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1 Introduction

Riemann surfaces can be constructed by the sewing of thrice-punctured spheres, and the
conformal group of these punctured spheres contains a symmetric permutation group
S3 that interchanges the punctures. More generally, the Riemann surface constructed
from an irreducible polynomial of two variables can be shown to have a group of deck
transformations represented by the Galois group of the function field. Since all of the
smooth finite-genus Riemann surfaces may be described as algebraic curves, solvability of
the equation with the Galois group equal to Sn, resulting from the fixing of the value of
one of the variables of a two-variable polynomial, implies that the uniformizing group is
projected to the symmetric group on the solution set.

The uniformization of spheres with n punctures is known to introduce functions with
special modular properties. For the thrice-punctured sphere, it is the elliptic modular
function, and the additional invariance under the permutations of the punctures yields
a group generated by two transformations of order 2 adjoined to Γ(2). These transfor-
mations also generate the mapping class group Γ0,[3] for three unmarked points, which is
shown to be isomorphic to the quotient of the braid group by equivalence relations for
the two generators.

The isomorphism between Γ(1)/Γ(2) is examined in light of the matrices with negative
determinant, and it is found that consistency is restored modulo 2. Once the transfor-
mations representing S3 modulo 2 are allowed to act on punctures on C∗, a sets of three
points, which are being permuted, would differ for each generator. Consequently, the in-
clusion of matrices of negative determinant in the presentation of the permutation group
has been found to be necessary.

The punctures of a collection of thrice-punctured spheres can be sewed together to
construct a higher-genus surface with fewer punctures. The integrals over these higher-
genus surfaces therefore should reflect some of the symmetries of the thrice-punctured
sphere including invariance of under the permutation group. This result is found to hold,
and the implications for the vestiges of this symmetry are elaborated.

Amongst the surfaces that may be formed by the sewing of the punctures of thrice-
punctured spheres are the n-punctured spheres. Translating the problem of defining the
uniformizing parameters of higher-genus surfaces to the punctured sphere, a paracompact
model of the universal moduli space of punctured spheres is defined. The connection with
the absolute Galois group is described.

2 Galois Groups and Irreducible Polynomials

If f(x, y) is an irreducible polynomial of finite degree, suppose that g(x, y) ∈ C(x)[y] is
the monic irreducible polynomial over Q with Y as a root, where Y is a primitive element
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of the splitting field Kf . Fixing y, the equation in x resulting from f(x, y) has a solution
in the algebraic numbers. The coefficients, which may be expressed as combinations of
the roots, also must belong to a field of algebraic numbers. Therefore, f(x, y) ∈ Q(x)[y],
where Q(x) is a field extension of the rational numbers. By the Hilbert irreducibility
theorem [13], there exist infinitely many values x0 such that the polynomial in Q(x0)[y]
is irreducible over the rational numbers. It is known that Y can be chosen such that the
N roots of g(x, y) in Kf are polynomials of degree less than or equal to N − 1 in Y [18],

Yj = c0j + c1jY + ...+ cN−1,jY
N−1 (1)

cij ∈ Q(α1, ..., αn)(x).

where α1, ..., αn are introduced through a set of conditions on the nonlinear combinations
of the coefficients. The algebraicity of the roots is determined therefore by Y . The roles
of the roots Y = Y1, Y2,..., YN can be permuted when the Galois group is SN , and the
root which is an algebraic number in Kf may be selected. From the relations between the
roots, it follows that all roots of g(x0, y) are algebraic numbers given by finite radicals if
x0, α1, ..., αn and one of the roots are similarly characterized.

The finite-degree algebraic equations define surfaces with a finite number of branch
cuts and curves with a finite number of covering sheets. The conclusions regarding alge-
braic numbers can be restricted to finite algebraic expressions. If one root is a finite radical
expression, and g(x0, y) ∈ Q(x0)[y] where Q(x0) is an extension of Q by finite radicals,
then all roots of g(x0, y) are finite radical expressions if the Galois grouup of the equation
g(x0, y) = 0 is SN . It is necessary to establish the connection between the nature of the
polynomial g(x, y) and the roots Y = Y1, ..., YN . Given a choice of x0, Y is a finite radical
expression, it may be viewed as a root of an irreducible polynomial g(x0, y) that belongs
to Q(α1, ..., αn)(x0), where α1, ..., αn are Ruffini radicals, and cij ∈ Q(α1, ..., αn)(x). For
fixed x0, cij ∈ Q(α1, ..., αn)(x0). If x0 is an algebraic number that is expressed in terms of
a finite number of radicals, cij ∈ Q(α1, ..., αn, x0) is a soluble extension of Q. Therefore,
if one root is a Ruffini radical, all of the roots would be Ruffini radicals. The basis for the
conclusion stems from the arrangement of the decomposition of the polynomial g(x, y)
into linear factors in y. Dividing g(x, Y ) by y− Y yields a polynomial of degree N − 1 in
Y . It follows that

