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1 Introduction

We consider the following initial-boundary value problem for a nonlinear reaction
diffusion system:

∂tu1 −∆u1 = u1u2 − bu1, x ∈ Ω, t > 0,

∂tu2 −∆u2 = au1, x ∈ Ω, t > 0,

∂νu1 + αu1 = ∂νu2 + β|u2|γ−2u2 = 0, x ∈ ∂Ω, t > 0,

u1(x, 0) = u10(x) ≥ 0, u2(x, 0) = u20(x) ≥ 0, x ∈ Ω,

(NR)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω, ν denotes the unit
outward normal vector on ∂Ω and ∂ν is outward normal derivative, i.e., ∂νui = ∇ui · ν
(i = 1, 2). Moreover u1, u2 are real-valued unknown functions, a and b are given positive
constants. As for the parameters appearing in the boundary condition, we assume α ∈
[0,∞), β ∈ (0,∞) and γ ∈ [2,∞). We note that the boundary condition for u1 becomes
the homogeneous Neumann boundary condition when α = 0, and the boundary condition
for u2 gives the Robin boundary condition when γ = 2. Finally, u10, u20 ∈ L∞(Ω) are
given nonnegative initial data.

This system describes diffusion phenomena of neutrons and heat in nuclear reactors by
taking the heat conduction into consideration, introduced by Kastenberg and Chambré
[11]. In this model u1 and u2 represent the neutron density and the temperature in nuclear
reactors respectively. There are many studies on this model under various boundary con-
ditions, for example, [3], [4], [7], [8], [10], [20] and [22]. Many of them are concerned with
the existence of positive steady-state solutions and the long-time behavior of solutions.

The original problem for (NR):
∂tu1 −∆u1 = u1u2 − bu1, x ∈ Ω, t > 0,

∂tu2 = au1 − cu2, x ∈ Ω, t > 0,

u1 = 0, x ∈ ∂Ω, t > 0,

u1(x, 0) = u10(x) ≥ 0, u2(x, 0) = u20(x) ≥ 0, x ∈ Ω,

(1.1)

for some c > 0 is studied by [20]. In (1.1), the negative feedback −cu2 from the heat into
itself is considered instead of the diffusion term. In Rothe’s book [20], the boundedness
and the convergence to equilibrium for (1.1) are examined in detail.

In [7], our system is studied with α = 0 and γ = 2, i.e., with the homogeneous
Neumann boundary condition and Robin boundary condition:

∂tu1 −∆u1 = u1u2 − bu1, x ∈ Ω, t > 0,

∂tu2 −∆u2 = au1, x ∈ Ω, t > 0,

∂νu1 = ∂νu2 + βu2 = 0, x ∈ ∂Ω, t > 0,

u1(x, 0) = u10(x), u2(x, 0) = u20(x), x ∈ Ω.

(1.2)

They showed the existence and the ordered uniqueness of positive stationary solution
for N ∈ [2, 5]. They also investigated some threshold property to determine blow-up or
globally existence. Moreover, in [22] the case where β = 0, that is, the homogeneous
Neumann boundary condition for u2 is studied. The author of [22] discussed the stability



195

region and the instability region of (1.2) and give an upper bound and a lower bound on
the blowing-up time for a solution which blows up in finite time.

The following system with the homogeneous Dirichlet boundary conditions:
∂tu1 −∆u1 = u1u

p
2 − bu1, x ∈ Ω, t > 0,

∂tu2 −∆u2 = au1, x ∈ Ω, t > 0,

u1 = u2 = 0, x ∈ ∂Ω, t > 0,

u1(x, 0) = u10(x), u2(x, 0) = u20(x), x ∈ Ω,

(1.3)

is studied by [8] and [10]. In [8], they showed the existence of positive stationary solutions
for the case where p = 1 and N = 2, 3 or Ω is bounded convex domain with N ∈ [2, 5].
Furthermore, they obtained the threshold property of stationary solution announced in
[7] when Ω is ball. In [10], the existence and ordered uniqueness of positive stationary
solutions are considered for general p > 0 and some threshold result is obtained. Moreover
the blow-up rate estimate is given for positive blowing-up solutions when Ω is ball and
p ≥ 1.

In this paper, we are concerned with the nonlinear boundary condition. From physical
point of view it could be more natural to consider the nonlinear boundary condition rather
than the homogeneous Dirichlet boundary condition or Neumann boundary condition.
Indeed, if there is no control of the heat flux on the boundary, it is well known that the
power type nonlinearity for u2 is justified by Stefan-Boltzmann’s law, which says that the
heat energy radiation from the surface of the body is proportional to the fourth power of
temperature when N = 3.

The outline of this paper is as follows. In Section 2, we consider the stationary
problem associated with (NR) and show the existence of positive solutions by applying an
abstract fixed point theorem based on Krasnosel’skii [12]. In order to apply this fixed point
theorem, we need to estimate L∞-norm of solutions. To do this, since we are concerned
with nonlinear boundary conditions, we can not rely on the standard linear theory. To
cope with this difficulty, we introduce a new approach, which enables us to obtain strong
summability of solutions on the boundary. Next, we prove the ordered uniqueness for the
positive stationary solutions of (NR). We here use the property of first eigenfunction for
the eigenvalue problem associated with the Robin boundary condition.

In Section 3, we study the nonstationary problem. In the first subsection, we show
the existence of local solutions in time for (NR) by abstract theory of maximal monotone
operators associated with subdifferential operators together with L∞-energy method [18].
In the second subsection, we discuss the large time behavior of solutions to (NR) and
prove that every positive stationary solution plays a role of threshold to separate global
solutions and finite time blowing-up solutions. In this procedure, we essentially rely on the
comparison theorem. Furthermore in order to show the finite time blow-up of solutions
of (NR), the crucial point is to construct an appropriate subsolution.

2 Stationary problem

In this section, we are going to show the existence of the positive stationary solutions
for (NR) and prove the ordered uniqueness of them. The stationary problem for (NR) is
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given by 
−∆u1 = u1u2 − bu1, x ∈ Ω,

−∆u2 = au1, x ∈ Ω,

∂νu1 + αu1 = ∂νu2 + β|u2|γ−2u2 = 0, x ∈ ∂Ω.

(S-NR)

It should be noticed that since (S-NR) has no variational structure, it is not possible
to apply the variational method to (S-NR). In order to show the existence of positive
stationary solutions to (NR), we rely on the abstract fixed point theorem developed by
Krasnosel’skii. The crucial step in proving the existence of positive stationary solutions
is how to obtain L∞-estimates of solutions.

We state a couple of lemmas to prove our results for (S-NR).

Lemma 2.1 (Krasnosel’skii-type fixed point theorem [12], [13]). Suppose that E is a real
Banach space with norm ∥ · ∥, K ⊂ E is a positive cone, and Φ : K → K is a compact
mapping satisfying Φ(0) = 0. Assume that there exists two constants R > r > 0 and an
element φ ∈ K \ {0}, such that

(i) u ̸= λΦ(u), ∀λ ∈ (0, 1), if u ∈ K and ∥u∥ = r,

(ii) u ̸= Φ(u) + λφ, ∀λ ≥ 0, if u ∈ K and ∥u∥ = R.

Then the mapping Φ possesses at least one fixed point in K1 := {u ∈ K; 0 < r < ∥u∥ <
R}.

Lemma 2.2 ([6]). Let λ1 and φ1 be the first eigenvalue and the corresponding eigenfunc-
tion for the problem: {

−∆φ = λφ, x ∈ Ω,

∂νφ+ αφ = 0, x ∈ ∂Ω,

where Ω is smooth bounded domain in RN and α > 0. Then λ1 > 0 and there exists a
constant Cα > 0 such that

φ1(x) ≥ Cα x ∈ Ω.

Indeed, it is well known that φ1 > 0 in Ω by the strong maximum principle. Suppose
that there exists x0 ∈ ∂Ω such that φ1(x0) = 0, then the boundary condition assures
∂νφ1(x0) = −αφ1(x0) = 0. On the other hand, Hopf’s strong maximum principle assures
that ∂νφ1(x0) < 0. This is contradiction, i.e., φ1(x) > 0 on Ω.

2.1 Existence of positive solutions

Theorem 2.1. Let 1 ≤ N ≤ 5 and suppose that either (A) or (B) is satisfied :{
(A) γ = 2, α ≤ 2β,

(B) γ > 2.

Then (S-NR) has at least one positive solution.
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We rely on Lemma 2.1 to prove this theorem. In order to apply Lemma 2.1, we here
fix our setting:

E = C(Ω)× C(Ω), u = (u1, u2)
T ∈ E,

∥u∥ = ∥u1∥C(Ω) + ∥u2∥C(Ω), K = {u ∈ E;u1 ≥ 0, u2 ≥ 0}.

Set φ = (φ1, 0)
T ∈ K \{0}, where λ1 and φ1 are the first eigenvalue and the corresponding

eigenfunction of the following eigenvalue problem:{
−∆φ = λφ, x ∈ Ω,

∂νφ+ αφ = 0, x ∈ ∂Ω.
(2.1)

In section 2, we normalize φ1(x) such that ∥φ1∥L2 = 1. For given u = (u1, u2)
T ∈ K, let

v = (v1, v2)
T = Ψ(u) be the unique nonnegative solution (see Brézis [2]) of

−∆v1 + bv1 = u1u2, x ∈ Ω,

−∆v2 = au1, x ∈ Ω,

∂νv1 + αv1 = ∂νv2 + β|v2|γ−2v2 = 0, x ∈ ∂Ω.

(2.2)

It is clear that Ψ(0) = 0. Moreover Ψ : K → K is compact. In order to prove the
compactness of Ψ , we use the next Lemma for the following problem:{

−∆u = f, x ∈ Ω,

∂νu = g, x ∈ ∂Ω.
(2.3)

Lemma 2.3. ([17]) Let Ω ⊂ RN be a bounded Lipschitz domain. Suppose that f ∈ L
p
2 (Ω)

and g ∈ Lp−1(∂Ω) with p > N ≥ 2, then there exist δ > 0 and a positive constant C such
that every weak solution u of (2.3) belongs to C0,δ(Ω) and satisfies

∥u∥C0,δ(Ω) ≤ C
(
∥u∥L2(Ω) + ∥f∥

L
p
2 (Ω)

+ ∥g∥Lp−1(∂Ω)

)
.

