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1 Introduction

Let 0 < T < ∞ be a some fixed time, Ω ⊂ Rn (n ≥ 2) be a bounded domain whose
boundary Γ := ∂Ω is smooth. Denote J := (0, T ), Q := J × Ω and Σ := J × Γ. We
consider the following Cahn–Hilliard equation

∂tu− ∆µ = 0 in Q, (1)

µ = −∆u + F ′(u) in Q. (2)

Here u is the order parameter, µ and F are the chemical and physical potentials, respec-
tively. In this paper we improve one of following two boundary conditions:

∆µ + b∂νµ + cµ = 0 on Σ, (3)

− α∆Γu + ∂νu + G′(u) = µ/b on Σ, (4)

or

∆µ + b∂νµ− c∆Γµ = 0 on Σ, (5)

− α∆Γu + ∂νu + G′(u) = µ/b on Σ. (6)

The first one appears the case that the domain has porous (permeable) walls and the
second one corresponds to non-permeable walls.

In the boundary conditions, α, b, c are positive constants, ∆Γ is the Laplace–Beltrami
operator on Γ, ν is the unit outward normal vector to Γ and G is the nonlinear term which
comes from the surface energy. A typical example of F and G are F (u) = (1/4)(u2 − 1)2

and G(u) = (gs/2)u2−hsu with gs > 0, hs ̸= 0. We also treat the case c = 0 in subsection
2.4.

Our aim of this paper is to prove existence and uniqueness of this Cahn–Hilliard
equation with these boundary conditions in maximal Lp spaces for 1 < p < ∞. So far,
the study of the Cahn–Hilliard equation has been considered in L2 frameworks. The Lp

approach has been done by the papers [18, 19] but only for the classical dynamic boundary
condition. In the last decades, other type of boundary conditions has been considered and
discussed in L2 frameworks. See the next paragraph for the previous works. However,
as far as we know, the study of Lp frameworks has not been treated under our boundary
conditions yet. In this paper we fill this gap by a simple approach using the linear theory
of abstract parabolic equations constructed in the paper [5]. The authors considered the
equations called relaxation type, which contains our linearized Cahn–Hilliard equation
with the boundary conditions we consider. So we obtain the maximal Lp regularity
result on the linearized equations. For the nonlinear Cahn–Hilliard equation (1)–(2) on
permeable walls (3)–(4) and on non-permeable walls (5)–(6), we prove local existence
and uniqueness of solutions by fixed point argument. The key is to show the contraction
property of non-linear term by restricting a small time interval and taking exponent p
large, see Proposition 2.2 and Proposition 3.2. To extend global solutions, we use energy
estimates from integration by parts. Combining with a priori estimates, we claim that
the unique local solution does not blow up at any time, which means the solution is a
global solution.
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The Cahn–Hilliard equation is known as describing the spinodal decomposition of
binary mixtures, which we can see in the cooling processes of alloys, glasses or polymer
mixtures (see [1, 13, 16, 17]). For the study of the Cahn–Hilliard equation, various
boundary conditions has been considered. At first, we would like to mention the following
usual boundary conditions:

∂νµ = 0 on Σ, (7)

∂νu = 0 on Σ. (8)

The condition (7) derives that the total mass
∫
Ω
udx does not change for all time t > 0.

The other condition (8) is called the variational boundary condition since it derives that
the following bulk free energy

EΩ(u) :=

∫
Ω

(
1

2
|∇u|2 + F (u)

)
dx (9)

does not increase with (7). For the Cahn–Hilliard equation (1)–(2) with (7)–(8), the
global well-posedness result and large time behavior were constructed. See [6, 21, 22].

However, in [13] it was proposed by physicists that one should add the following surface
free energy

EΓ(u) :=

∫
Γ

(α
2
|∇Γu|2 + G(u)

)
dS (10)

to the bulk free energy EΩ(u), where ∇Γ is the surface gradient. Together with the no-flux
boundary condition (7), the total energy E(u) = EΩ(u) + EΓ(u) makes non-increasing
when the dynamic boundary condition

α∆Γu− ∂νu + G′(u) =
1

Γs

ut on Σ, (11)

is posed, with some Γs > 0. For this problem, see e.g., [3, 18, 20, 23]. We would
like to mention the paper [18]. The authors of [18] obtained results on the maximal
Lp regularity of the solution and asymptotic behavior of the solution of this problem.
Moreover it has shown the existence of a global attractor. These results was extended to
the non-isothermal setting by a similar maximal regularity result in [19].

The Wentzell boundary condition (3) we would like to study was proposed in the paper
[8]. Thanks to the boundary condition (4), the total energy E(u) is non-increasing:

d

dt
E(u(t)) = −

∫
Ω

|∇µ|2dx− c

b

∫
Γ

µ2dS ≤ 0 (t > 0). (12)

Since d
dt

(
∫
Ω
udx +

∫
Γ
udS

b
) = −c

∫
Γ
µdS

b
, the case c = 0 corresponds to the case of the

conservation of the total mass in the bulk and on the boundary. In the paper [8] the
existence and uniqueness of a global solution were proved via the Caginalp type equation,
which is the similar method in [20]. Later in [9], these results were extended under
more general assumptions. In the papers [23](c > 0) and [10](c = 0), it was shown that
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each solution of this model converges to a steady state as time goes to infinity and their
convergence rate by using  Lojasiewicz–Simon inequality.

In contrast to permeable walls, recently, the Cahn–Hilliard equation (1)–(2) with (5)–
(6) in the non-permeable walls was considered, e.g., [2, 11, 12]. The first boundary
condition (5) represents the Cahn–Hilliard equation on the boundary Γ. The second
boundary condition (6) called the variational boundary condition (4) leads non-increasing
for E(u). In this system,

∫
Ω
udx +

∫
Γ
udS

b
is constant. The existence and uniqueness of

weak solutions and their asymptotic behavior were shown in [12]. The well-posedness
results for this equation with singular potentials in [4] and numerical results in [7] were
also studied. More recently, another boundary condition was proposed in [14] via an
energetic variational approach that combines the least action principle and Onsager’s
principle of maximum energy dissipation.

In this paper we prove the global existence and uniqueness of the Cahn–Hilliard equa-
tion on permeable and non-permeable walls in maximal Lp regularity spaces. This article
is organized as follows. In Section 2, we study the equation on permeable walls. In sub-
section 2.1, we give the linear theory. We use the general theory of maximal regularity
of relaxation type proved by Denk–Prüss–Zacher [5]. We collect their result in Appendix
A and apply it for the Cahn–Hilliard equation on permeable walls in Appendix B. In
subsection 2.2, we give local well-popsedness of this equation by using usual fixed point
argument. The estimate we use is essentially based on the paper in [19]. In subsection
2.3, we extend this local solution to the global solution by a energy estimate and a priori
estimate. In subsection 2.4, we focus on the case c = 0 in the boundary condition (3).
Since the estimates used in subsection 2.3 are different from the case c > 0, we calculate
the case c = 0 again. We are able to get existence and uniqueness result as well. In Sec-
tion 3, we study the equation on non-permeable walls. The strategy for non-permeable
walls is almost same as Section 2, so we show a few estimates and give some comment,
then we state our results.