(Y − Y2)...(Y − YN) = Y N−1 −
N−1∑
j=1

Yj + ...+ (−1)N−1Y2...YN (2)

where
∑

j Yj =
∑

j(c0j + c1jY + ... + cN−1,jY
N−1). The powers of Y which must have a

vanishing coefficient are Y N , ..., Y N(N−1), yielding N +N(N − 2) equations for N(N − 1)
coefficients with values in Q(x). There exists a nontrivial solution to these equations
consisting of nonlinear combinations of the coefficients cij, since N(N − 2) coefficients
can be eliminated systematically without introducing any new radicals. The remaining
N coefficients can be expressed in terms of Ruffini radicals α1, ..., αn, because it requires
only of finite number of arithmetical operations to transform the nonlinear combinations
into linear expressions in the coefficients, Y has been given by a finite set of radicals, and
the polynomial ring generated by Ruffini radicals is closed. This polynomial ring differs
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from the field extensions Kj of K0 = Q(s1, ..., sN), with s1, ..., sN being the symmetric
polynomials of the roots Y1, ..., YN , where Kj = Kj−1(αj), α

nj

j ∈ Kj, j = 0, 1, ..., r and
Kr = Q(Y1, ..., YN), since a sequential nesting of the radicals {αj} is not required in a
general polynomial of {αj}. Therefore, interchanging Y with Yj, j = 2, ..., N , it would
not be possible to express Y as a polynomial of degree N − 1 in Yj unless Yj is given by

a finite arithmetical combination of Ruffini radicals, and c
(j)
k,1 ∈ Q(α1, ..., αn, x0), where

Y = c
(j)
0,1+c

(j)
1,1Yj+ ...+c

(j)
N−1,1Y

N−1
j . The nature of the root Y may be deduced from Galois

theory. The Galois group of the splitting field of an algebraic equation is Sn generally,
although polynomials with discriminants that are perfect squares have this group An

[13][21]. If there is one proper normal subgroup of Sn with an abelian quotient, this can
be used to generate a root that is a Ruffini radical of the equation. Therefore, when this
property holds for the Galois group of the equation, all of the roots have finite radical
expressions.

The definition of the Riemann surface as an algebraic curve and the uniformization of
these surfaces can be reformulated in terms of parameters describing the covering group
of the surface constructed from the Puiseux elements of the irreducible polynomial. The
permutation group of three elements can be interpreted as a Galois group of a function
field on a Riemann surface related to an equation of degree three. The algebraicity of the
roots of the equation, derived after the fixing of one of the variables, is confirmed by the
finiteness of the number of uniformizing parameters for finite-genus surfaces.

3 Galois Group of the Function Field on a Riemann

Surface and the Conformal Group of the Punc-

tured Sphere

It has been demonstrated that the Riemann surface defined by the function f(x, y) may
be constructed from the Puiseux elements of the irreducible polynomial f(x, y), which are
the triples (a, r, u) with
(i) r is an integer larger than 0
(ii) u ∈ C((t))∗
(iii) u =

∑
amt

m, supp u = {m|am ̸= 0}, d(u) = gcd supp(u), gcd(r, d(u)) = 1
(iv) f(a+ tr, u) = 0 in C((t)), a ∈ C.

The set of Puiseux elements for the function at a shall be denoted by P(a, f) and let Pf

be the set of points at which Puiseux elements are defined.

If f(x, y) = c0y
n + c1(x)y

n−1 + ... + cn(x), let S+ be the set of zeros of c0(x), S− be
the set of poles of ci(x) and D be the union of the set of zeros of D(f) and ∞. Then the
Riemann surface R is equated to

R∗ × In ∪ P × In × (ℓ× In × {L.R}) (3)
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where S = S+ ∪ S− ∪D, where In is an index set {1, ..., n},

ℓ = ∪pℓq,p, q ∈ C∗, q ̸∈ S (4)

ℓq,p = πq,p(0, 1); πq,p is a piecewise linear map of [0, 1] into C∗

and R∗ = C∗/({Pf ∪ ℓ}).

Each (z, i) ∈ R∗ × In will be contained in an open set (D(z, r), i), and the union of
such sets would form D(z, r) ⊂ R∗. Since there are permutations of these sets given by
equivalences (z, i, L) ∼ (z, σz(i), R), this union also can expressed as (∆1, i)∪(∆2, σ

−1
p1
(i))∪

...(∆r+1, σ
−1
pr σ

−1
pr−1

...σ−1
1 (i)) ∪ ..., where σ1...σpn = 1 [21][22].

Since the Riemann surface Rg is constructed by this method, the group of confor-
mal transformations contains G(Kf/Q(x)) [21]. The identification of a subgroup of the
conformal group with the Galois group of permutations results from the interchange of
the sector {∆i}, provided that the maps are the identity for identical domains. How-
ever, a more general set of maps from ∆i to ∆j and pi to pj can be described, such that
the continuous transformations are not identity mappings. There is a group of conformal
transformations of Riemann spheres with n punctures, with the locations of the punctures
permuted under the mappings, that includes these transformations.