Since Ω is bounded and (u1, u2) ∈ C(Ω)× C(Ω), it follows from elliptic estimate that
v1 ∈ W 2,p(Ω) for any p. Since W 2,p(Ω) is compactly embedded in C(Ω) for p > N

2
, the

mapping (u1, u2) 7→ v1 is compact. Next we assume that N ≥ 2 and consider the following
equation: {

−∆v2 = au1 ∈ L∞(Ω), x ∈ Ω,

∂νv2 + β|v2|γ−2v2 = 0, x ∈ ∂Ω.

Multiplying the equation by |v2|r−2v2 and applying integration by parts, we get

(r − 1)

∫
Ω

|v2|r−2|∇v2|2dx+ β

∫
∂Ω

|v2|r+γ−2dS = a

∫
Ω

u1|v2|r−2v2dx. (2.4)
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Noting that (∥∇v2∥2L2(Ω) +
∫
∂Ω

v22dS)
1/2 is equivalent to the usual H1-norm by Poincaré-

Friedrichs type inequality, we obtain

(l.h.s.) = (r − 1)

∫
Ω

∣∣∣|v2| r−2
2 |∇v2|

∣∣∣2 dx+ β

∫
∂Ω

|v2|r+γ−2dS

≥ 4(r − 1)

r2

∫
Ω

∣∣∇|v2|
r
2

∣∣2 dx+ β

∫
∂Ω

|v2|rdS − β|∂Ω|

≥ Cr

(∫
Ω

∣∣∇|v2|
r
2

∣∣2 dx+

∫
∂Ω

∣∣|v2| r2 ∣∣2 dS)− β|∂Ω|

≥ Cr

∫
Ω

∣∣|v2| r2 ∣∣2 dx− β|∂Ω| = Cr∥v2∥rLr(Ω) − β|∂Ω|,

where Cr = min{4(r−1)
r2

, β} > 0 and we used the estimate:

β

∫
∂Ω

|v2|r+γ−2dS ≥ β

∫
{|v2|≥1}

|v2|r+γ−2dS ≥ β

∫
{|v2|≥1}

|v2|rdS

= β

∫
∂Ω

|v2|rdS − β

∫
{|v2|≤1}

|v2|rdS

≥ β

∫
∂Ω

|v2|rdS − β|∂Ω|.

Hence Hölder’s inequality, Young’s inequality and (2.4) yield

∥v2∥Lr(Ω) ≤

{
β|∂Ω|

(
Cr

2

)−1

+
1

r

(
Cr

2

)−r

∥au1∥rLr(Ω)

} 1
r

∀r < ∞.

Therefore by (2.4) we have

∫
∂Ω

|v2|r+γ−2dS ≤ 1

β
∥au1∥Lr(Ω)

{
β|∂Ω|

(
Cr

2

)−1

+
1

r

(
Cr

2

)−r

∥au1∥rLr(Ω)

} r−1
r

∀r < ∞.

Thus we see that v2 ∈ Lr(∂Ω) for all large r < ∞ and we can apply Lemma 2.3 to get
v2 ∈ C0,δ(Ω) for some δ > 0. Note that C0,δ(Ω) ↪→ C(Ω) is compact. As for the case
where N = 1, (2.4) with r = 2 gives the a priori bound for ∥v2∥H1(Ω). Since the embedding

H1(Ω) ↪→ C(Ω) is compact, the compactness of Ψ is easily derived. Thus we see that
Ψ : K → K is compact.

In order to show the existence of positive stationary solutions for (S-NR), it suffices
to prove that Ψ has a fixed point in K. Therefore, to prove Theorem 2.1 we are going to
verify conditions (i) and (ii) of Lemma 2.1.

We first check condition (i).

Lemma 2.4. Let r = b
2
, then u ̸= λΨ(u) for any λ ∈ (0, 1) and u ∈ K satisfying ∥u∥ = r.

That is, condition (i) of Lemma 2.1 with Φ = Ψ holds.
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Proof. We prove the statement by contradiction. Suppose that there exist λ ∈ (0, 1) and
u ∈ K with ∥u∥ = r such that u = λΨ(u), that is, u1 and u2 satisfy

−∆u1 + bu1 = λu1u2, x ∈ Ω,

−∆u2 = λau1, x ∈ Ω,

∂νu1 + αu1 = ∂νu2 + β
∣∣∣u2

λ

∣∣∣γ−2

u2 = 0, x ∈ ∂Ω.

(2.5)

Multiplying the first equation of (2.5) by u1 and using integration by parts, we obtain

∥∇u1∥2L2(Ω) + α

∫
∂Ω

u2
1dS + b∥u1∥2L2(Ω) = λ

∫
Ω

u2
1u2dx

≤ ∥u2∥L∞(Ω)∥u1∥2L2(Ω)

≤ b

2
∥u1∥2L2(Ω),

where we use the fact

∥u2∥L∞(Ω) ≤ ∥u∥ = r =
b

2
.

Then

∥∇u1∥2L2(Ω) + α

∫
∂Ω

u2
1dS +

b

2
∥u1∥2L2(Ω) ≤ 0.

Hence we have u1 = 0. By the second equation of (2.5), we see that u2 satisfies −∆u2 = 0, x ∈ Ω,

∂νu2 + β
∣∣∣u2

λ

∣∣∣γ−2

u2 = 0, x ∈ ∂Ω.

Multiplying this equation by u2 and integration by parts, we obtain

∥∇u2∥2L2(Ω) +
β

|λ|γ−2

∫
∂Ω

|u2|γdS = 0, i.e., ∥∇u2∥L2(Ω) = 0, u2 |∂Ω = 0.

By the use of Poincaré’s inequality, we also get u2 = 0. Thus u1 = u2 = 0. This
contradicts the assumption ∥u∥ = b

2
> 0.

In order to verify condition (ii), we here claim the following lemma.

Lemma 2.5. Let 1 ≤ N ≤ 5 and suppose that either (A) or (B) is satisfied :{
(A) γ = 2, α ≤ 2β,

(B) γ > 2.

Then there exists a constant R(> r = b
2
) such that for any λ > 0 and any solution u of

u = Ψ(u) + λφ, it holds that

∥u∥ < R.
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Proof. We rewrite u = Ψ(u) + λφ in terms of each component:


−∆u1 + bu1 = u1u2 + λ(b+ λ1)φ1, x ∈ Ω,

−∆u2 = au1, x ∈ Ω,

∂νu1 + αu1 = ∂νu2 + β|u2|γ−2u2 = 0, x ∈ ∂Ω.

(2.6)

In what follows, we denote by C a general constant which differs from place to place.
First, we derive H1-estimate for u2. Replacing u1 in the first equation of (2.6) by − 1

a
∆u2,

we get {
∆2u2 − b∆u2 = −u2∆u2 + λa(b+ λ1)φ1, x ∈ Ω

∂νu2 + β|u2|γ−2u2 = ∂ν∆u2 + α∆u2 = 0, x ∈ ∂Ω.
(2.7)

Multiplying (2.7) by φ1, using integration by parts and noting that the boundary condi-
tions ∂νφ1 + αφ1 = ∂νu2 + β|u2|γ−2u2 = 0, we have

(l.h.s) =

∫
Ω

∆2u2φ1dx− b

∫
Ω

∆u2φ1dx

= −
∫
Ω

∇(∆u2) · ∇φ1dx+

∫
∂Ω

(∂ν∆u2)φ1dS

+ b

∫
Ω

∇u2 · ∇φ1dx− b

∫
∂Ω

(∂νu2)φ1dS

=

∫
Ω

∆u2∆φ1dx−
∫
∂Ω

∆u2(∂νφ1)dS +

∫
∂Ω

(∂ν∆u2)φ1dS

− b

∫
Ω

u2∆φ1dx+ b

∫
∂Ω

u2(∂νφ1)dS − b

∫
∂Ω

(∂νu2)φ1dS

= −λ1

∫
Ω

∆u2φ1dx+ α

∫
∂Ω

∆u2φ1dS − α

∫
∂Ω

∆u2φ1dS

+ bλ1

∫
Ω

u2φ1dx− αb

∫
∂Ω

u2φ1dS + βb

∫
∂Ω

uγ−1
2 φ1dS

= λ1

∫
Ω

∇u2 · ∇φ1dx− λ1

∫
∂Ω

(∂νu2)φ1dS

+ bλ1

∫
Ω

u2φ1dx− αb

∫
∂Ω

u2φ1dS + βb

∫
∂Ω

uγ−1
2 φ1dS

= −λ1

∫
Ω

u2∆φ1dx+ λ1

∫
∂Ω

u2(∂νφ1)dS − λ1

∫
∂Ω

(∂νu2)φ1dS

+ bλ1

∫
Ω

u2φ1dx− αb

∫
∂Ω

u2φ1dS + βb

∫
∂Ω

uγ−1
2 φ1dS

= λ1(b+ λ1)

∫
Ω

u2φ1dx+ β(b+ λ1)

∫
∂Ω

uγ−1
2 φ1dS − α(b+ λ1)

∫
∂Ω

u2φ1dS,
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and

(r.h.s) = −
∫
Ω

u2∆u2φ1dx+ λa(b+ λ1)∥φ1∥2L2(Ω)

=

∫
Ω

∇u2 · ∇(u2φ1)dx−
∫
∂Ω

(∂νu2)u2φ1dS + λa(b+ λ1)

=

∫
Ω

|∇u2|2φ1dx+

∫
Ω

u2∇u2 · ∇φ1dx+ β

∫
∂Ω

uγ
2φ1dS + λa(b+ λ1)

=

∫
Ω

|∇u2|2φ1dx+
1

2

∫
Ω

∇u2
2 · ∇φ1dx+ β

∫
∂Ω

uγ
2φ1dS + λa(b+ λ1)

=

∫
Ω

|∇u2|2φ1dx− 1

2

∫
Ω

u2
2∆φ1dx+

1

2

∫
∂Ω

u2
2(∂νφ1)dS

+ β

∫
∂Ω

uγ
2φ1dS + λa(b+ λ1)

=

∫
Ω

|∇u2|2φ1dx+
λ1

2

∫
Ω

u2
2φ1dx+ β

∫
∂Ω

uγ
2φ1dS − α

2

∫
∂Ω

u2
2φ1dS + λa(b+ λ1).

