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Abstract. In this paper, we consider a coupled system of two parabolic type initial-
boundary value problems, which is called Kobayashi–Warren–Carter system. The system
is known as a mathematical model of grain boundary motion in a polycrystal, which re-
produces the crystalline dynamics by means of a type of quasilinear (singular) diffusion
equation. Recently, the theoretical results of the Kobayashi–Warren–Carter systems have
been established by a number of researchers under the simple setting of boundary con-
ditions. However, the variety of the boundary conditions, such as inhomogeneous and
more dynamic cases, were not focused so much. The main issue of this paper is to study
the qualitative properties of the Kobayashi–Warren–Carter systems including dynamic
boundary conditions. Consequently, we prove two Main Theorems, concerned with the
existence of the solution, and upper semi-continuity among solution classes.
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Introduction

Let ν > 0 be a fixed constant. Let (0, T ) be the time-interval with a constant T > 0.
Let Ω be a bounded spatial domain with a dimension 1 < N ∈ N. We denote by Γ the
boundary of Ω, we suppose C∞-regularity for Γ. We denote by nΓ ∈ SN−1 the unit outer
normal on Γ, and set Q := (0, T )× Ω and Σ := (0, T )× Γ.

In this paper, we take a nonnegative constant ε ≥ 0 to consider the following coupled
system of parabolic type PDEs, denoted by (KWC)ε.

(KWC)ε:

∂tη −∆η + g(η) + α′(η)|∇θ| = 0 in Q, (0.1)

α0(η)∂tθ − div

(
α(η)

∇θ
|∇θ|

+ ν2∇θ
)

= 0 in Q, (0.2)

∇η|Γ · nΓ = 0 on Σ, (0.3)

∂tθΓ − ε2∆ΓθΓ + (α(η) ∇θ|∇θ| + ν2∇θ)|Γ · nΓ = 0, and θ|Γ = θΓ on Σ, (0.4)

η(0, ·) = η0, θ(0, ·) = θ0 in Ω, and θΓ(0, ·) = θΓ,0 on Γ. (0.5)

The above system is known as “Kobayashi–Warren–Carter system”, named after R.
Kobayashi, J. A. Warren, and W. C. Carter, who proposed a phase-field model of grain
boundary motion in a polycrystal (cf. [12, 13]). Our system (KWC)ε is one of modified
versions of the original system and the principal modifications are in the point that:

• the quasilinear diffusion in (0.2), with singularity includes the regularization term
ν2∇θ with a small constant ν > 0;

• the boundary data θΓ treated as an unknown variable, which is governed by the
dynamic boundary conditions (0.4), consisting of the parabolic type PDE and the
transmission condition θ|Γ = θΓ, on Σ.

In the original model [12,13], the spatial domain Ω is settled as a two-dimensional domain
(N = 2), and the main focus is to reproduce the dynamics of the crystalline orientation
by the time and spatial variation of a vector field:

(t, x) ∈ Q 7→ $(t, x) := η(t, x)t
[
cos θ(t, x), sin θ(t, x)

]
,

consisting of two order parameters η = η(t, x) and θ = θ(t, x). The variation of $ =
$(t, x) is supposed to be governed by gradient flow of the following energy functional,
called free-energy, and for any ε ≥ 0, the free-energy for (KWC)ε is provided as follows.

[η, θ, θΓ] ∈ D(Fε) 7→ Fε(η, θ, θΓ) :=
1

2

∫
Ω

|∇η|2 dx+

∫
Ω

ĝ(η) dx

+

∫
Ω

α(η)|∇θ| dx+
ν2

2

∫
Ω

|∇θ|2 dx+
1

2

∫
Γ

|∇Γ(εθΓ)|2 dΓ ∈ [0,∞],

(0.6)

with the effective domain:

D(Fε) :=

{
[η, θ, θΓ]

η ∈ H1(Ω), θ ∈ H1(Ω), θΓ ∈ H
1
2 (Γ),

εθΓ ∈ H1(Γ) and θ|Γ = θΓ in H
1
2 (Γ)

}
.
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In the context, the unknowns η = η(t, x) and θ = θ(t, x) are supposed to be order
parameters which correspond to the orientation order and the orientation angle in a
polycrystal, respectively. η is supposed to take values on [0, 1] and the threshold values
1 and 0 indicate the completely oriented phase and the disoriented phase of orientation,
respectively. g = g(η) in (0.1) is a given Lipschitz continuous function on R, and ĝ = ĝ(η)
is its nonnegative primitive. 0 < α0 = α0(η) in (0.2) is a given Lipschitz function,
0 < α = α(η) in (0.1)–(0.2) is a given C2-convex function, and α′ = α′(η) is the differential
of α. Besides, “|Γ” denotes the trace on Γ for a Sobolev function, dΓ denotes the area
element on Γ, ∇Γ denotes the surface gradient on Γ, and ∆Γ denotes the Laplacian on
the surface, i.e. the so-called Laplace–Beltrami operator (cf. [18]). The equations in (0.5)
are initial conditions with given initial data η0, θ0, and θΓ,0, for the components η, θ, and
θΓ, respectively.

The objective of this study is to develop the mathematical analysis for the Kobayashi–
Warren–Carter systems, and the main issue of this paper is concerned with the qual-
itative properties of the systems (KWC)ε, for any ε ≥ 0. The theoretical results of
the Kobayashi–Warren–Carter systems have been established by a number of researchers
(cf. [6–8,11,15,16,19–22]), and a number of qualitative results for L2-based solutions have
been obtained from various viewpoints. However, for the settings of boundary conditions,
most of previous works supposed only a few simple cases, such as homogeneous Dirichlet
/ Neumann cases, and the variety of the boundary conditions, such as inhomogeneous
and more dynamic cases, were not focused so much.

On the other hand, there is a previous work [4] which dealt with the system, consisting
of quasilinear diffusion Allen–Cahn type equations with the dynamic boundary conditions.
Then, the qualitative results of the systems, such as the existence of the unique solution
and some continuous dependences, were obtained by means of the theory of nonlinear
evolution equation.

In view of this, we set the goal in this paper to show the following two Main Theorems.

Main Theorem 1: the existence of solution to (KWC)ε, and the uniqueness in the con-
stant case of α0.

Main Theorem 2: upper semi-continuity of solution classes with respect to ε ≥ 0.

Here is the contents of this paper. In Section 1, we list some preliminaries and some
specific notations which are used throughout this paper. In Section 2, we state Main
Theorems, with the assumptions for (KWC)ε, and the definition of the solutions. The
proofs of Main Theorems are stated in Section 5, and these are discussed on the basis of
the Key-properties, demonstrated in Sections 3 and 4, respectively.

1 Preliminaries

In this Section, we outline some notations and known facts, as preliminaries of our study.

Notation 1 (Notations in real analysis). For arbitrary a, b ∈ [−∞,∞], we define:

a ∨ b := max{a, b} and a ∧ b := min{a, b},
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and especially, we write [a]+ := a ∨ 0 and [b]− := −(b ∧ 0), respectively.
Let d ∈ N be any fixed dimension. Then, we simply denote by |x| and x · y the

Euclidean norm of x ∈ Rd and the standard scalar product of x, y ∈ Rd, respectively.
Also, we denote by Bd and Sd−1 the d-dimensional unit open ball centered at the origin,
and its boundary, respectively, i.e.:

Bd :=
{
x ∈ Rd |x| < 1

}
and Sd−1 :=

{
x ∈ Rd |x| = 1

}
.

In particular, when d > 1, we write x ≤ y, if xi ≤ yi, for all i = 1, · · · , d, and define:{
x ∨ y := [x1 ∨ y1, . . . , xd ∨ yd], x ∧ y := [x1 ∧ y1, . . . , xd ∧ yd],
[x]+ :=

[
[x1]+, . . . , [xd]

+
]

and [y]− :=
[
[y1]−, . . . , [yd]

−], for all x, y ∈ Rd.

For any d ∈ N, the d-dimensional Lebesgue measure is denoted by Ld. Unless otherwise
specified, the measure theoretical phrases, such as “a.e.”, “dt”, “dx”, and so on, are
with respect to the Lebesgue measure in each corresponding dimension. Also, in the
observations on a smooth surface S, the phrase “a.e.” is with respect to the Hausdorff
measure in each corresponding Hausdorff dimension, and the area element on S is denoted
by dS.

Additionally, we note the following elementary fact.

(Fact 0) Let m ∈ N be a fixed finite number. If {α1, . . . , αm} ⊂ R and {akn}∞n=1, k =
1, . . . ,m, fulfill that:

lim
n→∞

akn ≥ αk, k = 1, . . . ,m, and lim
n→∞

m∑
k=1

akn ≤
m∑
k=1

αk.

Then, it holds that:

lim
n→∞

akn = αk, k = 1, . . . ,m.

Notation 2 (Notations of functional analysis). For an abstract Banach space X, we
denote by | · |X the norm of X, and denote by 〈 · , · 〉X the duality pairing between X
and the dual space X∗ of X. Let IX : X → X be the identity map from X onto X. In
particular, when X is a Hilbert space, we denote by ( · , · )X the inner product in X.

For two Banach spaces X, Y , let L(X, Y ) be the Banach space of bounded linear
operators from X onto Y .

For two Banach spaces X, Y , and a set-valued operator Ã, we denote by D(Ã) the
domain of Ã, i.e. D(Ã) := {z̃ ∈ X | Ãz 6= ∅}, and we often say “[z0, z

∗
0 ] ∈ Ã in X×Y ”, to

mean “z0 ∈ D(Ã) and z∗0 ∈ Ãz0”, by identifying the operator Ã with its graph in X × Y .
For Banach spaces X1, · · · , Xd with 1 < d ∈ N, let X1×· · ·Xd be the product Banach

space endowed with the norm | · |X1×···×Xd
:= | · |X1 + · · · + | · |Xd

. However, when all
X1, · · · , Xd are Hilbert spaces, X1× · · · ×Xd denotes the product Hilbert space endowed
with the inner product ( · , · )X1×···×Xd

and the norm | · |X1×···×Xd
:= (| · |2X1

+ · · ·+ | · |2Xd
)

1
2 .

Notation 3. Throughout this paper, let T > 0, 1 < N ∈ N, and ν > 0 be fixed constants.
Let Ω ⊂ RN be a bounded domain, such that:
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(ω 1) Ω has a C∞-boundary Γ := ∂Ω;

(ω 2) the function dΓ : x ∈ Ω 7→ dΓ(x) := inf
y∈Γ
|x − y| ∈ [0,∞) forms a C∞-function as a

neighborhood of Γ.

Let ∆N be the operator of Laplacian, subject to the zero-Neumann boundary condi-
tion, which is defined as:

∆N : v ∈ D(∆N) :=
{
z ∈ H2(Ω) ∇z|Γ · nΓ = 0 in H

1
2 (Γ)

}
⊂ L2(Ω)

7→ ∆Nv := ∆v ∈ L2(Ω).

In this paper, we identify the operator −∆N as an linear and continuous operator from
H1(Ω) into H1(Ω)∗, via the following Green-type formula (cf. [1, Proposition 5.6.2]):

−
∫

Ω

∆Nz w dx =

∫
Ω

∇z · ∇w dx, for all [z, w] ∈ D(∆N)× L2(Ω).

Notation 4 (Notations of surface-differentials). On this basis of Notation 3, let [ ·, nΓ]
be a linear operator from C∞(Ω) into D′(Γ), which is defined as:

〈[$,nΓ], ϕ〉 :=

∫
Ω

div$ϕex dx+

∫
Ω

$ · ∇ϕex dx,

for all $ ∈ C∞(Ω)N and ϕ ∈ C∞(Γ),

by using the extension ϕex ∈ C∞(Ω) of each ϕ ∈ C∞(Γ).
Let ∇Γ be the operator of surface-gradient on Γ, which is defined as:

∇Γ : ϕ ∈ C∞(Γ) 7→ ∇Γϕ := ∇ϕex − (∇dΓ ⊗∇dΓ)∇ϕex ∈ C∞(Γ)N , (1.1)

by using the extension ϕex ∈ C∞(Ω) of each ϕ ∈ C∞(Γ).
Let divΓ be the operator of surface-divergence, which is defined as:

divΓ : ω ∈ C∞(Γ)N 7→ divΓω := divωex −∇(ωex · ∇dΓ) · ∇dΓ ∈ C∞(Γ), (1.2)

by using the extension ωex ∈ C∞(Ω)N of each ω ∈ C∞(Γ)N .
It is known that the definition formulas (1.1) and (1.2) are well-defined, and the values

∇Γϕ and divΓω are settled independently of the choices of extensions ϕex ∈ C∞(Ω) and
ωex ∈ C∞(Ω)N of ϕ ∈ C∞(Γ) and ω ∈ C∞(Γ)N , respectively.

