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Abstract. This paper deals with nonnegative solutions of the Neumann boundary value
problem for the chemotaxis system modeling tumor invasion,

ut = ∇ · (D(u,w)∇u)−∇ · (uλ(x, t)∇v) + F (x, t, u, w), in Ω× (0,∞),

vt = ∆v + zw, in Ω× (0,∞),

wt = −zw, in Ω× (0,∞),

zt = ∆z +G(u,w, z), in Ω× (0,∞)

in a smooth bounded domain Ω ⊂ RN (N ≤ 9), where F (·, t, ·, ·) ∈ C1−
loc(Ω × R2) for all

t ∈ [0,∞), G ∈ C1−
loc(R

3) such that

αu2 + F (x, t, u, w) ≤ CF , F (x, t, 0, w) ≥ 0, x ∈ Ω, t, u, w ≥ 0 with α > 0,

z +G(u,w, z) ≤ u+ CG, G(0, 0, 0) ≥ 0, u, w, z ≥ 0.

When N ≤ 3, the case of linear diffusion was studied by Fujie [4]. However the methods
of [4] cannot be directly applied to the case of nonlinear diffusion or the case N ≥ 4. In
this paper it is shown that the problem possesses a unique global-in-time classical solution
which is bounded in Ω× (0,∞).
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1. Introduction

In this paper we consider the initial-boundary value problem

ut = ∇ · (D(u,w)∇u)−∇ · (uλ(x, t)∇v) + F (x, t, u, w), in Ω× (0,∞),

vt = ∆v + zw, in Ω× (0,∞),

wt = −zw, in Ω× (0,∞),

zt = ∆z +G(u,w, z), in Ω× (0,∞),

D(u,w)∂u
∂ν

= ∂v
∂ν

= ∂z
∂ν

= 0, in ∂Ω× (0,∞),

u(·, 0) = u0, v(·, 0) = v0, w(·, 0) = w0, z(·, 0) = z0, in Ω,

(1.1)

where Ω ⊂ RN (N ≤ 9) is a bounded domain with smooth boundary ∂Ω, ∂
∂ν

represents
the differentiation with respect to the outward normal vector ν of ∂Ω. We assume that
the initial data satisfies

(u0, v0, w0) ∈ C0(Ω)×W 1,∞(Ω)× C1+θ(Ω)(1.2)

with some θ > 0 and 
z0 ∈ C0(Ω) if N ≤ 3,

z0 ∈ C0(Ω) ∩H1(Ω) if N = 4, 5,

z0 ∈ C0(Ω) ∩W 1,2γ(Ω) if 6 ≤ N ≤ 9

(1.3)

with some γ > 1+ 10
N+1

. Also we suppose that D ∈ C1+θ(R2) for the same θ as above and

D(ζ1, ζ2) ≥ c0 > 0 for all ζ1, ζ2 ≥ 0(1.4)

with some c0 > 0. Moreover, we assume that λ ∈ C1(Ω × [0,∞)) ∩ L∞(0,∞;L∞
loc(Ω)),

F (·, t, ·, ·) ∈ C1−
loc (Ω× R2) for all t ∈ [0,∞), where C1−

loc (Ω× R2) is defined as

C1−
loc (Ω× R2) := {f ∈ C0(Ω× R2)

∣∣ f is locally Lipschitz continuous on Ω× R2},

and F satisfies the following conditions:

F (y, ξ1, 0, ξ3) ≥ 0 for all y ∈ Ω, for all ξ1, ξ3 ≥ 0,(1.5)

αξ22 + F (y, ξ1, ξ2, ξ3) ≤ CF for all y ∈ Ω, for all ξ1, ξ2, ξ3 ≥ 0(1.6)

with some α > 0 and CF > 0. Furthermore we let G ∈ C1−
loc (R3) such that

G(0, 0, 0) ≥ 0,(1.7)

η3 +G(η1, η2, η3) ≤ η1 + CG for all η1, η2, η3 ≥ 0,(1.8)

with some CG > 0.

Modeling Tumor Invasion. The model (1.1) was proposed in [3] as a modified tumor
invasion model of Chaplain–Anderson type in [1]. In this model, the unknown functions
u, v, w and z describe the molar concentrations of tumor cells, the active extra cellular
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matrix, denoted by ECM∗, the extra cellular matrix, denoted by ECM, and the matrix
degrading enzyme, denoted by MDE, respectively, from the view point of cancer phe-
nomena. ECM is dissolved by the biochemical reaction with MDE. However MDE does
not decrease by the biochemical reaction with ECM since MDE is an enzyme. ECM∗ is
produced by the biochemical reaction between ECM and MDE and plays a role as an
attractant of tumor cells. The coefficient D(u,w) of the random motility of tumor cells is
given by the function of u and w in general. If the density of tumor cells is small or the
density of ECM is large, then tumor cells cannot move freely on cancer phenomena. Con-
versely if tumor cells gather together more and more or ECM is resolved more and more
by the biochemical reaction with MDE, tumor cells can move freely. A typical example
of D(u,w) is given by

