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1 Introduction

We consider the following initial-boundary value problem for a nonlinear reaction
diffusion system:

Oyur — Aug = uiug — buy, reQ, t>0,

Oyug — Aug = auy, re t>0,

U 2 1 . (NR)
Oyur + auy = dyus + Plus|” “uy =0, x e i, t >0,

uy(z,0) = uo(x) > 0, us(x,0) = ug(x) >0, x €,

where 0 C RY is a bounded domain with smooth boundary 01, v denotes the unit
outward normal vector on J€) and 0, is outward normal derivative, i.e., d,u; = Vu,; - v
(1 =1,2). Moreover uy, us are real-valued unknown functions, a and b are given positive
constants. As for the parameters appearing in the boundary condition, we assume « €
[0,00), 8 € (0,00) and v € [2,00). We note that the boundary condition for u; becomes
the homogeneous Neumann boundary condition when o = 0, and the boundary condition
for uy gives the Robin boundary condition when v = 2. Finally, ujg, ugy € L>®(2) are
given nonnegative initial data.

This system describes diffusion phenomena of neutrons and heat in nuclear reactors by
taking the heat conduction into consideration, introduced by Kastenberg and Chambré
[11]. In this model u; and uy represent the neutron density and the temperature in nuclear
reactors respectively. There are many studies on this model under various boundary con-
ditions, for example, [3], [4], [7], [8], [10], [20] and [22]. Many of them are concerned with
the existence of positive steady-state solutions and the long-time behavior of solutions.

The original problem for (NR):

8tu1 - Aul = UrUg — bul, x € Q, t> 0,
Oyuy = auy — cug, x e, t>0, (1.1)
u; =0, I’G@Q,t>0, .

U1<x,0) = Ulo(l‘) Z 07 UQ(I',O) = UQ(](:E) Z 07 VS Q7

for some ¢ > 0 is studied by [20]. In (1.1), the negative feedback —cus from the heat into
itself is considered instead of the diffusion term. In Rothe’s book [20], the boundedness
and the convergence to equilibrium for (1.1) are examined in detail.

In [7], our system is studied with & = 0 and v = 2, i.e., with the homogeneous
Neumann boundary condition and Robin boundary condition:

8tu1 — Aul = U1U2 — bul, T € Q, t> 0,
Qg — Aug = auy, x e, t>0, L
Oyur = Oyuy + Puy = 0, r €N, t>0, (1.2)

uy(7,0) = uio(x), uz(w,0) = ug(z), =€ Q.

They showed the existence and the ordered uniqueness of positive stationary solution
for N € [2,5]. They also investigated some threshold property to determine blow-up or
globally existence. Moreover, in [22] the case where 8 = 0, that is, the homogeneous
Neumann boundary condition for us is studied. The author of [22] discussed the stability
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region and the instability region of (1.2) and give an upper bound and a lower bound on
the blowing-up time for a solution which blows up in finite time.
The following system with the homogeneous Dirichlet boundary conditions:

Oyuy — Auy = ugub — buy, re, t>0,
Orly — Aug = auy, reQ, t>0, (13)
U1:U2:0, xE(?Q,t>O, .

uy(z,0) = uyo(x), uz(x,0) =ug(z), = € Q,

is studied by [8] and [10]. In [8], they showed the existence of positive stationary solutions
for the case where p =1 and N = 2, 3 or © is bounded convex domain with N € [2,5].
Furthermore, they obtained the threshold property of stationary solution announced in
[7] when €2 is ball. In [10], the existence and ordered uniqueness of positive stationary
solutions are considered for general p > 0 and some threshold result is obtained. Moreover
the blow-up rate estimate is given for positive blowing-up solutions when €2 is ball and
p =1

In this paper, we are concerned with the nonlinear boundary condition. From physical
point of view it could be more natural to consider the nonlinear boundary condition rather
than the homogeneous Dirichlet boundary condition or Neumann boundary condition.
Indeed, if there is no control of the heat flux on the boundary, it is well known that the
power type nonlinearity for us is justified by Stefan-Boltzmann’s law, which says that the
heat energy radiation from the surface of the body is proportional to the fourth power of
temperature when N = 3.

The outline of this paper is as follows. In Section 2, we consider the stationary
problem associated with (NR) and show the existence of positive solutions by applying an
abstract fixed point theorem based on Krasnosel’skii [12]. In order to apply this fixed point
theorem, we need to estimate L°-norm of solutions. To do this, since we are concerned
with nonlinear boundary conditions, we can not rely on the standard linear theory. To
cope with this difficulty, we introduce a new approach, which enables us to obtain strong
summability of solutions on the boundary. Next, we prove the ordered uniqueness for the
positive stationary solutions of (NR). We here use the property of first eigenfunction for
the eigenvalue problem associated with the Robin boundary condition.

