, T ); R) norm in the above inequalities, we have

‖ζτ‖HT
∆
≤ T 1/2 Lip(Ψ∆).

Lemma 4.4. Let uτ , τ > 0 be as in Proposition 4.2. Then there exists a positive constant
C such that

sup
t∈[0,T ]

‖uτ (t)‖H∆
+ ‖uτ‖W 1,2((0,T );H∆) ≤ C.

Proof of Lemma 4.4. Since u0 ∈M∆ and uτ (t) ∈M∆ for all t ∈ [0, T ], we see that

sup
t∈[0,T ]

‖uτ (t)‖H∆
≤ sup

t∈[0,T ]

‖uτ (t)‖L∞(Ω;Rn)Ld(Ω)1/2 ≤ sup
p∈M
‖p‖RnLd(Ω)1/2 (4)

for all τ > 0. Since M is compact and Ω is bounded, the right-hand side of (4) is finite.
On the other hand, the energy estimate (3) implies that∥∥∥∥duτdt

∥∥∥∥
HT

∆

≤ Ψ∆(u0)1/2 (5)

for all τ > 0. Of course, Ψ∆(u0) < ∞ by the definition of Ψ∆. We plug (4) and (5) to
obtain

sup
t∈[0,T ]

‖uτ (t)‖H∆
+ ‖uτ‖W 1,2((0,T );H∆) ≤ sup

t∈[0,T ]

‖uτ (t)‖H∆
+ T 1/2 sup

t∈(0,T )

‖uτ (t)‖H∆
+

∥∥∥∥duτdt
∥∥∥∥
HT

∆

≤ (1 + T 1/2) sup
p∈M
‖p‖RnLd(Ω)1/2 + Ψ∆(u0)1/2.
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Taking
C := (1 + T 1/2) sup

p∈M
‖p‖RnLd(Ω)1/2 + Ψ∆(u0)1/2,

we obtain the desired inequality.

Step 4 : Convergence of Approximation Solutions

Proposition 4.3. Assume the assumption in Theorem 3.1. There exists a map u ∈
C([0, T ]; H∆) such that u(t) ∈M∆ for all t ∈ (0, T ) and u ∈ W 1,2((0, T ); H∆)∩D(∂HT

∆
ΨT

∆)

and u solves the reduced problem of (DHFΩ∆,M,T
GK ;u0):

(DHFΩ∆,M,T
GK,red ;u0)

{
du

dt
∈ −P T

u ∂HT
∆

ΨT
∆(u) in HT

∆,

u(0) = u0 in H∆.

We need four lemmas to prove Proposition 4.3.

Lemma 4.5. Let {uτ}τ>0 be as in Proposition 4.2. There exists a positive sequence {τl}∞l=1

converging to 0 such that there exists u ∈ C([0, T ]; H∆) ∩W 1,2((0, T ); H∆) and ζ ∈ HT
∆

satisfying

lim
τl→0

uτl = u strongly in C([0, T ]; H∆), (6)

lim
τl→0
∇HT

∆
ΨT,τl

∆ (uτl) = ζ weakly in HT
∆. (7)

Proof of Lemma 4.5. Note that H∆ is embedded compactly into itself since H∆ is a
finite dimensional space. Hence the Aubin–Lions compact criterion (Proposition 2.1 with
p =∞, q = 2 and X0 = X1 = X2 := H∆) implies that the space{

u ∈ L2((0, T ); H∆) | du
dt
∈ L∞((0, T ); H∆)

}
is compactly embedded into C([0, T ]; H∆). Hence Lemma 4.4 implies that we can take a
sequence {τl1}∞l1=1 tending to 0 and u ∈ C([0, T ]; H∆) ∩W 1,2((0, T ); H∆) such that

lim
l1→∞

uτl1 = u strongly in C([0, T ]; H∆).

On the other hand, Lemma 4.3 and weak compactness in the Hilbert space H∆ imply
that there exists a subsequence {τl2}∞l2=1 of {τl1} such that

lim
τl2→0

∇HT
∆

Ψ
T,τl2
∆ (uτl2 ) = ζ weakly in HT

∆.