Before we study the Cahn–Hilliard equation, we would like to mention about the
equation on the boundary. In this paper we distinguish u, µ in the domain and uΓ, µΓ on
the boundary, but u|Γ = uΓ, µ|Γ = µΓ, where “|Γ” is the trace operator on the boundary
Γ. Moreover for the boundary condition (3) and (5), we replace (∆µ)|Γ with ∂tuΓ since
∂tu = ∆µ in the domain Ω. So the equations we analyze are as follows

∂tu = ∆µ, µ = −∆u + F ′(u) in Q,

∂tuΓ + b∂νµ + cµΓ = 0, −α∆ΓuΓ + ∂νu + G′(uΓ) = µΓ

b
on Σ,

u|Γ = uΓ, µ|Γ = µΓ on Σ,

u(0) = u0 in Ω, uΓ(0) = u0Γ on Γ.

and 
∂tu = ∆µ, µ = −∆u + F ′(u) in Q,

∂tuΓ + b∂νµ− c∆ΓµΓ = 0, −α∆ΓuΓ + ∂νu + G′(uΓ) = µΓ

b
on Σ,

u|Γ = uΓ, µ|Γ = µΓ on Σ,

u(0) = u0 in Ω, uΓ(0) = u0Γ on Γ.
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Here note that the unknown functions are u and uΓ. We do not use the functions µ and
µΓ except for energy estimates.

Throughout this paper, we use fractional Sobolev space W s
p (J,X) for a Banach space

X, s ∈ R≥0 \ N and 1 < p < ∞, which is characterize as follows. Let [s] ∈ N ∪ {0} and
{s} ∈ (0, 1) be s = [s] + {s}. Then by using real interpolation method, it is

W s
p (J,X) := (W [s]

p (J,X),W [s]+1
p (J,X)){s},p.

Similarly, Besov space is defined as follows.

Bs
p,p(Ω) := (W [s]

p (Ω),W [s]+1
p (Ω)){s},p.

To treat nonlinear term, let Cm−(R)(m ∈ N) be the space of all functions f ∈ Cm−1(R)
such that ∂αf is Lipschitz continuous for each |α| = m.

2 A Cahn–Hilliard equation on permeable walls

2.1 The linear theory

In this section we study the following linearized equation of the form

(∗)


∂tv + ∆2v = f in Q,

∂tvΓ − b∂ν∆v + bc∂νv − αbc∆ΓvΓ = g on Σ,

v|Γ = vΓ, −(∆v)|Γ − b∂νv + αb∆ΓvΓ = h on Σ,

v(0) = v0 in Ω, vΓ(0) = v0Γ on Γ.

Here the functions f, g, h, v0, v0Γ are given and v, vΓ are unknown. Since this linearized
equation is included in the general framework studied by [5], we collect and write down
these results in Appendix A, and apply it in Appendix B. Then we get the following linear
theory.

Theorem 2.1. Let Ω ⊂ Rn be a bounded domain of class C4 and 1 < p < ∞ be
p ̸= 5/4, 5/2, 5. Let κ0 = 1/4 − 1/(4p), κ1 = 1/2 − 1/(4p). Then the linearized Cahn–
Hilliard equation (∗) admits a unique solution

(v, vΓ) ∈ Z × ZΓ :=
(
W 1

p (J, Lp(Ω)) ∩ Lp(J,W
4
p (Ω))

)
×

(
W 1+κ0

p (J, Lp(Γ)) ∩W 1
p (J,W 4κ0

p (Γ)) ∩ Lp(J,W
3+4κ0
p (Γ))

)
if and only if

(f, g, h) ∈ X × Y0 × Y1

:= Lp(J, Lp(Ω)) × (W κ0
p (J, Lp(Γ)) ∩ Lp(J,W

4κ0(Γ)))

× (W κ1
p (J, Lp(Γ)) ∩ Lp(J,W

4κ1(Γ))),

(v0, v0Γ) ∈ πZ × πZΓ := B4−4/p
p,p (Ω) ×B4−4/p

p,p (Γ),
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and the compatibility conditions

v0|Γ = v0Γ on Γ if p > 5/4,

− (∆v0)|Γ − b∂νv0Γ + αb∆Γv0Γ = h|t=0 on Γ if p > 5/2,

g|t=0 + b∂ν∆v0 − bc∂νv0 + αbc∆Γv0Γ ∈ B1−5/p
p,p (Γ) if p > 5.

are satisfied.

Remark 2.2. If we use time weighted Lp maximal regularity result, then we are able
to relax the compatibility conditions while the regularity class of the solution for t > 0 is
same, see [15].

2.2 Local well-posedness

In this section we prove the local well-posedness for the Cahn–Hilliard equation on per-
meable walls

(CH)per.


∂tu + ∆2u = ∆F ′(u) + f in Q,

∂tuΓ − b∂ν∆u + bc∂νu− αbc∆ΓuΓ = −b∂νF
′(u) − bcG′(uΓ) + g on Σ,

u|Γ = uΓ, −(∆u)|Γ − b∂νu + αb∆ΓuΓ = −F ′(u)|Γ + bG′(uΓ) on Σ,

u(0) = u0 in Ω, uΓ(0) = u0Γ on Γ.

Here F ∈ C4−(R), G ∈ C2−(R). The original equation we explained in the introduction
is the case f = g = 0, but we are able to add non-homogeneous terms f, g. We will prove
existence and uniqueness of this solution. So first we need to consider the compatibility
conditions for the boundary. Let (g, u0, u0Γ) ∈ Y0 × πZ × πZΓ satisfy the following
compatibility conditions

u0|Γ = u0Γ on Γ if p > 5/4, (13)

− (∆u0)|Γ − b∂νu0Γ + αb∆Γu0Γ = −F ′(u0)|Γ + bG′(u0Γ) on Γ if p > 5/2, (14)

g|t=0 + b∂ν∆u0 − bc∂νu0 + αbc∆Γu0Γ

− b∂νF
′(u0) − bcG′(u0Γ) ∈ B1−5/p

p,p (Γ) if p > 5. (15)

We use the notation Ja := (0, a) ⊂ J , X(a), Yi(a)(i = 0, 1) and Z(a), ZΓ(a) to indicate
the time interval under consideration.

We can state now the following main result of this section.

Theorem 2.3. Let 1 < p < ∞ be p > (n + 4)/4 and p ̸= 5/2, 5, and let (f, g, u0, u0Γ) ∈
X(T )×Y0(T )×πZ×πZΓ satisfy the compatibility conditions (13)–(15) and F ∈ C4−(R), G ∈
C2−(R). Then there is an a ∈ (0, T ] and a unique solution (u, uΓ) ∈ Z(a) × ZΓ(a) of
(CH)per.. Furthermore the solution depends continuously on the data, and if the data
(f, g) are independent of t, the map (u0, u0Γ) 7→ (u(t), uΓ(t)) defines a local semiflow
in the natural phase manifold M defined by πZ × πZΓ and the compatibility conditions
(13)–(15).
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Proof. The proof is based on the contraction mapping theorem. At first we take the
function (u∗, u∗

Γ) ∈ Z(T ) × ZΓ(T ) that is the solution of the linearized equation
∂tu

∗ + ∆2u∗ = f in Q,

∂tu
∗
Γ − b∂ν∆u∗ + bc∂νu

∗ − αbc∆Γu
∗
Γ = g − g̃ on Σ,

u∗|Γ = u∗
Γ, −(∆u∗)|Γ − b∂νu

∗ + αb∆Γu
∗
Γ = −h̃ on Σ,

u∗(0) = u0 in Ω, u∗
Γ(0) = u0Γ on Γ.