In Section 3, we study the nonstationary problem. In the first subsection, we show
the existence of local solutions in time for (NR) by abstract theory of maximal monotone
operators associated with subdifferential operators together with L>-energy method [18].
In the second subsection, we discuss the large time behavior of solutions to (NR) and
prove that every positive stationary solution plays a role of threshold to separate global
solutions and finite time blowing-up solutions. In this procedure, we essentially rely on the
comparison theorem. Furthermore in order to show the finite time blow-up of solutions
of (NR), the crucial point is to construct an appropriate subsolution.

2 Stationary problem

In this section, we are going to show the existence of the positive stationary solutions
for (NR) and prove the ordered uniqueness of them. The stationary problem for (NR) is
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given by
— Auq = ujug — buy, xr € Q,
— Auy = auy, x €Q, (S-NR)
Oyur + oy = Oyug + Blug|"2ug =0, x € N,

It should be noticed that since (S-NR) has no variational structure, it is not possible
to apply the variational method to (S-NR). In order to show the existence of positive
stationary solutions to (NR), we rely on the abstract fixed point theorem developed by
Krasnosel’skii. The crucial step in proving the existence of positive stationary solutions
is how to obtain L*-estimates of solutions.

We state a couple of lemmas to prove our results for (S-NR).

Lemma 2.1 (Krasnosel’skii-type fixed point theorem [12], [13]). Suppose that E is a real
Banach space with norm || - ||, K C E is a positive cone, and & : K — K is a compact
mapping satisfying ®(0) = 0. Assume that there exists two constants R > r > 0 and an
element ¢ € K \ {0}, such that

(i) u# AP(u), VA€ (0,1), if ue K and ||u| =r,
(i) u # P(u) + Ap, YA >0, if uwe K and ||ul]| = R.

Then the mapping ® possesses at least one fized point in Ki :={u € K; 0 <r < |Ju| <
R}.

Lemma 2.2 ([6]). Let Ay and @1 be the first eigenvalue and the corresponding eigenfunc-
tion for the problem:

—Ap=2XAp, z€Q,
Op+ap=0, xecod,

where ) is smooth bounded domain in RY and o > 0. Then A\ > 0 and there exists a
constant C,, > 0 such that

o1(x) > C, z € Q.

Indeed, it is well known that ¢; > 0 in €2 by the strong maximum principle. Suppose
that there exists xy € 99 such that ¢;(z9) = 0, then the boundary condition assures
Ovp1(x0) = —api(zg) = 0. On the other hand, Hopf’s strong maximum principle assures
that 0,1 (o) < 0. This is contradiction, i.e., ¢;(z) > 0 on Q.

2.1 Existence of positive solutions

Theorem 2.1. Let 1 < N <5 and suppose that either (A) or (B) is satisfied :

(A)  y=2 a<25
B) y>2

Then (S-NR) has at least one positive solution.
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We rely on Lemma 2.1 to prove this theorem. In order to apply Lemma 2.1, we here
fix our setting:

E=C(Q) x C((Q), U = (U1,U2)T €k,
ull = lurlle@) + lluzllc@): K ={u € E;u; > 0,uz > 0}.

Set ¢ = (p1,0)T € K\ {0}, where \; and ¢, are the first eigenvalue and the corresponding
eigenfunction of the following eigenvalue problem:

— Ap = Ay, € (),
{ e o)

p+ap=0, xecodl.

In section 2, we normalize () such that |||z = 1. For given u = (uy,us)t € K, let
v = (vi,v2)T = ¥(u) be the unique nonnegative solution (see Brézis [2]) of

— Avy + by = ugus, x € Q,
— Avy = auy, x € (), (2.2)
O,v1 + avy = O,vs + Blug|T 20y = 0, x € 0N,

It is clear that ¥(0) = 0. Moreover ¥ : K — K is compact. In order to prove the
compactness of ¥, we use the next Lemma for the following problem:

(2.3)

—Au=f xze€,
du =g, x € 0N.

Lemma 2.3. ([17]) Let Q C RN be a bounded Lipschitz domain. Suppose that f € L2 ()
and g € LP~Y(00) with p > N > 2, then there exist 0 > 0 and a positive constant C' such
that every weak solution u of (2.3) belongs to C%(Q) and satisfies

Jullcosiy < € (lellzz@ + 11l ) + 9llr-rc0m ) -

Since © is bounded and (uy,uz) € C(Q) x C(Q), it follows from elliptic estimate that
v1 € W2P(Q) for any p. Since W?(€) is compactly embedded in C() for p > &, the
mapping (uy, ug) — vy is compact. Next we assume that N > 2 and consider the following
equation:

— Avg = auy € L™(R2), z €,
vy + Blva| vy =0,  x € 0.