Therefore the following equality holds.

λ1(b+ λ1)

∫
Ω

u2φ1dx =

∫
Ω

|∇u2|2φ1dx+
λ1

2

∫
Ω

u2
2φ1dx+ a(b+ λ1)λ (2.8)

+

∫
∂Ω

{
βuγ

2 − β (b+ λ1)u
γ−1
2 − α

2
u2
2 + α (b+ λ1)u2

}
φ1dS.

Since (A) : γ = 2, α ≤ 2β or (B) : γ > 2 holds, we get

inf
u2≥0

{
βuγ

2 − β (b+ λ1)u
γ−1
2 − α

2
u2
2 + α (b+ λ1)u2

}
≥ −C > −∞.

Moreover, we see that due to the boundedness of φ1 (cf. Lemma 2.2)

λ1(b+ λ1)

∫
Ω

u2φ1dx ≥
∫
Ω

|∇u2|2φ1dx+
λ1

2

∫
Ω

u2
2φ1dx+ a(b+ λ1)λ− C.

By Schwarz’s inequality and Young’s inequality, it is easy to see that∫
Ω

|∇u2|2φ1dx+
λ1

2

∫
Ω

u2
2φ1dx+ a(b+ λ1)λ ≤ λ1(b+ λ1)

∫
Ω

u2φ1dx+ C

≤ λ1(b+ λ1)

(∫
Ω

u2
2φ1dx

) 1
2

∥φ1∥
1
2

L1(Ω) + C

≤ λ1

4

∫
Ω

u2
2φ1dx+ C.

Hence we obtain ∫
Ω

|∇u2|2φ1dx ≤ C,

∫
Ω

u2
2φ1dx ≤ C, λ ≤ C, (2.9)
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and ∫
Ω

u2φ1dx ≤
(∫

Ω

u2
2φ1dx

) 1
2
(∫

Ω

φ1dx

) 1
2

≤ C. (2.10)

Furthermore it follows from Lemma 2.2 and (2.9)

Cα

(∫
Ω

|∇u2|2dx+

∫
Ω

u2
2dx

)
≤

∫
Ω

|∇u2|2φ1dx+

∫
Ω

u2
2φ1dx ≤ C,

whence follows

∥u2∥H1(Ω) ≤ C. (2.11)

By (2.10) and (2.8), we also have∫
∂Ω

{
βuγ

2 − β (b+ λ1)u
γ−1
2 − α

2
u2
2 + α (b+ λ1)u2

}
φ1dS ≤ C. (2.12)

Hence we can obtain
∫
∂Ω

uγ
2φ1dS ≤ C (γ > 2 or γ = 2, α < 2β),∫

∂Ω

u2φ1dS ≤ C (γ = 2, α = 2β).
(2.13)

Indeed, if γ > 2, then by Hölder’s inequality and Young’s inequality, we get

β

∫
∂Ω

uγ
2φ1dS + α(b+ λ1)

∫
∂Ω

u2φ1dS ≤ C + β(b+ λ1)

∫
∂Ω

uγ−1
2 φ1dS +

α

2

∫
∂Ω

u2
2φ1dS

≤ C + β(b+ λ1)

(∫
∂Ω

uγ
2φ1dS

) γ−1
γ

(∫
∂Ω

φ1dS

) 1
γ

+
α

2

(∫
∂Ω

uγ
2φ1dS

) 2
γ
(∫

∂Ω

φ1dS

) γ−2
γ

≤ C + β(b+ λ1)∥φ1∥
1
γ

L∞(Ω)|∂Ω|
1
γ

(∫
∂Ω

uγ
2φ1dS

) γ−1
γ

+
α

2
∥φ1∥

γ−2
γ

L∞(Ω)|∂Ω|
γ−2
γ

(∫
∂Ω

uγ
2φ1dS

) 2
γ

≤ C +
β

2

∫
∂Ω

uγ
2φ1dS,

where we denote by |∂Ω| a volume of ∂Ω and use the following property (see [9]):

∥φ1∥L∞(∂Ω) ≤ ∥φ1∥L∞(Ω).
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On the other hand, if γ = 2 and α < 2β, then it follows from Schwarz’s inequality and
Young’s inequality (

β − α

2

)∫
∂Ω

u2
2φ1dS + α(b+ λ1)

∫
∂Ω

u2φ1dS

≤ C + β(b+ λ1)

∫
∂Ω

u2φ1dS

≤ C + β(b+ λ1)

(∫
∂Ω

u2
2φ1dS

) 1
2
(∫

∂Ω

φ1dS

) 1
2

≤ C + β(b+ λ1)∥φ1∥L∞(Ω)|∂Ω|
1
2

(∫
∂Ω

u2
2φ1dS

) 1
2

≤ C +
1

2

(
β − α

2

)∫
∂Ω

u2
2φ1dS.

For the case of γ = 2 and α = 2β, from (2.12) it is clear that

β

∫
∂Ω

u2φ1dS ≤ C.

Thus we obtain (2.13).

Now, we derive H1-estimate for u1. Multiplying the first equation of (2.6) by φ1 and
using integration by parts, we get

(λ1 + b)

∫
Ω

u1φ1dx =

∫
Ω

u1u2φ1dx+ λ(λ1 + b) (2.14)

Similarly, multiplying the second equation of (2.6) by φ1, we get

λ1

∫
Ω

u2φ1dx+ β

∫
∂Ω

uγ−1
2 φ1dS − α

∫
∂Ω

u2φ1dS = a

∫
Ω

u1φ1dx. (2.15)

Then by (2.14), (2.15), (2.11) and (2.13), we obtain∫
Ω

u1φ1dx ≤ C,

∫
Ω

u1u2φ1dx ≤ C. (2.16)

Hence, by Lemma 2.2, we get a priori bounds for
∫
Ω
u1dx and

∫
Ω
u1u2dx. Now we are

going to establish a priori bound of u1 in H1(Ω) for the case of N ∈ [3, 5]. Multiplying
the first equation of (2.6) by u1 and using integration by parts, we obtain

∥∇u1∥2L2(Ω) + α

∫
∂Ω

u2
1ds+ b∥u1∥2L2(Ω) =

∫
Ω

u2
1u2dx+ λ(b+ λ1)

∫
Ω

u1φ1dx

≤
∫
Ω

(u1u2)
θ

(
u

2−θ
1−θ

1 u2

)1−θ

dx+ C

≤
(∫

Ω

u1u2dx

)θ (∫
Ω

u
2−θ
1−θ

1 u2dx

)1−θ

+ C, (2.17)



204

where we apply Hölder’s inequality with exponent (1
θ
, 1
1−θ

) for the first term on the right

hand side. Here we take θ = 6−N
4

∈ (0, 1), then by applying Hölder’s inequality with
exponent ( 2N

N+2
, 2N
N−2

),

(∫
Ω

u
2−θ
1−θ

1 u2dx

)1−θ

=

(∫
Ω

u
N+2
N−2

1 u2dx

)N−2
4

≤ ∥u1∥
N+2

4

L2∗ (Ω)
∥u2∥

N−2
4

L2∗ (Ω)
.

where 2∗ = 2N
N−2

is the critical Sobolev exponent. Using Sobolev’s embedding H1(Ω) ↪→
L2∗(Ω) and (2.11), we obtain

∥u1∥
N+2

4

L2∗ (Ω)
∥u2∥

N−2
4

L2∗ (Ω)
≤ C∥u1∥

N+2
4

H1(Ω).

Since (∥∇u1∥2L2(Ω) + α
∫
∂Ω

u2
1ds + b∥u1∥2L2(Ω))

1/2 is equivalent to the usual H1-norm of u1

due to trace inequality and Poincaré-Friedrichs type inequality, as a consequence we have

∥u1∥2H1(Ω) ≤ C∥u1∥
N+2

4

H1(Ω) + C.

Since N ∈ [3, 5], we have N+2
4

< 2. Hence it follows from Young’s inequality

∥u1∥2H1(Ω) ≤ C∥u1∥
N+2

4

H1(Ω) + C ≤ 1

2
∥u1∥2H1(Ω) + C.

Thus we derive

∥u1∥H1(Ω) ≤ C. (2.18)

Next, we derive L∞-estimates for u1 as for the case N ∈ [3, 5]. From Sobolev’s

embedding H1(Ω) ↪→ L
10
3 (Ω), we can see that u1, u2 ∈ L

10
3 (Ω) and u1u2 ∈ L

5
3 (Ω). We get

u1 ∈ W 2, 5
3 (Ω) by the elliptic estimate for the first equation of (2.6). Moreover, u1 ∈ L5(Ω)

by Sobolev’s embedding W 2, 5
3 (Ω) ↪→ L5(Ω). Then by Hölder’s inequality,∫

Ω

u2
1u

2
2dx ≤

(∫
Ω

u
2· 5

2
1 dx

) 2
5
(∫

Ω

u
2· 5

3
2

) 3
5

,

we can see that u1u2 ∈ L2(Ω). By the same reason as before, we know that u1 ∈
W 2,2(Ω) ↪→ L10(Ω). By Hölder’s inequality, we have u1u2 ∈ L

5
2 (Ω). Hence applying

elliptic estimate and Sobolev’s embedding again, we get u1 ∈ W 2, 5
2 (Ω) ↪→ Lq(Ω) for any

q ∈ [1,∞). Therefore u1u2 ∈ L
10q

3q+10 (Ω) and u1 ∈ W 2, 10q
3q+10 (Ω). Choosing q > 10, we have

∥u1∥L∞(Ω) ≤ C1,

where we use the Sobolev’s embedding W 2, 10q
3q+10 (Ω) ↪→ L∞(Ω) for q > 10.