D(u,w) :=


D1 +

D2e
u

1 + eu
+

D3e
f(w)

1 + ef(w)
ifw < wc,

D1 +
D2e

u

1 + eu
ifw ≥ wc,

where D1, D2 and D3 are nonnegative constants satisfying D1 + D2 + D3 > 0, wc is
a positive constant or wc = ∞ and f(w) is a decreasing function on [0, wc) satisfying
limw↗wc f(w) = −∞. This D(u,w) satisfies (1.4) if D1 +D2 > 0. λ(x, t) is a sensibility
coefficient of the chemotaxis of tumor cells. F (x, t, u, w) is the proliferation and apoptosis
rate of tumor cells. G(u,w, z) implies the production and the decay of MDE.

The result of the previous study. First of all, the case that D ≡ 1, λ ≡ 1, F ≡ 0,
G(u,w, z) = −z+u was considered in [2], [3], [7]. Local existence was shown by Fujie–Ito–
Yokota [2]. In the case N ≤ 3, Fujie et al. [3] obtained global existence and asymptotic
behavior. In the case N ≥ 4, Jin–Xiang [7] showed them if u0, z0, ∇v0 are enough small.

Secondly, Fujie [4] studied the case that D ≡ 1, λ ≡ 1, F (x, t, u, w) = κu−µu2 (κ, µ >
0), G(u,w, z) = −z+u. In this case, Fujie [4] established global existence and asymptotic
behavior in the case N ≤ 3. However he did not consider global existence and asymptotic
behavior in the case N ≥ 4.

Thirdly, the case that D satisfies (1.4), λ ≡ 1, F ≡ 0, G(x, t, u, w) = −z + u was
considered in [5]. Fujie et al. [5] also established both global existence and asymptotic
behavior in the case N ≤ 3; however, they did not study them in the case N ≥ 4.
Moreover, they obtained a global weak solution in the case of nonlinear degenerate with
N ≤ 3. From the above, we can not find the result with nonlinear diffusion or logistic
source in the case N ≥ 4.

Main result. We focus on the condition that N ≥ 4 in the case of nonlinear diffusion
and logistic type source. We cannot directly obtain the L∞-boundedness of u in the case
N ≥ 4 since we cannot use the L1-boundedness of u. Therefore we consider that the
first solution component u is bounded in Lp(Ω) with some p > 1 by using a differential
inequality as in [12] and show that the solution (u, v, w, z) of (1.1) is global and uniformly
bounded with respect to x.

In this paper we show global existence in the case N ≤ 9. We divide the proof into
three cases. When N ≤ 3, we have global existence by using an argument similar to the
proofs of [3, Lemmas 3.5–3.6], [4, Proposition 2.3]. When N = 4, 5, we prove that z is
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bounded in L
2N
N−2 (Ω) to apply a similar way as in [4 Section 3]. On the other hand, we

need to show the boundedness of ∥u(·, t)∥Lp(Ω) for some p > 1 when 6 ≤ N ≤ 9. From a
differential inequality with ∥∇v(·, t)∥Lp1 (Ω) and ∥∇z(·, t)∥Lp2 (Ω) with some p1, p2 > 1 we
can see that ∥u(·, t)∥Lp(Ω) ≤ C with some C > 0.

The main result reads as follows.

Theorem 1.1. Let N ≤ 9 and suppose that (1.2)–(1.8) hold. Then there exists a uniquely
determined quadruple (u, v, w, z) of nonnegative functions

u ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)),

v ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)) ∩ L∞
loc([0,∞);W 1,∞(Ω)),

w ∈ C0(Ω× [0,∞)) ∩ C1,1(Ω× (0,∞)) and

z ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)),

which solve (1.1) classically in Ω × (0,∞). Moreover the solution (u, v, w, z) of (1.1) is
bounded in the sense that there exists C > 0 such that

∥u(·, t)∥L∞(Ω) + ∥v(·, t)∥W 1,∞(Ω) + ∥w(·, t)∥L∞(Ω) + ∥z(·, t)∥L∞(Ω) ≤ C

for all t > 0.

The following process represents how to prove Theorem 1.1. First of all, we obtain local
existence in (1.1) and the basic estimates in Section 2. Secondly, we show in Section 3 that
if we see the Lp-boundedness of u with some p > N

4
or the Lq-boundedness of z with some

q > N
2
, then ∥u(·, t)∥L∞(Ω), ∥z(·, t)∥L∞(Ω) and ∥∇v(·, t)∥L∞(Ω) are bounded. In Section 4

we finally prove the boundedness of ∥u(·, t)∥L1(Ω) in the case N ≤ 3, ∥z(·, t)∥
L

2N
N−2 (Ω)

in

the case N = 4, 5, and ∥u(·, t)∥Lp(Ω) with some p > 1 + 10
N−4

in the case 6 ≤ N ≤ 9.

2. Preliminaries. Local existence and basic estimates

The following local existence and uniqueness statement can be proved by modifying
the proof of [5].