On the basis of (1.1) and (1.2), the Laplace–Beltrami operator ∆Γ, i.e. the surface-
Laplacian on Γ is defined as follows:

∆Γ : ϕ ∈ C∞(Γ) 7→ ∆Γϕ := divΓ(∇Γϕ) ∈ C∞(Γ).

Remark 1. Let us define a closed subspace L2
div(Ω) in L2(Ω)N , and a closed subspace

L2
tan(Γ) in L2(Γ)N , by putting:

L2
div(Ω) :=

{
ω ∈ L2(Ω)N divω ∈ L2(Ω)

}
,

and L2
tan(Γ) :=

{
ω ∈ L2(Γ)N ω · nΓ = 0 a.e. on Γ

}
, respectively.

Then, on account of the general theories as in [10,18], we can see the following facts.
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(Fact 1) (cf. [10]) The mapping ν ∈ H1(Ω)N 7→ ν |Γ · nΓ ∈ H
1
2 (Γ) can be extended as

a linear and continuous operator [( · )|Γ · nΓ] from L2
div(Ω) into H−

1
2 (Γ), such that:

〈[ν |Γ · nΓ], z|Γ〉H 1
2 (Γ)

=

∫
Ω

div ν z dx+

∫
Ω

ν · ∇z dx,

for all ν ∈ L2
div(Ω) and z ∈ H1(Ω).

(Fact 2) The surface gradient ∇Γ can be extended as a linear and continuous operator
from H1(Γ) into L2

tan(Γ). The extension is derived in the definition process of the
space H1(Γ) as the completion of C∞(Γ). Then, the topology of the completion is
taken with respect to the norm, induced by the following bi-linear form:

[ϕ, ψ] ∈ C∞(Γ)2 7→
∫

Γ

(
ϕψ +∇Γϕ · ∇Γψ

)
dΓ.

The inner product in (·, ·)H1(Γ) is given as the extension of the above bi-linear form.
Hence, in this paper, we identify the operator ∇Γ with the extension from H1(Γ)
into L2

tan(Γ). Additionally, since the boundary Γ = ∂Ω has no boundary as (N−1)-
dimensional surface, the dual space H1(Γ)∗ of H1(Γ) coincides with H−1(Γ) (=
C∞c (Γ)), i.e. the closure of the class C∞c (Γ) of smooth functions with compact
supports on Γ in the topology of H1(Γ)∗.

(Fact 3) The surface divergence divΓ can be defined as a linear and continuous operator
from L2

tan(Γ) into H−1(Γ) (= H1(Γ)∗), via the following Green-type formula (cf. [18,
Section 2]):

−
∫

Γ

divΓw z dΓ =

∫
Γ

w · ∇Γz dΓ, for any z ∈ H1(Γ) and

any w ∈ L2
tan(Γ) satisfying divΓw ∈ L2(Γ).

Hence, in this paper, we regard the Laplace–Beltrami operator ∆Γ = divΓ ◦ ∇Γ as
the linear and continuous operator from H1(Γ) into H−1(Γ).

Notation 5 (Notations in convex analysis). For any proper lower semi-continuous (l.s.c.
from now on) and convex function Ψ : X → (−∞,∞] defined on a Hilbert space X,
we denote by D(Ψ) its effective domain, and denote by ∂Ψ its subdifferential. The
subdifferential ∂Ψ is a set-valued map corresponding to a weak differential of Ψ, and it
has a maximal monotone graph in the product space X2 := X ×X (cf. [3, Chapter 2]).
More precisely, for each z0 ∈ X, the value ∂Ψ(z0) is defined as a set of all elements z∗0 ∈ X
which satisfy the following variational inequality:

(z∗0 , z − z0)X ≤ Ψ(z)−Ψ(z0), for any z ∈ D(Ψ).

For Hilbert spaces X1, · · · , Xd with 1 < d ∈ N, let us consider a proper l.s.c. and
convex function on the product space X1 × · · · ×Xd:

Ψ̃ : [z1, · · · , zd] ∈ X1 × · · · ×Xd 7→ Ψ̃(z) = Ψ̃(z1, · · · , zd) ∈ (−∞,∞].
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Then, for any i ∈ {1, . . . , d}, we denote by ∂ziΨ̃ : X1 × · · · × Xd → Xi a set-valued
operator, which maps any z = [z1, . . . , zi, . . . , zd] ∈ X1 × · · · ×Xi × · · · ×Xd to a subset
in Xi:

∂ziΨ̃(z) = ∂ziΨ̃(z1, · · · , zi, · · · , zd)

:=

{
z̃∗ ∈ Xi

(z̃∗, z̃ − zi)Xi
≤ Ψ̃(z1, · · · , z̃, · · · , zd)

−Ψ̃(z1, · · · , zi, · · · , zd), for any z̃ ∈ Xi

}
.

Remark 2 (Examples of the subdifferentials). As one of representatives of the subdiffer-
entials, we exemplify the following set-valued function Sgn : RN → 2RN

, given as:

ω ∈ RN 7→ Sgn(ω) :=


ω

|ω|
, if ω 6= 0,

BN , otherwise.

It is known that the set-valued function Sgn coincides with the subdifferential of the
Euclidean norm | · | : ω ∈ RN 7→ |ω| =

√
ω · ω ∈ [0,∞), i.e.:

∂| · |(ω) = Sgn(ω), for any ω ∈ D(∂| · |) = RN .

Also, it is known that (cf. [2, Section 2 in Chapter 2], [3, Chapter 2]) the operator −∆N :
z ∈ D(∆N) ⊂ L2(Ω) 7→ −∆z ∈ L2(Ω) coincides with the subdifferential of a proper l.s.c.
and convex function ΨN on L2(Ω), defined as:

z ∈ L2(Ω) 7→ ΨN(z) :=


1

2

∫
Ω

|∇z|2 dx, if z ∈ H1(Ω),

∞, otherwise.

More precisely:

∂ΨN(z) = {−∆Nz} in L2(Ω), for any z ∈ D(∂ΨN) = D(∆N).

Remark 3. As is easily checked:

∂Ψ̃ ⊂ ∂z1Ψ̃× · · · × ∂zdΨ̃ in [X1 × · · · ×Xd]
2,

but it should be noted that the converse inclusion is not true, necessarily. In fact, the
monotonicity of ∂z1Ψ̃× · · · × ∂zdΨ̃ in [X1 × · · · ×Xd]

2 is not so obvious.

Finally, we note that notions of functional-convergence.

Definition 1 (Mosco-convergence: cf. [17]). Let X be an abstract Hilbert space. Let
Ψ : X → (−∞,∞] be a proper l.s.c. and convex function, and let {Ψn}∞n=1 be a sequence
of proper l.s.c. and convex functions Ψn : X → (−∞,∞], n ∈ N. Then, it is said that
Ψn → Ψ on X, in the sense of Mosco, as n → ∞, iff. the following two conditions are
fulfilled.
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(M1) Lower-bound condition: lim
n→∞

Ψn(žn) ≥ Ψ(ž), if ž ∈ X, {žn}∞n=1 ⊂ X, and

žn → ž weakly in X as n→∞.

(M2) Optimality condition: for any ẑ ∈ D(Ψ), there exists a sequence {ẑn}∞n=1 ⊂ X
such that ẑn → ẑ in X and Ψn(ẑn)→ Ψ(ẑ), as n→∞.

Remark 4. As a basic matter of the Mosco-convergence, we can see the following fact
(see [1, Theorem 3.66], [9, Chapter 2], and so on).

(Fact 4) Let X, Ψ and {Ψn}∞n=1 be as in Definition 1. Besides, let us assume that:

Ψn → Ψ on X, in the sense of Mosco, as n→∞,

and {
[z, z∗] ∈ X2, [zn, z

∗
n] ∈ ∂Ψn in X2, n ∈ N,

zn → z in X and z∗n → z∗ weakly in X, as n→∞.

Then, it holds that:

[z, z∗] ∈ ∂Ψ in X2, and Ψn(zn)→ Ψ(z), as n→∞.

2 Statements of Main Theorems

Next, we state Main Theorems in this paper. First, let us set the product spaces:

• H := L2(Ω)× L2(Γ), H := L2(Ω)×H,

• Vε :=

{
w = [ξ, ξΓ] ∈ H ξ ∈ H1(Ω), ξΓ ∈ H

1
2 (Γ), εξΓ ∈ H1(Γ),

and ξ|Γ = ξΓ in H
1
2 (Γ)

}
, (2.1)

• Vε :=
{
z = [ζ, w] ∈H ζ ∈ H1(Ω) and w = [ξ, ξΓ] ∈ Vε

}
, for any ε ≥ 0. (2.2)

Remark 5. If ε > 0 (resp. ε = 0), then Vε and Vε (resp. V0 and V0), given in (2.1) and
(2.2), are closed linear spaces in H1(Ω) × H1(Γ) and H1(Ω) × (H1(Ω) × H1(Γ)) (resp.

H1(Ω) × H
1
2 (Γ) and H1(Ω) × (H1(Ω) × H

1
2 (Γ))), and hence, they are Hilbert spaces

endowed with the inner products of H1(Ω)×H1(Γ) and H1(Ω)× (H1(Ω)×H1(Γ)) (resp.

H1(Ω)×H 1
2 (Γ) and H1(Ω)× (H1(Ω)×H 1

2 (Γ))), respectively.

Next, we prescribe the assumptions in this study.

(A0) 1 < N ∈ N, T > 0, ν > 0, and Ω ⊂ RN be the fixed constants, and the bounded
domain as in Notation 3. Besides, let nΓ : Γ → SN−1 be the unit outer normal on
Γ := ∂Ω.

(A1) g : R→ R is a Lipschitz continuous function, such that:

g(0) ≤ 0 and g(1) ≥ 0.

Also, g is supposed to have a nonnegative potential ĝ : R→ [0,∞).
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(A2) α0 : R→ (0,∞) is a Lipschitz continuous function on R.

(A3) α : R → (0,∞) is a C2-function such that α′(0) = 0, α′ ∈ L∞(R) and α′′ ≥ 0 on
R. Also, αα′ is a Lipschitz continuous function on R.

(A4) There exists a positive constant δα > 0, such that:

α0(σ) ≥ δα and α(σ) ≥ δα, for any σ ∈ R.

(A5) There are two fixed constants m0 and M0, and for any ε ≥ 0, the initial data
u0 = [η0, v0] = [η0, θ0, θΓ,0] belongs to a class Dε ⊂H , defined as:

Dε :=

{
z = [ζ, w] = [ζ, ξ, ξΓ] ∈ Vε
with w = [ξ, ξΓ] ∈ Vε

0 ≤ ζ ≤ 1, m0 ≤ ξ ≤M0, a.e. in Ω,

and m0 ≤ ξΓ ≤M0, a.e. on Γ

}
.

Remark 6 (Possible choices of given functions). Referring to [12,13], the settings

g(σ) = σ − 1 with ĝ(σ) :=
1

2
(σ − 1)2, and α0(σ) = α(σ) =

σ2

2
+ δα, for any σ ∈ R,

provide possible functions that fulfill the assumptions (A1)–(A4).

On this basis, we define the solution to (KWC)ε, for any ε ≥ 0, as follows.

Definition 2 (Definition of solution). For any ε ≥ 0, a triplet of functions u = [η, v] =
[η, θ, θΓ] ∈ L2(0, T ; H ) with v = [θ, θΓ] ∈ L2(0, T ;H) is called a solution to (KWC)ε, iff.
the following items hold.

(S0) u = [η, v] = [η, θ, θΓ] ∈ W 1,2(0, T ; H ) ∩ L∞(0, T ; Vε),

0 ≤ η ≤ 1, m0 ≤ θ ≤M0, a.e. in Q, and m0 ≤ θΓ ≤M0 a.e. on Σ.

(S1) η solves the following variational equality:∫
Ω

(∂tη(t) + g(η(t)) + α′(η(t))|∇θ(t)|)ϕdx+

∫
Ω

∇η(t) · ∇ϕdx = 0,

for any ϕ ∈ H1(Ω), a.e. t ∈ (0, T ),

subject to the initial condition η(0) = η0 in L2(Ω).