Here

g̃ =

{
0 if p < 5,

e−t∆2
Γ(b∂νF

′(u0) + bcG′(u0Γ)) if 5 < p,

h̃ =

{
0 if p < 5/2,

e−t∆2
Γ(F ′(u0)|Γ − bG′(u0Γ)) if 5/2 < p,

are the modified terms, so that we are able to use linear theory. Note that −∆2
Γ is the

generator of an analytic (C0)-semigroup in B
1−5/p
p,p (Γ) and B

2−5/p
p,p (Γ).

For given a ∈ (0, T ] to be fixed later, we define

E := {(u, uΓ) ∈ Z(a) × ZΓ(a) | u|Γ = uΓ}, 0E := {(u, uΓ) ∈ E | (u, uΓ)|t=0 = (0, 0)}

with canonical norm ∥ · ∥E and

F := X(a) × Y0(a) × Y1(a), 0F := {(f, g, h) ∈ F | h|t=0 = 0}

with norm ∥ · ∥F. Define the linear operator L : E → F by means of

L(v, vΓ) :=

 ∂tv + ∆2v
∂tvΓ − b∂ν∆v + bc∂νv − αbc∆ΓvΓ

−(∆v)|Γ − b∂νv + αb∆ΓvΓ

 .

By theorem 2.1, L : 0E → 0F is linear, bounded and bijective, hence an isomorphism.
Next we define the nonlinear mapping N : E× 0E → 0F by

N((u∗, u∗
Γ), (v, vΓ)) :=

 ∆F ′(u∗ + v)
−b∂νF

′(u∗ + v) − bcG′(u∗
Γ + vΓ) + g̃

−F ′(u∗ + v)|Γ + bG′(u∗
Γ + vΓ) + h̃

 .

We will show the key proposition, which needs to use contraction mapping theorem
and to show the range of N is 0F. Let BR((0, 0)) ⊂ 0E be a closed ball with center (0, 0),
radius R > 0, and set BR((u∗, u∗

Γ)) := (u∗, u∗
Γ) + BR((0, 0)).

Proposition 2.4. Let p > (n + 4)/4, F ∈ C4−(R), G ∈ C2−(R), Ja ⊂ J and R > 0.
Then there exist functions λj = λj(a) with λj(a) → 0 as a → 0, j = 1, · · · , 5 such that
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for all (u, uΓ), (v, vΓ) ∈ BR((u∗, u∗
Γ)) the following statements hold:

∥∆F ′(u) − ∆F ′(v)∥X ≤ λ1(a)∥(u, uΓ) − (v, vΓ)∥E,
∥∂νF ′(u) − ∂νF

′(v)∥Y0 ≤ λ2(a)∥(u, uΓ) − (v, vΓ)∥E,
∥G′(uΓ) −G′(vΓ)∥Y0 ≤ λ3(a)∥(u, uΓ) − (v, vΓ)∥E,

∥F ′(u)|Γ − F ′(v)|Γ∥Y1 ≤ λ4(a)∥(u, uΓ) − (v, vΓ)∥E,
∥G′(uΓ) −G′(vΓ)∥Y1 ≤ λ5(a)∥(u, uΓ) − (v, vΓ)∥E.

The first and second inequalities are the same in [18, Proposition 3.2] and the others
are easily followed.

We see that u = u∗ + v, uΓ = u∗
Γ + vΓ is a unique solution of (CH)per. if and only if

L(v, vΓ) = N((u∗, u∗
Γ), (v, vΓ)) i.e. (v, vΓ) = L−1N((u∗, u∗

Γ), (v, vΓ)) (16)

since

L(u∗ + v, u∗
Γ + vΓ) = L(u∗, u∗

Γ) + L(v, vΓ)

=

 f
g − g̃

−h̃

 +

 ∆F ′(u∗ + v)
−b∂νF

′(u∗ + v) − bcG′(u∗
Γ + vΓ) + g̃

−F ′(u∗ + v)|Γ + bG′(u∗
Γ + vΓ) + h̃


=

 ∆F ′(u∗ + v) + f
−b∂νF

′(u∗ + v) − bcG′(u∗
Γ + vΓ) + g

−F ′(u∗ + v)|Γ + bG′(u∗
Γ + vΓ)

 ,

(u∗ + v, u∗
Γ + vΓ)(0) = (u∗, u∗

Γ)(0) + (v, vΓ)(0) = (u0, u0Γ).

Define the operator S : BR((0, 0)) → 0E by means of S(v, vΓ) := L−1N((u∗, u∗
Γ), (v, vΓ)).

We show that the operator S is a contraction map on BR((0, 0)) with small time interval
Ja.

First we prove that SBR((0, 0)) ⊂ BR((0, 0)) by the following calculation. Let (w,wΓ) ∈
BR((0, 0)).

∥S(w,wΓ)∥E ≤ ∥L−1∥L(F,E)∥N((u∗, u∗
Γ), (w,wΓ))∥F

≤ C(∥N((u∗, u∗
Γ), (w,wΓ)) −N((u∗, u∗

Γ), (0, 0))∥F + ∥N((u∗, u∗
Γ), (0, 0))∥F)

≤ C(∥∆F ′(u∗ + w) − ∆F ′(u∗)∥X + ∥∂νF ′(u∗ + w) − ∂νF
′(u∗)∥Y0

+ ∥G′(u∗
Γ + wΓ) −G′(u∗

Γ)∥Y0 + ∥F ′(u∗ + w)|Γ − F ′(u∗)|Γ∥Y1 + ∥G′(u∗
Γ + wΓ) −G′(u∗

Γ)∥Y1

+ ∥∆F ′(u∗)∥X + ∥∂νF ′(u∗)∥Y0 + ∥G′(u∗
Γ)∥Y0 + ∥g̃∥Y0

+ ∥F ′(u∗)|Γ∥Y1 + ∥G′(u∗
Γ)∥Y1 + ∥h̃∥Y1)

≤ C(λ(a)∥(w,wΓ)∥E + ∥∆F ′(u∗)∥X + ∥∂νF ′(u∗)∥Y0 + ∥G′(u∗
Γ)∥Y0 + ∥g̃∥Y0

+ ∥F ′(u∗)|Γ∥Y1 + ∥G′(u∗
Γ)∥Y1 + ∥h̃∥Y1)

for some function λ(a), which goes to 0 as a → 0, since (u∗, u∗
Γ), (u∗ + w, u∗

Γ + wΓ) ∈
BR((u∗, u∗

Γ)) and Proposition 2.2. The remaining terms ∥∆F ′(u∗)∥X(a), ∥∂νF ′(u∗)∥Y0(a),
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∥G′(u∗
Γ)∥Y0(a), ∥g̃∥Y0(a), ∥F ′(u∗)|Γ∥Y1(a), ∥G′(u∗

Γ)∥Y1(a), ∥h̃∥Y1(a) also goes to 0 as a → 0. So
we have ∥S(w,wΓ)∥E ≤ R, i.e. SBR((0, 0)) ⊂ BR((0, 0)) when a is sufficiently small.

We next show the following contraction property. Let (w1, w1Γ), (w2, w2Γ) ∈ BR((0, 0)).