Lemma 2.1 (Local existence). Let N ≥ 1, and assume that (1.2), z0 ∈ C0(Ω), (1.4)–(1.8)
hold. Then there exist Tmax ∈ (0,∞] and a unique classical solution (u, v, w, z) of (1.1) in
Ω× (0, Tmax) such that the following properties hold :

u, v, w, z are nonnegative,

u ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

v ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)) ∩ L∞
loc([0, Tmax);W

1,∞(Ω)),

w ∈ C0(Ω× [0, Tmax)) ∩ C1+θ,1(Ω× (0, Tmax)) and

z ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)).

Moreover, if Tmax < ∞, then

lim
t↗Tmax

(
∥u(·, t)∥L∞(Ω) + ∥v(·, t)∥W 1,∞(Ω) + ∥z(·, t)∥L∞(Ω)

)
= ∞.(2.1)



229

Lemmas 2.2–2.5 are proved by a simple observation from the equations in (1.1). In
the following, we will denote by (u, v, w, z) the corresponding solution to (1.1) given by
Lemma 2.1 and by Tmax its maximal existence time.

Lemma 2.2. The first solution component u satisfies∫
Ω

u(x, t) dx ≤
∫
Ω

u0(x) dx+ (α−1 + CF )|Ω| for all t ∈ (0, Tmax).(2.2)

Proof. Integrating the first equation in (1.1) over Ω and noticing D(u,w)∂u
∂ν

= 0 on ∂Ω,
we see from (1.6) that

d

dt

∫
Ω

u =

∫
Ω

∇ · (D(u,w)∇u)−
∫
Ω

∇ · (uλ(x, t)∇v) +

∫
Ω

F (x, t, u, w)

≤ −α

∫
Ω

u2 + CF |Ω| for all t ∈ (0, Tmax).

Since αu2 ≥ u− α−1, this yields

d

dt

∫
Ω

u ≤ −
∫
Ω

u+ (α−1 + CF )|Ω| for all t ∈ (0, Tmax).

Using Gronwall’s lemma, we obtain (2.2).

Lemma 2.3. The second solution component v and the third solution component w satisfy∫
Ω

v(x, t) dx+

∫
Ω

w(x, t) dx =

∫
Ω

v0(x) dx+

∫
Ω

w0(x) dx

for all t ∈ (0, Tmax).

Proof. We add the second equation to the third equation in (1.1) and integrate with
respect to x ∈ Ω to obtain

d

dt

∫
Ω

(v + w) =

∫
Ω

∆v = 0 for all t ∈ (0, Tmax)

because ∂v
∂ν

= 0 on ∂Ω, and the claim is proved.

Moreover, we also obtain the following property in relation to the third solution com-
ponent in (1.1).

Lemma 2.4. The third solution component w fulfills

∥w(·, t)∥L∞(Ω) ≤ ∥w0∥L∞(Ω) for all t ∈ (0, Tmax).

Proof. The third solution component w satisfies

w(·, t) = w0 exp

(
−
∫ t

0

z(·, s)ds
)

for all t ∈ (0, Tmax). Since w, z ≥ 0 and the initial data satisfies (1.2), this claim can be
proved.
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Lemma 2.5. The fourth solution component z satisfies∫
Ω

z(x, t) dx ≤
∫
Ω

z0(x) dx+

∫
Ω

u0(x) dx+ (α−1 + CF )|Ω| for all t ∈ (0, Tmax).(2.3)

Proof. Integrating the fourth equation over Ω, noticing ∂z
∂ν

= 0 and using Lemma 2.2 yield

d

dt

∫
Ω

z =

∫
Ω

(∆z − z + u)

= −
∫
Ω

z +

∫
Ω

u

≤ −
∫
Ω

z +

∫
Ω

u0 + (α−1 + CF )|Ω|.

Hence Gronwall’s lemma leads to (2.3).

The next inequality called the trace inequality is found in [10, Remark 52.9].

Lemma 2.6. For any ε > 0 there exists a constant C(ε) > 0 such that

∥φ∥L2(∂Ω) ≤ ε∥∇φ∥L2(Ω) + C(ε)∥φ∥L2(Ω) for all φ ∈ H1(Ω).

Finally we recall the following lemma which is often utilized to remove the convexity
of domains (see [6], [9], for instance).

Lemma 2.7. Assume that Ω is a bounded domain in RN with smooth boundary and
φ ∈ C2(Ω) satisfies ∂φ

∂ν
= 0 on ∂Ω. Then

∂|∇φ|2

∂ν
≤ C|∇φ|2 on ∂Ω,

where C > 0 is a constant.

3. Conditional boundedness

Combining Lemmas 3.1–3.3, we see the boundedness of ∥u(·, t)∥L∞(Ω), ∥z(·, t)∥L∞(Ω)

and ∥v(·, t)∥W 1,∞(Ω) if ∥u(·, t)∥Lp(Ω) is bounded with some p > N
4
. First we find the

following estimate for the fourth solution component z under an appropriate boundedness
assumption on u.