Since the covering space of a Riemann surface of genus greater than one is H, a pre-
sentation of the conformal group may be found. For C∗\{0, 1,∞}, the three generators
satisfy g1g2g3 = 1. If these transformations are required to fix only one of the punc-

tures, the group is conjugate to Γ(2) =

{(
a b
c d

)
∈ PSL(2,Z)

∣∣∣∣b ≡ c ≡ 0 mod 2

}
. As

Γ(1)/Γ(2) ≃ S3, the permutation group of the three points, the use of the larger group
can be considered.

Theorem 3.1. A union of the sets of generators of S3 ⋊ Γ(2) permuting the points
{0, 1,∞} in the thrice-punctured sphere and fixing separately one puncture has four inde-
pendent basis elements. Factorization by those matrices that do not leave invariant the set
of three punctures yields the permutation group S3, which is isomorphic to the subgroup
of the conformal group of the covering space that fixes the set {0, 1,∞}. The normalizer
of S3 within GL(2;R) is S3 and it is included in the modular group SL(2;Z). The sub-
group of the conformal group is isomorphic to the Galois group of the function field of the
thrice-punctured sphere.

Proof. The presentation of the generators satisfying the conditions
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g1(0) = 1 g1(1) = ∞ g1(∞) = 0 (5)

g2(0) = ∞ g2(1) = 0 g2(∞) = 1

g3(0) = 0 g3(1) = ∞ g3(∞) = 1

g4(0) = ∞ g4(1) = 1 g4(∞) = 0

and tr g1 = tr g2 = 2 would be

g1 =

(
0 2
−2 2

)
(6)

g2 =

(
2 −2
2 0

)
g3 =

(
a′ 0
a′ −a′

)
g4 =

(
0 b′′

b′′ 0

)
.

Neither g3 or g4 can be parabolic elements, and the requirement of a parabolic conformal
group must be relaxed to include these generators. Alternatively, since 1

2
g1 is an elliptic

element representing a fractional transformation of order 3 that permutes the three punc-

tures, even though
(
1
2
g1
)2

= −I and g3 at a′ = 1 is an element of order 2, it is sufficient
to add these matrices to the group conjugate to Γ(2), yielding the group⟨(

0 −1
1 −1

)
,

(
1 0
1 −1

)
,

(
1 2
0 1

)
,

(
1 0
−2 1

)⟩
/⟨±I⟩. (7)

which represent a basis of generators of S3 ⋊ Γ(2). Since the latter two transformations
do not leave invariant the set {0, 1,∞}, factorization by the group generated by these
elements leaves S3.

When n = 3, the normalizerNΓ(2) of the group Γ(2), which is conjugate to a group with
each generator fixing only one puncture, is a proper subset of SL(2;Z) and NΓ(2)/Γ(2) ⊂
Γ(1)/Γ(2). The Galois group Gal(Kf/Q(x)) is not contained in NΓ(2)/Γ(2) [7] but it is a
subgroup of the conformal group of the surface.

It is necessary to consider the subgroup of the conformal group of the covering space
which leaves invariant the set of three punctures. Consequently, the generators of this
conformal group would only differ by a scale factor from the matrices gi, i = 1, 2, 3, 4 that
is established by the determinant condition. Within multiplication by ±I, the matrices
in the group

⟨(
0 −1
1 −1

)
,

(
1 0
1 −1

)⟩
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are

I,
(

0 1
−1 1

)
,

(
1 0
1 −1

)
,

(
−1 1
−1 0

)
,

(
1 −1
0 −1

)
,

(
0 1
1 0

)
(8)

and the matrices 1
2
g2 and g4 at b′′ = 1 belong to this set.

These matrices will belong to the normalizer of S3. The maximal subgroup ofGL(2;R),
which is a normalizer of S3 and fixes the three punctures, will be determined. Consider,

for example, a similarity transformation with determinant 1 of

(
0 1
−1 1

)
.

(
a b
c d

)(
0 1
−1 1

)(
d −b
−c a

)
=

(
−bd− (a+ b)c b2 + (a+ b)a
−d2 − (c+ d)c bd+ (c+ d)a

)
(9)

If the transformed matrix is set equal to

(
1 0
−1 1

)
,

−bd − (a + b)c = 1 (10)

b2 + (a + b)a = 0

− d2 − (c+ d)c = −1

bd+ (c+ d)a = 1

The second condition is satisfied by a = b = 0 for real matrices. The only group element

in Eq.(5) which could equal a nontrivial conjugation of this matrix is

(
−1 1
−1 0

)
.

Further suppose that the determinant of the GL(2;R) matrix is allowed to be ±1.