Therefore, {τl2}∞l2=1 is a desired positive sequence.

Lemma 4.6. Let {uτl}∞l=1 and u be as in Lemma 4.5. Let JΨ∆
τl

: HT
∆ → HT

∆ be the operator
defined by

JΨ∆
τl

(v)(t) := JΨ∆
τl

(v(t)) for a.e. t ∈ (0, T ).

Then the sequence {JΨ∆
τl

(uτl)}∞l=1 converges strongly to u in HT
∆.
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Proof of Lemma 4.6. Fix t ∈ (0, T ). Since JΨ∆
τ is contractive on H∆ and the definition

of the Yosida regularization (see (1).), we have

‖JΨ∆
τl

(uτl(t))− u(t)‖H∆
≤ ‖JΨ∆

τl
(uτl(t))− uτl(t)‖H∆

+ ‖uτl(t)− u(t)‖H∆

= τl ‖(∂H∆
Ψ∆)τl(uτl(t))‖H∆

+ ‖uτl(t)− u(t)‖H∆

≤ Lip(Ψ∆)τl + ‖uτl(t)− u(t)‖H∆
.

Taking the norm L2(0, T ) of above inequalities, a triangle inequality implies that we have

‖JΨ∆
τl

(uτl)− u‖HT
∆
≤ ‖Lip(Ψ∆)τl + ‖uτl − u‖H∆

‖L2(0,T ;R)

≤ ‖Lip(Ψ∆)τl‖L2(0,T ;R) + ‖‖uτl − u‖H∆
‖L2(0,T ;R)

= T 1/2Lip(Ψ∆)τl + ‖uτl − u‖HT
∆
.

By Lemma 4.5, we see that lim
τl→0
‖JΨ∆

τl
(uτl)− u‖HT

∆
= 0.

Lemma 4.7. Let u and ζ be as in Lemma 4.5. Then ζ ∈ ∂HT
∆

ΨT
∆(u).

Proof of Lemma 4.7. Let {uτl} be as in Lemma 4.5. Set ζτl := ∇HT
∆

ΨT,τl
∆ (uτl). Then

Proposition 2.5 (ii) and Proposition 2.6 (i) imply that

(JΨ∆
τl

(uτl(t)), ζτl(t)) ∈ ∂H∆
Ψ∆

for a.e. t ∈ (0, T ) and every τl. This can be rewritten as

(JΨ∆
τl

(uτl), ζτl) ∈ ∂HT
∆

ΨT
∆,

where JΨ∆
τl

is as in Lemma 4.6. Hence, Lemma 4.6, Lemma 4.5 and the maximal mono-
tonicity of ∂HT

∆
ΨT

∆ (see Proposition 2.5 (i) and Proposition 2.3) imply that we have

ζ ∈ ∂HT
∆

ΨT
∆(u).

Lemma 4.8. Let {ζτl}∞l=1, {uτl}∞l=1, u and ζ be as in Lemma 4.5. Then {P T
uτl
ζτl}∞l=1

converges weakly to P T
u ζ in HT

∆.

Proof of Lemma 4.8. Let η ∈ HT
∆. Write

uτl(t) :=
∑
α∈∆

(uτl(t))α1Ωα , u(t) :=
∑
α∈∆

(u(t))α1Ωα , η(t) :=
∑
α∈∆

(η(t))α1Ωα

for a.e. t ∈ (0, T ). Lemma 4.5 implies that

lim
τl→0

(uτl(t))α = (u(t))α in Rn for all t ∈ [0, T ] and all α ∈ ∆. (8)

A smoothness of π : M → Rn×n and (8) imply that π(uτl (t))α
(η(t))α converges to π(u(t))α(η(t))α

for a.e. t ∈ (0, T ) and all α ∈ ∆. Since each π(uτl (t))α
is the orthogonal projection, we

have ‖π(uτl (t))α
‖Rn×n ≤ 1, and then ‖π(uτl (t))α

(η(t))α‖Rn ≤ ‖(η(t))α‖Rn for a.e. t ∈ (0, T )
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and all α ∈ ∆. Hence (8), η ∈ HT
∆ and the Lebesgue convergence theorem imply that

P T
uτl
η converges strongly to P T

uτl
η in HT

∆. Since {ζτl} converges weakly in HT
∆, we have

lim
l→∞
〈P T

uτl
ζτl , η〉HT

∆
= lim

l→∞
〈ζτl , P T

uτl
η〉HT

∆
= 〈ζ, P T

u η〉HT
∆

= 〈P T
u ζ, η〉HT

∆
.