Lemma 3.1. Let p ≥ 1 and {
q ∈

[
1, Np

N−2p

)
if p ≤ N

2
,

q ∈ [1,∞] if p > N
2
.

Then for all M > 0 there exists C(p, q,M) > 0 such that if for some T ∈ (0, Tmax) we
have

∥u(·, t)∥Lp(Ω) ≤ M for all t ∈ (0, T ),

then

∥z(·, t)∥Lq(Ω) ≤ C(p, q,M) for all t ∈ (0, T ).
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Proof. Using variation of constants representation of z, from the fourth equation in (1.1)
we have

z(·, t) = et(∆−1)z0 +

∫ t

0

e(t−s)(∆−1)(z(·, s) +G(u(·, s), w(·, s), z(·, s))) ds

for all t ∈ (0, T ). We infer from (1.8) that

z(·, t) ≤ et(∆−1)z0 +

∫ t

0

e(t−s)(∆−1)u(·, s) ds+
∫ t

0

e(t−s)(∆−1)CG ds

≤ et(∆−1)z0 +

∫ t

0

e(t−s)(∆−1)u(·, s) ds+ CG

for all t ∈ (0, T ). Using an argument similar to the proof of [3, Lemma 3.1], we complete
the proof of this lemma.

Next we show that boundedness property of z entails a certain regularity for ∇v.
According to an argument similar to the proof of [3, Lemmas 3.2], the following claim
can be proved.

Lemma 3.2. Let q ≥ 1 and {
r ∈

[
1, Nq

N−q

)
if q ≤ N,

r ∈ [1,∞] if q > N.

Then for all M > 0 there exists C(q, r,M) > 0 with the following property : for all
T ∈ (0, Tmax), if

∥z(·, t)∥Lq(Ω) ≤ M for all t ∈ (0, T ),

then

∥∇v(·, t)∥Lr(Ω) ≤ C(q, r,M) for all t ∈ (0, T ).

Finally we derive an estimate for u from a present appropriate boundedness property
of ∇v.

Lemma 3.3. Suppose that r > max{N, 2}. Then for all M > 0 there exists C(r,M) > 0
such that if

∥∇v(·, t)∥Lr(Ω) ≤ M for all t ∈ (0, T ),

with some T ∈ (0, Tmax) , then

∥u(·, t)∥L∞(Ω) ≤ C(r,M) for all t ∈ (0, T ).(3.1)
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Proof. Let p ≥ 1. Multiplying the first equation in (1.1) by up−1, we see that

1

p

d

dt

∫
Ω

up = −(p− 1)

∫
Ω

D(u,w)up−2|∇u|2 + (p− 1)

∫
Ω

λ(x, t)up−1∇u · ∇v

+

∫
Ω

up−1F (x, t, u, w).

Using the conditions (1.4), (1.6), Young’s inequality and Hölder’s inequality entails that

1

p

d

dt

∫
Ω

up +
α

p

∫
Ω

up+1 − CF

p

∫
Ω

up−1

≤ −c0(p− 1)

∫
Ω

up−2|∇u|2 + Λ(p− 1)

∫
Ω

up−1∇u · ∇v

≤ −c0(p− 1)

2

∫
Ω

up−2|∇u|2 + Λ2(p− 1)

2c0

∫
Ω

up|∇v|2

≤ −c0(p− 1)

2

∫
Ω

up−2|∇u|2 + Λ2(p− 1)

2c0

(∫
Ω

u
pr
r−2

) r−2
r

(∫
Ω

|∇v|r
) 2

r

≤ −c0(p− 1)

2

∫
Ω

up−2|∇u|2 + Λ2(p− 1)M2

2c0

(∫
Ω

u
pr
r−2

) r−2
r

=: −I1 + I2,

where

Λ := ∥λ∥L∞(Ω×(0,∞)).

Using the Gagliardo–Nirenberg inequality, we see that there exists CGN > 0 such that∫
Ω

up ≤ CGN

(
∥∇u

p
2∥L2(Ω) + ∥u

p
2∥

L
2
p (Ω)

)2τ1
∥u

p
2∥2(1−τ1)

L
2
p (Ω)

,(3.2)

where

τ1 :=
p− 1

p− 1 + 2
N

∈ (0, 1).

In view of (2.2), we have that

∥u
p
2∥

L
2
p (Ω)

=

(∫
Ω

u

) p
2

≤
(∫

Ω

u0 + (α−1 + CF )|Ω|
) p

2

.

The estimate (3.2) leads to∫
Ω

up−2|∇u|2 = ∥∇u
p
2∥2L2(Ω) ≥ c1

(∫
Ω

up

) 1
τ1

− c2(3.3)
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with some constants c1, c2 > 0. The Gagliardo–Nirenberg inequality and Young’s inequal-
ity also entail that

I2 ≤ CGN

(
∥∇u

p
2∥L2(Ω) + ∥u

p
2∥L2(Ω)

)2τ2
∥u

p
2∥2(1−τ2)

L
2
p (Ω)

(3.4)

≤ c0(p− 1)

4

∫
Ω

up−2|∇u|2 + c3

∫
Ω

up + c4

=
1

2
I1 + c3

∫
Ω

up + c4

with

τ2 :=
p− r−2

r

p− N−2
N

∈ (0, 1).