Equality with ±
(

−1 1
−1 0

)
yields four relations for a GL(2;R) matrix are

−bd − (a + b)c = −1 (11)

b2 + (a + b)a = 1

− d2 − (c+ d)c = −1

bd+ (c+ d)a = 0

From the second and third relations,

b = 1/2
(
−a±

√
4− 3a2

)
(12)

d = 1/2
(
−c±

√
4− 3c2

)
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The fourth condition then is equivalent to(
−a±

√
4− 3a2

2

)(
−c±

√
4− 3c2

2

)
+

(
c+

−c±
√
4− 3c2

2

)
a = 0 (13)

or (
3a∓

√
4− 3a2

)
c± a

√
4− 3a2 +

√
(4− 3a2)(4− 3c2) = 0 (14)

Dividing by
√
4− 3c2 gives

c√
4− 3c2

=
∓a−

√
4− 3a2

3a∓
√
4− 3a2

(15)

Then

d = c

(
±a−

√
4− 3a2

∓a−
√
4− 3a2

)
(16)

Finally, it follows from the first condition

c

(
−a±

√
4− 3a2

2

)(
±a−

√
4− 3a2

∓a−
√
4− 3a2

)
+

(
a±

√
4− 3a2

2

)
c = 1 (17)

c

(
a∓

√
4− 3a2

2

)
+ c

(
a±

√
4− 3a2

2

)
= 1

which implies that c = 1
a
. By Eq.(8),

1
a√

4− 3
a2

=
∓a−

√
4− 3a2

3a∓
√
4− 3a2

(18)

Squaring this relation gives

1

4a2 − 3
=

4− 2a2 ± 2a
√
4− 3a2

4 + 6a2 ∓ 6a
√
4− 3a2

(19)

and
4 + 6a2 − (4a2 − 3)(4− 2a2) = ±8a3

√
4− 3a2 (20)

or

(a4 − 2a2 + 2 )2 = a6(4− 3a2) (21)

(a4 − a2 + 1)2 = a4
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Therefore, either a4 − 2a2 + 1 = 0 or a4 + 1 = 0. The first set of solutions is a = ±1
while the second equation has complex solutions only, and therefore c = ±1. From the
conditions on the matrix elements, b = 0 if a = 1, − 1 and d = −1 if c = 1 or d = 1 if
c = −1.

The matrices to consider are (
1 0
1 −1

)
,

(
−1 0
−1 1

)
. (22)

The matrices, with determinants equal to −1, produce the required matrix within a
factor of ±I, since the inverse must include a negative sign with respect to the matrix
multiplication (5).

The effect of the fractional linear transformation represented by the first matrix in

Eq.(13) is x + iy → x+iy
(x−1)+iy

= x(x−1)−y2−iy
(x−1)2+y2

, which has a negative imaginary part. The

conformal group of C∗\{0, 1,∞} will be required to allow transformations from the upper
half-plane to the lower half-plane that leave the real line invariant. Because three of
the matrices in Eq.(4) have determinant −1, the group SL(2;R) should be enlarged to

SL(2;R)∪
(

1 0
1 −1

)
SL(2;R). While the covering space of C∗\{p1, ..., pn} is generally

chosen to be H or the unit disk U [14][19], the covering group can be selected such that
its action on H has a range which includes H̄ for some of the elements.

The final permutation of two elements

g5 =

(
a′′′ b′′′

c′′′ d′′′

)
would satisfy

g5(0) = 1 g5(1) = 0 g5(∞) = ±∞ (23)

or
b′′′

d′′′
= 1 a′′′ + d′′′ = 0 c′′′ = 0 (24)

with ∞ and −∞ identified. Setting b′′′ = 1 gives the matrix

(
−1 0
1 1

)
̸∈
⟨(

0 1
−1 1

)
,

(
1 0
1 −1

)⟩
/⟨±I⟩ (25)

which, again, has a determinant equal to −1.

Multiplication of the matrices in Eq.(4) by

(
−1 0
1 1

)
yields

(
−1 0
1 1

)
,

(
0 −1
−1 2

)
,

(
−1 0
2 −1

)
,

(
1 −1
−2 1

)
,

(
−1 1
1 −2

)
, (26)(

0 −1
1 1

)
.
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These matrices, however, represent fractional transformations that map {0, 1, ∞} to
the set {−1, − 1

2
, 0}. Furthermore, multiplication of the elements would close only after

generating a much larger group. Finally, the conjugation of

(
0 1
−1 1

)
by

(
−1 0
1 1

)
is(

−1 −1
3 2

)
, which does not belong to the set of matrices in Eq.(4).

Therefore, the normalizer of S3 in SL(2;R) ∪
((

1 0
1 −1

)
SL(2;R)

)
is S3, and

NS3/S3 would not contain the symmetric permutation group. It is sufficient, however, to
consider that subgroup of this conformal group that preserves the set {0, 1,∞} within
a permutation, which is isomorphic with the Galois group of the function field of the
thrice-punctured sphere.

Since three matrices in Eq.(4) have a determinant equal to −1, it may be investi-
gated whether all presentations of the symmetric permutation group as fractional linear
transformations on C∗ are represented by matrices with a determinant equal to −1.