(S2) A pair of functions v = [θ, θΓ] solves the following variational inequality:∫
Ω

α0(η(t))∂tθ(t)(θ(t)− ψ) dx+ ν2

∫
Ω

∇θ(t) · ∇(θ(t)− ψ) dx

+

∫
Γ

∂tθΓ(t)(θΓ(t)− ψΓ) dΓ +

∫
Γ

∇Γ(εθΓ(t)) · ∇Γ(ε(θΓ(t)− ψΓ)) dΓ

+

∫
Ω

α(η(t))|∇θ(t)| dx ≤
∫

Ω

α(η(t))|∇ψ| dx,

for any [ψ, ψΓ] ∈ Vε, a.e. t ∈ (0, T ),

subject to the initial conditions v(0) = [θ(0), θΓ(0)] = v0 = [θ0, θΓ,0] in H.
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In this paper, the keypoints of our mathematical analysis are to reformulate the free-
energy, given in (0.6), to the following form:

Fε(η, θ, θΓ) = Φε(η, θ, θΓ) +

∫
Ω

Ĝ(η) dx,

where

η ∈ R 7→ Ĝ(η) := ĝ(η)− 1

2ν2

(
α(η)

)2 ∈ R,

with the convex function Φε : H → [0,∞], defined as:

u = [η, v] = [η, θ, θΓ] ∈H 7→ Φε(u) = Φε(η, v) = Φε(η, θ, θΓ)

:=


1

2

∫
Ω

|∇η|2 dx+
1

2

∫
Γ

|∇Γ(εθΓ)|2 dΓ +
1

2

∫
Ω

(
ν|∇θ|+ 1

ν
α(η)

)2

dx,

if u = [η, v] = [η, θ, θΓ] ∈ Vε, with v = [θ, θΓ] ∈ Vε,

∞, otherwise.

for ε ≥ 0.

(2.3)

Note that the function Ĝ is a primitive of:

η ∈ R 7→ G(η) := g(η)− ν−2α(η)α′(η) ∈ R.

Moreover, by the assumptions (A1) and (A3), G is Lipschitz continuous function on R,
and for the primitive Ĝ ∈ W 2,∞

loc (R) of G, it holds that:∣∣Ĝ(η̃)− Ĝ(η)−G(η)(η̃ − η)
∣∣ ≤ |G′|L∞(R)

2
|η̃ − η|2, for all η, η̃ ∈ R. (2.4)

On the basis of this reformulation, we associate the system (KWC)ε with the following
Cauchy problem of an evolution equation:{

A0(u(t))u′(t) + ∂Φε(u(t)) + G(u(t)) 3 0 in H , a.e. t ∈ (0, T ),

u(0) = u0 in H ,
(2.5)

which is governed by the subdifferential ∂Φε of the convex function Φε on H . In the
context, the unknown u ∈ C([0, T ]; H ) is associated with the solution [η, θ, θΓ] of the
system (KWC)ε, i.e.:

u(t) = [η(t), v(t)] = [η(t), θ(t), θΓ(t)] in H

with v(t) = [θ(t), θΓ(t)] ∈ H, for any t ∈ [0, T ],

u0 = [η0, v0] = [η0, θ0, θΓ,0] in H with v0 = [θ0, θΓ,0] ∈ H.

Besides, A0 is an operator, defined as:

u = [η, v] = [η, θ, θΓ] ∈ Dε 7→ A0(u) = A0(η) :=

 1 0 0
0 α0(η) 0
0 0 1

 ∈ L(H ; H ),

and G : H →H is a Lipschitz operator, defined as:

u = [η, v] = [η, θ, θΓ] ∈H 7→ G(u) = G(η) := t[G(η), 0, 0] ∈H .
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Remark 7. We can easily show that the functional Φε, given in (2.3), is a proper, l.s.c.
and convex function on H . Therefore, for each ε ≥ 0, the subdifferential ∂Φε is a maximal
monotone graph in H 2. However, the presence of A0(u(t)) does not allow us to apply
the general theories for nonlinear evolution equations, e.g. [2, 3].

Remark 8. Notice that:

Φε(η, ṽ)− Φε(η, v) =

∫
Ω

α(η)|∇θ̃| dx+
ν2

2

∫
Ω

|∇θ̃|2 dx+
1

2

∫
Γ

|∇Γ(εθ̃Γ)|2 dΓ

−
∫

Ω

α(η)|∇θ| dx− ν2

2

∫
Ω

|∇θ|2 dx− 1

2

∫
Γ

|∇Γ(εθΓ)|2 dΓ,

for all η ∈ L2(Ω), v = [θ, θΓ] ∈ Vε, and ṽ = [θ̃, θ̃Γ] ∈ Vε.

So, putting:

Ã0(η̃) :=

[
α0(η̃) 0

0 1

]
∈ L(H;H), for any η̃ ∈ L∞(Ω),

it is easily seen that the condition (S2) in Definition 2 is equivalent to the following Cauchy
problem: {

Ã0(η)∂tv(t) + ∂vΦε(η(t), v(t)) 3 0 in H, a.e. t ∈ (0, T ),

v(0) = v0 in H.

Based on these, our Main Theorems are stated as follows.

Main Theorem 1 (Existence of solutions and uniqueness). Under the all assumptions
(A0)–(A5), the following two items hold.

(A) The Cauchy problem (2.5) admits at least one solution u ∈ L2(0, T ; H ). In partic-
ular, if α0 is a constant, then the solution is unique.

(B) The solution u = [η, v] = [η, θ, θΓ] to the Cauchy problem (2.5), with v = [θ, θΓ] is a
solution to the Kobayashi–Warren–Carter system (KWC)ε.

Remark 9. Note that the uniqueness in nonconstant case of α0 is still open. Hence, the
item (B) is not sufficient to show the equivalence between (2.5) and (KWC)ε, and the
class of solutions to (KWC)ε may not be a singleton, for any ε ≥ 0.

Main Theorem 2 (ε-upper semi-continuity of solution classes). Under the all assump-
tions (A0)–(A5), let us fix any ε0 ≥ 0, and take a sequence of initial data {u0,ε}ε>0 =
{[η0,ε, θ0,ε, θΓ,0,ε]}ε>0 ⊂ Vε, such that:

[η0,ε, θ0,ε, εθΓ,0,ε]→ [η0,ε0 , θ0,ε0 , ε0θΓ,0,ε0 ] weakly in H1(Ω)2 ×H1(Γ), as ε→ ε0. (2.6)

Also, for any ε ≥ 0, we denote by Sε(u0,ε) the class of all solutions u = [η, θ, θΓ] to
(KWC)ε subject to the initial condition u(0) = u0,ε in H . Besides, we define the ω-
limit set limε→ε0 Sε(u0,ε) of the sequence of solution classes {Sε(u0,ε)}ε≥0, as ε→ ε0, by
letting:

lim
ε→ε0

S(u0,ε) :=

 u = [η, θ, θΓ]
there exists {εn}∞n=1 ⊂ [0,∞) and
{un = [ηn, θn, θΓ,n] ∈ Sεn(u0,εn)}∞n=1

such that un → u in H , as n→∞.

 .

Then, the following two items hold.
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(C) lim
ε→ε0

Sε(u0,ε) is nonempty and compact in H .

(D) lim
ε→ε0

Sε(u0,ε) ⊂ Sε0(u0,ε0).

Remark 10. The smoothness of Γ and the Green type formula (cf. [1, Proposition 5.6.2])
allows us to derive

θΓ,0,ε = θ0,ε|Γ → θ0,ε0 |Γ = θΓ,0,ε0 weakly in H
1
2 (Γ), as ε→ ε0,

from the assumption (2.6).

3 Key-Lemmas

In this Section, we prove several Key-Lemmas that are vital for our Main Theorems.
We begin by prescribing a class of relaxed convex functions. For every ε ≥ 0 and

0 ≤ δ ≤ 1, let us define:

u = [η, v] = [η, θ, θΓ] ∈H 7→ Φδ
ε(u) = Φδ

ε(η, v) = Φδ
ε(η, θ, θΓ)

:=


1

2

∫
Ω

|∇η|2 dx+
1

2

∫
Γ

|∇Γ(εθΓ)|2 dΓ +
1

2

∫
Ω

(
νfδ(∇θ) +

1

ν
α(η)

)2

dx,

if u = [η, v] = [η, θ, θΓ] ∈ Vε, with v = [θ, θΓ] ∈ Vε,

∞, otherwise,

with use of the following real convex function:

fδ : ω ∈ RN 7→ fδ(ω) :=
√
δ2 + |ω|2 ∈ [0,∞). (3.1)

As is easily checked, the functional Φδ
ε, for every ε ≥ 0 and 0 ≤ δ ≤ 1, is proper, l.s.c. and

convex on H . Especially, for any ε ≥ 0, the class of convex functions {Φδ
ε | 0 ≤ δ ≤ 1}

forms a relaxation sequence for Φ0
ε, i.e. the convex function Φδ

ε when δ = 0, and Φ0
ε

coincides with the convex function Φε, given in (2.3).
On this basis, we can prove the following Key-Lemmas.

Key-Lemma 1 (Representation of ∂ηΦ
δ
ε). For every ε ≥ 0 and 0 ≤ δ ≤ 1, it holds that:

D(∂ηΦ
δ
ε) = D(∆N)× Vε,

and

∂ηΦ
δ
ε(η, v) = −∆Nη + α′(η)fδ(∇θ) + ν−2α(η)α′(η) in L2(Ω),

for any η ∈ D(∆N), and any v = [θ, θΓ] ∈ Vε.

Proof. By virtue of (A3), we can verify this Key-Lemma 1 as a straightforward conse-
quence of the general theories of subdifferentials, e.g. [2, Section 2 in Chapter 2], [3, Chap-
ter 2], and so on.
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Key-Lemma 2 (Representation of ∂vΦ
δ
ε). For every ε ≥ 0, and 0 < δ ≤ 1, let us set:

D(Aδε) :=

{
[η, θ, θΓ] ∈ Vε

α(η)∇fδ(∇θ) + ν2∇θ ∈ L2
div(Ω),

−∆Γ(ε2θΓ)+
[
(α(η)∇fδ(∇θ)+ν2∇θ)|Γ ·nΓ

]
∈ L2(Γ)

}
, (3.2)

and let us define a single-valued operator Aδε : D(Aδε) ⊂H → H, by putting:

u =[η, θ, θΓ] ∈ D(Aδε) ⊂H 7→ Aδεu = Aδε[η, θ, θΓ]

:=

[
−div

(
α(η)∇fδ(∇θ) + ν2∇θ

)
−∆Γ(ε2θΓ) +

[
(α(η)∇fδ(∇θ) + ν2∇θ)|Γ · nΓ

] ] ∈ H. (3.3)

Then, it holds that:

∂vΦ
δ
ε = Aδε in H ×H, for every ε ≥ 0, and 0 < δ ≤ 1.

Proof. First, we show that Aδε ⊂ ∂vΦ
δ
ε in H ×H. Let us assume that:

u = [η, v] = [η, θ, θΓ] ∈ D(Aδε) with v = [θ, θΓ] ∈ Vε,
and v∗ = [θ∗, θ∗Γ] = Aδεu = Aδε[η, v] = Aδε[η, θ, θΓ] in H.

(3.4)

Then, by using Remark 1 (Fact 1)–(Fact 3), (3.2), (3.3), [4, Key-Lemma 1], and Young’s
inequality, we obtain that:

(v∗, w − v)H = (θ∗, ξ − θ)L2(Ω) + (θ∗Γ, ξΓ − θΓ)L2(Γ)

=

∫
Ω

(
α(η)∇fδ(∇θ) + ν2∇θ

)
· ∇(ξ − θ) dx

+

∫
Γ

∇Γ(εθΓ) · ∇Γ(ε(ξΓ − θΓ)) dΓ

≤
∫

Ω

α(η)(fδ(∇ξ)− fδ(∇θ)) dx+
ν2

2

∫
Ω

(|∇ξ|2 − |∇θ|2) dx

+
1

2

∫
Γ

(|∇Γ(εξΓ)|2 − |∇Γ(εθΓ)|2) dΓ

= Φδ
ε(η, w)− Φδ

ε(η, v), for any w = [ξ, ξΓ] ∈ Vε,

which implies that:

u = [η, v] = [η, θ, θΓ] ∈ D(∂vΦ
δ
ε) with v = [θ, θΓ] ∈ Vε,

and v∗ = [θ∗, θ∗Γ] ∈ ∂vΦδ
ε(u) = ∂vΦ

δ
ε(η, v) = ∂vΦ

δ
ε(η, θ, θΓ) in H.