∥S(w1, w1Γ) − S(w2, w2Γ)∥E
≤∥L−1∥L(F,E)∥N((u∗, u∗

Γ), (w1, w1Γ)) −N((u∗, u∗
Γ), (w2, w2Γ))∥F

≤C(∥∆F ′(u∗ + w1) − ∆F ′(u∗ + w2)∥X + ∥∂νF ′(u∗ + w1) − ∂νF
′(u∗ + w2)∥Y0

+ ∥G′(u∗
Γ + w1Γ) −G′(u∗

Γ + w2Γ)∥Y0 + ∥F ′(u∗
Γ + w1Γ)|Γ − F ′(u∗

Γ + w2Γ)|Γ∥Y1

+ ∥G′(u∗
Γ + w1Γ) −G′(u∗

Γ + w2Γ)∥Y1)

≤1

2
∥(w1, w1Γ) − (w2, w2Γ)∥E,

provided a is sufficiently small by Proposition 2.2.
Therefore from the fixed point theorem, we get a unique solution (v, vΓ) ∈ BR((0, 0))

such that (v, vΓ) = L−1N((u∗, u∗
Γ), (v, vΓ)). The function (u∗, u∗

Γ) depends continuously on
the data f, g and (v, vΓ) depends continuously on (u∗, u∗

Γ). This implies that the unique
solution u = u∗ + v and uΓ = u∗

Γ + vΓ of (CH)per. depends continuously on the data
as well. If the data f, g are independent of the time, then translation is invariant. So
the solution map (u0, u0Γ) 7→ (u(t), uΓ(t)) defines a local semiflow in the natural phase
manifold πZ × πZΓ and the compatibility conditions (13)–(15).

Remark 2.5. This proof also show that the existence of maximal time interval Jmax =
(0, amax), which is characterized by lim

t→amax

u(t) does not exist in πZ

lim
t→amax

uΓ(t) does not exist in πZΓ

and/or ∥(u, uΓ)∥E(amax) = ∞,

if amax < T .

2.3 Global well-posedness

In this section we consider the global solution for the equation with non-homogeneous
terms f, g;

∂tu = ∆µ + f, µ = −∆u + F ′(u) in Q,

∂tuΓ + b∂νµ + cµΓ = g, −α∆ΓuΓ + ∂νu + G′(uΓ) = µΓ

b
on Σ,

u|Γ = uΓ, µ|Γ = µΓ on Σ,

u(0) = u0 in Ω, uΓ(0) = u0Γ on Γ.

As we explained in introduction, the unknown functions are only u and uΓ though we
use µ and µΓ. By the subsection 2.2 there is a unique solution on some maximal time
interval Jmax = (0, amax). We fix some arbitrary Ja for 0 < a ≤ amax(≤ T ) and show the
boundedness near the point t = a from a priori estimate derived from energy estimate.
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Multiplying the equation by u and µ, integration by parts and the boundary conditions
lead

d

dt

(
1

2
|u|22 +

1

2
|∇u|22 +

∫
Ω

F (u)

)
+ |∇µ|22

= −
∫
Ω

∇µ · ∇u +

∫
Γ

uΓ∂νµ +

∫
Γ

∂tuΓ∂νu +

∫
Γ

µΓ∂νµ +

∫
Ω

fu +

∫
Ω

fµ,

⇒ d

dt

(
1

2
|u|22 +

1

2
|∇u|22 +

∫
Ω

F (u) +
1

2b
|uΓ|22,Γ

)
+ |∇µ|22 +

c

b
|µΓ|22,Γ

= −
∫
Ω

∇µ · ∇u− c

b

∫
Γ

uΓµΓ +

∫
Γ

∂tuΓ(∂νu− µΓ

b
) +

∫
Ω

fu +

∫
Ω

fµ +
1

b

∫
Γ

gµΓ

= −
∫
Ω

∇µ · ∇u− c

b

∫
Γ

uΓµΓ +

∫
Γ

∂tuΓ(α∆ΓuΓ + G′(uΓ)) +

∫
Ω

fu +

∫
Ω

fµ +
1

b

∫
Γ

gµΓ

⇒ d

dt

(
1

2
|u|22 +

1

2
|∇u|22 +

∫
Ω

F (u) +
1

2b
|uΓ|22,Γ +

α

2
|∇ΓuΓ|2 +

∫
Γ

G(uΓ)

)
+ |∇µ|22 +

c

b
|µΓ|22,Γ

= −
∫
Ω

∇µ · ∇u− c

b

∫
Γ

uΓµΓ +

∫
Ω

fu +

∫
Ω

fµ +
1

b

∫
Γ

gµΓ.

For simplicity, we set

E(u, uΓ) :=
1

2
|u|22 +

1

2
|∇u|22 +

∫
Ω

F (u) +
1

2b
|uΓ|22,Γ +

α

2
|∇ΓuΓ|2 +

∫
Γ

G(uΓ).

By Poincaré’s inequality |µ|2 ≤ C(|∇µ|2 + |µΓ|2,Γ) and Young’s inequality with ε, we have

d

dt
E(u, uΓ) + C1(|∇µ|22 + |µΓ|22,Γ) ≤ C2

(
1

2
|u|22 +

1

2
|∇u|22 +

1

2b
|uΓ|22,Γ

)
+ C3(|f |22 + |g|22,Γ)

for some Ci > 0 (i = 1, 2, 3).
To get energy estimate, we assume that F and G satisfy the following condition:{

F (s) ≥ −c1, c1 > 0, s ∈ R,
G(s) ≥ − 1

2b
s2 − c2, c2 > 0, s ∈ R.

(17)

Note that the typical example in the introduction satisfies this assumption. Under this
condition, the function E(u, uΓ) is bounded from below. We get the inequality

d

dt
E(u, uΓ) + C1(|∇µ|22 + |µΓ|22,Γ) ≤ C2E(u, uΓ) + C3(|f |22 + |g|22,Γ + 1).

We apply Gronwall’s lemma, then we get energy estimate

E(u, uΓ) ≤ C

(
E(u0, u0Γ) +

∫ amax

0

(|f |22 + |g|22,Γ + 1)

)
and

(u, uΓ) ∈ L∞(Jamax ,W
1
2 (Ω) ×W 1

2 (Γ)) (18)
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when (f, g, u0, u0Γ) ∈ X(T ) × Y0(T ) × πZ × πZΓ as p ≥ 2 and p > (n + 4)/4. Here the
constant C depends only on T > 0 and is independent of amax.

We use the following lemma, which is obtained in the paper [18, Lemma 4.1]. To do
so, we have to assume that the dimension n = 2, 3 and some growth condition on F and
G: {

|F ′′′
(s)| ≤ C(1 + |s|β), s ∈ R,

|G′
(s)| ≤ C(1 + |s|β+2), s ∈ R,

with

{
β < 3 in the case n = 3,

β > 0 in the case n = 2.
(19)

Lemma 2.6. Suppose 2 ≤ p < ∞, n = 2, 3, the function F and G satisfy (17) and (19)
and let (u, uΓ) ∈ E(a) be the solution of (CH)per.. Then there exist constants m,C > 0
and δ ∈ (0, 1), independent of a > 0, such that

∥∆F ′(u)∥X(a) + ∥∂νF ′(u)∥Y0(a) + ∥G′(uΓ)∥Y0(a) + ∥F ′(u)|Γ∥Y1(a) + ∥G′(uΓ)∥Y1(a)

≤C(1 + ∥u∥δZ(a)∥u∥mL∞(Ja,W 1
2 (Ω))).