We see from (3.3) and (3.4) that

−I1 + I2 ≤
1

2
I1 + c3

∫
Ω

up + c4

≤ −c0c1(p− 1)

4

(∫
Ω

up

) 1
τ1

+ c3

∫
Ω

up +
c0c2(p− 1)

4
+ c4.

Therefore Young’s inequality yields

1

p

d

dt

∫
Ω

up ≤ −c0c1(p− 1)

4

(∫
Ω

up

) 1
τ1

+ c3

∫
Ω

up

− α

p

∫
Ω

up+1 +
CF

p

∫
Ω

up−1 +
c0c2(p− 1)

4
+ c4

≤ −C1

(∫
Ω

up

) 1
τ1

+ C2

∫
Ω

up + C3,

where C1 = 2−2c0c1(p− 1), C2 = c3 + p−2(CF (p− 1)− α(p+ 1)), C3 = 2−2c0c2(p− 1) +
(α+p−2CF )|Ω|+c4. It follows from this differential inequality that there exists a constant
C(p) > 0 satisfying ∥u(·, t)∥Lp(Ω) ≤ C(p) for all t ∈ (0, T ). Finally we find from standard
Moser type arguments (see [11], for instance) that (3.1) holds.

If we show that ∥u(·, t)∥L∞(Ω) is bounded, we have the L∞-boundedness of z(·, t) by
using Lemma 3.1 again. Moreover, we see the L∞-boundedness of ∇v(·, t) from this
boundedness and Lemma 3.2. Therefore we need the boundedness of ∥u(·, t)∥Lp(Ω) with
some p > N

4
or ∥z(·, t)∥Lq(Ω) with some q > N

2
to obtain the L∞-boundedness.

4. Boundedness. Proof of Theorem 1.1

We show the boundedness of ∥z(·, t)∥
L

2N
N−2 (Ω)

to prove a global existence of classical

solutions of (1.1) in the case N = 4, 5. Moreover we also show that ∥u(·, t)∥Lp(Ω) is
bounded in the case 6 ≤ N ≤ 9.
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Lemma 4.1. Let 4 ≤ N ≤ 9. Assume that (1.2)–(1.8) hold. Then there exists C > 0
such that the first and fourth solution components u, z satisfy∫

Ω

u(x, t)dx+

∫
Ω

z2(x, t)dx+

∫
Ω

|∇z(x, t)|2dx ≤ C for all t ∈ (0, Tmax)

and

∥z(·, t)∥
L

2N
N−2 (Ω)

≤ C for all t ∈ (0, Tmax).(4.1)

Proof. Multiplying the fourth equation in (1.1) by z,−∆z respectively, and then integrat-
ing them with respect to x, we end up with

1

2

d

dt

∫
Ω

z2 =

∫
Ω

zzt =

∫
Ω

z(∆z − z + u)(4.2)

= −
∫
Ω

|∇z|2 −
∫
Ω

z2 +

∫
Ω

uz

≤ −
∫
Ω

|∇z|2 − 1

2

∫
Ω

z2 +
1

2

∫
Ω

u2

and

1

2

d

dt

∫
Ω

|∇z|2 =
∫
Ω

∇zt · ∇z =

∫
Ω

zt(−∆z)(4.3)

= −
∫
Ω

|∆z|2 −
∫
Ω

|∇z|2 +
∫
Ω

u (−∆z)

≤ −
∫
Ω

|∇z|2 + 1

4

∫
Ω

u2

for all t ∈ (0, Tmax) by Young’s inequality. Combining (2.2), (4.2) and (4.3), we obtain
the differential inequality

d

dt

∫
Ω

(
3

2α
u+ z2 + |∇z|2

)
+

∫
Ω

(
3

2α
u+ z2 + |∇z|2

)
≤

∫
Ω

3

2α
u+

3

2α
CF ≤ C

for all t ∈ (0, Tmax) with some C > 0. Applying Gronwall’s lemma and (1.3) to this
inequality, we have the following estimate :∫

Ω

(
3

2α
u+ z2 + |∇z|2

)
≤

∫
Ω

(
3

2α
u0 + z20 + |∇z0|2

)
+ C

for all t ∈ (0, Tmax). Hence we obtain from this estimate that z(·, t) ∈ H1(Ω) for all

t ∈ (0, Tmax). At last, we establish from Sobolev’s inequality that z(·, t) ∈ L
2N
N−2 (Ω) and

∥z(·, t)∥
L

2N
N−2 (Ω)

≤ C for all t ∈ (0, Tmax).