(3.5)

Conversely, if (3.5) holds, i.e.:

(v∗, w̃ − v)H = (θ∗, ξ̃ − θ)L2(Ω) + (θ∗Γ, ξ̃Γ − θΓ)L2(Γ) ≤ Φδ
ε(η, w̃)− Φδ

ε(η, v),

for any w̃ = [ξ̃, ξ̃Γ] ∈ Vε.
(3.6)



416

Then, taking arbitrary σ > 0, w = [ξ, ξΓ], putting w̃ = [ξ̃, ξ̃Γ] = [θ+σξ, θΓ +σξΓ] in (3.6),
and invoking (3.1), we compute that:

(v∗, w)H ≤
1

2σ

∫
Γ

(|∇Γ(ε(θΓ + σξΓ))|2 − |∇Γ(εθΓ)|2) dΓ

+
1

2σ

∫
Ω

[(
νfδ(∇(θ + σξ)) +

1

ν
α(η)

)2

−
(
νfδ(∇θ) +

1

ν
α(η)

)2
]
dx

→
∫

Γ

∇Γ(εθΓ) · ∇Γ(εξΓ) dΓ +

∫
Ω

(
νfδ(∇θ) +

1

ν
α(η)

)
ν∇fδ(∇θ) · ∇ξ dx

=

∫
Γ

∇Γ(εθΓ) · ∇Γ(εξΓ) dΓ +

∫
Ω

(α(η)∇fδ(∇θ) + ν2∇θ) · ∇ξ dx, as σ ↓ 0,

and therefore

(v∗, w)H =

∫
Ω

(α(η)∇fδ(∇θ) + ν2∇θ) · ∇ξ dx+

∫
Γ

∇Γ(εθΓ) · ∇Γ(εξΓ) dΓ,

for any w = [ξ, ξΓ] ∈ Vε.
(3.7)

Here, taking any ξ0 ∈ H1
0 (Ω) and putting w = [ξ0, 0] in (3.7), we deduce that:

θ∗ = −div(α(η)∇fδ(∇θ) + ν2∇θ) ∈ L2(Ω) in D′(Ω). (3.8)

Additionally, from Remark 1 (Fact 1)–(Fact 3), (3.7), and (3.8), one can see that:

(θ∗Γ, ξΓ)L2(Γ) =

∫
Ω

(α(η)∇fδ(∇θ) + ν2∇θ) · ∇ξ dx− (θ∗, ξ)L2(Ω)

+

∫
Γ

∇Γ(εθΓ) · ∇Γ(εξΓ)dΓ

=
〈[

(α(η)∇fδ(∇θ) + ν2∇θ)|Γ · nΓ

]
, ξ|Γ

〉
H

1
2 (Γ)

+
〈
−∆Γ(εθΓ), εξΓ

〉
H1(Γ)

, for any w = [ξ, ξΓ] ∈ Vε.

This identity implies that:

θ∗Γ = −∆Γ(ε2θΓ) +
[
(α(η)∇fδ(∇θ) + ν2∇θ)|Γ · nΓ

]
∈ L2(Γ) in H−1(Γ). (3.9)

As a consequence of (3.8) and (3.9), we verify (3.4).
Thus, we conclude this Key-Lemma 2.

Key-Lemma 3 (Representation of ∂Φδ
ε). For every ε ≥ 0, 0 < δ ≤ 1, it holds that:

∂Φδ
ε = ∂ηΦ

δ
ε × ∂vΦδ

ε in H 2,

more precisely:
D(∂Φδ

ε) = D(∂ηΦ
δ
ε)×D(∂vΦ

δ
ε) in L2(Ω)×H,

and

∂Φδ
ε(u) = ∂ηΦ

δ
ε(η, v)× ∂vΦδ

ε(η, v) in L2(Ω)×H,
for any u = [η, v] = [η, θ, θΓ] ∈ L2(Ω)×H with v = [θ, θΓ] ∈ Vε.
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Proof. From Remark 3, it is sufficient to show ∂Φδ
ε ⊃ ∂ηΦ

δ
ε×∂vΦδ

ε in H 2. Let us assume:

u = [η, v] = [η, θ, θΓ] ∈ D(∂ηΦ
δ
ε)×D(∂vΦ

δ
ε) with v = [θ, θΓ] ∈ Vε,

and u∗ = [η∗, v∗] = [η∗, θ∗, θ∗Γ] ∈ ∂ηΦδ
ε(η, v)× ∂vΦδ

ε(η, v) in L2(Ω)×H.

Then, with Key-Lemmas 1 and 2 in mind, it holds that:

η∗ = ∂ηΦ
δ
ε(η, v) = −∆Nη + α′(η)fδ(∇θ) + ν−2α(η)α′(η) in L2(Ω), (3.10)

v∗ = ∂vΦ
δ
ε(η, v) =

[
−div

(
α(η)∇fδ(∇θ) + ν2∇θ

)
−∆Γ(ε2θΓ) +

[
(α(η)∇fδ(∇θ) + ν2∇θ)|Γ · nΓ

] ] in H. (3.11)

Here, since the subdifferential (gradient) of the real convex function:

[η̃, ω̃] ∈ R× RN 7→ 1

2

(
νfδ(ω̃) +

1

ν
α(η̃)

)2

,

coincides with the vectorial function:

[η̃, ω̃] ∈ R× RN 7→
[
α′(η̃)fδ(ω̃) + ν−2α(η̃)α′(η̃)

α(η̃)∇fδ(ω̃) + ν2ω̃

]
∈ R× RN , (3.12)

we can observe that:

(u∗, z − u)H = (η∗, ζ − η)L2(Ω) + (v∗, w − v)H

=

∫
Ω

∇η · ∇(ξ − η) dx+

∫
Γ

∇Γ(εθΓ) · ∇Γ(ε(ξΓ − θΓ)) dΓ

+

∫
Ω

(
α′(η)fδ(∇θ) + ν−2α(η)α′(η)

)
(ζ − η) dx

+

∫
Ω

(
α(η)∇fδ(∇θ) + ν2∇θ

)
· ∇(ξ − θ) dx

≤ 1

2

∫
Ω

(|∇ζ|2 − |∇η|2) dx+
1

2

∫
Γ

(|∇Γ(εξΓ)|2 − |∇Γ(εθΓ)|2) dΓ

+
1

2

∫
Ω

[(
νfδ(∇ξ) +

1

ν
α(ζ)

)2

−
(
νfδ(∇θ) +

1

ν
α(η)

)2
]
dx

= Φδ
ε(ζ, w)− Φδ

ε(η, v), for any z = [ζ, w] = [ζ, ξ, ξΓ] ∈ D(Φδ
ε) = Vε,

and therefore

u = [η, v] = [η, θ, θΓ] ∈ D(∂Φδ
ε) with v = [θ, θΓ] ∈ Vε,

and u∗ = [η∗, v∗] = [η∗, θ∗, θ∗Γ] ∈ ∂Φδ
ε(u) = ∂Φδ

ε(η, v) = ∂Φδ
ε(η, θ, θΓ) in L2(Ω)×H,

by using Remark 1 (Fact 1)–(Fact 3), (3.10)–(3.12), and Young’s inequality.
Thus, we conclude Key-Lemma 3.
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Key-Lemma 4 (Mosco-convergence for the convex energies). Let ε0 ≥ 0 be a fixed con-
stant, and let us assume that the sequences {εn}∞n=1 ⊂ [0,∞) and {δn}∞n=1 ⊂ [0, 1] satisfy
εn → ε0 and δn → 0. Then, for the sequence of convex functions {Φn}∞n=1 := {Φδn

εn}
∞
n=1, it

holds that:
Φn → Φε0 on H , in the sense of Mosco, as n→∞.

Proof. First, we show the lower-bound condition (M1) in Definition 1. Let ǔ = [η̌, θ̌, θ̌Γ] ∈
H and {ǔn = [η̌n, θ̌n, θ̌Γ,n]}∞n=1 ⊂H be such that:

ǔn → ǔ weakly in H , as n→∞.

Then, we may say limn→∞Φn(ǔn) <∞ since another case is trivial. So, by taking a sub-
sequence (not relabeled), we can reduce the situation to the case when limn→∞Φn(ǔn) =
limn→∞Φn(ǔn) <∞. In this case, we may suppose that:

∇θ̌n → ∇θ̌ weakly in L2(Ω)N as n→∞,

by taking more one subsequence if necessary. Here, if ε0 = 0, then having in mind:

• the relationship fδ ≥ | · |,
• the weakly lower semi-continuities of the norms | · |L2(Ω)N , and | · |L2(Γ)N ,

• the weakly lower semi-continuity of the convex function:

[η, ω] ∈ L2(Ω)× L2(Ω)N 7→ 1

2

∫
Ω

(
ν|ω|+ 1

ν
α(η)

)2

dx ∈ [0,∞),

we can show the condition (M1) as follows:

lim
n→∞

Φn(ǔn) ≥ 1

2
lim
n→∞

∫
Ω

|∇η̌n|2 dx+
1

2
lim
n→∞

∫
Ω

(
νfδn(∇θ̌n) +

1

ν
α(η̌n)

)2

dx

+
1

2
lim
n→∞

∫
Γ

|∇Γ(εnθ̌Γ,n)|2 dΓ ≥ Φε0(ǔ). (3.13)

Meanwhile, if ε0 > 0, then since the boundedness of {Φn(ǔn)}∞n=1 implies that:

{θ̌Γ,n}∞n=1 ⊂ H1(Γ), and ∇Γ(εnθ̌Γ,n)→ ∇Γ(ε0θ̌Γ) weakly in L2(Ω)N , as n→∞,

for some subsequence (not relabeled),

we can deduce the condition (M1) just as in (3.13).
Next, we show the optimality condition (M2) in Definition 1. Let us fix any û =

[η̂, θ̂, θ̂Γ] ∈ Vε0 . Besides, let us take a sequence {ϕ̂i}∞i=1 ⊂ H1(Ω), such that:

|ϕ̂i − η̂|H1(Ω) ≤ 2−i, for any i ∈ N, (3.14)

and let us take a sequence {ψ̂i}∞i=1 ⊂ H1(Ω) in the following way:{
• If ε0 > 0, then {ψ̂i}∞i=1 = {θ̂};
• If ε0 = 0, then {ψ̂i}∞i=1 ⊂ C1(Ω) satisfies |ψ̂i − θ̂|H1(Ω) ≤ 2−i, for any i ∈ N.

(3.15)
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Here, taking a subsequence if necessary, we can further impose that:
ϕ̂i → η̂ in the pointwise sense, a.e. in Ω,

ψ̂i → θ̂ in the pointwise sense, a.e. in Ω,

ψ̂i|Γ → θ̂Γ in H
1
2 (Γ), and in the pointwise sense, a.e. on Γ,

{ψ̂i|Γ}∞i=1 ⊂ H1(Γ), and ε0ψ̂i|Γ → ε0θ̂Γ in H1(Γ),

as i→∞. (3.16)

By (3.16) and Lebesgue’s dominated convergence theorem (cf. [14, Theorem 10]), we can
configure a sequence {ni}∞i=0 ⊂ N such that 1 =: n0 < n1 < n2 < · · · < ni ↑ ∞, as i→∞,
and for any i ∈ N ∪ {0},

sup
n≥ni

∣∣fδn(∇ψ̂i)− |∇ψ̂i|
∣∣
L2(Ω)

< 2−i, and sup
n≥ni

|ε2
n − ε2

0||∇Γψ̂i|Γ|2L2(Γ)N < 2−i. (3.17)

Based on these, let us define:

ûn = [η̂n, θ̂n, θ̂Γ,n] :=

{
[ϕ̂i, ψ̂i, ψ̂i|Γ ], if ni ≤ n < ni+1, for i ∈ N,

[ϕ̂1, ψ̂1, ψ̂1|Γ ], if 1 ≤ n < n1.
(3.18)

Taking into account (3.1) and (3.14)–(3.18), we compute that:∣∣Φn(ûn)− Φε0(û)
∣∣

≤ 1

2

∫
Ω

∣∣|∇η̂n|2 − |∇η̂|2∣∣ dx+
1

2

∫
Γ

∣∣|∇Γ(εnθ̂Γ,n)|2 − |∇Γ(ε0θ̂Γ)|2
∣∣ dΓ

+
1

2

∫
Ω

∣∣∣∣∣
(
νfδn(∇θ̂n) +

1

ν
α(η̂n)

)2

−
(
ν|∇θ̂|+ 1

ν
α(η̂)