Now, we return to a proof of Proposition 4.3.

Proof of Proposition 4.3. Let {uτl}, {ζτl}, u and ζ be as in Lemma 4.5. We prove
that u satisfies the required equation. Let v ∈ HT

∆. Then∫ T

0

〈
duτ
dt

(t), v(t)

〉
H∆

dt =

∫ T

0

〈−Puτl (t)∇H∆
Ψτl

∆(uτl(t)), v(t)〉H∆
dt.

Taking the limit τl → 0, Lemma 4.5 and Lemma 4.8 imply that we have∫ T

0

〈
du

dt
(t), v(t)

〉
H∆

dt =

∫ T

0

〈−Pu(t)ζ(t), v(t)〉H∆
dt.

Hence,
du

dt
= −P T

u ζ in HT
∆.

Therefore, Lemma 4.7 implies that we have

du

dt
∈ −P T

u ∂HT
∆

ΨT
∆(u) in HT

∆.

Step 5 : Connect the previous steps

In this step, we finish a proof of existence.

Proof of Theorem 3.1 (i). Let u be as in Proposition 4.3. Then Proposition 4.1
implies that u is a discrete Giga–Kobayashi solution to (HFΩ,M,T ;u0) associated with Ω∆.
Our proof of Theorem 3.1 (i) is completed.

4.2. Proof of Theorem 3.1 (ii) (Uniqueness).

We use so-called evolution variational inequalities to establish the inequality (2) for dis-
crete Giga–Kobayashi solutions. First we state an evolution variational inequality in
Hilbert spaces:

Lemma 4.9 (Evolution variational inequality). Let X be a real Hilbert space. Let I :
X → (−∞,∞] be a functional on X. Let x1, x2 ∈ W 1,2((0, T );X). Suppose that there
exists a subset Y of D(I) and λ ∈ L2(0, T ) such that x1(t), x2(t) ∈ Y and

(EVI;xj(t), y, I, λ)
1

2

d

dt
‖xj(t)− y‖2

X ≤ I(y)− I(xj(t)) +
λ(t)

2
‖xj(t)− y‖2

X
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for all y ∈ Y and a.e. t ∈ (0, T ) and j = 1, 2. Then

‖x1(t)− x2(t)‖2
X ≤ e

∫ t
0 λ(s)ds‖x1(0)− x2(0)‖2

X

for all t ∈ [0, T ]. In particular, if x1(0) = x2(0) in X, then x1 = x2 in L2((0, T );X).

Proof of Lemma 4.9. Fix t ∈ (0, T ). Inserting y = x2(t) in (EVI; x1(t), y, I, λ) and
y = x1(t) in (EVI; y, x2(t), I, λ), we obtain

d

dt
‖x1(t)− x2(t)‖2

X ≤ λ(t)‖x1(t)− x2(t)‖2
X .

By the Gronwall inequality, we have

‖x1(t)− x2(t)‖2
X ≤ e

∫ t
0 λ(s)ds‖x1(0)− x2(0)‖2

X

for all t ∈ [0, T ].

Moreover, we need two lemmas in order to prove uniqueness:

Lemma 4.10. Let X be a compact and path-connected C2-manifold embedded into Rn.
Let p and q be points in X and let ν be a unit vector in NpX. Then we have

|〈p, ν〉Rn − 〈q, ν〉Rn| ≤ 1

2
· curv(X) · dist2

X(p, q).