Proof. The estimates of the first term ∥∆F ′(u)∥X(a) and the second term ∥∂νF ′(u)∥Y0(a)

is just in [18, Lemma 4.1]. Since the trace operator is bounded from W
1/2
p (Ja, Lp(Ω)) ∩

Lp(Ja,W
2
p (Ω)) to Y1, Y1 ⊂ Y0 and u|Γ = uΓ, the other three terms are also estimated. See

[19, Appendix (b)].

Combining maximal Lp regularity estimate,

∥(u, uΓ)∥E(a)
≤C(∥∆F ′(u)∥X(a) + ∥∂νF ′(u)∥Y0(a) + ∥G′(uΓ)∥Y0(a) + ∥F ′(u)|Γ∥Y1(a)

+ ∥G′(uΓ)∥Y1(a) + ∥f∥X(T ) + ∥g∥Y0(T ) + ∥(u0, u0Γ)∥πZ×πZΓ
)

≤C̃(1 + ∥u∥δZ(a)), (20)

where the constant C̃ is independent of a. Hence ∥u∥Z(a) is bounded and it derives the
boundedness of ∥uΓ∥ZΓ(a). Therefore the solution (u, uΓ) ∈ E(a) is global solution, i.e.
amax = T . We obtained the following first main theorem of this paper.

Theorem 2.7. Suppose 2 ≤ p < ∞, p ̸= 5/2, 5, n = 2, 3 and that the function F and G
satisfy (17) and (19). Then for any (f, g, u0, u0Γ) ∈ X(T )×Y0(T )×πZ×πZΓ satisfying the
compatibility conditions (13)–(15), there exists a unique global solution (u, uΓ) ∈ Z(T ) ×
ZΓ(T ) of (CH)per.. The solution depends continuously on the given data and if the data
are independent of t, the map (u0, u0Γ) 7→ (u(t), uΓ(t)) defines a global semiflow on the
natural phase manifold πZ × πZΓ and the compatibility conditions (13)–(15).

2.4 The degenerate case: c = 0

In this section we focus on the case c = 0 in the boundary condition (3). Almost all
results for now can be applied to this case. The linear theory and local well-posedness
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result is completely the same as the case c > 0. The point different from the case c > 0
is the energy estimate. Multiplying the equation by u and µ, integration by parts and
Young’s inequality lead

d

dt

(
1

2
|u|22 +

1

2
|∇u|22 +

∫
Ω

F (u) +
1

2b
|uΓ|22,Γ +

α

2
|∇ΓuΓ|2 +

∫
Γ

G(uΓ)

)
+ C1|∇µ|22

≤C2

(
1

2
|u|22 +

1

2
|∇u|22 +

1

2b
|uΓ|22,Γ

)
+ C3|f |22 +

∫
Ω

fµ +
1

b

∫
Γ

gµΓ

for some Ci > 0 (i = 1, 2, 3). Here we assume
∫
Ω
fdx +

∫
Γ
g dS

b
= 0. Then we see

d

dt

∫
Ω

udx =

∫
Ω

(∆µ + f)dx

=

∫
Γ

∂νµdS +

∫
Ω

fdx

⇒ d

dt

(∫
Ω

udx +

∫
Γ

uΓ
dS

b

)
=

∫
Ω

fdx +

∫
Γ

g
dS

b
= 0

and ∫
Ω

fµ +
1

b

∫
Γ

gµΓ =

∫
Ω

f(µ− µ) +
1

b

∫
Γ

g(µΓ − µ)

≤ C1

2
|∇µ|22 + C4(|f |22 + |g|22),

where µ = 1
|Ω|

∫
Ω
µdx and some C4 > 0 by Poincaré’s inequality. This implies that

d

dt

(
1

2
|u|22 +

1

2
|∇u|22 +

∫
Ω

F (u) +
1

2b
|uΓ|22,Γ +

α

2
|∇ΓuΓ|2 +

∫
Γ

G(uΓ)

)
+ C̃1|∇µ|22

≤C̃2

(
1

2
|u|22 +

1

2
|∇u|22 +

1

2b
|uΓ|22,Γ

)
+ C̃3(|f |22 + |g|22)

for some C̃i > 0 (i = 1, 2, 3). This inequality deduces a priori estimate (18) under the
assumption (17). Thus we have the global well-posedness result for the case c = 0.

Theorem 2.8. Suppose 2 ≤ p < ∞, p ̸= 5/2, 5, n = 2, 3 and that the function F and G
satisfy (17) and (19). Then for any (f, g, u0, u0Γ) ∈ X(T )× Y0(T )× πZ × πZΓ satisfying
the compatibility conditions (13)–(15) with c = 0 and

∫
Ω
fdx +

∫
Γ
g dS

b
= 0, there exists a

unique global solution (u, uΓ) ∈ Z(T ) × ZΓ(T ) of (CH)per. with c = 0.

3 A Cahn–Hilliard equation on non-permeable walls
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3.1 The linear theory

In this section we study the linear theory of the Cahn–Hilliard equation on non-permeable
walls. The linear equation is as follows:

(∗∗)


∂tv + ∆2v = f in Q,

∂tvΓ − b∂ν∆v − bc∆Γ∂νv + αbc∆2
ΓvΓ = g on Σ,

v|Γ = vΓ, −(∆v)|Γ − b∂νv + αb∆ΓvΓ = h on Σ,

v(0) = v0 in Ω, vΓ(0) = v0Γ on Γ.

We again use the general theory in [5] and the assumption of the theorem is checked in
Appendix C. However we have to assume a condition on the coefficients α, b, c to get (LS)
condition. The assumption is the following:

Assumption (A) The coefficients α, b, c > 0 satisfy αbc < 2(αb + c).

Let ZΓ := W 1+κ0
p (J, Lp(Γ)) ∩ Lp(J,W

4+4κ0
p (Γ)) and πZΓ := B

5−5/p
p,p (Γ)

Theorem 3.1. Let Ω ⊂ Rn be a bounded domain of class C5 and 1 < p < ∞ be
p ̸= 5/4, 5/2, 5. Suppose that the constants α, b, c > 0 satisfy the Assumption (A). Then
the linearized Cahn–Hilliard equation (∗∗) admits a unique solution (v, vΓ) ∈ Z × ZΓ if
and only if (f, g, h) ∈ X × Y0 × Y1 and (v0, v0Γ) ∈ πZ × πZΓ, and the compatibility
conditions

v0|Γ = v0Γ on Γ if p > 5/4,

− (∆v0)|Γ − b∂νv0Γ + αb∆Γv0Γ = h|t=0 on Γ if p > 5/2,

g|t=0 + b∂ν∆v0 − bc∆Γ∂νv0 − αbc∆2
Γv0Γ ∈ B1−5/p

p,p (Γ) if p > 5,

are satisfied.

3.2 The nonlinear theory

In this subsection we state the nonlinear theory. We state the different point from the case
of permeable walls. We need the estimate of the nonlinear term ∆ΓG

′(uΓ) corresponding to
Proposition 2.2 and Lemma 2.3. From now, we restrict the case that G(uΓ) = (gs/2)u2

Γ−
hsuΓ with gs > 0, hs ̸= 0. Thus we study the Cahn–Hilliard equation on non-permeable
walls.

(CH)non-per.


∂tu = ∆µ + f, µ = −∆u + F ′(u) in Q,

∂tuΓ + b∂νµ− c∆ΓµΓ = g, −α∆ΓuΓ + ∂νu + gsu
2
Γ − hs = µΓ

b
on Σ,

u|Γ = uΓ, µ|Γ = µΓ on Σ,

u(0) = u0 in Ω, uΓ(0) = u0Γ on Γ.