Theorem 3.2. The presentation of generators of S3, which are fractional linear trans-
formations on C∗ preserving a set of three points in the finite complex plane, requires
matrices with determinants equal to −1 for the permutation of two elements.

Proof. Because the action of fractional linear transformations on C∗\{0, 1,∞} can be
complicated by the point at ∞, consider instead the locations of the three punctures at

{−1, 0, 1}. The action of the permutation of order 3 is

{
−1 0 1
0 1 −1

}
, the conditions

on the matrix elements are

a1 = b1 b1 = d1 a1 + b1 = −(c1 + d1) c1 = −3a1

and a unit determinant results if a1 = ±1
2
. Let a1 =

1
2
. Then the matrix is

(
1
2

1
2

−3
2

1
2

)
.

Within multiplication by ±I, this matrix generates a cyclic group of order 3.

The permutation of two points is given by{
−1 0 1
0 −1 1

}
,

{
−1 0 1
−1 1 0

}
,

{
−1 0 1
1 0 −1

}
(27)

The conditions on the matrix representing the first permutation are

a2 = b2 b2 = −d2 a2 + b2 = c2 + d2 c2 = 3a2
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such that

det

[
a2

(
1 1
3 −1

)]
= −4a22 = −1 (28)

if a2 = ±1
2
. When a2 =

1
2
, the matrix is(

1
2

1
2

3
2

−1
2

)
with a determinant equal to −1. The relations for the second permutation

are

a3 = −b3 b3 = d3 a3 − b3 = −(c3 − d3) c3 = −3a3 (29)

and

det

[
a3

(
1 −1
−3 −1

)]
= −4a23 = −1 (30)

if a3 = ±1
2
, yielding

(
1
2

−1
2

−3
2

−1
2

)
. The constraints for the third permutation are

a4 − b4 = c4 − d4 b4 = 0 a4 + b4 = −(c4 + d4) (31)

c4 = 0

a4 = −d4

and, again, the matrix

(
1 0
0 −1

)
has a determinant equal to −1. Each of the permu-

tations of order 2, combined with the permutations of order 3, produces a group of six
elements represented by the matrices

I,
(

1
2

1
2

−3
2

1
2

)
,

(
−1

2
1
2

−3
2

−1
2

)
,

(
1
2

1
2

3
2

−1
2

)
,

(
−1

2
1
2

3
2

1
2

)
,

(
1 0
0 −1

)
(32)

within multiplication by ±I.

By contrast with the points {0, 1,∞}, the interchange of any two of the punctures in
the set {−1, 0, 1} would not alter the presentation of the permutation group. For any three
finite real values, the application of an SL(2;R) matrix would be sufficient to transform
{−1, 0, 1} to these points. Then multiplication of these generators by this matrix again
would give a group of order 6, with three elements represented by matrices of determinant
−1.

The differential equation for the universal covering map of C∗\{p1, ..., pn} has been
given [12]. A presentation for the subgroup of the conformal group of transformations
on the n-punctured sphere leaving invariant p1, ..., pn can be found by an embedding
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of the matrices in SO(2, 1). Although there are continuous transformations from one
sector, ∆i, to another, ∆j, these analytic mappings may be retracted to the identity,
After identification of the domains, combined with permutation of the points {pi}. The
discrete group G(Kf/Q(x)) results from a retraction of the group of transformations of
the conformal equivalence class of the Riemann surface Rg. Permutation of the fixed
points is sufficient for this retraction.

4 The Moduli Spaces of Punctured Spheres and the

Symmetric Permutation Group

The elliptic modular function is the conformal universal covering map for the thrice-
punctured sphere [1]. The relation between Γ(1) = SL(2;Z) and the congruence subgroup

Γ(2) is evident in the modular invariance of J(ω) = (λ2−λ+1)3

λ2(λ−1)2
under modular transforma-

tions, where λ = e1−e3
e2−e3

, e1 = J
(
w1

2

)
, e2 = J

(
w2

2

)
and e3 = J

(
w1+w2

2

)
, ω = w2

w1
, invariance

of λ with respect to Γ(2) and (λ2−λ+1)3

λ2(λ−1)2
under the transformations λ → 1

λ
and λ → 1− λ,

which generates a group of order 6.

Theorem 4.1. The group S3 may be generated by two permutations of order 2, which
are represented by matrices with determinants equal to −1. The elements also generate
the fundamental group of the moduli space of the sphere with three unmarked points which
is a quotient of the braid group B3 by equivalence relations for the two generators.