Thus we obtain L∞-estimate of u1 for the case of N ∈ [3, 5]. About the regularity for
u2, it suffices to consider the following problem for given u1 ∈ L∞(Ω):{

−∆u2 = au1 ∈ L∞(Ω), x ∈ Ω,

∂νu2 + β|u2|γ−2u2 = 0, x ∈ ∂Ω.
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Therefore we can derive L∞-estimate for u2, i.e.,

∥u2∥L∞(Ω) ≤ C2

by the same arguments as for the compactness of Ψ applying Lemma 2.3. Choosing
R > C1 + C2, we can see that the conclusion of this lemma holds.

As for the case N = 1, 2, it suffices to obtain L∞-estimate for each component. First,
let N = 2. Choosing θ = 1

2
in (2.17), we see that it follows from Sobolev’s embedding

H1(Ω) ↪→ Lp(Ω) ( for all p ∈ [1,∞) )

∥∇u1∥2L2(Ω) + α

∫
∂Ω

u2
1ds+ b∥u1∥2L2(Ω) =

∫
Ω

u2
1u2dx+ λ(b+ λ1)

∫
Ω

u1φ1dx

≤
∫
Ω

(u1u2)
1
2
(
u3
1u2

) 1
2 dx+ C

≤
(∫

Ω

u1u2dx

) 1
2
(∫

Ω

u3
1u2dx

) 1
2

+ C

≤ C

(∫
Ω

u3
1u2dx

) 1
2

+ C

≤ C∥u1∥
3
2

L6(Ω)∥u2∥
1
2

L2(Ω) + C

≤ C∥u1∥
3
2

H1(Ω) + C.

Here we note that we have already had H1-estimate for u2 without restrictions on the
space dimension. Thus we also get H1-estimate for u1. In the similar way as for the
previous case N ∈ [3, 5], we can derive L∞-estimates for u1 and u2.

Let N = 1 and Ω = (a0, b0) with a0 < b0. Since u1 ∈ C(Ω), there exists x0 ∈ Ω such
that

u1(x0) = min
x∈Ω

u1(x).

Furthermore, since it holds that ∥u1∥L1(Ω) ≤ C for any space dimension, we have

min
x∈Ω

u1(x) ≤
1

|Ω|

∫
Ω

u1dx ≤ C.

Here by the fundamental theorem of calculus,

u1(x) = u1(x0) +

∫ x

x0

u′
1(ξ)dξ.

Therefore we get the following inequality:

∥u1∥L∞(Ω) ≤
∫ b0

a0

|u′
1(ξ)|dξ + |u1(x0)| ≤ ∥u′

1∥L1(Ω) + C. (2.19)
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From (2.19), Schwarz’s inequality and Young’s inequality, we see that

∥u′
1∥2L2 + α

∫
∂Ω

u2
1ds+ b∥u1∥2L2 =

∫
Ω

u2
1u2dx+ λ(b+ λ1)

∫
Ω

u1φ1dx

≤ ∥u1∥L∞

∫
Ω

u1u2dx+ C

≤ C (∥u′
1∥L1 + C) + C

≤ C∥u′
1∥L2 + C ≤ 1

2
∥u′

1∥2L2 + C.

Hence we obtain a priori bound for ∥u1∥H1(Ω). Since Sobolev’s embedding H1(Ω) ↪→
L∞(Ω) holds for N = 1, we obtain the desired estimates.

Proof of Theorem 2.1. By applying Lemma 2.4, Lemma 2.5 and Lemma 2.1, we can verify
that Theorem 2.1 holds.

2.2 Ordered Uniqueness

Next, we discuss the ordered uniqueness of the positive solutions for (S-NR). We now
prepare the following inequality.

Lemma 2.6. ([5]) For any γ ∈ [2,∞), there exists Cγ > 0 such that

(x− y) ·
(
|x|γ−2x− |y|γ−2y

)
≥ Cγ|x− y|γ

for all x, y ∈ RN .

Theorem 2.2. Let (u1, u2) and (v1, v2) be two positive solutions of (S-NR) satisfying
u1 ≤ v1 or u2 ≤ v2. Then u1 ≡ v1 and u2 ≡ v2.

Proof. Suppose that u1 ̸≡ v1 or u2 ̸≡ v2. Without loss of generality, we only have to
consider the case where u2 ̸≡ v2 and u2 ≤ v2. In fact, if u1 ≤ v1, by the second equation
of (S-NR) we have

−∆(u2 − v2) = a(u1 − v1) ≤ 0. (2.20)

Multiplying (2.20) by [u2 − v2]
+ := max{u2 − v2, 0} and using integration by parts, we

obtain

∥∇[u2 − v2]
+∥2L2(Ω) + β

∫
∂Ω

[u2 − v2]
+
(
|u2|γ−2u2 − |v2|γ−2v2

)
dS ≤ 0. (2.21)

Note that by Lemma 2.6∫
∂Ω

[u2 − v2]
+
(
|u2|γ−2u2 − |v2|γ−2v2

)
dS =

∫
{u2≥v2}

(u2 − v2)
(
|u2|γ−2u2 − |v2|γ−2v2

)
dS

≥
∫
{u2≥v2}

Cγ(u2 − v2)
γdS

= Cγ

∫
∂Ω

(
[u2 − v2]

+
)γ

dS.
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By this inequality and (2.21), we get

∥∇[u2 − v2]
+∥2L2(Ω) + Cγ

∫
∂Ω

(
[u2 − v2]

+
)γ

dS ≤ 0.

Therefore we have

∇[u2 − v2]
+ = 0,

[u2 − v2]
+
∣∣
∂Ω

= 0.

Hence we deduce [u2 − v2]
+ ≡ 0, i.e., u2 ≤ v2.

Next we consider the following eigenvalue problems:{
−∆w + (b− u2(x))w = µ′w in Ω,

∂νw + αw = 0 on ∂Ω,
(2.22)

and {
−∆w + (b− v2(x))w = η′w in Ω,

∂νw + αw = 0 on ∂Ω.
(2.23)

If necessary, we take some nonnegative constant L ≥ 0 and add both sides of equations
of (2.22) and (2.23) by L, and we can assume U(x) := b − u2(x) + L ≥ 1 and V (x) :=
b− v2(x) +L ≥ 1. Thus we consider the following problems in stead of (2.22) and (2.23):{

−∆w + U(x)w = µw in Ω,

∂νw + αw = 0 on ∂Ω,
(2.24)

and {
−∆w + V (x)w = ηw in Ω,

∂νw + αw = 0 on ∂Ω.
(2.25)

By applying the compactness argument for the associate Rayleigh’s quotients of (2.24) and
(2.25) , we know that the smallest positive eigenvalues of (2.24) and (2.25) are attained
and we denote them by µ0 and η0. Moreover, thanks to u2 ̸≡ v2 and u2 ≤ v2, we see that
η0 < µ0. On the other hand, since (u1, u2) and (v1, v2) are positive stationary solutions
for (S-NR), u1 > 0 and v1 > 0 satisfy{

−∆u1 + (b− u2(x) + L)u1 = Lu1 in Ω,

∂νu1 + αu1 = 0 on ∂Ω,

and {
−∆v1 + (b− v2(x) + L) v1 = Lv1 in Ω,

∂νv1 + αv1 = 0 on ∂Ω.

By the fact that the eigenvalue corresponding to the positive eigenfunction is the smallest
one, we deduce µ0 = L = η0. This contradicts η0 < µ0. Thus the proof is completed.
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3 Nonstationary Problem

In this section, we investigate the large time behavior of solutions to (NR) and prove
that the positive stationary solution plays a role of threshold to classify initial data into
two groups; namely corresponding solutions of (NR) blow up in finite time or exist globally.

3.1 Local Well-posedness

First we state the local well-posedness of problem (NR).

Theorem 3.1. Assume (u10, u20) ∈ L∞(Ω) × L∞(Ω). Then there exists T > 0 such
that (NR) possesses a unique solution (u1, u2) ∈ (L∞(0, T ;L∞(Ω)) ∩ C([0, T );L2(Ω)))2

satisfying √
t∂tu1,

√
t∂tu2,

√
t∆u1,

√
t∆u2 ∈ L2(0, T ;L2(Ω)). (3.1)

Furthermore, if the initial data is nonnegative, then the local solution (u1, u2) for (NR) is
nonnegative.

In order to prove this theorem, we rely on L∞-energy method developed in [18]. To
this end, we prepare some crucial lemmas.

Lemma 3.1. ([18]) Let Ω be any domain in RN and assume that exists a number r0 ≥ 1
and a constant C independent of r ∈ [r0,∞) such that

∥u∥Lr(Ω) ≤ C ∀r ∈ [r0,∞),

then u belongs to L∞(Ω) and the following property holds.

lim
r→∞

∥u∥Lr(Ω) = ∥u∥L∞(Ω). (3.2)

Conversely, assume that u ∈ Lr0(Ω) ∩ L∞(Ω) for some r0 ∈ [1,∞), then u satisfies
(3.2).

Lemma 3.2. ([18]) Let y(t) be a bounded measurable non-negative function on [0, T ] and
suppose that there exists y0 ≥ 0 and a monotone non-decreasing function m(·) : [0,+∞) →
[0,+∞) such that

y(t) ≤ y0 +

∫ t

0

m(y(s))ds a.e. t ∈ (0, T ).

Then there exists a number T0 = T0(y0,m(·)) ∈ (0, T ] such that

y(t) ≤ y0 + 1 a.e. t ∈ [0, T0].