We see the following proposition.
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Proposition 3.2. Let p > (n + 4)/4, Ja ⊂ J and R > 0. Then there exist functions
λ6 = λ6(a) with λ6(a) → 0 as a → 0 such that for all (u, uΓ), (v, vΓ) ∈ BR((u∗, u∗

Γ)) the
following statements hold:

∥∆ΓuΓ − ∆ΓvΓ∥Y0 ≤ λ6(a)∥(u, uΓ) − (v, vΓ)∥E.

This proposition is enough to show the local well-posedness result. To extend the
global solution, we show the energy estimate. Multiplying the equation by u and µ,
integration by parts and the boundary conditions lead

d

dt

(
1

2
|u|22 +

1

2
|∇u|22 +

∫
Ω

F (u) +
1

2b
|uΓ|22,Γ +

α

2
|∇ΓuΓ|2 +

∫
Γ

G(uΓ)

)
+ |∇µ|22 +

c

b
|∇ΓµΓ|22,Γ

= −
∫
Ω

∇µ · ∇u− c

b

∫
Γ

∇ΓuΓ · ∇ΓµΓ +

∫
Ω

fu +

∫
Ω

fµ +
1

b

∫
Γ

guΓ +
1

b

∫
Γ

gµΓ.

Here as the case c = 0, we assume that
∫
Ω
fdx +

∫
Γ
g dS

b
= 0. Then we have

d

dt

(
1

2
|u|22 +

1

2
|∇u|22 +

∫
Ω

F (u) +
1

2b
|uΓ|22,Γ +

α

2
|∇ΓuΓ|2 +

∫
Γ

G(uΓ)

)
+ C1(|∇µ|22 + |∇ΓµΓ|22,Γ)

≤C2

(
1

2
|u|22 +

1

2
|∇u|22 +

1

2b
|uΓ|22,Γ

)
+ C3(|f |22 + |g|22)

for some Ci > 0 (i = 1, 2, 3).
Under the assumption (17) on F , we see (u, uΓ) ∈ L∞(Jamax ,W

1
2 (Ω) × W 1

2 (Γ)). We
prepare the following lemma.

Lemma 3.3. Suppose 2 ≤ p < ∞, n = 2, 3, let (u, uΓ) ∈ E(a) be the solution of
(CH)non-per.. Then there exist constants C > 0 and δ ∈ (0, 1), independent of a > 0, such
that

∥∆ΓuΓ∥Y0(a) ≤ C(1 + ∥u∥δZ(a)∥u∥1−δ
L∞(Ja,W 1

2 (Ω))
).

Proof. By the trace theory and the mixed derivative theorem, it is enough to see the
existence of 0 < δ < 1

∥u∥
W

3/4
p (Ja,Lp(Ω))

≤ C∥u∥δ
W

7/8
p (Ja,W

1/2
p (Ω))

∥u∥1−δ
L∞(Ja,W 1

2 (Ω))
.

By Gagliardo–Nirenberg’s inequality, we check the existence of δ satisfying{
3
4
− 1

p
≤ δ(7

8
− 1

p
)

−n
p
≤ δ(1

2
− n

p
) + (1 − δ)(1 − n

2
).

Since the second inequality is n
2
− n

p
− 1 ≤ δ(n

2
− n

p
− 1

2
), we choose δ is sufficiently close

to 1, then the inequalities are satisfied.

Combining the estimates in (2.3), we are able to prove the global well-posedness result.
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Theorem 3.4. Suppose 2 ≤ p < ∞, p ̸= 5/2, 5, n = 2, 3 and that the function F satisfy
(17) and (19). Suppose that the constants α, b, c > 0 satisfy the Assumption (A). Then
for any (f, g, u0, u0Γ) ∈ X(T ) × Y0(T ) × πZ × πZΓ satisfying the compatibility conditions

u0|Γ = u0Γ on Γ if p > 5/4,

− (∆u0)|Γ − b∂νu0Γ + αb∆Γu0Γ = −F ′(u0)|Γ + bgsu0Γ − bhs on Γ if p > 5/2,

g|t=0 + b∂ν∆u0 + bc∂νu0 − αbc∆2
Γu0Γ

− b∂νF
′(u0) + bcgs∆Γu0Γ ∈ B1−5/p

p,p (Γ) if p > 5,

and
∫
Ω
fdx +

∫
Γ
g dS

b
= 0, there exists a unique global solution (u, uΓ) ∈ Z(T ) × ZΓ(T ) of

(CH)non-per..

Appendix A

We collect the linear theory of the dynamic boundary condition proved in the papers [5].
We represent the simplified their result to fit our equations. They studied the parabolic
initial boundary value problems of the general form (so called relaxation type)

∂tu + A(t, x,D)u = f(t, x) in Q,

∂tρ + B0(t, x,D)u + C0(t, x,DΓ)ρ = g0(t, x) on Σ,

Bj(t, x,D)u + Cj(t, x,DΓ)ρ = gj(t, x) (j = 1, · · · ,m) on Σ,

u(0, x) = u0(x) in Ω,

ρ(0, x) = ρ0(x) on Γ,

where

A(t, x,D) =
∑

|α|≤2m

aα(t, x)Dα,

Bj(t, x,D) =
∑

|β|≤mj

bjβ(t, x)Dβ,

Cj(t, x,DΓ) =
∑
|γ|≤kj

cjγ(t, x)Dγ
Γ,

are differential operators of order 2m, 0 ≤ mj < 2m, 0 ≤ kj (j = 0, 1, · · · ,m), respectively,
with m ∈ N and mj, kj ∈ N0. The symbols D, respectively DΓ mean −i∇, respectively
−i∇Γ, where ∇ denotes the gradient in Ω and ∇Γ the surface gradient on Γ. Assume
that all boundary operators Bj and at least one Cj are nontrivial, and set kj = −∞ in
case Cj = 0. The initial values u0, ρ0 as well as the right-hand sides f and gj are given
functions.

Let κj := 1 − mj/(2m) − 1/(2mp), lj := kj − mj + m0 and l := maxj=0,1,··· ,mlj. We
state their results limited to the case l ≤ 2m, the coefficients aα, bjβ and cjγ are smooth,
Ω is a bounded domain and u and ρ are C-valued functions, which adopt our case.

The essential assumptions are the normally ellipticity condition (E) and the Lopatinskii–
Shapiro condition (LS), which are necessary for the maximal Lp regularity, hence are un-
avoidable. For the case ℓ < 2m, which is just applied to the linearized Cahn–Hilliard
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equation on permeable walls, we need another necessary condition called the asymptotic
Lopatinskii–Shapiro condition (LS−

∞). Let the subscript # be the principal part of the
corresponding differential operator. The assumptions are as follows.
(E) For all t ∈ J , x ∈ Ω and ξ ∈ Rn, |ξ| = 1, we have

σ (A#(t, x, ξ)) ⊂ C+ := {z ∈ C | Re z > 0}.