Proof. This presentation of the symmetric group is determined by the transformations
of order 2

σ1 : λ → 1

λ
(33)

σ2 : λ → 1− λ

since

σ1σ2 : λ → 1

1− λ
(34)

σ2σ1 : λ → λ− 1

λ

σ1σ2σ1 = σ2σ1σ2 : λ → λ

λ− 1
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The relations for the two generators are

σ2σ1σ2 = σ1σ2σ1 σ2
1 = 1 σ2

2 = 1 (35)

For the braid group Bn with generators σ1, ..., σn−1, the relations are

σiσi+1σi = σi+1σ1σi+1 (36)

σiσj = σjσi if |i− j| ≥ 2

For the braid group B3, |i− j| ≤ 1, and the the first relation is

σ2σ1σ2 = σ1σ2σ1 (37)

iteSchneps03.

Given that

yi = σi−1...σ1 · σ1...σi−1 2 ≤ i ≤ n (38)

zi = (σ1...σi−1)
i

it follows that

y3 = σ2σ
2
1σ2 z3 = (σ1σ2)

3 (39)

If y3 = 1, it follows from Eq.(24) that

z3 = σ1(σ2σ1σ2)σ1σ2 = σ1(σ1σ2σ1)σ1σ2 = σ2
1(σ2σ

2
1σ2) = σ2

1 (40)

The equality z3 = 1 is equivalent to σ2
1 = 1. Substituting this relation into y3 gives

σ2
2 = 1. Therefore, S3 ≃ B3/⟨y3 = 1, z3 = 1⟩. This space can be identified with Γ0,[3],

the mapping class group of the sphere with three unmarked points [11][20]. From the
transformations representing σ1, σ2, σ1σ2, σ2σ1 and σ1σ2σ1, it follows that I, σ1σ2 and σ2σ1

correspond to matrices with a determinant equal to 1, while σ1, σ2 and σ1σ2σ1 = σ2σ1σ2

are permutations of two points that are represented by matrices of determinant -1.

The principal congruence group of level 2 is the kernel of the homomorphism µ2 :
PSL(2;Z) → PSL(2;Z2). The only matrices in PSL(2;Z2) that have a determinant

equal to 1 are I,
(

1 1
0 1

)
and

(
1 0
1 1

)
, and the six elements modulo 2 are

I,
(

1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 1

)
,

(
1 1
1 0

)
,

(
0 1
1 0

)
(41)

Again, the determinants of three of the matrices equals −1, although, modulo 2, it can
be equated to 1. However, it can be verified that there is no set of three points which are
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permuted by the second matrix, a coalescence of the three punctures at 0 is required for
the third matrix, and the locations of the three punctures for the remaining matrices are

(
0 1
1 1

)
: x =

−3±
√
5

2
, y =

2

±
√
5− 1

, z =
−1±

√
3i

2
(42)(

1 1
1 0

)
: x =

1±
√
3i

2
, y =

3±
√
3i

1±
√
3i
, z =

1±
√
5

2(
0 1
1 0

)
: x = 0, y = ∞, z = ±1

Consequently, the fractional linear transformations cannot fix the same set of points in
C∗, and the conclusions of Theorem 3.2 are confirmed.

It follows that for a thrice-punctured sphere, an S3 permutation symmetry, represent-
ing the interchange of the punctures, exists. This group also acts freely on any finite
complex homotopic to S3, and by restriction, S2 [4]. Furthermore, this symmetry will be
included in the group of deck transformations of the covering of the surface.

String theory amplitudes have been given formally by a sum over genus of moduli
space integrals defined over all quasiconformal deformations of the metric not related by
the identity component of the diffeomorphism group and factored by Weyl rescalings of the
two-dimensional metrics on the Riemann surfaces. The action of the S3 transformation
may considered for string theory amplitudes. Since the thrice-punctured spheres are used
initially for surfaces of genus g ≥ 2, it is necessary to introduce vertex operators at zero
and one loops. Furthermore, it can be concluded that the invariance under an appropriate
S3 action on the modular parameter integration region is reflected at lower energies in a
universality principle for trilinear couplings in the field theory limit.

The genus-g surface can be constructed by the sewing of spheres with three punctures.
Consider 2g − 2 spheres with three punctures with g − 1 components in two separate
groups. The first set will be labelled as {Σ(1)

0,3, ...,Σ
(g−1)
0,3 }, while the second group is

{Σ(g)
0,3, ...,Σ

(2g−2)
0,3 }. Suppose that a handle is placed between two of the punctures on

Σ
(1)
0,3 and the third puncture is joined to a puncture of Σ

(2)
0,3. The process of creating a

handle between two punctures is the reverse of that of the pinching of a handle that
yields a singular surface in the compactification divisor of moduli space. By connecting
the two remaining punctures of Σ

(2)
0,3 to punctures on Σ

(3)
0,3 and Σ

(g+1)
0,3 , Σ

(2)
0,3 is sewed to two

other components of the Riemann surface. This procedure can be iterated with the two
remaining punctures of Σ

(i)
0,3 being joined to Σ

(i+1)
0,3 and Σ

(g+i−1)
0,3 , i = 3, ..., g−1. Then all of

the punctures of the first set of components have been sewed, and there are two available
punctures on the each of the components in the second set. Since it is not necessary to
sew any of these components to other thrice-punctured spheres, handles can be placed on
Σ

(g)
0,3, ...,Σ

(2g−2)
0,3 . It follows that the sewed surface has g handles and no punctures.