Proof of Lemma 4.10. Let γ : [0, distX(p, q)] → X be an arc-length parametrized
geodesic with γ(0) = p and γ(distX(p, q)) = q. Then, by the Taylor expansion of 〈γ, ν〉Rn

at 0 with second order, we have

〈q, ν〉Rn = 〈γ(0), ν〉Rn + 〈γ′(0), ν〉RndistX(p, q) +

∫ distX(p,q)

0

(distX(p, q)− s)〈γ′′(s), ν〉Rnds.

Here, γ(0) = p and γ′(0) ∈ TpX imply that

〈q, ν〉Rn = 〈p, ν〉Rn +

∫ distX(p,q)

0

(distX(p, q)− s)〈γ′′(s), ν〉Rnds.

Hence, we have

|〈p, ν〉Rn − 〈q, ν〉Rn| =

∣∣∣∣∣
∫ distX(p,q)

0

(distX(p, q)− s)〈γ′′(s), ν〉Rnds.

∣∣∣∣∣
We apply the triangle inequality, the Cauchy–Schwarz inequality and Hölder inequality
to obtain that ∣∣∣∣∣

∫ distX(p,q)

0

(distX(p, q)− s)〈γ′′(s), ν〉Rnds

∣∣∣∣∣
≤ sup

s∈[0,distX(p,q)]

‖γ′′(s)‖Rn

(∫ distX(p,q)

0

(distX(p, q)− s)ds

)
.
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Since π⊥γ(t)γ
′′(t) = γ′′(t) for all t, we have

sup
s∈[0,distX(p,q)]

‖γ′′(s)‖Rn

(∫ distX(p,q)

0

(distX(p, q)− s)ds

)

= sup
s∈[0,distX(p,q)]

‖π⊥γ(t)γ
′′
(s)‖Rn · dist2

X(p, q)

2
.

The definition of the curvature of M implies that

sup
s∈[0,distX(p,q)]

‖π⊥γ(t)γ
′′
(s)‖Rn · dist2

X(p, q)

2
= sup

s∈[0,distX(p,q)]

κ(γ(s), γ′(s)) · dist2
X(p, q)

2

≤ curv(X) · dist2
X(p, q)

2
.

Lemma 4.11. Under the assumption in Lemma 4.10, the following inequality holds:

‖p− q‖Rn ≤ distX(p, q) ≤ 2 max

{
1,

diam(X)

lfs(X)

}
‖p− q‖Rn

for each point p and q in X.

Proof of Lemma 4.11. Let p and q be in X. The inequality that ‖p−q‖Rn ≤ distX(p, q)
is trivial because of the definition of an intrinsic distance distX . We need the next lemma
to prove the opposite inequality:

Lemma 4.12 ([28], Proposition 6.3). Let Y be a compact C2 manifold embedded into Rn.
Then, the inequality

distY (P,Q) ≤ lfs(Y )

(
1−

(
1− 2‖P −Q‖Rn

lfs(Y )

)1/2
)

holds for every point P and Q in Y with ‖P −Q‖Rn ≤ lfs(Y )/2.

First, we assume ‖p − q‖Rn ≤ lfs(X)/2. By Lemma 4.12 with Y := X, P := p and
Q := q and by the inequality 1− x ≤

√
1− x for all x ∈ [0, 1], we have

distX(p, q) ≤ lfs(X)

(
1−

(
1− 2‖p− q‖Rn

lfs(X)

)1/2
)

≤ lfs(X)

(
1−

(
1− 2‖p− q‖Rn

lfs(X)

))
= 2‖p− q‖Rn .

Next, we assume that ‖p− q‖Rn > lfs(X)/2. Then we have

distX(p, q) =
distX(p, q)

‖p− q‖Rn

‖p− q‖Rn ≤ 2
diam(X)

lfs(X)
‖p− q‖Rn .
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Hence, we have

distX(p, q) ≤ 2 max

{
1,

diam(X)

lfs(X)

}
‖p− q‖Rn .

Now, we return to prove of uniqueness.

Proof of Theorem 3.1.(ii). For j = 1, 2, let uj be discrete Giga–Kobayashi solu-
tions to (HFΩ,M,T ;uj0) associated with Ω∆. Let ζj ∈ ∂HT

∆
ΦT

∆(uj) for j = 1, 2, and let

λΩ∆,M(t) := 4(n−m) ·max
α∈∆
Ld(Ωα)−1/2 · curv(M) ·max

({
1,

diam(M)

lfs(M)

})2

max
j=1,2
‖ζj(t)‖H.