(LS) For each fixed t ∈ J and x ∈ Γ, and for all ξ′ ∈ Rn−1, λ ∈ C+ with |ξ′| + |λ| ̸= 0,
the ordinary differential equation in R+ = [0,∞) given by

(λ + A#(t, x, ξ′, Dy)) v(y) = 0 (y > 0),

B0#(t, x, ξ′, Dy)v(0) + (λ + C0#(t, x, ξ′))σ = 0,

Bj#(t, x, ξ′, Dy)v(0) + Cj#(t, x, ξ′)σ = 0 (j = 1, · · · ,m)

has only the trivial solution (v, σ) = (0, 0).
(LS−

∞) Let ℓ < 2m. For all fixed t ∈ J and x ∈ Γ, and for all ξ′ ∈ Rn−1, λ ∈ C+ with
|ξ′| + |λ| ̸= 0, the ordinary differential equation in R+ = [0,∞) given by{

(λ + A#(t, x, ξ′, Dy)) v(y) = 0 (y > 0),

Bj#(t, x, ξ′, Dy)v(0) = 0 (j = 1, · · · ,m)

and for |ξ′| = 1 and λ ∈ C+,
A#(t, x, ξ′, Dy)v(y) = 0 (y > 0),

B0#(t, x, ξ′, Dy)v(0) + (λ + C0#(t, x, ξ′))σ = 0,

Bj#(t, x, ξ′, Dy)v(0) + Cj#(t, x, ξ′)σ = 0 (j = 1, · · · ,m)

admit the unique trivial solution (v, σ) = (0, 0).
The existence and uniqueness results of this boundary condition are as follows.

Theorem [Denk–Prüss–Zacher] Let Ω ⊂ Rn be a bounded domain of class C2m+l−m0.
Assume (E), (LS) and for ℓ < 2m the condition (LS−

∞) and the coefficients aα, bjβ, cjγ are
smooth. Let 1 < p < ∞ be such that κj ̸= 1/p, j = 0, 1, · · · ,m. Then the linear equation
admits a unique solution

(u, ρ) ∈ Z × Zρ :=
(
W 1

p (J, Lp(Ω)) ∩ Lp(J,W
2m
p (Ω))

)
×
(
W 1+κ0

p (J, Lp(Γ)) ∩W 1
p (J,W 2mκ0

p (Γ)) ∩ Lp(J,W
ℓ+2mκ0
p (Γ))

)
if and only if

(f, g0, g1, · · · , gm) ∈ X × Y0 × Y1 × · · · × Ym

:= Lp(J, Lp(Ω)) ×⊗m
j=0

(
W κj

p (J, Lp(Γ)) ∩ Lp(J,W
2mκj
p (Γ))

)
(u0, ρ0) ∈ πZu × πZρ := B2m(1−1/p)

p,p (Ω) ×B2mκ0+ℓ(1−1/p)
p,p (Γ),
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and the compatibility conditions

Bj(0, x)u0(x) + Cj(0, x)ρ0(x) = gj(0, x), x ∈ Γ, if κj > 1/p, j = 1, 2, · · · ,m,

g0(0, ·) − B0(0, ·)u0 − C0(0, ·)ρ0 ∈ π1Zρ := B2m(κ0−1/p)
p,p (Γ), if κ0 > 1/p,

are satisfied.
In [5], they treated the case l > 2m, non-smooth coefficients case and u, ρ are HT

Banach valued case. However it is sufficient to consider above statement. By the Newton
polygon method, they characterized

Zρ = W 1+κ0
p (J, Lp(Γ)) ∩ Lp(J,W

ℓ+2mκ0
p (Γ))

when ℓ = 2m, which is applied to the linearized Cahn–Hilliard equation on non-permeable
walls.

Appendix B

We apply this general linear theory for the linearized Cahn–Hilliard equation on permeable
walls:

(∗)per.


∂tv + ∆2v = f in Q,

∂tvΓ − b∂ν∆v + bc∂νv − αbc∆ΓvΓ = g on Σ,

v|Γ = vΓ, −(∆v)|Γ − b∂νv + αb∆ΓvΓ = h on Σ,

v(0) = v0 in Ω, vΓ(0) = v0Γ on Γ.

This problem fits into the setting A = ∆2, B0 = −b∂ν∆, C0 = −αbc∆Γ, B1 = −(∆·)|Γ,
C1 = αb∆Γ, B2 = 1, C2 = −1, g2 = 0 and m = 2, m0 = 3, k0 = 2, m1 = 2, k1 = 2,
m2 = 0, k2 = 0, ℓ0 = 2, ℓ1 = 3, ℓ2 = 3. Then ℓ = ℓ1 = ℓ2 = 3 < 2m, κ0 = 1/4 − 1/(4p),
κ1 = 1/2 − 1/(4p) and κ2 = 1 − 1/(4p).

We check the conditions (E) and (LS). Since σ (A#(t, x, ξ)) = σ(|ξ|4) = {1} ⊂ C+ for
ξ ∈ Rn, |ξ| = 1, the condition (E) is satisfied.

To see (LS) condition, we need to solve the ordinary differential equation
(
(λ + (−|ξ′|2 + ∂2

y)2
)
v(y) = 0 (y > 0), (21)

−b(−∂y)(−|ξ′|2 + ∂2
y)v(0) +

(
(λ− αbc(−|ξ′|2)

)
σ = 0, (22)

v(0) − σ = 0, (23)

−(−|ξ′|2 + ∂2
y)v(0) + αb(−|ξ′|2)σ = 0. (24)

For the case λ = 0, from (21), v(y) = (c1 + c2y)e−|ξ′|y for some c1, c2 ∈ C. By the
boundary conditions (22)–(24),{

−b|ξ′|2(c2 − |ξ′|c1) + b(3|ξ′|2c2 − |ξ′|3c1) + αbc|ξ′|2c1 = 0,

|ξ′|2c1 − (−2|ξ′|c2 + |ξ′|2c1) − αb|ξ′|2c1 = 0.

⇒

{
αcc1 + 2c2 = 0,

αb|ξ′|c1 − 2c2 = 0.
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The determinant of the coefficient matrix is −2(αc + αb|ξ′|) ̸= 0. So we have (c1, c2) =
(0, 0), which implies the unique trivial solution (v, σ) = (0, 0).

For the case λ ̸= 0, v(y) = c1e
z1y + c2e

z2y with

zk := −
√
|ξ′|2 + (−1)k−1

√
−λ (k = 1, 2).

Here and hereafter we shall use the argument of the square root of complex numbers
belongs (−π/2, π/2], so that the real part of the square root of complex numbers is non-
negative. By the boundary conditions (22)–(24),{

−b|ξ′|2(c1z1 + c2z2) + b(c1z
3
1 + c2z

3
2) + (λ + αbc|ξ′|2)(c1 + c2) = 0,

|ξ′|2(c1 + c2) − (c1z
2
1 + c2z

2
2) − αb|ξ′|2(c1 + c2) = 0.

⇒

{
bcz1(z

2
1 − |ξ′|2) + bcz2(z

2
2 − |ξ′|2) + (λ + αbc|ξ′|2)(c1 + c2) = 0,

−c1(z
2
1 − |ξ′|2) − c2(z

2
2 − |ξ′|2) − αb|ξ′|2(c1 + c2) = 0.

Since z2k − |ξ′|2 = (−1)k−1
√
−λ (k = 1, 2), we see{

(λ + αbc|ξ′|2 + b
√
−λz1)c1 + (λ + αbc|ξ′|2 − b

√
−λz2)c2 = 0

(αb|ξ′|2 +
√
−λ)c1 + (αb|ξ′|2 −

√
−λ)c2 = 0.