)2
∣∣∣∣∣ dx

≤ 1

2

∣∣|∇η̂n|+ |∇η̂|∣∣L2(Ω)

∣∣∇(η̂n − η̂)
∣∣
L2(Ω)N

+
1

2
|ε2
n − ε2

0||∇Γθ̂Γ,n|2L2(Γ)N

+
1

2

∣∣|∇Γ(ε0θ̂Γ,n)|+ |∇Γ(ε0θ̂Γ)|
∣∣
L2(Γ)

∣∣∇Γ(ε0(θ̂Γ,n − θ̂Γ))
∣∣
L2(Γ)N

+
1

2

∣∣∣∣ν(fδn(∇θ̂n) + |∇θ̂|
)

+
1

ν

(
α(η̂n) + α(η̂)

)∣∣∣∣
L2(Ω)

×
[
ν
(∣∣fδn(∇θ̂n)− |∇θ̂n|

∣∣
L2(Ω)

+
∣∣∇(θ̂n − θ̂)

∣∣
L2(Ω)N

)
+

1

ν

∣∣α(η̂n)− α(η̂)
∣∣
L2(Ω)

]
≤ 1

2

∣∣|∇η̂n|+ |∇η̂|∣∣L2(Ω)

∣∣∇(η̂n − η̂)
∣∣
L2(Ω)N

+ 2−i

+
1

2

∣∣|∇Γ(ε0θ̂Γ,n)|+ |∇Γ(ε0θ̂Γ)|
∣∣
L2(Γ)

∣∣∇Γ(ε0(θ̂Γ,n − θ̂Γ))
∣∣
L2(Γ)N

+
1

2

(
ν
∣∣|∇θ̂n|+ δn + |∇θ̂|

∣∣
L2(Ω)

+
1

ν

∣∣α(η̂n) + α(η̂)
∣∣
L2(Ω)

)
×
(
ν
∣∣∇(θ̂n − θ̂)

∣∣
L2(Ω)N

+
1

ν
|α′|L∞(R)|η̂n − η̂|L2(Ω) + ν2−i

)
,

for any i ∈ N ∪ {0} and any n ≥ ni,
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and therefore

Φn(ûn)→ Φε0(û) as n→∞.

This implies that the sequence {ûn = [η̂n, θ̂n, θ̂Γ,n]}∞n=1 ⊂ H1(Ω)2 ×H 1
2 (Γ) is the required

sequence to verify the optimality condition.

Key-Lemma 5 (Representation of ∂vΦε). For any ε ≥ 0, the following two items are
equivalent.

(O) u = [η, v] = [η, θ, θΓ] ∈ D(∂vΦε) and v∗ = [θ∗, θ∗Γ] ∈ ∂vΦε(η, v) = ∂vΦε(η, θ, θΓ) in H,
with v = [θ, θΓ] ∈ Vε.

(I) u = [η, v] = [η, θ, θΓ] ∈ Vε with v = [θ, θΓ] ∈ Vε, and there exists ω∗ ∈ L∞(Ω)N , such
that: 

• ω∗ ∈ Sgn(∇θ), a.e. in Ω,

• α(η)ω∗ + ν2∇θ ∈ L2
div(Ω),

• −∆Γ(ε2θΓ) +
[
(α(η)ω∗ + ν2∇θ)|Γ · nΓ

]
∈ L2(Γ),

(3.19)

and  • θ∗ = −div
(
α(η)ω∗ + ν2∇θ

)
in L2(Ω),

• θ∗Γ = −∆Γ(ε2θΓ) +
[
(α(η)ω∗ + ν2∇θ)|Γ · nΓ

]
in L2(Γ).

(3.20)

Proof. Let us fix any ε ≥ 0, and let us define a set-valued map Aε : D(Aε) ⊂ H → 2H ,
by putting:

D(Aε) :=

{
u = [η, v] = [η, θ, θΓ] ∈ Vε

there exists ω∗ ∈ L∞(Ω)N ,
such that (3.19) holds

}
, (3.21)

and

u = [η, v] = [η, θ, θΓ] ∈ D(Aε) ⊂H 7→ Aεu = Aε[η, v] = Aε[η, θ, θΓ]

:=

{
v∗ = [θ∗, θ∗Γ] ∈ H (3.20) holds, for some ω∗ ∈ L∞(Ω)N ,

satisfying (3.19)

}
. (3.22)

Then, the assertion of Key-Lemma 5 can be rephrased as follows:

∂vΦε(η, ·) = Aε(η, ·) in H2, for any ε ≥ 0 and any η ∈ H1(Ω). (3.23)

The above equality (3.23) can be shown via the following two Claims.

Claim 1.Aε(η, ·) is a monotone such that Aε(η, ·) ⊂ ∂vΦε(η, ·) inH2, for any η ∈ H1(Ω).
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Let us take η ∈ H1(Ω), v = [θ, θΓ] ∈ D(Aε(η, ·)), and v∗ = [θ∗, θ∗Γ] ∈ Aε(η, v) =
Aε(η, θ, θΓ) in H. Then, from Remark 1 (Fact 1)–(Fact 3), (3.19)–(3.22), and [4, Key-
Lemma 3], it is inferred that:

(v∗, w − v)H = (θ∗, ξ − θ)L2(Ω) + (θ∗Γ, ξΓ − θΓ)L2(Γ)

=

∫
Ω

(α(η)ω∗ + ν2∇θ) · ∇(ξ − θ) dx

+

∫
Γ

∇Γ(εθΓ) · ∇Γ(ε(ξΓ − θΓ)) dΓ

≤
∫

Ω

α(η)(|∇ξ| − |∇θ|) dx+
ν2

2

∫
Ω

(|∇ξ|2 − |∇θ|2) dx

+
1

2

∫
Γ

(|∇Γ(εξΓ)|2 − |∇Γ(εθΓ)|2) dΓ

= Φε(η, w)− Φε(η, v), for all η ∈ H1(Ω), and w = [ξ, ξΓ] ∈ Vε.

Thus, we have

v = [θ, θΓ] ∈ D(∂vΦε(η, ·)) and v∗ = [θ∗, θ∗Γ] ∈ ∂vΦε(η, v) = ∂vΦε(η, θ, θΓ) in H,

and we can say that:

Aε(η, ·) ⊂ ∂vΦε(η, ·) in H2, and Aε(η, ·) is monotone graph on H2.

Claim 2. Aε(η, ·) is maximal in H2.

Let us take η ∈ H1(Ω) and w = [ξ, ξΓ] ∈ H. In the light of Claim 1 and Minty’s
theorem, it is sufficient to show H ⊂ (Aε(η, ·) + IH)H. Here, with Key-Lemma 2 in
mind, we can apply Minty’s theorem, and we can configure a class of functions {vδ =
[θδ, θδΓ] | 0 < δ ≤ 1} ⊂ Vε, by setting:

vδ := (Aδε(η) + IH)−1w in H, for any 0 < δ ≤ 1,

i.e.:
w − vδ = ∂vΦ

δ
ε(η, v

δ) in H, for any 0 < δ ≤ 1. (3.24)

Also, we can see that:∫
Ω

(α(η)∇fδ(∇θδ) + ν2∇θδ) · ∇ψ dx+

∫
Γ

∇Γ(εθδΓ) · ∇Γ(εψΓ) dΓ

=

∫
Ω

(ξ − θδ)ψ dx+

∫
Γ

(ξΓ − θδΓ)ψΓ dΓ, for all [ψ, ψΓ] ∈ Vε and 0 < δ ≤ 1. (3.25)

In the variational form (3.25), let us put [ψ, ψΓ] = [θδ, θδΓ] ∈ Vε. Then, by using (A3) and
Young’s inequality, we deduce that:

1

2
|vδ|2H + ν2|∇θδ|2L2(Ω)N + |∇Γ(εθδΓ)|2L2(Γ)N ≤

1

2
|w|2H + δ

∫
Ω

α(η) dx

≤ 1

2
|w|2H + (LN(Ω)

1
2 |η|L2(Ω) + δαLN(Ω)), for any 0 < δ ≤ 1. (3.26)
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(3.26) implies that {vδ | 0 < δ ≤ 1} is bounded in Vε, and is compact in H. Also, as is
easily checked,

|∇fδ(∇θδ)| =

∣∣∣∣∣ ∇θδ√
δ2 + |∇θδ|2

∣∣∣∣∣ ≤ 1, a.e. in Ω, for any 0 < δ ≤ 1. (3.27)

Therefore, by (A3) and the estimates (3.26) and (3.27), we can find a sequence {δn}∞n=1 ⊂
(0, 1], a pair of functions v = [θ, θΓ] ∈ Vε, and a function ω∗ ∈ L∞(Ω)N , such that δn ↓ 0
as n→∞,

vn = [θn, θΓ,n] := vδn = [θδn , θδnΓ ]→ v = [θ, θΓ] in H,

and weakly in Vε, as n→∞,
(3.28)

and
∇fδn(∇θn)→ ω∗ weakly-∗ in L∞(Ω)N , as n→∞. (3.29)

Now, with (3.28) and (3.29) in mind, let us take any function ψ0 ∈ H1
0 (Ω) and take

[ψ0, 0] as the pair of test functions [ψ, ψΓ] in (3.25). Then, putting δ = δn with n ∈ N,
and letting n→∞ in (3.25) yields that:∫

Ω

(α(η)ω∗ + ν2∇θ) · ∇ψ0 dx = (ξ − θ, ψ0)L2(Ω).

It implies that:

− div(α(η)ω∗ + ν2∇θ) = ξ − θ ∈ L2(Ω) in D′(Ω). (3.30)

As well as, putting δ = δn, letting n→∞ in (3.25), and applying Remark 1 (Fact 1)–(Fact
3), and (3.28)–(3.30), we infer that:

(ξΓ − θΓ, ψΓ)L2(Γ) =

∫
Ω

(α(η)ω∗ + ν2∇θ) · ∇ψ dx− (ξ − θ, ψ)L2(Ω)

+

∫
Γ

∇Γ(εθΓ) · ∇Γ(εψΓ) dΓ

=
〈[

(α(η)ω∗ + ν2∇θ)|Γ · nΓ

]
, ψ|Γ

〉
H

1
2 (Γ)

+
〈
−∆Γ(εθΓ), εψΓ

〉
H1(Γ)

, for any [ψ, ψΓ] ∈ Vε.

It is seen that:

−∆Γ(ε2θΓ) +
[
(α(η)ω∗ + ν2∇θ)|Γ · nΓ

]
= ξΓ − θΓ ∈ L2(Γ) in H−1(Γ). (3.31)

Finally, by Key-Lemma 4, (3.24) and (3.28), we can apply Remark 4 (Fact 4) to see
that:

w − v ∈ ∂vΦε(η, v) in H,

and
Φδn
ε (η, vn)→ Φε(η, v), as n→∞. (3.32)
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Also, taking into account (3.1), (3.28), and lower semi-continuities of the norms | · |L2(Ω)N ,
| · |L2(Γ)N , and the convex function:

ω ∈ L2(Ω)N 7→
∫

Ω

α(η)|ω| dx ∈ [0,∞),

we can see that: 

lim
n→∞

∫
Ω

α(η)fδn(∇θn) dx ≥
∫

Ω

α(η)|∇θ| dx,

lim
n→∞

(
ν2

2

∫
Ω

|∇θn|2 dx
)
≥ ν2

2

∫
Ω

|∇θ|2 dx,

lim
n→∞

(
1

2

∫
Γ

|∇Γ(εθΓ,n)|2 dΓ

)
≥ 1

2

∫
Γ

|∇Γ(εθΓ)|2 dΓ.

(3.33)

From (3.32) and (3.33), it follows that:

ν2

2

∫
Ω

|∇θ|2 dx ≤ ν2

2
lim
n→∞

∫
Ω

|∇θn|2 dx ≤
ν2

2
lim
n→∞

∫
Ω

|∇θn| dx

≤ lim
n→∞

Φδn
ε (η, vn)− 1

2

∫
Ω

|∇η|2 dx− 1

2ν2

∫
Ω

(α(η))2 dx

− lim
n→∞

∫
Ω

α(η)fδn(∇θn) dx− 1

2
lim
n→∞

∫
Γ

|∇Γ(εθΓ,n)|2 dΓ

≤ Φε(η, v)− 1

2

∫
Ω

|∇η|2 dx− 1

2ν2

∫
Ω

(α(η))2 dx

−
∫

Ω

α(η)|∇θ| dx− 1

2

∫
Γ

|∇Γ(εθΓ)|2 dΓ =
ν2

2

∫
Ω

|∇θ|2 dx. (3.34)

Having in mind (Fact 0), (3.28), (3.34), and the uniform convexity of L2-based topologies,
we deduced that:

θn → θ in H1(Ω) (∇θn → ∇θ in L2(Ω)N), as n→∞. (3.35)

In view of Remark 2, Remark 4 (Fact 4), (3.29), (3.35), and [3, Proposition 2.16], it
is inferred that:

ω∗ ∈ Sgn(∇θ), a.e. in Ω. (3.36)

As a consequence of (3.30), (3.31), (3.36), we verify Claim 2.
Now, by using Claims 1, 2, and the maximality of Aε(η, ·) in H2, we can show the

coincidence (3.23), and we conclude this Key-Lemma 5.