Proof of Theorem 3.1. (Existence and regularity) We consider the following approximate
problem: 

∂tu1 −∆u1 = [u1]M [u2]M − bu1, x ∈ Ω, t > 0,

∂tu2 −∆u2 = au1, x ∈ Ω, t > 0,

∂νu1 + αu1 = ∂νu2 + β|u2|γ−2u2 = 0, x ∈ ∂Ω, t > 0,

u1(x, 0) = u10(x), u2(x, 0) = u20(x), x ∈ Ω,

(3.3)
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where M > 0 is a given constant and the cut-off function [u]M is defined by

[u]M =


M, u ≥ M,

u, |u| ≤ M,

−M, u ≤ −M.

Since u 7→ [u]M is Lipschitz continuous from L2(Ω) into itself, it is well known that (3.3)
has a unique global solution (u1, u2) satisfying (3.1) by applying the abstract theory on
maximal monotone operators developed by H. Brézis [2].

By multiplying the first equation of (3.3) by |u1|r−2u1 and using integration by parts,

1

r

d

dt
∥u1(t)∥rLr + (r − 1)

∫
Ω

|∇u1|2ur−2
1 dx+ α

∫
∂Ω

|u1|rdS ≤
∫
Ω

|u1|r|u2|dx− b

∫
Ω

|u1|rdx.

Hence
1

r

d

dt
∥u1(t)∥rLr ≤ ∥u2(t)∥L∞∥u1(t)∥rLr .

Divide both sides by ∥u1∥r−1
Lr and integrate with respect to t on [0, t], then we get

∥u1(t)∥Lr ≤ ∥u10∥Lr +

∫ t

0

∥u1(τ)∥Lr∥u2(τ)∥L∞dτ.

Letting r tend to ∞ (Lemma 3.1), we derive

∥u1(t)∥L∞ ≤ ∥u10∥L∞ +

∫ t

0

∥u1(τ)∥L∞∥u2(τ)∥L∞dτ.

Similarly, we can get the following L∞ estimate for u2 ;

∥u2(t)∥L∞ ≤ ∥u20∥L∞ +

∫ t

0

a∥u1(τ)∥L∞dτ.

Therefore setting y(t) = ∥u1(t)∥L∞(Ω) + ∥u2(t)∥L∞(Ω), we get

y(t) ≤ y(0) +

∫ t

0

(
y2(τ) + ay(τ)

)
dτ.

Thus applying Lemma 3.2, we find that there exists a number T > 0 depending only on
∥u10∥L∞(Ω) and ∥u20∥L∞(Ω) such that

y(t) ≤ y(0) + 1 a.e. t ∈ [0, T ].

In other words, we get

∥u1(t)∥L∞(Ω) + ∥u2(t)∥L∞(Ω) ≤ ∥u10∥L∞(Ω) + ∥u20∥L∞(Ω) + 1 a.e. t ∈ [0, T ].

Hence choosing M > ∥u10∥L∞(Ω)+∥u20∥L∞(Ω)+1, we can see that (u1, u2) gives a solution
for (NR) on [0, T ] by the definition of the cut-off function [u]M . Note that even though
∥u1(t)∥r−1

Lr attains zero, we can justify this argument by Proposition 1 in [16]. To get the
regularity estimate of the solution for (NR) is standard, so we omit the details.
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(Uniqueness) Let (u1, u2) and (v1, v2) be two solutions to (NR) with initial data
(u10, u20) and (v10, v20) respectively. We set w1 = u1 − v1 and w2 = u2 − v2. From
(NR), we have

∂tw1 −∆w1 = w1u2 + v1w2 − bw1, (3.4)

∂tw2 −∆w2 = aw1, (3.5)

∂νw1 + αw1 = ∂νw2 + β
(
|u2|γ−2u2 − |v2|γ−2v2

)
= 0, on ∂Ω.

We multiply (3.4) and (3.5) by w1 and w2 respectively, integrate over Ω and use integration
by parts. Then we obtain

1

2

d

dt
∥w1(t)∥2L2(Ω) + ∥∇w1∥2L2(Ω) + α

∫
∂Ω

w2
1dS

≤
∫
Ω

w2
1u2dx+

∫
Ω

v1w1w2dx

≤ ∥u2∥L∞(0,T ;L∞(Ω))

∫
Ω

w2
1dx+ ∥v1∥L∞(0,T ;L∞(Ω))

∫
Ω

w1w2dx

≤ C
(
∥w1(t)∥2L2(Ω) + ∥w2(t)∥2L2(Ω)

)
,

and

1

2

d

dt
∥w2(t)∥2L2(Ω) + ∥∇w2∥2L2(Ω) + β

∫
∂Ω

(
|u2|γ−2u2 − |v2|γ−2v2

)
(u2 − v2) dS

≤ a

∫
Ω

w1w2dx

≤ a

2

(
∥w1(t)∥2L2(Ω) + ∥w2(t)∥2L2(Ω)

)
.

Noting that ∫
∂Ω

(
|u2|γ−2u2 − |v2|γ−2v2

)
(u2 − v2) dS ≥

∫
∂Ω

Cγ|w2|γdS ≥ 0

by Lemma 2.6, we can get the following differential inequality:

d

dt

(
∥w1(t)∥2L2(Ω) + ∥w2(t)∥2L2(Ω)

)
≤ C

(
∥w1(t)∥2L2(Ω) + ∥w2(t)∥2L2(Ω)

)
,

whence, from Gronwall’s inequality,(
∥w1(t)∥2L2(Ω) + ∥w2(t)∥2L2(Ω)

)
≤

(
∥u10 − v10∥2L2(Ω) + ∥u20 − v20∥2L2(Ω)

)
eCt t ∈ [0, T ).

This yields the uniqueness of the solution for (NR).
(Nonnegativity) Multiplying the first equation of (NR) by u−

1 := max{−u1, 0}, we get∫
Ω

∂tu1u
−
1 dx−

∫
Ω

∆u1u
−
1 dx ≥ −

∫
Ω

|u−
1 |2|u2|dx− b

∫
Ω

u1u
−
1 dx.
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Here, we can see that∫
Ω

∂tu1u
−
1 dx =

∫
{u1≤0}

∂tu1(−u1)dx = −1

2

d

dt

∫
{u1≤0}

(−u1)
2dx = −1

2

d

dt

∫
Ω

(
u−
1

)2
dx,

and

−
∫
Ω

∆u1u
−
1 dx =

∫
Ω

∇u1 · ∇u−
1 dx+ α

∫
∂Ω

u1u
−
1 dS

= −
∫
Ω

|∇u−
1 |2dx− α

∫
{u1≤0}

u2
1dS = −

∫
Ω

|∇u−
1 |2dx− α

∫
∂Ω

(
u−
1

)2
dS.

Therefore we have

1

2

d

dt
∥u−

1 (t)∥2L2(Ω) + ∥∇u−
1 ∥2L2(Ω) + α

∫
∂Ω

(
u−
1

)2
dS =

∫
Ω

|u−
1 |2|u2|dx− b∥u−

1 (t)∥2L2(Ω)

≤ ∥u2∥L∞(0,T ;L∞(Ω))∥u−
1 (t)∥2L2(Ω).

Applying Gronwall’s inequality, we obtain

∥u−
1 (t)∥2L2(Ω) ≤ ∥u−

1 (0)∥2L2(Ω)e
2∥u2∥L∞(0,T ;L∞(Ω))t t ∈ [0, T ),

where T is maximal existence time for (NR). Since u10 ≥ 0, i.e., ∥u−
1 (0)∥L2(Ω) = 0, it

holds that

u−
1 (t) = 0 a.e. in Ω ∀t ∈ [0, T ).

Hence u1 ≥ 0. Similarly, multiplying the second equation of (NR) by −u−
2 , we get

1

2

d

dt
∥u−

2 (t)∥2L2(Ω) + ∥∇u−
2 ∥2L2(Ω) + β

∫
∂Ω

|u2|γ−2|u−
2 |2dS = −a

∫
Ω

u1u
−
2 dx ≤ 0.

Therefore ∥u−
2 (t)∥2L2(Ω) ≤ ∥u−

2 (0)∥2L2(Ω) = 0, i.e., u2 ≥ 0.

3.2 Threshold Property

Finally, we study the threshold property and prove that every positive stationary
solution for (NR) gives a threshold for the blow up of solutions in the following sense.

Theorem 3.2. Let (u1, u2) be a positive stationary solution of (NR), then the followings
hold.

(1) Let 0 ≤ u10(x) ≤ u1(x), 0 ≤ u20(x) ≤ u2(x), then the solution (u1, u2) of (NR)
exists globally. In addition, if 0 ≤ u10(x) ≤ l1u1(x), 0 ≤ u20(x) ≤ l2u2(x) for some
0 < l1 < l2 ≤ 1, then

lim
t→+∞

(u1(x, t), u2(x, t)) = (0, 0) pointwisely on Ω.

(2) Assume further γ = 2, α ≤ 2β and let u10(x) ≥ l1u1(x), u20(x) ≥ l2u2(x) for some
l1 > l2 > 1, then the solution (u1, u2) of (NR) blows up in finite time.
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Remark 3.3. The second assertion of Theorem 3.2 is also announced in [7] for the case
where α = 0 and γ = 2. However it seems that their proof contains some serious gaps.

We first prepare the following comparison theorem.

Lemma 3.3 (Comparison theorem). If (u10, u20), (v10, v20) are two initial data for (NR)
satisfying

0 ≤ u10 ≤ v10, 0 ≤ u20 ≤ v20 on Ω,

then the corresponding solutions (u1, u2), (v1, v2) remain in the initial data order in time
interval where the solutions exist, i.e., u1(x, t) ≤ v1(x, t) and u2(x, t) ≤ v2(x, t) a.e. x ∈ Ω
as long as (u1, u2) and (v1, v2) exist.