We calculate the determinant of the coefficient matrix:∣∣∣∣ λ + αbc|ξ′|2 + b
√
−λz1 λ + αbc|ξ′|2 − b

√
−λz2

αb|ξ′|2 +
√
−λ αb|ξ′|2 −

√
−λ

∣∣∣∣
=

∣∣∣∣ λ + αbc|ξ′|2 + b
√
−λz1 −b

√
−λ(z1 + z2)

αb|ξ′|2 +
√
−λ −2

√
−λ

∣∣∣∣
= −

√
−λ

{
2(λ + αbc|ξ′|2) + 2b

√
−λz1 − b(z1 + z2)(αb|ξ′|2 +

√
−λ)

}
= −

√
−λ

{
2(λ + αbc|ξ′|2) − αb2|ξ′|2(z1 + z2) + b

√
−λ(z1 − z2)

}
=: −

√
−λ((I) + (II) + (III)).

We claim that the real part of the last term (III) is non-negative. Then the determinant
never become zero since the real part of the first term (I) and the second term (II) is
positive. We focus on the sign of the term (III). From the equality

√
−λ(z1 − z2) =

−2λ(z1 + z2)
−1,

sign (Re (III)) = sign (Re (−λ)Re (z1 + z2) + Im (−λ)Im (z1 + z2)).

Here Re (−λ),Re (z1 + z2) ≤ 0 and sign Im (−λ) = sign Im (z1 + z2) since

z1 + z2 = −
√

2|ξ′|2 + 2
√
|ξ′|4 + λ.

This implies sign (Re (III)) is non-negative. This means that (v, σ) = (0, 0), which con-
cludes that the (LS) condition is satisfied. The other condition (LS−

∞) is easily checked,
so we skip the calculation.
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Appendix C

We apply this general linear theory for the linearized Cahn–Hilliard equation on non-
permeable walls:

(∗)non-per.


∂tv + ∆2v = f in Q,

∂tvΓ − b∂ν∆v − bc∆Γ∂νv + αbc∆2
ΓvΓ = g on Σ,

v|Γ = vΓ, −(∆v)|Γ − b∂νv + αb∆ΓvΓ = h on Σ,

v(0) = v0 in Ω, vΓ(0) = v0Γ on Γ.

This problem fits into the setting A = ∆2, B0 = −b∂ν∆ − bc∆Γ∂ν , C0 = αbc∆2
Γ, B1 =

−(∆·)|Γ, C1 = αb∆Γ, B2 = 1, C2 = −1, g2 = 0 and m = 2, m0 = 3, k0 = 4, m1 = 2, k1 = 2,
m2 = 0, k2 = 0, ℓ0 = 4, ℓ1 = 3, ℓ2 = 3. And then ℓ = ℓ0 = 4 = 2m, κ0 = 1/4 − 1/(4p),
κ1 = 1/2 − 1/(4p) and κ2 = 1 − 1/(4p). The condition (E) is satisfied as before.

To see (LS) condition, we need to solve the ordinary differential equation
(
(λ + (−|ξ′|2 + ∂2

y)2
)
v(y) = 0 (y > 0), (25)

−b(−∂y)(−|ξ′|2 + ∂2
y)v(0) − bc(−|ξ′|2)(−∂y)v(0) +

(
(λ + αbc(−|ξ′|2)2

)
σ = 0, (26)

v(0) − σ = 0, (27)

−(−|ξ′|2 + ∂2
y)v(0) + αb(−|ξ′|2)σ = 0. (28)

For the case λ = 0, v(y) = (c1 + c2y)e−|ξ′|y for some c1, c2 ∈ C. By the boundary
conditions (26)–(28),{

−b|ξ′|2(c2 − |ξ′|c1) + b(3|ξ′|2c2 − |ξ′|3c1) − bc|ξ′|2(c2 − |ξ′|c1) + αbc|ξ′|4c1 = 0,

|ξ′|2c1 − (−2|ξ′|c2 + |ξ′|2c1) − αb|ξ′|2c1 = 0.

⇒

{
c|ξ′|(α|ξ′| + 1)c1 + (2 − c)c2 = 0,

αb|ξ′|c1 − 2c2 = 0.

The determinant of the coefficient matrix is −|ξ′|(2αc|ξ′|+ 2αb+ 2c−αbc). So we assume
αbc < 2(αb + c) (Assumption A), then we have (c1, c2) = (0, 0), which implies the unique
trivial solution (v, σ) = (0, 0).

For the case λ ̸= 0, v(y) = c1e
z1y +c2e

z2y with the same zk as before. By the boundary
conditions (26)–(28),

−b|ξ′|2(c1z1 + c2z2) + b(c1z
3
1 + c2z

3
2)

−bc|ξ′|2(c1z1 + c2z2) + (λ + αbc(−|ξ′|2)2)(c1 + c2) = 0,

|ξ′|2(c1 + c2) − (c1z
2
1 + c2z

2
2) − αb|ξ′|2(c1 + c2) = 0.

⇒

{
(λ + αbc|ξ′|4 + b

√
−λz1 − bc|ξ′|2z1)c1 + (λ + αbc|ξ′|2 − b

√
−λz2 − bc|ξ′|2)c2 = 0,

(αb|ξ′|2 +
√
−λ)c1 + (αb|ξ′|2 −

√
−λ)c2 = 0.
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We calculate the determinant of the coefficient matrix:∣∣∣∣ λ + αbc|ξ′|4 + b
√
−λz1 − bc|ξ′|2z1 λ + αbc|ξ′|2 − b

√
−λz2 − bc|ξ′|2z2

αb|ξ′|2 +
√
−λ αb|ξ′|2 −

√
−λ

∣∣∣∣
=

∣∣∣∣ λ + αbc|ξ′|4 + b
√
−λz1 − bc|ξ′|2z1 −b

√
−λ(z1 + z2) + bc|ξ′|2(z1 − z2)

αb|ξ′|2 +
√
−λ −2

√
−λ

∣∣∣∣
= −

√
−λ

{
2(λ + αbc|ξ′|4) + b

√
−λ(z1 − z2)

−bc|ξ′|2(z1 + z2) − αb2|ξ′|2(z1 + z2) + αb2c|ξ′|4 2

z1 + z2

}
,

where we used z1 − z2 = 2
√
−λ(z1 + z2)

−1. We see the real part of 2(λ + αbc|ξ′|4) +
b
√
−λ(z1 − z2) is positive. We claim that the real part of the others is non-negative by

using the Assumption (A). From the Assumption (A),

Re

(
−bc|ξ′|2(z1 + z2) − αb2|ξ′|2(z1 + z2) + αb2c|ξ′|4 2

z1 + z2

)
≥Re

(
−bc|ξ′|2(z1 + z2) − αb2|ξ′|2(z1 + z2) + 2(αb + c)b|ξ′|4 2

z1 + z2

)
=(bc|ξ′|2 + αb2)Re

(
4|ξ′|2

z1 + z2
− (z1 + z2)

)
.

Note that

4|ξ′|2

z1 + z2
− (z1 + z2) = 2(z1 + z2)

−1(|ξ′|2 − z1z2),

z1z2 =
√
λ + |ξ′|4, Re (|ξ′|2 − z1z2) ≤ 0 and Im (z1 + z2)Im (|ξ′|2 − z1z2) ≥ 0. So we have

Sign Re
(
(z1 + z2)

−1(|ξ′|2 − z1z2)
)

=Sign
(
Re (z1 + z2)Re (|ξ′|2 − z1z2) + Im (z1 + z2)Im (|ξ′|2 − z1z2)

)
≥0.

This implies that the determinant of the coefficients never 0 and (v, σ) = (0, 0). So it was
shown (LS) condition.
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