Multiplying the equation by |vs|""2vy and applying integration by parts, we get

(r — 1)/ ]1)2|T_2]VU2|2dx+ﬂ/ o T 72dS = a/ Uy v 2vada. (2.4)
Q 20 Q
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Noting that ([|Vva||Z2iq) + [oq v2dS )1/2 is equivalent to the usual H'-norm by Poincaré-
Friedrichs type inequality, we obtain

r—2 2
(l.h.s.) = (r — 1)/ ‘|U2|T|VU2|‘ dr + 3 |[vp|" 7 2d S
Q o0

S 4(r —1)

5 /‘V|v2|5|2d1‘+ﬁ/ |va|"dS — B9
r Q a0

>, (/ Vil i o+ [ sl
Q o0

r 2 r
el / ([val3 ] dz — BIOR = Cyllva [y — 81O,
Q

, B} > 0 and we used the estimate:

st) — 8|69

4(7’51)

where C, = min{

8 [ |28 > / 01248 > / (| dS
a0 { {

|v2|>1}

= 6/ [v2|"dS — 5/ lvg|"d.S
2 {Jval <1}

>5[ Jupds - sjoo).
o0

|v2|>1}

Hence Holder’s inequality, Young’s inequality and (2.4) yield

Or -1 1 OT —r ; T
|vallr ) < {5|8Q| (7) + . (7) ||au1||Lr(Q)} Vr < oo.

Therefore by (2.4) we have

e 1 cN\ o1 /N
/89 |1}2‘ +v QdS S BHaulHLr(Q) {B|8Q| <7) + ; <7) ||au1

Thus we see that vy € L"(0Q) for all large r < oo and we can apply Lemma 2.3 to get
vy € C%9(Q) for some § > 0. Note that C*%(Q2) — C(Q) is compact. As for the case
where N = 1, (2.4) with r = 2 gives the a priori bound for ||vs|| g1(q). Since the embedding
HY(Q) — C(Q) is compact, the compactness of ¥ is easily derived. Thus we see that
¥ : K — K is compact.

In order to show the existence of positive stationary solutions for (S-NR), it suffices
to prove that ¥ has a fixed point in K. Therefore, to prove Theorem 2.1 we are going to
verify conditions (i) and (ii) of Lemma 2.1.

We first check condition (i).

r—1

27(9)} Vr < o00.

Lemma 2.4. Let r = £, then u # \(u) for any A € (0,1) and u € K satisfying |lul| = r.
That is, condition (i) of Lemma 2.1 with ® =¥ holds.
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Proof. We prove the statement by contradiction. Suppose that there exist A € (0,1) and
u € K with ||u| = r such that u = A\W(u), that is, u; and usy satisfy

— Aul + bu1 = )\’UqUQ, S Q,

— Auy = dauyq, x € ), (2.5)
—2

o,u1 + auy = d,us + %7 upy =0, x € .

Multiplying the first equation of (2.5) by u; and using integration by parts, we obtain

o0 Q

||U2||L°°(ﬂ) ||u1||2L2(Q)

b
> 5””1”%2(9)’

IN

A

where we use the fact

Juall oy < llull =7 = 3.

Then
b
Vil +o | utds+ 3l <0

Hence we have u; = 0. By the second equation of (2.5), we see that us satisfies

- AUQ = O, T € Q,
Uy |V—2
8VU2+B‘X UQZO, xE@Q

Multiplying this equation by us and integration by parts, we obtain

B ,
V2|2 + u2[7dS =0, e, [[Vugllp2) =0, uzfsq = 0.
o0

A2
By the use of Poincaré’s inequality, we also get us = 0. Thus u; = uy = 0. This
contradicts the assumption |lul| = £ > 0. O

In order to verify condition (ii), we here claim the following lemma.

Lemma 2.5. Let 1 < N <5 and suppose that either (A) or (B) is satisfied :

(A v=2 «a<2b
B) ~v>2.

Then there exists a constant R(> r = g) such that for any A > 0 and any solution u of
u=Y(u)+ \p, it holds that
|lul| < R.
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Proof. We rewrite u = ¥(u) + Ap in terms of each component:

— Auy + buy = uqug + )\(b + )\1)(,01, x € Q,
— Auy = auy, x € Q, (2.6)
Oyur + auy = Oyug + Blug|"2ug =0, x € 0N,

In what follows, we denote by C' a general constant which differs from place to place.
First, we derive H'-estimate for u,. Replacing u; in the first equation of (2.6) by _%AUQ,
we get

{A%rwA@:—mmu+M®+Mmhx€Q 2

Oyus + 5\u2|7_2uQ = 0,Auy + alAuy, =0, x € 0.