Proof. Let w1 = u1 − v1, w2 = u2 − v2. By (NR) we have
∂tw1 −∆w1 = w1u2 + v1w2 − bw1, x ∈ Ω, t ∈ (0, Tm),

∂tw2 −∆w2 = aw1, x ∈ Ω, t ∈ (0, Tm),

∂νw1 + αw1 = ∂νw2 + β
(
|u2|γ−2u2 − |v2|γ−2v2

)
= 0, x ∈ ∂Ω, t ∈ (0, Tm),

w1(x, 0) ≤ 0, w2(x, 0) ≤ 0, x ∈ Ω,

(3.6)

where Tm > 0 is the maximum existence time for (u1, u2) and (v1, v2). We set

w+ = w ∨ 0, w− = (−w) ∨ 0,

where a ∨ b = max{a, b}. It is easy to see that w+, w− ≥ 0 and

w = w+ − w−, |w| = w+ + w−.

Multiplying the first equation of (3.6) by w+
1 , we get∫

Ω

∂tw1w
+
1 dx−

∫
Ω

∆w1w
+
1 dx =

∫
Ω

w1u2w
+
1 dx+

∫
Ω

v1w2w
+
1 dx− b

∫
Ω

w1w
+
1 dx.

Here, we see that∫
Ω

∂tw1w
+
1 dx =

∫
{w1≥0}

∂tw1w1dx =
1

2

d

dt

∫
{w1≥0}

w2
1dx =

1

2

d

dt

∫
Ω

(
w+

1

)2
dx.

Similarly,

−
∫
Ω

∆w1w
+
1 dx =

∫
Ω

∇w1 · ∇w+
1 dx+ α

∫
∂Ω

w1w
+
1 dS

=

∫
{w1≥0}

|∇w1|2dx+ α

∫
{w1≥0}

w2
1dS =

∫
Ω

|∇w+
1 |2dx+ α

∫
∂Ω

(
w+

1

)2
dS.
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Hence noting that v1 ≥ 0, we obtain for any T ∈ (0, Tm)

1

2

d

dt

∫
Ω

(
w+

1

)2
dx+

∫
Ω

|∇w+
1 |2dx+ α

∫
∂Ω

(
w+

1

)2
dS

=

∫
Ω

w1u2w
+
1 dx+

∫
Ω

v1w2w
+
1 dx− b

∫
Ω

w1w
+
1 dx

=

∫
Ω

(
w+

1 − w−
1

)
u2w

+
1 dx+

∫
Ω

v1
(
w+

2 − w−
2

)
w+

1 dx− b

∫
Ω

(
w+

1

)2
dx

≤ ∥u2∥L∞(0,T ;L∞(Ω))

∫
Ω

(
w+

1

)2
dx+ ∥v1∥L∞(0,T ;L∞(Ω))

∫
Ω

w+
1 w

+
2 dx

≤ C
(
∥w+

1 (t)∥2L2(Ω) + ∥w+
2 (t)∥2L2(Ω)

)
.

Hence we get

1

2

d

dt
∥w+

1 (t)∥2L2(Ω) ≤ C
(
∥w+

1 (t)∥2L2(Ω) + ∥w+
2 (t)∥2L2(Ω)

)
. (3.7)

Next we do the same calculation for the second equation of (3.6) and get

1

2

d

dt

∫
Ω

(
w+

2

)2
dx+

∫
Ω

|∇w+
2 |2dx−

∫
∂Ω

(∂νw2)w
+
2 dS ≤ a

2

(
∥w+

1 (t)∥2L2(Ω) + ∥w+
2 (t)∥2L2(Ω)

)
,

and

−
∫
∂Ω

(∂νw2)w
+
2 dS = β

∫
∂Ω

(
|u2|γ−2u2 − |v2|γ−2v2

)
w+

2 dS

= β

∫
{u2≥v2}

(
|u2|γ−2u2 − |v2|γ−2v2

)
(u2 − v2) dS ≥ 0.

Therefore
1

2

d

dt
∥w+

2 (t)∥2L2(Ω) ≤
a

2

(
∥w+

1 (t)∥2L2(Ω) + ∥w+
2 (t)∥2L2(Ω)

)
. (3.8)

Thus by (3.7), (3.8) and Gronwall’s inequality, we get

∥w+
1 (t)∥2L2(Ω) + ∥w+

2 (t)∥2L2(Ω) ≤
(
∥w+

1 (0)∥2L2(Ω) + ∥w+
2 (0)∥2L2(Ω)

)
eCt ∀t ∈ [0, Tm).

Since w+
1 (0) = w+

2 (0) = 0, the above inequality means w+
1 = w+

2 = 0. Hence, we have the
desired result.

Proof of Theorem 3.2. (1) If 0 ≤ u10 ≤ u1 and 0 ≤ u20 ≤ u2, then since (u1, u2) is a
global solution for (NR), 0 ≤ u1(x, t) ≤ u1(x) and 0 ≤ u2(x, t) ≤ u2(x) follow directly
from Lemma 3.3. That is, we have

sup
t∈[0,T )

∥ui(·, t)∥L∞(Ω) ≤ ∥ui∥L∞(Ω) (i = 1, 2).

Hence the solution (u1, u2) exists globally.
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In addition, let u10(x) ≤ l1u1(x), u20(x) ≤ l2u2(x) for some 0 < l1 < l2 ≤ 1. Since the
comparison theorem holds, without loss of generality, we can assume that u10(x) = l1u1(x),
u20(x) = l2u2(x) and l1 < l2 ≤ 1. We here note that δu1 := u1(t + h) − u1(t) and
δu2 := u2(t+ h)− u2(t) for h > 0 satisfy the following equations:

∂t (δu1)−∆(δu1) = (δu1)u2(t+ h) + u1(t) (δu2)− b (δu1) ,

∂t (δu2)−∆(δu2) = a (δu1) ,

∂ν (δu1)+α (δu1)=∂ν (δu2)+β
(
|u2(t+h)|γ−2u2(t+h)−|u2(t)|γ−2u2(t)

)
=0,

δu1(0) = u1(0 + h)− u1(0), δu2(0) = u2(0 + h)− u2(0).

(3.9)

Multiplying the first and second equation of (3.9) by [δu1]
+ and [δu2]

+ respectively and
using integration by parts and repeating the same argument as for (3.7), we obtain the
following inequality:

∥[δu1]
+∥2L2(Ω) + ∥[δu2]

+∥2L2(Ω) ≤
(
∥[δu1(0)]

+∥2L2(Ω) + ∥[δu2(0)]
+∥2L2(Ω)

)
eCt ∀t ∈ [0,∞).

We divide both sides of this inequality by h2:∥∥∥∥∥
[
δu1

h

]+∥∥∥∥∥
2

L2(Ω)

+

∥∥∥∥∥
[
δu2

h

]+∥∥∥∥∥
2

L2(Ω)

≤

∥∥∥∥∥
[
δu1(0)

h

]+∥∥∥∥∥
2

L2(Ω)

+

∥∥∥∥∥
[
δu2(0)

h

]+∥∥∥∥∥
2

L2(Ω)

 eCt.

Since we know that u1, u2 is differentiable on a.e. t by the regularity results of Theorem
4.1, by letting h ↘ 0, we obtain

∥[∂tu1]
+∥2L2 + ∥[∂tu2]

+∥2L2 ≤
(
∥[∂tu1(0)]

+∥2L2 + ∥[∂tu2(0)]
+∥2L2

)
eCt a.e. t ∈ [0,∞).

We here note that since (l1u1, l2u2) is strict upper solution for (S-NR), it holds that

∂tu1(0) = ∆u10 + u10u20 − bu10

= l1∆u1 + l1l2u1u2 − bl1u1

≤ l1 (∆u1 + u1u2 − bu1) = 0,

∂tu2(0) = ∆u20 + au10

= l2∆u2 + al1u1

< l2 (∆u2 + au1) = 0,

which imply that [∂tu1(0)]
+ = [∂tu2(0)]

+ = 0. Hence we find that ∂tu1 ≤ 0 and ∂tu2 ≤ 0,
i.e., u1(x, t) and u2(x, t) are monotone decreasing in t for a.e. x ∈ Ω. Thus

lim
t→∞

(u1(x, t), u2(x, t)) =: (ũ1(x), ũ2(x))

exists and satisfies (0, 0) ≤ (ũ1, ũ2) ≤ (l1u1, l2u2) < (u1, u2). Now we prove that (ũ1, ũ2)
is a nonnegative stationary solution of (NR). First we note that

ui(t) → ũi strongly in Lp(Ω) as k → ∞ ∀p ∈ (1,∞) (i = 1, 2). (3.10)



215

In fact, since |ui(x, t) − ũi(x)|p → 0 a.e. x ∈ Ω as t → ∞ and |ui(x, t) − ũi(x)|p ≤
2p|ui(x)|p ≤ 2p∥ui∥pL∞(Ω) a.e. x ∈ Ω, Lebesgue’s dominant convergence theorem assures

(3.10). Next multiplying the first and the second equations of (NR) by ∂tu1 and ∂tu2

respectively, we get

∥∂tu1(t)∥2L2(Ω) +
d

dt

{
1

2
∥∇u1(t)∥2L2(Ω) +

α

2
∥u1(t)∥2L2(∂Ω) +

b

2
∥u1(t)∥2L2(Ω)

}
=

∫
Ω

u1u2∂tu1dx ≤ 0,

∥∂tu2(t)∥2L2(Ω) +
d

dt

{
1

2
∥∇u2(t)∥2L2(Ω) +

β

γ
∥u2(t)∥γLγ(∂Ω)

}
= a

∫
Ω

u1∂tu2dx ≤ 0.