We shall check that u1 and u2 satisfy the assumption in Lemma 4.9 with X := H, I := Φ∆,
Y := M∆ and λ := λΩ∆,M . By the definition of discrete Giga–Kobayashi solutions, it is
trivial that u1 and u2 satisfy the assumption in Lemma 4.9 except evolution variational
inequalities. Hence, in the rest of the proof, we shall focus on these issues. First we

consider u1. For v ∈M∆, we compute
d

dt
‖u1 − v‖2

H to split the monotone term I and the

non-monotone term II. In order to do this, write

u1(t) :=
∑
α∈∆

u1
α(t)1Ωα ∈M∆, v :=

∑
α∈∆

vα1Ωα ∈M∆ for t ∈ [0, T ].

Ont the other hand, set

ν1
k(t) :=

∑
α∈∆

ν1
k,α(t)1Ωα , t ∈ [0, T ], k = 1, . . . , n−m,

where each family {ν1
k,α(t)}n−mk=1 is orthogonal bases of Nu1

α(t)M for all t ∈ [0, T ] and α ∈ ∆.
Then we can write

Pu1(t)(u
1(t)− v) = (u1(t)− v)−

n−m∑
k=1

〈u1(t)− v, ν1
k(t)〉Rnν1

k(t), t ∈ [0, T ].

We argue for fixed time t ∈ [0, T ] and we do not specify the dependence on
time for notational convenience.

By Proposition 2.5 (ii),
du1

dt
= −Pu1ζ1 and we have

1

2

d

dt
‖u1 − v‖2

H =

〈
du1

dt
, u1 − v

〉
H

= 〈ζ1,−Pu1(u1 − v)〉H

=

〈
ζ1, (v − u1)−

n−m∑
k=1

(〈v, ν1
k〉Rn − 〈u1, ν1

k〉Rn)ν1
k

〉
H

= 〈ζ1, v − u1〉H +

〈
ζ1,

n−m∑
k=1

(〈u1, ν1
k〉Rn − 〈v, ν1

k〉Rn)ν1
k

〉
H

=: I + II.
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Next, we estimate the terms I and II, respectively:

• Estimate for the term I: Since ζ ∈ ∂H∆
Φ∆(u1), the definition of the subdifferential

implies that

I ≤ Φ∆(v)− Φ∆(u1).

• Estimate for the term II: The Cauchy–Schwarz inequality implies that

II ≤ max
j=1,2
‖ζj‖H

n−m∑
k=1

‖〈u1, ν1
k〉Rn − 〈v, ν1

k〉Rn‖H

= max
j=1,2
‖ζj‖H

n−m∑
k=1

(∑
α∈∆

|〈u1
α, ν

1
k,α〉Rn − 〈vα, ν1

k,α〉Rn|2Ld(Ωα)

) 1
2

.

Lemma 4.10 and Lemma 4.11 imply that

max
j=1,2
‖ζj‖H

n−m∑
k=1

(∑
α∈∆

|〈u1
α, ν

1
k,α〉Rn − 〈vα, ν1

k,α〉Rn|2Ld(Ωα)

) 1
2

≤ max
j=1,2
‖ζj‖H

n−m∑
k=1

(∑
α∈∆

4 curv(M)2

(
max

{
1,

diam(M)

lfs(M)

})4

‖u1
α − vα‖4

RnLd(Ωα)

) 1
2

= 2(n−m) max
j=1,2
‖ζj‖Hcurv(M)

(
max

{
1,

diam(M)

lfs(M)

})2

·


(∑
α∈∆

(‖u1
α − vα‖

1
4
RnLd(Ωα)

1
2 )4Ld(Ωα)−1

) 1
4


2

≤ λΩ∆,M

2
·


(∑
α∈∆

(‖u1
α − vα‖RnLd(Ωα)

1
2 )4

) 1
4


2

.