The next lemma is a key tool to prove Theorem 1.1.
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Lemma 4.2. Let 6 ≤ N ≤ 9, p > 1 + 10
N−4

, and assume that (1.2)–(1.8) hold. The first
solution component u satisfies

∥u(·, t)∥Lp(Ω) ≤ C for all t ∈ (0, Tmax).(4.4)

Proof. (Step 1)–(Step 3) constitute the proof of Lemma 4.2.

(Step 1) Estimate for d
dt

∫
Ω
up.

First of all, Step 1 gives the following property :

d

dt

∫
Ω

up ≤ −p(p− 1)

4

∫
Ω

|∇u
p
2 |2 + Λ2p(p− 1)

3

∫
Ω

up|∇v|2 − α

∫
Ω

up+1 + c

for all t ∈ (0, Tmax), where Λ := ∥λ∥L∞(Ω×(0,∞)). Multiplying the first equation in (1.1) by
up−1 and integrating by parts over Ω, then using (1.6) and Young’s inequality, we end up
with

1

p

d

dt

∫
Ω

up = −(p− 1)

∫
Ω

D(u,w)up−2|∇u|2 + (p− 1)

∫
Ω

λ(x, t)up−1∇u · ∇v

+

∫
Ω

up−1F (x, t, u, w)

≤ −c0(p− 1)

∫
Ω

|∇u
p
2 |2 + (p− 1)

∫
Ω

λ(x, t)up−1 (∇u · ∇v)

+ CF

∫
Ω

up−1 − α

∫
Ω

up+1

≤ −c0(p− 1)

∫
Ω

|∇u
p
2 |2 + (p− 1)

∫
Ω

(
3

4
|∇u

p
2 |2 + Λ2

3
up|∇v|2

)
− α

p

∫
Ω

up+1 + c

≤ −p− 1

4

∫
Ω

|∇u
p
2 |2 + Λ2(p− 1)

3

∫
Ω

up|∇v|2 − α

p

∫
Ω

up+1 + c.

(Step 2) Estimate for d
dt

∫
Ω
|∇v|2p1 , d

dt

∫
Ω
|∇z|2p2.

Next we also prove that

d

dt

∫
Ω

|∇v|2p1 +
∫
Ω

|∇v|2p1 + p1 − 1

p1

∫
Ω

|∇|∇v|p1 |2 ≤ c2

∫
Ω

(wz)2 |∇v|2(p1−1) + c5(4.5)

where some p1 > 1 and

d

dt

∫
Ω

|∇z|2p2 +
∫
Ω

|∇z|2p2 + p2 − 1

p2

∫
Ω

|∇|∇z|p2 |2 ≤ d2

∫
Ω

u2|∇z|2(p2−1) + d5.(4.6)

where some p2 > 1. First it follows from the second equation in (1.1) that

d

dt

∫
Ω

|∇v|2p1 = 2p1

∫
Ω

|∇v|2(p1−1)(|∇v|2)t

= 2p1

∫
Ω

|∇v|2(p1−1)(∇∆v · ∇v) + 2p1

∫
Ω

|∇v|2(p1−1)(∇v · ∇(wz)).



236

Applying ∇∆v · ∇v = 1
2
∆|∇v|2 − |D2v|2 and 1

N
|∆v|2 ≤ |D2v|2 to this equation, we have

d

dt

∫
Ω

|∇v|2p1 ≤ 2p1

∫
Ω

|∇v|2(p1−1)∆|∇v|2 − 2p1
N

∫
Ω

|∆v|2|∇v|2(p1−1)

+ 2p1

∫
Ω

|∇v|2(p1−1)(∇v · ∇(wz)).

The addition of
∫
Ω
|∇v|2p1 to this estimate leads to the following estimate:

d

dt

∫
Ω

|∇v|2p1 + 2p1
N

∫
Ω

|∆v|2|∇v|2(p1−1) +

∫
Ω

|∇v|2p1(4.7)

≤ 2p1

∫
Ω

|∇v|2(p1−1)∆|∇v|2 + 2p1

∫
Ω

|∇v|2(p1−1) (∇v · ∇(wz)) +

∫
Ω

|∇v|2p1

=: J1 + J2 + J3.

We estimate the terms on the right-hand side of (4.7) respectively. We obtain from Lemma
2.5 that

J1 = 2p1

∫
∂Ω

∂|∇v|2

∂ν
|∇v|2(p1−1) − 4(p1 − 1)

p1

∫
Ω

|∇|∇v|p1 |2

≤ 2p1c

∫
∂Ω

|∇v|2p1 − 4(p1 − 1)

p1

∫
Ω

|∇|∇v|p1 |2

≤ −3(p1 − 1)

p1

∫
Ω

|∇|∇v|p1 |2 + c1

∫
Ω

|∇v|2p1 .

Using integration by parts yields that

J2 ≤
2p1
N

∫
Ω

|∆v|2|∇v|2(p1−1) +
p1 − 1

p1

∫
|∇|∇v|p1 |2 + c2

∫
Ω

(wz)2 |∇v|2(p1−1).