4 Time-discretization

In this paper, the solution to (KWC)ε is to be obtained by means of the time-discretization
methods. In view of this, we fix the constants ε ≥ 0 and 0 < δ ≤ 1, and assume (A0)–
(A5). On this basis, we denote by 0 < τ ≤ 1 the constant of time-step-size, and consider
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the following time-discretization scheme, denoted by (AP)δτ .

(AP)δτ : A0(uδτ,i−1)
uδτ,i − uδτ,i−1

τ
+ ∂Φδ

ε(u
δ
τ,i) + G(uδτ,i) = 0 in H , for i = 1, 2, 3, · · · , (4.1)

with the initial condition:

ηδτ,0 = η0 in L2(Ω), and vδτ,0 = [θδτ,0, θ
δ
Γ,τ,0] = v0 = [θ0, θΓ,0] in H. (4.2)

Definition 3 (Solution to (AP)δτ ). A sequence of {uδτ,i}∞i=0 = {[ηδτ,i, θδτ,i, θδΓ,τ,i]}∞i=0 ⊂H is
called a solution to (AP)δτ , iff. {uδτ,i}∞i=0 ⊂ Vε, and {uδτ,i}∞i=0 fulfills (4.1) and (4.2).

Now, the the objective of this Section is to prove the following Theorem.

Theorem 1 (Solvability and energy estimate for (AP)δτ ). There exists a small positive
constant 0 < τ ∗ < 1, such that for any 0 < τ < τ ∗, the time-discretization scheme (AP)δτ
admits a unique solution {uδτ,i}∞i=0 = {[ηδτ,i, θδτ,i, θδΓ,τ,i]}∞i=0 ⊂ Vε, such that:

0 ≤ ηδτ,i ≤ 1, m0 ≤ θδτ,i ≤M0 a.e. in Ω, m0 ≤ θδΓ,τ,i ≤M0, a.e. on Γ, (4.3)

and

1

2τ

∣∣A0(uδτ,i−1)
1
2 (uδτ,i − uδτ,i−1)

∣∣2
H

+ F δ
ε (uδτ,i) ≤ F δ

ε (uδτ,i−1), for i = 1, 2, 3 . . . , (4.4)

where F δ
ε is a relaxed free-energy defined as:

u = [η, θ, θΓ] ∈ Vε 7→ F δ
ε (u) = F δ

ε (η, θ, θΓ) := Φδ
ε(u) +

∫
Ω

Ĝ(η) dx

=
1

2

∫
Ω

|∇η|2 dx+

∫
Ω

ĝ(η) dx

+

∫
Ω

α(η)fδ(∇θ) dx+
ν2

2

∫
Ω

|∇θ|2 dx+
1

2

∫
Γ

|∇Γ(εθΓ)|2 dΓ ∈ [0,∞). (4.5)

Remark 11. As is shown in Key-Lemma 3, the subdifferential ∂Φδ
ε coincides with ∂ηΦε×

∂vΦ
δ
ε in H 2, so that the equality as in (4.1) is valid. Additionally, the scheme (AP)δτ can

be reformulated to the following system:

1

τ
(ηδτ,i − ηδτ,i−1)−∆Nη

δ
τ,i + g(ηδτ,i) + α′(ηδτ,i)fδ(∇θδτ,i) = 0 in L2(Ω),

Ã0(ηδτ,i−1)
vδτ,i − vδτ,i−1

τ
+ ∂vΦ

δ
ε(η

δ
τ,i, v

δ
τ,i) = 0 in H,

with the initial condition (4.2).

For the proof of Theorem 1, we prepare some Lemmas.
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Lemma 1. Let us assume that ζk ∈ D(∆N), ζ0,k ∈ H1(Ω), k = 1, 2, θ ∈ H1(Ω), and

1

τ
(ζ1 − ζ0,1)−∆Nζ1 + g(ζ1) + α′(ζ1)fδ(∇θ) ≤ 0, a.e. in Ω, (4.6)

1

τ
(ζ2 − ζ0,2)−∆Nζ2 + g(ζ2) + α′(ζ2)fδ(∇θ) ≥ 0, a.e in Ω. (4.7)

Then, there exists a small positive constant τ0 ∈ (0, 1) such that:

|[ζ1 − ζ2]+|2H1(Ω) ≤
1

τ
|[ζ0,1 − ζ0,2]+|2L2(Ω), for any τ ∈ (0, τ0). (4.8)

Proof. Let us take the difference between (4.6) and (4.7), and multiply the both sides by
[ζ1− ζ2]+. Then, by (A1), (A3), Green’s formula, and Young’s inequality, we can observe
that:

1

τ
|[ζ1 − ζ2]+|2L2(Ω) + |∇[ζ1 − ζ2]+|2L2(Ω)N

=
1

τ
(ζ0,1 − ζ0,2, [ζ1 − ζ2]+)L2(Ω) − (g(ζ1)− g(ζ2), [ζ1 − ζ2]+)L2(Ω)

−
∫

Ω

(α′(ζ1)− α′(ζ2))[ζ1 − ζ2]+fδ(∇θ) dx

≤
(

1

2τ
+ |g′|L∞(R)

)
|[ζ1 − ζ2]+|2L2(Ω) +

1

2τ
|[ζ0,1 − ζ0,2]+|2L2(Ω). (4.9)

Here, putting

τ0 :=
1

1 + 2|g′|L∞(R)

∈ (0, 1),

the inequality (4.8) is obtained as a consequence of (4.9).

Lemma 2. Let us fix η ∈ H1(Ω), w0,k = [ξ0,k, ξΓ,0,k] ∈ Vε, k = 1, 2, and assume that:

z = [η, wk] = [η, ξk, ξΓ,k] ∈ D(∂wΦδ
ε) with wk = [ξk, ξΓ,k] ∈ Vε,

and w∗k = [ξ∗k, ξ
∗
Γ,k] ∈ ∂wΦδ

ε(η, wk) = ∂wΦε(η, ξk, ξΓ,k) in H, k = 1, 2,

Ã0(η)(w1 − w0,1) + w∗1 ≤ 0

(
=

[
0
0

])
in H, (4.10)

and

Ã0(η)(w2 − w0,2) + w∗2 ≥ 0

(
=

[
0
0

])
in H. (4.11)

Then, it holds that: ∣∣Ã0(η)[w1 − w2]+
∣∣2
H
≤
∣∣Ã0(η)[w0,1 − w0,2]+

∣∣2
H
.

Proof. This lemma is concluded by taking the difference between (4.10) and (4.11), by
multiplying the both sides by [w1 − w2]+, and by applying an inequality of the so-called
T -monotonicity:

(w∗1 − w∗2, [w1 − w2]+)H ≥ 0,
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which is verified as follows.

(w∗1 − w∗2, [w1 − w2]+)H = (w∗1, [w1 − w2]+)H + (w∗2,−[w1 − w2]+)H

= (w∗1, w1 − (w1 ∧ w2))H + (w∗2, w2 − (w1 ∨ w2))H

≥ Φδ
ε(η, w1)− Φδ

ε(η, w1 ∧ w2) + Φδ
ε(η, w2)− Φδ

ε(η, w1 ∨ w2)

= Φδ
ε(η, w1) + Φδ

ε(η, w2)

− 1

2

∫
{ξ1≤ξ2}

(
νfδ(∇ξ1) +

1

ν
α(η)

)2

dx− 1

2

∫
{ξΓ,1≤ξΓ,2}

|∇Γ(εξΓ,1)|2 dΓ

− 1

2

∫
{ξ1>ξ2}

(
νfδ(∇ξ2) +

1

ν
α(η)

)2

dx− 1

2

∫
{ξΓ,1>ξΓ,2}

|∇Γ(εξΓ,2)|2 dΓ

− 1

2

∫
{ξ1≤ξ2}

(
νfδ(∇ξ2) +

1

ν
α(η)

)2

dx− 1

2

∫
{ξΓ,1≤ξΓ,2}

|∇Γ(εξΓ,2)|2 dΓ

− 1

2

∫
{ξ1>ξ2}

(
νfδ(∇ξ1) +

1

ν
α(η)

)2

dx− 1

2

∫
{ξΓ,1>ξΓ,2}

|∇Γ(εξΓ,1)|2 dΓ

= (Φδ
ε(η, w1) + Φδ

ε(η, w2))− (Φδ
ε(η, w1) + Φδ

ε(η, w2)) = 0.

Lemma 3. Let us fix any ũ0 = [η̃0, θ̃0, θ̃Γ,0] ∈ H , and consider the following auxiliary
equation:

1

τ
A0(ũ0)(u− ũ0) + ∂Φδ

ε(u) + G(u) = 0 in H . (4.12)

Then, there exists a small positive constant τ1 ∈ (0, 1] such that under τ ∈ (0, τ1], the
equation (4.12) admits a unique solution u = [η, θ, θΓ] ∈ Vε, and

1

2τ

∣∣A0(ũ0)
1
2 (u− ũ0)

∣∣2
H

+ F δ
ε (u) ≤ F δ

ε (ũ0). (4.13)

Proof. First, for the proof of existence, let us define a functional F̃ δ
ε : H → (−∞,∞],

by letting:
u = [η, θ, θΓ] ∈H 7→ F̃ δ

ε (u) = F̃ δ
ε (η, θ, θΓ)

:=
1

2τ

∣∣A0(ũ0)
1
2 (u− ũ0)

∣∣2
H

+ Φδ
ε(u) +

∫
Ω

Ĝ(η) dx,

and let us set:

τ̃0 :=
δαν

2

δαν2 + 4|α′|2L∞(R)

∈ (0, 1).

Then, in the light of (A2)–(A4), it is easily checked that F̃ δ
ε is a proper and l.s.c. functional

on H , and

F̃ δ
ε (u) ≥ (1 ∧ δα)

2
|u− ũ0|2H +

(1 ∧ ν2 ∧ ε2)

2
|∇u|L2(Ω)N×L2(Ω)N×L2(Γ)N

− 4

ν2

(
|α′|2L∞(R)|η̃0|2L2(Ω) + δ2

αLN(Ω)
)
, whenever 0 < τ < τ̃0,
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via the following computations:

Φδ
ε(u) ≥ 1

2
|∇η|2L2(Ω)N +

ν2

2
|∇θ|2L2(Ω)N +

1

2
|∇Γ(εθΓ)|2L2(Γ)N ,

and∫
Ω

Ĝ(η) dx ≥ − 1

ν2

∫
Ω

(α(η))2 dx = − 1

ν2

∫
Ω

2
(
|α(η)− α(η̃0)|2 + |α(η̃0)|2

)
dx

≥ − 2

ν2

∫
Ω

(
|α′|2L∞(R)|η − η̃0|2 + |α(η̃0)|2

)
dx

≥ −
2|α′|2L∞(R)

δαν2

∣∣A0(ũ0)
1
2 (u− ũ0)

∣∣2
H
− 2

ν2

∫
Ω

(2|α′|2L∞(R)|η̃0|2L2(Ω) + 2δ2
α) dx

≥ − 4

ν2

(
|α′|2L∞(R)|η̃0|2L2(Ω) + δ2

αLN(Ω)
)

In addition, the equation (4.12) coincides with the stationary equation for F δ
ε , and hence,

when τ ∈ (0, τ̃0], the solution to (4.12) is obtained, by means of the direct method of
calculation of variations (cf. [1, Theorem 3.2.1]).

Next, for the proof of uniqueness, we suppose that there are two solutions uk ∈ Vε,
k = 1, 2, to the equation (4.12). Besides, let us take the difference between equations
(4.12) corresponding to uk, k = 1, 2. Then, multiplying the both sides of the results by
u1 − u2, and using (A1) and (A3), we arrive at:

1

τ
(δα − τ |G′|L∞(R))|u1 − u2|2H

≤ 1

τ

∣∣A0(ũ0)
1
2 (u1 − u2)

∣∣2
H

+ (G(u1)− G(u2), u1 − u2)H = 0.