The monotonicity of the sequence p-norms for exponents p ∈ [1,∞] implies

λΩ∆,M

2


(∑
α∈∆

(‖u1
α − vα‖RnLd(Ωα)

1
2 )4

) 1
4


2

≤ λΩ∆,M

2


(∑
α∈∆

(‖u1
α − vα‖RnLd(Ωα)

1
2 )2

) 1
2


2

=
λΩ∆,M

2
‖u1 − v‖2

H.

To connect the inequalities for II, we have II ≤ λΩ∆,M

2
‖u1 − v‖2

H.

Therefore, we combine the estimates of I and II to obtain

1

2

d

dt
‖u1 − v‖2

H ≤ Φ∆(v)− Φ∆(u1) +
λΩ∆,M

2
‖u1 − v‖2

H.
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By similar argument for u1, we also have an evolution variational inequality for u2:

1

2

d

dt
‖u2 − v‖2

H ≤ Φ∆(v)− Φ∆(u2) +
λΩ∆,M

2
‖u2 − v‖2

H.

Therefore, Lemma 4.9 implies that

‖u1(t)− u2(t)‖2
H ≤ e

∫ t
0 λΩ∆,M

(s)ds‖u1
0 − u2

0‖2
H

for all t ∈ [0, T ]. Our proof of Theorem 3.1 (ii) is completed.

Remark 4.1. Since a discrete Giga–Kobayashi solution constructed in Theorem 3.1 is
unique and Ψ∆ is Lipschitz on H∆, we see that the square-integrable function λΩ∆,M is
bounded by some positive constant depending only on Ω∆ and M .

5. Non-uniqueness for piecewise constant Giacomelli–

Mazón–Moll solutions

Let Ω̂ := {0 < x < 1}, Ω̂l := {0 < x < 2−1}, Ω̂r := {2−1 < x < 1}, T̂ := π/4,

û0(x) := (1, 0)1Ω̂l
(x) + (−1, 0)1Ω̂r

(x) ∈ S1 for x ∈ Ω̂.

In this section, we consider the Neumann problem of one-harmonic map flow equation
from the interval Ω̂ into S1:

(HFΩ̂,S1,T̂ ; û0)


∂tu− πu∂x

(
∂xu

|∂xu|

)
= 0 in Ω̂× (0, T̂ ),(

∂xu

|∂xu|

)
= 0 in {0, 1} × (0, T̂ ),

u(0) = û0 on Ω̂,

and our purpose is to compare with Giga–Kobayashi solutions and Giacomelli–Mazón–

Moll solutions to (HFΩ̂,S1,T̂ ; û0). In the case of Giga–Kobayashi solutions, one can prove
that û0 is a unique stationary solution in a space of piecewise constant functions by
similar argument in [15, Subsections 4.1 and 4.2]. 1 On the other hand, in the case of
Giacomelli–Mazón–Moll solutions, û0 is not a stationary solution, and there exist at least
two piecewise constant solutions. This occurs due to the fact that there exist two geodesic
midpoints in S1 between (1, 0) and (−1, 0) and Giacomelli–Mazón–Moll solutions is related
to the geodesic distance of S1. We shall prove the result about Giacomelli–Mazón–Moll
solutions.

First, we recall their notion of solution in our setting. For more general setting, see [13]
and [14]. Before giving the notion of solution, we recall additional fundamental properties

1Y. Giga et al. considered the Dirichlet boundary problem ([19]). Their argument is still valid even in
the case of the Neumann boundary conditions. Indeed, by similar argument in [19], we can calculate as

∂x

(
∂xû0

|∂xû0|

)
= (−2, 0)1Ω̂l

+(2, 0)1Ω̂r
=: v in the sense of Giga–Kobayashi solutions. In addition, πû0

v = 0

since û0 and v are orthogonal. Hence, û0 is a stationary Giga–Kobayashi solution.
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of functions of bounded variation on an interval. For fundamental of functions in BV
space, we refer to the monographs by [1].