Plugging Lemma 2.5 into Lemma 3.2 entails that ∥∇v(·, t)∥L1(Ω) is bounded. The bound-
edness ∥∇v(·, t)∥L1(Ω), the Gagliardo–Nirenberg inequality and Young’s inequality imply

that there exists κ =
p1− 1

2

p1+
1
N
− 1

2

∈ (0, 1) such that

(c1 + 1)J3 ≤ c3∥∇|∇v|p1∥2κL2(Ω)∥∇v∥2p1(1−κ)

L1(Ω) + c4∥∇v∥2p1L1(Ω)

≤ p1 − 1

p1

∫
Ω

|∇|∇v|p1|2 + c5.

Thus we obtain (4.5). Moreover, (4.6) can be seen as well as the proof of (4.5).
(Step 3) The completion of the differential inequality.

We show the following differential inequality :

d

dt

∫
Ω

(
up + |∇v|2p1 + |∇z|2p2

)
+

∫
Ω

(
up + |∇v|2p1 + |∇z|2p2

)
≤ C.(4.8)
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We infer from the result of Step 1 and Step 2 that

d

dt

∫
Ω

(
up + |∇v|2p1 + |∇z|2p2

)
+ α

∫
Ω

up+1 +

∫
Ω

(
|∇v|2p1 + |∇z|2p2

)
(4.9)

+
p(p− 1)

4

∫
Ω

|∇u
p
2 |2 + p1 − 1

p1

∫
Ω

|∇|∇v|p1 |2 + p2 − 1

p2

∫
Ω

|∇|∇z|p2 |2

≤ Λ2p(p− 1)

3

∫
Ω

up|∇v|2 + c2

∫
Ω

(wz)2 |∇v|2(p1−1) + d2

∫
Ω

u2|∇z|2(p2−1) + c

=: K1 +K2 +K3 + c.

We define ρ1 := 2(p + 1), ρ̃1 := 2(p+1)(p2−1)
p−1

. Using Hölder’s inequality and Young’s
inequality, we have

K1 =
Λ2p(p− 1)

3

∫
Ω

up|∇v|2 ≤
(α(p+ 1)

4p

∫
Ω

up+1
) p

p+1
(
c6

∫
Ω

|∇v|2(p+1)
) 1

p+1
(4.10)

≤ α

4

∫
Ω

up+1 + c̃6

∫
Ω

|∇v|ρ1

and

K3 = d2

∫
Ω

u2|∇z|2(p2−1) ≤
(α(p+ 1)

8

∫
Ω

up+1
) 2

p+1
(
c7

∫
Ω

|∇z|
2(p+1)(p2−1)

p−1

) p−1
p+1

(4.11)

≤ α

4

∫
Ω

up+1 + c̃7

∫
Ω

|∇z|ρ̃1 .

Similarly, applying to Hölder’s inequality, Young’s inequality and the Gagliardo–Nirenberg

inequality, we can find some q1 > N
N−2

satisfying κ̃ =
N−2
N

− 1
2q1

N−2
N

+ 1
N
− N

2(N−2)q1

∈ (0, 1) and then

we put ρ2 :=
2(p1−1)q1

q1−1
, ρ̃2 :=

2(N−2)q1
N

such that

K2 ≤ c̃2

(∫
Ω

|∇v|
2(p1−1)q1

q1−1

) q1−1
q1

(∫
Ω

z2q1
) 1

q1(4.12)

≤ ˜̃c2

∫
Ω

|∇v|ρ2 + ˜̃c2

∫
Ω

z2q1

≤ ˜̃c2

∫
Ω

|∇v|ρ2 + c̄2∥∇z∥2q1κ̃
Lρ̃2 (Ω)

∥z∥2p(1−κ̃)

L
2N
N−2 (Ω)

+ ∥z∥2p
L

2N
N−2 (Ω)

≤ ˜̃c2

∫
Ω

|∇v|ρ2 + ĉ2

∫
Ω

|∇z|ρ̃2 + ĉ2.

Let q1 ∈
(

N(p+1)
N+q2

, (N+2)(p+1)
2(N−2)

)
, p1 ∈

(
p+ 1− q2

N
, r + q2(q1−1)

N

)
, p2 > 3 − 4

p+1
for all q2 ∈[

1, 2N
N−4

)
(For example, let 6 < p ≤ 7, q1 = p1 = 8, p2 > 17

7
). Using the Gagliardo–
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Nirenberg inequality and Young’s inequality, we have for i = 1, 2

(c̃6 + ˜̃c2)

∫
Ω

|∇v|ρi ≤ c8

(
∥|∇v|p1∥κi

L2(Ω)∥|∇v|p1∥1−κi

L
q2
p1 (Ω)

+ ∥|∇v|p1∥
q2
p1

L
ρi
p1 (Ω)

) ρi
p1(4.13)

≤ c̃8

(∫
Ω

|∇|∇v|p1 |2
)σi

+ c̃8

≤ p1 − 1

2p1

∫
Ω

|∇|∇v|p1 |2 + c̄8,

where

κi :=
2p1
ρi

·
ρi
q2
− 1

2p1
q2

+ 2
N
− 1

∈ (0, 1), σi :=
ρiκi

2p1
∈ (0, 1)

and

(c̃7 + ĉ2)