Hence, the uniqueness for (4.12) holds, under the following sufficient condition:

0 < τ ≤ τ̃1 :=
δα

2(1 + |G′|L∞(R))
.

Finally, to verify (4.13), let us multiply the both sides of (4.12) by u−u0. Then, by (2.4),
we observe that:

1

τ

∣∣A0(ũ0)
1
2 (u− ũ0)

∣∣2
H

+ Φδ
ε(u)− Φδ

ε(ũ0)

≤
∫

Ω

G(η)(η̃0 − η) dx

≤
∫

Ω

(
Ĝ(η̃0)− Ĝ(η) +

|G′|L∞(R)

2
|η̃0 − η|2

)
dx

≤
∫

Ω

Ĝ(η̃0) dx−
∫

Ω

Ĝ(η) dx+
|G′|L∞(R)

2δα

∣∣A0(ũ0)
1
2 (u− ũ0)

∣∣2
H
. (4.14)

So, putting

τ̃2 :=
2δα

1 + |G′|L∞(R)

∈ (0, 1),
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the inequality (4.13) is inferred from (4.14), under the sufficient condition 0 < τ < τ̃2.
Now, we conclude that τ1 := τ̃0 ∧ τ̃1 ∧ τ̃2 is the required constant to realize (4.12) and

(4.13).

Proof of Theorem 1. Let us set τ1, given in Lemma 3 as the required constant in this
theorem, and let us fix any time-step-size τ ∈ (0, τ∗). Then, since the value of constant τ∗ is
independent of the time-index i ∈ N∪ {0}, the solution {uδτ,i}∞i=0 = {[ηδτ,i, θδτ,i, θδΓ,τ,i]}δi=1 ⊂
Vε to the time-discretization scheme (AP)δτ is obtained by applying Lemma 3 to the
equation (4.1), inductively, and moreover, the energy inequality (4.4) is obtained as a
straightforward sequence of (4.13), for every i ∈ N.

Next, we verify (4.3). To this end, we fix any i ∈ N, and suppose that:

0 ≤ ηδτ,i−1 ≤ 1, m0 ≤ θδτ,i−1 ≤M0 a.e. in Ω, and

m0 ≤ θδΓ,τ,i−1 ≤M0, a.e. on Γ, for i = 1, 2, 3, · · · .
(4.15)

Also, let us invoke Remark 11, and confirm that:

1

τ
(ηδτ,i − ηδτ,i−1)−∆Nη

δ
τ,i + g(ηδτ,i) + α′(ηδτ,i)fδ(∇θδτ,i) = 0 in L2(Ω),

and
1

τ
Ã0(ηδτ,i−1)

[
θδτ,i − θδτ,i−1

θδΓ,τ,i − θδΓ,τ,i−1

]
+ ∂vΦ

δ
ε(η

δ
τ,i, θ

δ
τ,i, θ

δ
Γ,τ,i) 3 0 in H.

Additionally, owing to (A1), (4.15), the constant functions 0(∈ D(∆N)) and 1(∈ D(∆N))
satisfy that:

1

τ
(0− ηδτ,i)−∆N0 + g(0) + α′(0)|∇θδτ,i| ≤ 0, a.e. in Ω,

and
1

τ
(1− ηδτ,i−1)−∆N1 + g(1) + α′(1)|∇θδτ,i| ≥ 0, a.e. in Ω,

and the pairs of constants [m0,m0](∈ H), [M0,M0](∈ H), and [0, 0](∈ H) satisfy that:{
[m0,m0] ∈ D(∂vΦ

δ
ε),

[0, 0] ∈ ∂vΦδ
ε(η

δ
τ,i,m0,m0) in H,

{
[M0,M0] ∈ D(∂vΦ

δ
ε),

[0, 0] ∈ ∂vΦδ
ε(η

δ
τ,i,M0,M0) in H,

1

τ
Ã0(ηδτ,i−1)

[
m0 − θδτ,i−1

m0 − θδΓ,τ,i−1

](
+

[
0
0

])
≤
[

0
0

]
in H, (4.16)

and
1

τ
Ã0(ηδτ,i−1)

[
M0 − θδτ,i−1

M0 − θδΓ,τ,i−1

](
+

[
0
0

])
≥
[

0
0

]
in H. (4.17)

Now, applying Lemma 1 to the case when:{
ζ1 = 0, ζ0,1 = ηδτ,i−1,
ζ2 = ηδτ,i, ζ0,2 = ηδτ,i−1,

(
resp.

{
ζ1 = ηδτ,i, ζ0,1 = ηδτ,i−1,
ζ2 = 1, ζ0,2 = ηδτ,i−1,

)
,
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it is deduced that:

|[−ηδτ,i]+|L2(Ω) ≤ 0 ( resp. |[ηδτ,i − 1]+|L2(Ω) ≤ 0),

i.e. 0 ≤ ηδτ,i ≤ 1, a.e. in Ω, for i = 1, 2, 3, . . . .
(4.18)

As well as, having in mind (A4), (4.16) and (4.17), we can apply Lemma 2 to the case
when: 

w1 =

[
m0

m0

]
, w0,1 =

[
θδτ,i−1

θδΓ,τ,i−1

]
,

w2 =

[
θδτ,i
θδΓ,τ,i

]
, w0,2 =

[
θδτ,i−1

θδΓ,τ,i−1

]
,

 resp.


w1 =

[
θδτ,i
θδΓ,τ,i

]
, w0,1 =

[
θδτ,i−1

θδΓ,τ,i−1

]
,

w2 =

[
M0

M0

]
, w0,2 =

[
θδτ,i−1

θδΓ,τ,i−1

]
,

 ,

one can see that:∣∣∣∣[ δα[m0 − θδτ,i]+

[m0 − θδΓ,τ,i]+

]∣∣∣∣2
H

≤
∣∣∣∣Ã0(ηδτ,i)

[
[m0 − θδτ,i]+

[m0 − θδΓ,τ,i]+

]∣∣∣∣2
H

≤ 0,

(
resp.

∣∣∣∣[ δα[θδτ,i −M0]+

[θδΓ,τ,i −M0]+

]∣∣∣∣2
H

≤
∣∣∣∣Ã0(ηδτ,i)

[
[θδτ,i −M0]+

[θδΓ,τ,i −M0]+

]∣∣∣∣2
H

≤ 0

)
,

i.e.:

m0 ≤ θδτ,i ≤M0, a.e. in Ω and m0 ≤ θδΓ,τ,i ≤M0, a.e on Γ, for i = 1, 2, 3, . . . . (4.19)

By (4.18) and (4.19), we verify (4.3), and conclude this theorem. 2

5 Proofs of Main Theorems

This section is devoted to the proof of Main Theorems.

5.1 Proof of Main Theorem 1

First, we prove the item (A). Let us fix any u0 = [η0, θ0, θΓ,0] ∈ Dε. Let 0 < τ∗ < 1
be the constant given in Theorem 1, and for every 0 < δ ≤ 1 and 0 < τ < τ∗, let
uδτ,i = [ηδτ,i, θ

δ
τ,i, θ

δ
Γ,τ,i] be the solution to (AP)δτ , subject to the initial condition (4.2).

Besides, we let:

ti := iτ, for i = 0, 1, 2, . . . ,
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and we define the following time-interpolations:

uδτ (t) = [ηδτ (t), θ
δ

τ (t), θ
δ

Γ,τ (t)] := uδτ,i = [ηδτ,i, θ
δ
τ,i, θ

δ
Γ,τ,i], if ti−1 < t ≤ ti,

uδτ (t) = [ηδ
τ
(t), θδτ (t), θ

δ
Γ,τ (t)] := uδτ,i−1 = [ηδτ,i−1, θ

δ
τ,i−1, θ

δ
Γ,τ,i−1], if ti−1 ≤ t < ti,

ûδτ (t) = [η̂δτ (t), θ̂
δ
τ (t), θ̂

δ
Γ,τ (t)] :=

t− ti−1

τ
uδτ (t) +

ti − t
τ

uδτ (t), if ti−1 ≤ t < ti,

with some i ∈ N, for all t ≥ 0.

Then, from (4.3) in Theorem 1, we can see that:
0 ≤ ηδτ ≤ 1, 0 ≤ ηδ

τ
≤ 1, and 0 ≤ η̂δτ ≤ 1, a.e. in Q,

m0 ≤ θ
δ

τ ≤M0, m0 ≤ θδτ ≤M0, and m0 ≤ θ̂δτ ≤M0, a.e. in Q,

m0 ≤ θ
δ

Γ,τ ≤M0, m0 ≤ θδΓ,τ ≤M0, and m0 ≤ θ̂δΓ,τ ≤M0, a.e. on Σ.

(5.1)

Also, putting nt := min{ñ ∈ N | ñτ ≥ t}, for t ∈ [0, T ], we infer from (4.4) that:

1

2

∫ t

0

|∂tη̂δτ (σ)|2L2(Ω) dσ +
1

2

∫ t

0

∣∣√α0(ηδτ (σ))∂tθ̂
δ
τ (σ)

∣∣2
L2(Ω)

dσ

+
1

2

∫ t

0

|∂tθ̂δΓ,τ (σ)|2L2(Γ) dσ + F δ
ε (ηδτ (t), θ

δ

τ (t), θ
δ

Γ,τ (t))

≤ 1

2τ

nt∑
i=1

∣∣A0(uδτ,i−1)
1
2 (uδτ,i − uδτ,i−1)

∣∣2
H

+ F δ
ε (uδτ,nt

)

≤ F δ
ε (u0), for all t ∈ [0, T ], (5.2)

and therefore

1

2

∫ T

0

∣∣A0(uδτ )
1
2∂tû(t)

∣∣2
H
dt+ sup

t∈[0,T ]

F δ
ε (uδτ (t))

≤ 2 sup
0≤δ≤1

F δ
ε (u0) ≤ 2Fε(u0) + 2δ|α|C([0,1])LN(Ω). (5.3)

As is checked from (5.2) and (5.3):
• {uδτ | 0 < δ ≤ 1, 0 < τ < τ∗} is bounded in L∞(0, T ; Vε),

• {uδτ | 0 < δ ≤ 1, 0 < τ < τ∗} is bounded in L∞(0, T ; Vε),

• {ûδτ | 0 < δ ≤ 1, 0 < τ < τ∗} is bounded inW 1,2(0, T ; H ) and in L∞(0, T ; Vε).

(5.4)

By virtue of (5.1)–(5.4), we can apply the theories of compactness of Aubin’s type [23,
Corollary 4], Arzerá–Ascoli [24, Theorem 1.3.1], and Alaoglu–Bourbaki–Kakutani [24,
Theorem 1.2.5], and can find sequences {δn}∞n=1 ⊂ (0, 1), {τn}∞n=1 ⊂ (0, τ∗), and a triplet
u = [η, θ, θΓ] ∈ L2(0, T ; H ) of functions, such that δn → 0, τn → 0, as n→∞,

u = [η, θ, θΓ] ∈ W 1,2(0, T ; H ) ∩ L∞(0, T ; Vε),

0 ≤ η ≤ 1, m0 ≤ θ ≤M0, a.e. in Q, and m0 ≤ θΓ ≤M0, a.e. on Σ,
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ûn = [η̂n, θ̂n, θ̂Γ,n] := ûδnτn = [η̂δnτn , θ̂
δn
τn , θ̂

δn
Γ,τn

]→ u = [η, θ, θΓ] in C([0, T ]; H ),

weakly in W 1,2(0, T ; H ), and weakly-∗ in L∞(0, T ; Vε), as n→∞,
(5.5)

u(0) = un(0) = u0 in H , for n = 1, 2, 3, . . . , (5.6)

and therefore

un = [ηn, θn, θΓ,n] := uδnτn = [ηδnτn , θ
δn
τn , θ

δn
Γ,τn ]→ u = [η, θ, θΓ]

in L∞(0, T ; H ), and weakly-∗ in L∞(0, T ; Vε), as n→∞, (5.7)

un = [η
n
, θn, θΓ,n] := uδnτn = [ηδn

τn
, θδnτn , θ

δn
Γ,τn

]→ u = [η, θ, θΓ]

in L∞(0, T ; H ), and weakly-∗ in L∞(0, T ; Vε), as n→∞.