Let Ω be an open interval. Let u := (u1, u2) ∈ BV (Ω; R2). Then there exists a finite
Radon measure µ := (µ1, µ2) ∈M(Ω; R2) such that

−
∫

Ω

dϕ

dx
ujdL1 =

∫
Ω

ϕdµj for j = 1, 2

for all smooth tests ϕ : Ω → R with compact support. We write Du := µ. The Radon
measure Du is decomposed into three mutually orthogonal measures:

Du =
du

dx
L1 +Dcu+Dju,

where du/dx denotes the Radon–Nikodým derivative of the measureDu w.r.t the Lebesgue
measure L1. Dcu is the Cantor part of u, which is supported on the set, denoted by Ω\Ju,
of the Lebesgue points of u, i.e., these points x ∈ Ω for which there exists a û(x) ∈ R2

such that

lim
r→0

1

L1(Br(x))

∫
Br(x)

‖û(x)− u(y)‖R2dy = 0,

where Br(x) := {y ∈ R | |x− y| ≤ r}. Dju is the jump part of u, which is supported on
the set, denoted by Ju, of the jump points of u, i.e., these points x ∈ Ω for which there
exist u(x)+, u(x)− ∈ R2 and νu(x) ∈ {±1} such that

lim
r→0

1

L1(B±r (x, νu(x)))

∫
B±r (x,νu(x))

‖u(x)± − u(y)‖R2dy = 0,

where B±r (x, νu(x)) := {y ∈ R | (y−x)νu(x) >< 0, |x−y| ≤ r}. The jump set Ju is a Borel
set. To keep this fact in mind, we denote by u∗ the precise representation of u which is
defined by

u∗(x) :=

{
û(x) if x ∈ Ω \ Ju,

(u(x)+ + u(x)−)/2 if x ∈ Ju,

In what follows, we identify u = û = u∗ on Ω \ Ju.
Now, we return to state the definition of Giacomelli–Mazón–Moll solutions. Note that

the equation

∂tu− πu∂x
(
∂xu

|∂xu|

)
= 0

can be rewritten as

∂tu− ∂x
(
∂xu

|∂xu|

)
− |∂xu|u = 0.

Giacomelli–Mazón–Moll solutions are defined for this form, and we need to pay attention
to the interpretation of |∂xu|u because u may be a BV function.
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Definition 5.1 (representation of |∂xu|u). Let u ∈ BV (Ω; R2) with u(x) ∈ S1 for a.e.
x ∈ Ω. We write ν ∈ ug|Du| whenever ν can be written as

ν = u(‖∂xu‖R2L1 + |Dcu|) + ug‖u+ − u−‖R2H0bJu ,

where ug : Ju → S1 maps x ∈ Ju to a geodesic midpoint 2 ug(x) ∈ S1 between u+(x) and
u−(x) and ug‖u+ − u−‖R2 is H0-measurable.

Definition 5.2 (Giacomelli–Mazón–Moll solution). Let a < b. Let Ω := {a < x < b}.
Let T > 0. Let u0 ∈ L2(Ω; R2) with u0 ∈ S1 in a.e. Ω. A map

u ∈ C([0, T ];L2(Ω; R2)) ∩ L1((0, T );BV (Ω; R2)) ∩W 1,2((0, T );L2(Ω; R2)) (9)

is a Giacomelli–Mazón–Moll solution, GMM solution for short, to (HFΩ,S1,T ;u0) if u(0) =
u0, u ∈ S1 for a.e. in Ω × (0, T ), and there exists a map z ∈ L∞(Ω × (0, T ); R2) with
‖z‖L∞(Ω×(0,T );R2) ≤ 1 such that z(t) := z(·, t) ∈ BV (Ω; R2) in a.e. (0, T ),

〈z(x, t), u(x, t)〉R2 = 0 for a.e. (x, t) ∈ Ω× (0, T ),

and the following holds for a.e. t ∈ (0, T ):
∂tu(t)− ∂xz(t) ∈ (u(t))g|Du(t)| in M(Ω; R2),
∂tu(t) ∧ u(t) = ∂x(z(t) ∧ u(t)) in L2(Ω; R),

z(a, t) = z(b, t) = 0 in R2,

where
z(a, t) := lim

x→+a
z(x, t), z(b, t) := lim

x→b−
z(x, t)

and ∧ is the wedge product, i.e., x ∧ y := x1y2 − x2y1 for x := (x1, x2) and y := (y1, y2).