This technique can be extended to N -point, g-loop amplitudes represented by the
sewing of 2g− 2 +N thrice-punctured spheres. The integration over moduli space would
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be described by the nature of the handles and the propagators between different compo-
nents The interchange of two punctures which are replaced by a handle does not affect the
amplitude, whereas the interchange of the punctures that are connected to different com-
ponents would transform the integration to a separate part of moduli space. The action of
the symmetric permutation group may be applied to each component Σ0,3 of the decom-
position on which no handles are attached, it must be possible to partition the integration
region of the modular parameters at genus g according to an S3 × S3 × ... × S3 = Sg−2

3

symmetry.

The method of sewing thrice-punctured spheres to construct a genus-g surface begins
at g = 2. Summing the amplitudes from genus 3, there would be S3, S3 × S3, S

3
3 , S

4
3 ,

... actions on the integration regions for the path integral. The total amplitude would
contain an invariance only under the intersection of these symmetries, which would be

∩∞
n=3(S3)

n = S3. (43)

At genus 1, when the handle is placed between two punctures, the inclusion an ad-
ditional vertex operators would require a thrice-punctured sphere. The genus 2 surfaces
are constructed by connecting two once-punctured tori. Likewise, at tree level, thrice-
punctured spheres again occur when N ≥ 3. The effect of an S3 transformation on the
integral for the one-point, one-loop diagram would be the interchange of the location of
the vertex operator with that of the handle in the corner of moduli space defined by the
thinning of the handle until a puncture appears. For the higher-point one-loop diagrams,
the interchange of vertex operators arises as well. The action of the symmetric permu-
tation group therefore implies a comparison of the coincidences of vertex and handle
operators with the coincidences of vertex operators [2]. This possibility, which potentially
complicated the analysis of divergences in superstring theory, can be shown to have a
regular solution.

It may be recalled that one-point functions determine the stability of the vacuum,
two-point amplitudes are related to mass or wavefunction renormalization and three-point
amplitudes yield predictions of the couplings in the low-energy field theory. Consequently,
the three-point tree-level amplitude would govern the leading-order contribution to the
Yukawa couplings in the field theory [25].

It is known that N -point superstring amplitudes vanish for N < 4, and therefore, it
might appear that the three-point amplitude cannot be used. However, it may be conjec-
tured that the supersymmetry breaking in a phenomenological Lagrangian will render the
three-point functions nonvanishing. Therefore, if the formal S3 invariance in the integral
for the superstring amplitude is preserved at lower energies, its effect would be evident
in the field-theory limit. This result is confirmed by the universality of the couplings in
interactions between photons, intermediate vector bosons and gluons and the fermions in
the three different generations.

The symmetric permutation group of three elements also arises in the automorphism
group of the standard model. It has been demonstrated that the spinor space of the
standard model may be expressed as ⊕3

i=1(Ci ⊗ Hi ⊗ Oi). The automorphism group [3]
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then equals

Aut(⊕3
i=1(Ci ⊗Hi ⊗Oi)) = Aut(C⊗H⊗O) wr S3 = G2 × SU(2)× U(1) wr S3.

Symmetry breaking generates different masses for the quarks and leptons in each of the
generations. There are relations between the masses of the charged leptons, however,
which reveal an underlying S3 invariance [16] . It is known that there is an extended
model with a larger S3 × S3 invariance [8] which can be used as a theoretical basis for
the Koide relation. Again, it can be concluded that this effected may be connected to
invariances of amplitudes in string theory.

Thrice-punctured spheres may be used construct the moduli spaces of higher-genus
surfaces with punctures and the rays in the Hilbert space representing the universal Grass-
mannian [23]. The energy-momentum tensor of the string can be identified with the action
of meromorphic vector fields on the Riemann surface, which generate a Krichever-Novikov
algebra at higher genus [15].

Theorem 4.2. A paracompact model of the universal moduli space of surfaces with n
punctures is diffeomorphic to the union (CP1)n−3∪ (CP1)n∪∪∞

g=2((CP1)3g+n−3/(Sg−1
3 ) for

n ≥ 4.