∫
Ω

|∇z|ρ̃i ≤ c9

(
∥|∇z|p2∥κ̃i

L2(Ω)∥|∇z|p2∥1−κ̃i

L
2
p2 (Ω)

+ ∥|∇z|p2∥
2
p2

L
ρ̃i
p2 (Ω)

) ρ̃i
p2(4.14)

≤ c̃9

(∫
Ω

|∇|∇z|p2 |2
)σi

+ c̃9

≤ p2 − 1

2p2

∫
Ω

|∇|∇z|p2 |2 + c̄9,

where

κ̃i :=
2p2
ρ̃i

·
ρ̃i
2
− 1

p2 +
2
N
− 1

∈ (0, 1), σ̃i :=
ρ̃iκ̃i

2p2
∈ (0, 1).

At last, Young’s inequality leads to∫
Ω

up ≤ α

2

∫
Ω

up+1 + c10.(4.15)

Taking into account (4.9)–(4.15), we show (4.8). Hence we see from (4.8), Gronwall’s
lemma and (1.3) that∫

Ω

(
up + |∇v|2p1 + |∇z|2p2

)
≤

∫
Ω

(
up
0 + |∇v0|2p1 + |∇z0|2p2

)
+ C

for all t ∈ (0, Tmax). Therefore we obtain the boundedness of ∥u(·, t)∥Lp(Ω) for all t ∈
(0, Tmax).

If the next proposition is shown, we can prove Theorem 1.1.

Proposition 4.3. Let N ≤ 9 and assume that (1.2)–(1.8) hold. Then the solution
(u, v, w, z) of (1.1) is global in time ; that is, Tmax = ∞. Moreover, there exist α ∈ (0, 1),
C > 0 such that

∥u(·, t)∥L∞(Ω) + ∥v(·, t)∥W 1,∞(Ω) + ∥w(·, t)∥L∞(Ω) + ∥z(·, t)∥L∞(Ω) ≤ C(4.16)

for all t > 0, as well as

∥u∥
C2+α,1+α

2 (Ω̄×[t,t+1])
+ ∥v∥

C2+α,1+α
2 (Ω̄×[t,t+1])

+ ∥z∥
C2+α,1+α

2 (Ω̄×[t,t+1])
≤ C(4.17)

for all t ≥ 1.
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Proof. We divide the proof into the three cases N ≤ 3, N = 4, 5 and 6 ≤ N ≤ 9 to show
this proposition.
(Case N ≤ 3)

We have the L1-boundedness of u from Lemma 2.2. Therefore we can complete the proof
of this proposition in the case N ≤ 3 by using an argument similar to the proof of [3,
Lemmas 3.5–3.6].
(Case N = 4, 5)

Since N = 4, 5, we obtain

∥∇v(·, t)∥L∞(Ω) ≤ C1(N,M) for all t ∈ (0, T ),

where some M > 0 satisfies

∥z(·, t)∥
L

2N
N−2 (Ω)

≤ M for all t ∈ (0, T )

by using Lemmas 3.2 and 4.1. Furthermore, Lemma 3.3 and (4.12), T ∈ (0, Tmax) yield
that

∥u(·, t)∥L∞(Ω) < C2(N,M) for all t ∈ (0, Tmax).

Therefore we derive from Lemma 3.1 and (4.13) that

∥z(·, t)∥L∞(Ω) ≤ C3(N,M) for all t ∈ (0, Tmax).

Combination of Lemma 2.4 and (2.1) in Lemma 2.1 shows that Tmax = ∞ and, by inde-
pendence of the obtained estimate with respect to t ∈ (0,∞), establishes (4.16). Therefore
straightforward bootstrap arguments involving standard interior parabolic regularity the-
ory (see [8] for instance) readily yield (4.17).
(Case 6 ≤ N ≤ 9)

Since 6 ≤ N ≤ 9, we have (4.4) from Lemma 4.2. So we see that

∥u(·, t)∥L∞(Ω) < C4(N,C) for all t ∈ (0, Tmax),

∥z(·, t)∥L∞(Ω) ≤ C5(N,C) for all t ∈ (0, Tmax),

∥∇v(·, t)∥L∞(Ω) ≤ C6(N,C) for all t ∈ (0, Tmax)

by using Lemmas 3.1–3.3 and (4.4). In the same way as in the case N = 4, 5, we obtain
(4.16) and (4.17) from Lemmas 2.1 and 2.4.

Proof of Theorem 1.1. Proposition 4.3 completes the proof of Theorem 1.1.
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and Steady States, Birkhäuser Advanced Texts, Basel/Boston/Berlin, 2007.

[11] Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller–Segel
system with subcritical sensitivity, J. Differential Equations 252 (2012), 692–715.

[12] M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis
system with logistic source, Comm. Partial Differential Equations 35 (2010), 1516–
1537.