Then integration of these over (0, T ) for any T > 0 gives∫ ∞

0

∥∂tu1(t)∥2L2(Ω)dt+

∫ ∞

0

∥∂tu2(t)∥2L2(Ω)dt ≤ C0, (3.11)

sup
t>0

{
∥u1(t)∥2H1(Ω) + ∥u2(t)∥2H1(Ω)

}
≤ C0, (3.12)

where C0 is a positive constant depending on ∥u10∥H1(Ω), ∥u20∥H1(Ω) and ∥u20∥Lγ(∂Ω).
Hence since ui ∈ L∞(0,∞;L∞(Ω)) (i = 1, 2), from equation (NR), we derive∫ n+1

n

{
∥∂tu1(t)∥2L2(Ω) + ∥∂tu2(t)∥2L2(Ω)

}
dt → 0 as n → ∞, (3.13)

sup
n

∫ n+1

n

{
∥∆u1(t)∥2L2(Ω) + ∥∆u2(t)∥2L2(Ω)

}
dt ≤ C0. (3.14)

Furthermore, since ∥u2(t)∥L∞(∂Ω) ≤ ∥u2(t)∥L∞(Ω) (see [9]), we obtain

sup
t>0

∥u2(t)∥L∞(∂Ω) ≤ ∥u2∥L∞(Ω). (3.15)

Here we put

un
i (x, t) = ui(x, n+ t) ∈ H := L2(0, 1;L2(Ω)) t ∈ (0, 1) (i = 1, 2). (3.16)

Then un
i (t) satisfy
∂tu

n
1 (t)−∆un

1 (t) = un
1 (t)u

n
2 (t)− bun

1 (t), x ∈ Ω, t ∈ (0, 1),

∂tu
n
2 (t)−∆un

2 (t) = aun
1 (t), x ∈ Ω, t ∈ (0, 1),

∂νu
n
1 (t) + αun

1 (t) = ∂νu
n
2 (t) + β|un

2 (t)|γ−2un
2 (t) = 0, x ∈ ∂Ω, t ∈ (0, 1).

(3.17)
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Then, by virtue of (3.10), (3.12), (3.13), (3.14) and (3.15), there exists subsequence of
{un

i (t)} denoted again by {un
i (t)} such that

∂tu
n
i (t) → 0 strongly in H as n → ∞, (3.18)

un
i (t) → ũi(t) ≡ ũi strongly in H as n → ∞, (3.19)

un
1 (t)u

n
2 (t) → ũ1(t)ũ2(t) ≡ ũ1ũ2 strongly in H as n → ∞, (3.20)

∆un
i (t) ⇀ ∆ũi(t) ≡ ∆ũi weakly in H as n → ∞, (3.21)

un
i (t) → ũi(t) ≡ ũi strongly in L2(0, 1;L2(∂Ω)) as n → ∞, (3.22)

|un
2 (t)|γ−2un

2 (t) ⇀ |ũ2|γ−2ũ2 weakly in L2(0, 1;L2(∂Ω)) as n → ∞, (3.23)

∂νu
n
i (t) ⇀ ∂ν ũi weakly in L2(0, 1;L2(∂Ω)) as n → ∞. (3.24)

Thus ũ1 and ũ2 satisfy
−∆ũ1 = ũ1ũ2 − bũ1, x ∈ Ω,

−∆ũ2 = aũ1, x ∈ Ω,

∂ν ũ1 + αũ1 = ∂ν ũ2 + β|ũ2|γ−2ũ2 = 0, x ∈ ∂Ω.

Since (0, 0) ≤ (ũ1, ũ2) ≤ (l1u1, l2u2) < (u1, u2), it follows that (ũ1(x), ũ2(x)) is nothing
but (0, 0) from the ordered uniqueness of positive stationary solutions.

(2) Let γ = 2 and α ≤ 2β. By the comparison theorem, we can assume without loss
of generality that u10(x) = l1u1(x), u20(x) = l2u2(x) for some l1 > l2 > 1. Suppose that
the solution (u1, u2) of (NR) exists globally, i.e.,

sup
t∈[0,T ]

∥ui(·, t)∥L∞(Ω) < ∞, (i = 1, 2) ∀ T > 0. (3.25)

Now we are going to construct a subsolution. For this purpose, we first note that there
exists a sufficiently small number ε > 0 such that{

a(l2 − l1)u1 + εl2u2 < 0 on Ω,

ε+ (1− l2)u2 < 0 on Ω.
(3.26)

Here we used the fact that u1(x) > 0, u2(x) > 0 on Ω, which is assured by Hopf’s type
maximum principle. Let u∗

1(x, t) = l1e
εtu1(x) and u∗

2(x, t) = l2e
εtu2(x). Then using (3.26),

we get

∂tu
∗
1 −∆u∗

1 − u∗
1u

∗
2 + bu∗

1 = εl1e
εtu1 − l1e

εt∆u1 − l1e
εtu1l2e

εtu2 + bl1e
εtu1

= εl1e
εtu1 + l1e

εt (u1u2 − bu1)− l1e
εtu1l2e

εtu2 + bl1e
εtu1

≤ εl1e
εtu1 + l1e

εtu1u2 − l1l2e
εtu1u2

= {ε+ (1− l2)u2} l1eεtu1 < 0,

∂tu
∗
2 −∆u∗

2 − au∗
1 = εl2e

εtu2 − l2e
εt∆u2 − al1e

εtu1

= εl2e
εtu2 + l2e

εtau1 − al1e
εtu1

= {εl2u2 + a (l2 − l1)u1} eεt < 0,
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where we used the fact that (u1, u2) satisfies{
−∆u1 = u1u2 − bu1,

−∆u2 = au1.

Moreover ∂νu
∗
1+αu∗

1 = 0, ∂νu
∗
2+βu∗

2 = 0 on ∂Ω and u∗
1(x, 0) = l1u1(x), u

∗
2(x, 0) = l2u2(x).

Hence by the comparison principle, we have

l1e
εtu1(x) = u∗

1(x, t) ≤ u1(x, t), l2e
εtu2(x) = u∗

2(x, t) ≤ u2(x, t). (3.27)

Multiplication of equations of (NR) by φ1 and integration by parts yield

d

dt

(∫
Ω

u1φ1dx

)
+ (b+ λ1)

∫
Ω

u1φ1dx =

∫
Ω

u1u2φ1dx, (3.28)

d

dt

(∫
Ω

u2φ1dx

)
+ λ1

∫
Ω

u2φ1dx+ (β − α)

∫
∂Ω

u2φ1dS = a

∫
Ω

u1φ1dx, (3.29)

where λ1 and φ1 are the first eigenvalue and the corresponding eigenfunction for (2.1).
We here normalize φ1 so that ∥φ1∥L1(Ω) = 1. Substituting (3.29) and u1 =

1
a
(∂tu2 −∆u2)

in (3.28) and using integration by parts, we get

d

dt

{
d

dt

(∫
Ω

u2φ1dx

)
+ λ1

∫
Ω

u2φ1dx+ (β − α)

∫
∂Ω

u2φ1dS

}
(3.30)

+ (b+ λ1)

{
d

dt

(∫
Ω

u2φ1dx

)
+ λ1

∫
Ω

u2φ1dx+ (β − α)

∫
∂Ω

u2φ1dS

}
=

1

2

d

dt

∫
Ω

u2
2φ1dx+

∫
Ω

|∇u2|2φ1dx+
λ1

2

∫
Ω

u2
2φ1dx+

(
β − α

2

)∫
∂Ω

u2
2φ1dS,

where we used the fact that

−
∫
Ω

(∆u2)u2φ1dx =

∫
Ω

∇u2 · ∇(u2φ1)dx−
∫
∂Ω

(∂νu2)u2φ1dS

=

∫
Ω

|∇u2|2φ1dx+

∫
Ω

u2∇u2 · ∇φ1dx+ β

∫
∂Ω

u2
2φ1dS

=

∫
Ω

|∇u2|2φ1dx+
1

2

∫
Ω

∇u2
2 · ∇φ1dx+ β

∫
∂Ω

u2
2φ1dS

=

∫
Ω

|∇u2|2φ1dx− 1

2

∫
Ω

u2
2∆φ1dx− α

2

∫
∂Ω

u2
2φ1dS + β

∫
∂Ω

u2
2φ1dS

=

∫
Ω

|∇u2|2φ1dx+
λ1

2

∫
Ω

u2
2φ1dx+

(
β − α

2

)∫
∂Ω

u2
2φ1dS.
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We here assume β − α > 0. From (3.27), it follows that

λ1

2

∫
Ω

u2
2φ1dx− (b+ λ1)λ1

∫
Ω

u2φ1dx

=
λ1

4

∫
Ω

u2
2φ1dx+ λ1

∫
Ω

{
1

4
u2 − (b+ λ1)

}
u2φ1dx

≥ λ1

4

∫
Ω

u2
2φ1dx+ λ1

∫
Ω

{
1

4
u∗
2 − (b+ λ1)

}
u2φ1dx

≥ λ1

4

∫
Ω

u2
2φ1dx+ λ1

∫
Ω

{
1

4
meεt − (b+ λ1)

}
u2φ1dx,

where m := minx∈Ω l2u2(x) > 0. Hence there exists t1 > 0 such that

λ1

2

∫
Ω

u2
2φ1dx− (b+ λ1)λ1

∫
Ω

u2φ1dx ≥ λ1

4

∫
Ω

u2
2φ1dx ∀ t ≥ t1. (3.31)

Similarly, since(
β − α

2

)∫
∂Ω

u2
2φ1dS − (b+ λ1)(β − α)

∫
∂Ω

u2φ1dS

=
1

2

(
β − α

2

)∫
∂Ω

u2
2φ1dS +

∫
∂Ω

{
1

2

(
β − α

2

)
u2 − (b+ λ1)(β − α)

}
u2φ1dS

≥1

2

(
β − α

2

)∫
∂Ω

u2
2φ1dS +

∫
∂Ω

{
1

2

(
β − α

2

)
meεt − (b+ λ1)(β − α)

}
u2φ1dS,

there exists t2 > 0 such that(
β − α

2

)∫
∂Ω

u2
2φ1dS − (b+ λ1)(β − α)

∫
∂Ω

u2φ1dS

≥ 1

2

(
β − α

2

)∫
∂Ω

u2
2φ1dS ∀ t ≥ t2. (3.32)