Proof. The moduli space of the four-punctured sphere, CP1−{0, 1,∞}, is diffeomorphic
to the thrice-punctured sphere and its closed compactification is M̄0,4 = CP1. Because
the moduli space of the five-punctured sphere is M0,5 = (CP1 − {0, 1,∞})2 − ⟨x = y⟩,
with x, y ∈ CP1, and the divisor includes M0,4 [20], the closed compactification could
be identified with (CP1)2 after filling in the remaining punctures and abbreviating the
process of adding the boundary by excluding three extra lines at the divisor. Similarly,
since M0,n = (CP1 − {0, 1,∞})n−3 − ∆ when n ≥ 5, where ∆ is a set of codimension
greater than or equal to one. there would be a transformation from M̄0,n to ((CP1)n−3).
The methods for evaluating accessory parameters for the torus with one puncture and
the four-punctured sphere, which have hyperbolic metrics, are known to be equivalent,
since there is a covering of T1,1 ≃ U/G over Σ0,4 ≃ U/G̃, with punctures at ∞, e1, e2 and
e3 [17], with the Weierstrass function invariant under the interchange of e1, e2 and e3,
and (M1,1)/Z4 ≃ M0,[4] ≃ M0,4/S4. Similarly, the transformation from M1,2 to M0,5/S4

[20] confirms the factorization by S4. The two-valued uniformizing function from the
four-punctured sphere to the complex plane yields a cancellation of the Z2 arising from
fixing the fifth puncture in Σ0,5 at one of the two punctures in M1,2. Consequently, the
addition of a handle is equivalent to that of three punctures, such that the compactified
moduli space is described by a tensor product with ((CP1)3×Z4)/S4. A relation between
M̄g,n and ((CP1)3g+n−3 × Zg−1

4 )/(S4)
g−1 would follow from a sewing of disks around the

punctures to create the handles and the additional modular parameters resulting from the
use of two punctures, with 3g − 3 moduli for each genus, when g ≥ 2. The quotients by
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the powers of the symmetric groups may defined through the action of S4 on (CP1)4, by
the permutation of indices in the cross-ratio function which is a holomorphic mapping of
ordered four-tuples on CP1 to C\{0, 1}, that can be restricted to the action of S3 on CP3

[9]. There would exist a transformation from the universal moduli space of n-punctured
surfaces with n ≥ 4 to (CP1)n−3 ∪ (CP1)n ∪ ∪∞

g=2((CP1)3g+n−3/(Sg−1
3 ).

The total derivative ambiguities in superstring amplitudes [24] can be eliminated at genus
one and two [6]. At higher genus, the integral of a total derivative over the covering space
of the union of closed compactifications of the moduli spaces would vanish.

The group of quasi-special, symmetric outer automorphisms of the profinite comple-
tion Γ̂0,4 [21] of the fundamental group Γ0,4 = F2 = ⟨x, y, z|xyz = 1⟩, the free group of
two elements consisting of squares of Dehn twists [20], is defined by the action of auto-
morphisms on the two elements x and y. It is known similarly that the automorphism
groups Out#(Γ̂0,n) for n ≥ 5 are isomorphic, with M̄0,5 ≃ (CP1)2 ≃ S2 × S2, and the
outer automorphisms of the profinite completions of the fundamental groups of the moduli
spaces Mg,n include the absolute Galois group GQ [10]. At higher genus, stability of the

outer automorphism group Out#(Γ̂g,n) can be valid for n larger than a genus-dependent
lower bound related to a generalization of the five-value theorem [5].

5 Conclusion

The relation between the roots of an monic irreducible polynomial in two variables g(x, y)
at a value x0 that is an algebraic function of the coefficients, which yields an irreducible
polynomial in one variable, g(x0, y) is sufficient to establish the algebraicity of the roots
of the g(x0, y) given the algebraicity of one of the roots. A group theoretical equivalent of
this result has been given. Furthermore, there is a connection between the Galois group
of the quotient of the splitting field of an irreducible polynomial f(x, y) and Q̄(x) and
the deck transformations of a Riemann surface that can be constructed with punctures
at the zeros of the function in a neighbourhood of a point x0. The conformal group of
thrice-punctured sphere is examined and shown to coincide with the Galois group, the
permutation group S3, if the matrix representation of the group of covering transformation
is enlarged from SL(2;R) to SL(2;R)∪T ·SL(2;R), where det T = −1. More generally, the
presentation of matrices representing the action of the fractional linear transformations
on C∗ which preserve the set of three punctures is shown to always contain three matrices
of determinant −1 within multiplication by I.

The necessity of the matrices of determinant −1 for the presentation of S3 has im-
plications for the uniformization theorem of Riemann surfaces. While surfaces of genus
2 are known to have the upper half plane H or the unit disk U as the covering surface,
the thrice-punctured sphere, which is conventionally viewed as belonging to the class of
surfaces with H as a covering surface, must be uniformized with an enlargement of the
covering group.
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The study of moduli spaces of n-punctured spheres becomes nontrivial only when
n ≥ 4. Therefore, the description of Mg,n would be expected to require the moduli spaces
of m-punctured spheres, with 4 ≤ m ≤ n, even though the thrice-punctured spheres may
be sewn together to form the higher-genus surfaces. Based on work relating the moduli
spaces of the punctured torus and the four-punctured sphere, the moduli and the accessory
parameters related to the addition of handles, in principle, can be evaluated. A method
for compactifying the moduli spaces of punctured surfaces at higher genus follows from
the description of M̄1,1, the addition of new punctures and the sewing rules. The union
of each of the compactified moduli spaces over the genus then furnishes a paracompact
model of a universal moduli space.
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