Theorem 5.1 (Non-uniqueness). Let Ω̂ := {0 < x < 1}, Ω̂l := {0 < x < 2−1}, Ω̂r :=

{2−1 < x < 1}, T̂ := π/4,
û0 := (1, 0)1Ω̂l

+ (−1, 0)1Ω̂r
.

Let θ+ and θ− be functions on Ω̂× [0, π/4) defined by the forms:

θ±(·, t) := ±2t1Ω̂l
± (π − 2t)1Ω̂r

.

Then u± := (cos θ±, sin θ±) are Giacomelli–Mazón–Moll solutions to (HFΩ̂,S1,T̂ ; û0), and

u+(·, t) 6= u−(·, t) in L2(Ω̂; R2) for all t ∈ (0, T̂ ).

Proof of Theorem 5.1. By the definition of u±, we see that u± satisfy (9), u±(·, 0) = û0

and u+(·, t) 6= u−(·, t) in L2(Ω̂; R2) for a.e. t ∈ (0, T̂ ). We shall prove that u± are GMM

solutions to (HFΩ̂,S1,T̂ ; û0). Let

η±(x, t) := ±2x1Ω̂l
± (2− 2x)1Ω̂r

, (x, t) ∈ Ω̂× (0, T̂ ),

2Geodesically midpoints : A point m ∈ S1 is called a geodesically midpoint between p ∈ S1 and q ∈ S1

if dS1(p,m) = dS1(m, q), where dS1(P,Q) denotes the geodesic distance between P ∈ S1 and Q ∈ S1.
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z±(x, t) := γ±(x, t)η±(x, t), (x, t) ∈ Ω̂× (0, T̂ ),

where γ± = (− sin(θ±), cos(θ±)). Then by the definition, we see that z±(·, t) ∈ BV (Ω̂; R2)

and z±(0, t) = z±(1, t) = 0 for a.e. t ∈ (0, T̂ ), and ‖z±(x, t)‖R2 ≤ 1 and 〈u±(x, t), z±(x, t)〉R2 =

0 for a.e. (x, t) ∈ Ω̂ × (0, T̂ ). By calculations, we have the following equality for a.e.

t ∈ (0, T̂ ):

∂tu±(·, t) = ±2γ±(·, t)1Ω̂l
∓ 2γ±(·, t)1Ω̂r

in L2(Ω̂; R2),

∂xz±(·, t) = ±2γ±(·, t)1Ω̂l
∓ 2γ±(·, t)1Ω̂r

+ (0,∓2 cos(2t))δ 1
2

in M(Ω̂; R2),

|Du±(·, t)| =
∣∣∣∣2 sin

(
θ+
±(·, t)− θ−±(·, t)

2

)∣∣∣∣ δ 1
2

= 2 cos(2t)δ 1
2

in M(Ω̂; R2),

where δ1/2 denotes the Dirac delta at 1/2. Since the geodesically midpoints between

u±(1/2, t)+ and u±(1/2, t)− are {(0,±1)} for t ∈ (0, T̂ ) , we see that u± and z± satisfy

∂tu±(·, t)− ∂xz±(·, t) ∈ u(·, t)g|Du±(·, t)| in M(Ω̂; R2) a.e in (0, T̂ ).

On the other hand, since

∂x(u±(·, t) ∧ z±(·, t)) = ∂xη±(·, t), ∂tu±(·, t) ∧ u±(·, t) = ∂tθ±(·, t), ∂xη±(·, t) = ∂tθ±(·, t)

in L2(Ω̂; R2) for a.e. t ∈ (0, T̂ ), we have

∂x(u±(·, t) ∧ z±(·, t)) = ∂tu±(·, t) ∧ u±(·, t) in L2(Ω̂; R2) for a.e. t ∈ (0, T̂ ).

Therefore, u± are GMM solutions to (HFΩ̂,S1,T̂ ; û0).
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