Here, from (5.1) and (5.7), it follows that:
ηn → η weakly-∗ in L∞(Q), and in the pointwise sense, a.e. in Q,

θn → θ weakly-∗ in L∞(Q), and in the pointwise sense, a.e. in Q,

θΓ,n → θΓ weakly-∗ in L∞(Σ), and in the pointwise sense, a.e. on Σ,

(5.8)

by taking a subsequence if necessary. Invoking (A2), (5.5), (5.7), and (5.8), we can apply
the dominated convergence theorem (cf. [14, Theorem 10]), and can obtain the following
convergences:

A0(un)∂tûn = [∂tη̂n, α0(ηn)∂tθ̂n, ∂tθ̂Γ,n]→ A0(u)∂tu = [∂tη, α0(η)∂tθ, ∂tθΓ]

weakly in L2(0, T ; H ),

G(un)→ G(u) in L2(0, T ; H ), as n→∞.

(5.9)

Furthermore, having in mind (4.1), (5.7), (5.9), Key-Lemma 4, and [4, Lemma 4.1], we
can see that:

− A0(u)∂tû− G(u) ∈ ∂Φ̂T
ε (u) in L2(0, T ; H ), for any ε ≥ 0, (5.10)

and

Φ̂T,n
ε → Φ̂T

ε on L2(0, T ; H ), in the sense of Mosco, as n→∞, (5.11)

where for every ε ∈ [0,∞),
ũ ∈ L2(0, T ; H ) 7→ Φ̂T

ε (ũ) :=

∫ T

0

Φε(ũ(t)) dt ∈ [0,∞],

ũ ∈ L2(0, T ; H ) 7→ Φ̂T,n
ε (ũ) :=

∫ T

0

Φδn
ε (ũ(t)) dt ∈ [0,∞], n = 1, 2, 3, . . . .

By (5.6), (5.10), and [3, Proposition 2.16], we can observe that u = [η, θ, θΓ] is a solution
to the Cauchy problem (2.5).
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Next, we consider the constant case of α0 to verify the uniqueness. In this case, the
operator A0 = A0(u) becomes just a positive diagonal matrix A0, i.e.:

A0 :=

 1 0 0
0 α0 0
0 0 1

 ∈ R3×3,

and referring to [5, Proposition 5.9 in Chapter 1], the Cauchy problem (2.5) can be reduced
to:

{
u′(t)+∂(Φε◦(A0)−1)(u(t))+(A0)−1G(u(t)) 3 0 in H , a.e. t ∈ (0, T ),

u(0) = u0 in H .

Since (A0)−1G : H → H is a Lipschitz operator, we can apply the general theory of
nonlinear evolution equation [3, Proposition 3.12], and can obtain the uniqueness of the
solution.

Finally, the item (B) is verified as a straightforward consequence of Remarks 3 and 8,
Key-Lemmas 1 and 5.

Thus, we can conclude Main Theorem 1. 2

5.2 Proof of Main Theorem 2

First, we show the item (C). Then, under (0.6), (3.1), (4.5), and (A4), we can observe
from (5.2) and (5.3) that:

1

2
|∂tηε|2L2(0,T ;L2(Ω)) +

δα
2
|∂tθε|2L2(0,T ;L2(Ω)) +

1

2
|∂tθΓ,ε|2L2(0,T ;L2(Γ))

+
1

2
|∇ηε|2L2(0,T ;L2(Ω)N ) +

ν2

2
|∇θε|2L2(0,T ;L2(Ω)N ) +

1

2
|∇Γ(εθΓ,ε)|2L2(0,T ;L2(Γ)N )

≤ lim
δ↓0

(
1

2

∣∣A0(uδε)
1
2∂tu

δ
ε

∣∣2
L2(0,T ;H )

)
+ lim

δ↓0
F δ
ε (uδε)

≤ lim
δ↓0

(
1

2

∣∣A0(uδε)
1
2∂tu

δ
ε

∣∣2
L2(0,T ;H )

+ F δ
ε (uδε)

)
≤ lim

δ↓0
F δ
ε (u0,ε) = Fε(u0,ε), for any ε ≥ 0. (5.12)
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Besides, let us set Jn := [ ε0
n+1

, 1
n

+ ε0], for n = 1, 2, 3, . . . . Then, by (0.6), (2.6), (A3), and
(S0), we have:

0 ≤ Fε(u0,ε) =
1

2

∫
Ω

|∇η0,ε|2 dx+

∫
Ω

ĝ(η0,ε) dx

+

∫
Ω

(
α(η0,ε)|∇θ0,ε|+

ν2

2
|∇θ0,ε|2

)
dx+

1

2

∫
Γ

|∇Γ(εθΓ)|2 dΓ

≤ 1

2
|η0,ε|2H1(Ω) +

ν2

2
|θ0,ε|2H1(Ω) +

1

2
|εθΓ,0,ε|2H1(Γ)

+ |ĝ(η0,ε)|L1(Ω) + |α(η0,ε)|L∞(Ω)|∇θ0,ε|L1(Ω)N

≤
(
1 + ν2

)(
|η0,ε|2H1(Ω) + |θ0,ε|2H1(Ω) + |εθΓ,0,ε|2H1(Γ)

)
+ |ĝ|L∞(0,1)LN(Ω) +

1

2
|θ0,ε|2H1(Ω) +

1

2
|α|2C([0,1])LN(Ω)

≤ 2(1 + ν2) sup
ε∈J1

∣∣[η0,ε, θ0,ε, εθΓ,0,ε]
∣∣2
H1(Ω)2×H1(Γ)

+ (1 + |α|C([0,1]) + |ĝ|L∞(0,1))
2LN(Ω)

=: R0 <∞, for all ε ∈ J1 = [ ε0
2
, 1 + ε0]. (5.13)

On account of (5.12), (5.13), and Remark 10, we can see that:

{uε}ε∈J1 = {[ηε, θε, θΓ,ε]}ε∈J1 is bounded in W 1,2(0, T ; H ) ∩ L∞(0, T ; Vε0).

Therefore, applying general theories of compactness, e.g. Aubin’s type [23, Corollary 4],
Arzerá–Ascoli [24, Theorem 1.3.1], and Alaoglu–Bourbaki–Kakutani [24, Theorem 1.2.5],
we find a sequence {εn}∞n=1 ⊂ J1, and a limiting triplet u = [η, θ, θΓ] ∈ W 1,2(0, T ; H ) ∩
L∞(0, T ; Vε0), such that:

εn → ε0, as n→∞, (5.14)

and the sequence {un}∞n=1 = {[ηn, θn, θΓ,n]}∞n=1 := {uεn}∞n=1 = {[ηεn , θεn , θΓ,εn ]}∞n=1 satisfies:

un = [ηn, θn, θΓ,n]→ u = [η, θ, θΓ] in C([0, T ]; H ),

weakly in W 1,2(0, T ; H ), and weakly-∗ in L∞(0, T ; Vε0), as n→∞,
(5.15)

and in particular,

un(0) = [ηn(0), θn(0), θΓ,n(0)] = [η0,εn , θ0,εn , θΓ,0,εn ]→ [η0,ε0 , θ0,ε0 , θΓ,0,ε0 ]

= [η(0), θ(0), θΓ(0)] = u(0) in H , and weakly in Vε0 , as n→∞.
(5.16)

Thus, lim
ε→ε0

Sε(u0,ε) ⊃ {u} 6= ∅.
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Additionally, by (5.12) and (5.13), it is inferred that:

|uε|2W 1,2(0,T ;H ) + |[∇η,∇θ]|2L2(0,T ;(L2(Ω)N )2)

≤ |uε|2L2(0,T ;H ) + |∂tuε|2L2(0,T ;H ) + |[∇η,∇θ]|2L2(0,T ;(L2(Ω)N )2) + |∇Γ(εθΓ,ε)|2L2(0,T ;L2(Γ)N )

≤ 2T |u0,ε|2H + (1 + 2T )|∂tuε|2L2(0,T ;H )

+ |∇ηε|2L2(0,T ;L2(Ω)N ) + |∇θε|2L2(0,T ;L2(Ω)N ) + |∇(εθΓ,ε)|2L2(0,T ;L2(Γ)N )

≤ 2T |u0,ε|2Vε0
+

4(1 + T )

1 ∧ δα ∧ ν2
Fε(u0,ε)

≤ 2T sup
ε∈J1

|u0,ε|2Vε0
+

4(1 + T 2)

1 ∧ δα ∧ ν2
R0 =: R1 <∞,

|θΓ,ε|2
L2(0,T ;H

1
2 (Γ))

= |θε|Γ |2L2(0,T ;H
1
2 (Γ))

≤ C2
Γ|θε|2L2(0,T ;H1(Ω)) ≤ C2

ΓR1 =: R2,

and

|uε|2W 1,2(0,T ;H ) + |uε|2
L2(0,T ;H1(Ω)2×H

1
2 (Γ))

≤ 2(R1 +R2) =: R3, for all ε ∈ J1,

where CΓ is the operator norm of the trace operator trΓ ∈ L(H1(Ω);H
1
2 (Γ)). Therefore,

it will be estimated that:

lim
ε→ε0

Sε(u0,ε) =
⋂
n∈N

⋃
ε∈Jn

Sε(u0,ε)
H

⊂
⋃
ε∈J

Sε(u0,ε)
H

⊂

{
ũ ∈ L2(0, T ; H )

ũ ∈ W 1,2(0, T ; H )∩L2(0, T ;H1(Ω)2×H 1
2 (Γ)),

and |ũ|2W 1,2(0,T ;H ) + |ũ|2
L2(0,T ;H1(Ω)2×H

1
2 (Γ))

≤ R3

}
. (5.17)

The compactness of lim
ε→ε0

Sε(u0,ε) is verified as a consequence of (5.17) and the compactness

theory of Aubin’s type [23, Corollary 4].
Next, we show the item (D). Let us take any u = [η, θ, θΓ] ∈ lim

ε→ε0
Sε(u0,ε) to show

u ∈ Sε0(u0,ε). Then, in the light of (5.12) and (5.13), we may suppose the existence of
sequences {εn} ⊂ J1, and {un = [ηn, θn, θΓ,n] ∈ Sε0(u0,εn)}∞n=1, satisfying (5.14)–(5.16).
Meanwhile, by Definition 2 (S0), we have:

0 ≤ ηn ≤ 1, m0 ≤ θn ≤M0, a.e. in Q, and m0 ≤ θΓ,n(t, y) ≤M0, a.e. on Σ,

for n = 1, 2, 3, . . . ,
(5.18)

and by (5.15) and (5.18), we can derive:

0 ≤ η ≤ 1, m0 ≤ θ ≤M0, a.e. in Q, and m0 ≤ θΓ ≤M0, a.e. on Σ, (5.19)

and 
ηn → η weakly-∗ in L∞(Q), and in the pointwise sense, a.e. in Q,
θn → θ weakly-∗ in L∞(Q), and in the pointwise sense, a.e. in Q,
θΓ,n → θΓ weakly-∗ in L∞(Σ), and in the pointwise sense, a.e. on Σ,

(5.20)



435

for some subsequence (not relabeled). (5.15), (5.20), and the dominated convergence
theorem (cf. [14, Theorem 10]) allow us to infer that:

A0(un)∂tun = [∂uηn, α0(ηn)∂tθn, ∂tθΓ,n]→ A0(u)∂tu = [∂tη, α0(η)∂tθ, ∂tθΓ]

weakly in L2(0, T ; H ),

G(un)→ G(u) in L2(0, T ; H ), as n→∞.

(5.21)

Furthermore, from Key-Lemma 4 and [4, Lemma 4.1], it follows that:

Φ̂T
εn → Φ̂T

ε0
on L2(0, T ; H ), in the sense of Mosco, as n→∞, (5.22)

where 
ũ ∈ L2(0, T ; H ) 7→ Φ̂T

ε0
(ũ) :=

∫ T

0

Φε0(ũ(t)) dt ∈ [0,∞],

ũ ∈ L2(0, T ; H ) 7→ Φ̂T
n (ũ) :=

∫ T

0

Φεn(ũ(t)) dt ∈ [0,∞], n = 1, 2, 3, . . . .

Taking into account (5.15), (5.21), (5.22), and Remark 4 (Fact 4), it is inferred that:

[−A0(u)∂tu− G(u), u] ∈ ∂Φ̂T
ε0

in L2(0, T ; H )2, (5.23)

and moreover, applying [3, Proposition 2.16] to (5.23), and invoking (5.16) and (5.19), it
is deduced that u = [η, θ, θΓ] ∈ Sε0(u0,ε0).

Thus, the item (D) is verified, and the proof of Main Theorem 2 is complete. 2
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