Therefore by (3.31), (3.32) and (3.30), we have

d

dt

{
d

dt

(∫
Ω

u2φ1dx

)}
+ (b+ 2λ1)

d

dt

(∫
Ω

u2φ1dx

)
+ (β − α)

d

dt

(∫
∂Ω

u2φ1dS

)
≥1

2

d

dt

(∫
Ω

u2
2φ1dx

)
+

λ1

4

∫
Ω

u2
2φ1dx+

1

2

(
β − α

2

)∫
∂Ω

u2
2φ1dS ∀ t ≥ t3, (3.33)

where t3 := t1 ∨ t2. Now we integrate (3.33) with respect to t over [t3, t] to get

d

dt

{∫
Ω

u2φ1dx+ (β − α)

∫ t

t3

∫
∂Ω

u2φ1dSdτ

}
≥ 1

2

∫
Ω

u2
2φ1dx− (b+ 2λ1)

∫
Ω

u2φ1dx− 1

2

∫
Ω

u2
2(t3)φ1dx

+
1

2

(
β − α

2

)∫ t

t3

∫
∂Ω

u2
2φ1dSdτ +

∫
Ω

∂tu2(t3)φ1dx, (3.34)
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where we neglected positive terms. Moreover we can see that there exists t4 > t3 such
that

1

2

∫
Ω

u2
2φ1dx−(b+ 2λ1)

∫
Ω

u2φ1dx

− 1

2

∫
Ω

u2
2(t3)φ1dx+

∫
Ω

∂tu2(t3)φ1dx ≥ 1

4

∫
Ω

u2
2φ1dx (3.35)

for t ≥ t4 by the same argument as before. Therefore from (3.34) and (3.35), we have

d

dt

{∫
Ω

u2φ1dx+ (β − α)

∫ t

t3

∫
∂Ω

u2φ1dSdτ

}
≥ 1

4

∫
Ω

u2
2φ1dx+

1

2

(
β − α

2

)∫ t

t3

∫
∂Ω

u2
2φ1dSdτ. (3.36)

Since ∥φ1∥L1(Ω) = 1, by Schwarz’s inequality, we get

1

4

∫
Ω

u2
2φ1dx ≥ 1

4

(∫
Ω

u2φ1dx

)2

,

and

1

2

(
β − α

2

)∫ t

t3

∫
∂Ω

u2
2φ1dSdτ

≥ 1

2
(β − α

2
)

1

∥φ1∥L∞(Ω)|∂Ω|
1

t− t3

{∫ t

t3

∫
∂Ω

u2φ1dSdτ

}2

=
1

2

β − α
2

∥φ1∥L∞(Ω)|∂Ω|(β − α)2
1

t− t3

{
(β − α)

∫ t

t3

∫
∂Ω

u2φ1dSdτ

}2

.

By the above inequalities and (3.36), for t ≥ t5 := t4 ∨ (t3 + 1), we finally get

d

dt

{∫
Ω

u2φ1dx+ (β − α)

∫ t

t3

∫
∂Ω

u2φ1dSdτ

}
≥1

4

∫
Ω

u2
2φ1dx+

1

2

(
β − α

2

)∫ t

t3

∫
∂Ω

u2
2φ1dSdτ

≥1

4

(∫
Ω

u2φ1dx

)2

+
1

2

β − α
2

∥φ1∥L∞(Ω)|∂Ω|(β − α)2
1

t− t3

{
(β − α)

∫ t

t3

∫
∂Ω

u2φ1dSdτ

}2

≥C
1

t− t3

{(∫
Ω

u2φ1dx

)2

+

(
(β − α)

∫ t

t3

∫
∂Ω

u2φ1dSdτ

)2
}

≥C
1

t− t3

{∫
Ω

u2φ1dx+ (β − α)

∫ t

t3

∫
∂Ω

u2φ1dSdτ

}2

,
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where C denotes some general positive constant independent of t. Set y(t) :=
∫
Ω
u2φ1dx+

(β − α)
∫ t

t3

∫
∂Ω

u2φ1dSdτ , then the above inequality yields the following:
d

dt
y(t) ≥ C

t− t3
y2(t) t ≥ t5,

y(t5) > 0.

We can see that there exists T ∗ > t5 such that

lim
t→T ∗

y(t) = +∞. (3.37)

In order to show the existence of T ∗ satisfying (3.37), it suffices to consider the following
ordinary differential equation:

d

dt
ỹ(t) =

C

t− t3
ỹ2(t) t ≥ t5,

ỹ(t5) > 0.

Since d
dt
ỹ(t) > 0 for all t ≥ t5 and ỹ(t5) > 0, it is clear that ỹ(t) > 0 for all t ≥ t5. Divide

both sides by ỹ2(t) and integrate with respect to t on [t5, t], then we have

1

ỹ2(t)

d

dt
ỹ(t) =

C

t− t3
,∫ ỹ(t)

ỹ(t5)

1

y2
dy = C log

t− t3
t5 − t3

,

− 1

ỹ(t)
+

1

ỹ(t5)
= C log

t− t3
t5 − t3

.

Therefore we have

ỹ(t) =
1

1
ỹ(t5)

− C log t−t3
t5−t3

.

Hence there exists T̃ > t5 satisfying

1

ỹ(t5)
− C log

T̃ − t3
t5 − t3

= 0

such that
lim
t→T̃

ỹ(t) = +∞.

Thus (3.37) holds by comparison theorem for ordinary differential equations. This con-
tradicts the assumption that (u1, u2) exists globally.

For the case of α
2
≤ β ≤ α, we can prove the same result with a slight modification.

Actually, we get from (3.30)

d

dt

{
d

dt

(∫
Ω

u2φ1dx

)
+ λ1

∫
Ω

u2φ1dx+ (β − α)

∫
∂Ω

u2φ1dS

}
+ (b+ λ1)

{
d

dt

(∫
Ω

u2φ1dx

)
+ λ1

∫
Ω

u2φ1dx

}
≥ 1

2

d

dt

∫
Ω

u2
2φ1dx+

λ1

2

∫
Ω

u2
2φ1dx.
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Using (3.31) and integrating above inequality with respect to t over [t1, t], we have

d

dt

(∫
Ω

u2φ1dx

)
−

∫
Ω

∂tu2(t1)φ1dx+ (β − α)

∫
∂Ω

u2φ1dS − (β − α)

∫
∂Ω

u2(t1)φ1dS

≥1

2

∫
Ω

u2
2φ1dx− 1

2

∫
Ω

u2
2(t3)φ1dx− (b+ 2λ1)

∫
Ω

u2φ1dx+ (b+ 2λ1)

∫
Ω

u2(t1)φ1dx.

Repeating the same arguments as for (3.31), we see that there exists t6 ≥ t1 such that

1

2

∫
Ω

u2
2φ1dx− 1

2

∫
Ω

u2
2(t3)φ1dx− (b+ 2λ1)

∫
Ω

u2φ1dx

+

∫
Ω

∂tu2(t1)φ1dx+ (β − α)

∫
∂Ω

u2(t1)φ1dS

≥ 1

4

∫
Ω

u2
2φ1dx

for all t ≥ t6. From these inequalities and Schwarz’s inequality, it holds that

d

dt

(∫
Ω

u2φ1dx

)
≥ 1

4

(∫
Ω

u2φ1dx

)2

∀ t ≥ t6.

Therefore we can get the following differential inequality:
d

dt
y(t) ≥ y2(t) t ≥ t6,

y(t6) > 0,

where y(t) =
∫
Ω
u2φ1dx. It is easy to see that there exists T ∗∗ > t6 such that

lim
t→T ∗∗

y(t) = +∞.

This leads to a contradiction.

Remark 3.4. Since the blow-up result is proved by contradiction, there is no knowing
if ∥u1(t)∥L∞ and ∥u2(t)∥L∞ blow up simultaneously. However we can show by another
argument that L∞-norms of u1 and u2 blow up at the same time, i.e., there exists T > 0
such that

lim
t→T

∥u1(t)∥L∞(Ω) = ∞ and lim
t→T

∥u2(t)∥L∞(Ω) = ∞.

In fact, multiplying the first equation of (NR) by |u1|r−2u1 and using integration by parts
and similar calculation in the proof of Theorem 3.1, we obtain

d

dt
∥u1(t)∥Lr(Ω) ≤ ∥u2(t)∥L∞(Ω)∥u1(t)∥Lr(Ω) ∀t ∈ [0, T ). (3.38)

From the second equation of (NR), we also have

∥u2(t)∥L∞(Ω) ≤ ∥u20∥L∞(Ω) + a

∫ t

0

∥u1(τ)∥L∞(Ω)dτ ∀t ∈ [0, T ). (3.39)
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Suppose that

lim
t→T

∥u1(t)∥L∞(Ω) = ∞ and M2 := sup
0≤t≤T

∥u2(t)∥L∞(Ω) < ∞,

then it follows from (3.38)

d

dt
∥u1(t)∥Lr ≤ M2∥u1(t)∥Lr(Ω) ∀t ∈ [0, T ).

By Gronwall’s inequality, we get

∥u1(t)∥Lr(Ω) ≤ ∥u10∥Lr(Ω)e
M2t ≤ ∥u10∥Lr(Ω)e

M2T ∀t ∈ [0, T ).

Letting r tend to ∞, we obtain

∥u1(t)∥L∞(Ω) ≤ ∥u10∥L∞(Ω)e
M2T ∀t ∈ [0, T ),

which contradicts the fact limt→T ∥u1(t)∥L∞(Ω) = ∞. Next, suppose that

M1 := sup
0≤t≤T

∥u1(t)∥L∞(Ω) < ∞ and lim
t→T

∥u2(t)∥L∞(Ω) = ∞,

then by (3.39) we see that

∥u2(t)∥L∞(Ω) ≤ ∥u20∥L∞(Ω) + aM1T ∀t ∈ [0, T ).

Letting t tend to T , we get contradiction. Thus we see that u1 and u2 blow up at the
same time.
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