Multiplying (2.7) by 1, using integration by parts and noting that the boundary condi-
tions 0,1 + ap; = d,us + Blus|"?uy = 0, we have

(l.h.s) = / A2u2g01dx—b/ Augprdx
Q Q
= —/ V(Auy) - Vgpldx+/ (0,Aug)p1dS
Q a0
+ b/ Vus - Vrdax — b/ (O, u2)p1dS
Q o0

:/AuQAgolda:—/ AUQ(au%)dS-I—/ (O, Aug)p1dS
Q a0 a0

_ b/ UQAQOlde + b/ u2(8ygp1)d5 — b/ (8yu2)901d8
Q N o

= —Al/Auggpldx—i—oz/ AquoldS—a/ AusipdS
Q 0 0

—i—b)\l/quold:z:—ab/ uzgpldS—l—ﬁb/ u;_lgoldS
Q 00 0

= )\1 / VUQ . Vngdilf - )\1/ (8,,u2)901d5
Q 80
+b)\1/u2<p1dx—ab/ ugcpldS—l—ﬁb/ ugflgoldS
Q 0 80

=—>\1/u2A901d1‘+>\1/ u2(au901)d5_>\1/ (Oyug)p1dS
Q 09 o9

—i—b)\l/uggoldx—ozb/ u2g01d5+ﬁb/ ul tordS
Q o0 o9

:M®+AQ/

Q

@lwﬂS—a®+Aﬁ/‘m¢M&
o0

o0
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and

(r.h.s) =— / usAugprde + Aa(b + )\1)Hg01H%2(Q)
Q
= / Vus - V(ugpr)de — / (Opug)ugp1dS + Aa(b+ Ap)
Q a0

= / |VU2|2g01d$ -+ / UQVUQ . V(pldl’ + 6 uggoldS + >\(J,(b + /\1)
Q Q o

1
Q Q o0

1 1
:/ |Vu2|2<,01dx——/ugA<pldm+—/ u%(&,gol)dS
Q 2 Jq 2 Joa
a0

A
= / Vug|2prda + == / uzprdr + B | uypdS — g/ uzprdS + Ma(b + ).
Q 2 Ja o9 2 Joo

Therefore the following equality holds.

Al(b+/\1)/

A
usprdr = / |Vus|?p1de + ?1 / usordr + a(b+ M)A (2.8)
Q Q 0

+/ {Bu =B+ X)ul ™ = Sud+a b+ M)z} prdS.
9 2
Since (A) : 7y =2, a <2F or (B) : v > 2 holds, we get

: 1«

ugo{ﬂug—ﬁ(b+)\l)ug 1—§u§+o¢(b+)\1)u2} > 0> —oo.

Moreover, we see that due to the boundedness of ¢; (cf. Lemma 2.2)

M (b+ Al)/

A
ugprdr > / |Vus[*prdx + ?1 / uiordr + a(b+ M)A —C.
Q Q Q

By Schwarz’s inequality and Young’s inequality, it is easy to see that

A
/\Vu2|2<p1da:+?l/uggoldx—i-a(b—i—)\l))\§)\1(b+)\1)/u2<p1d1:+0
Q Q Q

1
2 1
< b+ ) ( / uggoldx) o1l o + C
Q

A
<2 [ Wdpydx + C.
4 Jo

Hence we obtain

/Q |Vuy[*¢1dr < C, /nggoldx <C, IZC, (2.9)
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and

/u2901dx < (/ u%gpldx) (/ gpldx) <C. (2.10)
Q Q Q

Furthermore it follows from Lemma 2.2 and (2.9)

C, </ ]Vu2|2dx—|—/u§dx) S/]VuQIngldx—ir/u%gold:ch,
0 0 0 0

whence follows

[uz|[ (o) < C. (2.11)
By (2.10) and (2.8), we also have
/ {mg B+ - %ug tab+ Al)uQ} 01dS < C. (2.12)
G9)

Hence we can obtain

/Ugﬁdsﬁc (y>2 or y=2, a<2p),
o (2.13)

/ ugprdS < C (v=2, a=2p).
G

Indeed, if v > 2, then by Holder’s inequality and Young’s inequality, we get

oN o0

u7_1<p1d5+%/ usp1dS
o0

o0N

ol L

<C4Bb+N) (/ uggoldS) ’ (/ Wzs)”
o) o0
o § 2 —
+ — Uy p1dS p1dS
2 o0 o0

< C+ B+ M)t ey 091 ( / uzwlds)
o0

2
o y=2 ~y—2 ¥
+ laliteioel™ ([ das)
o0

o0

~y—1

~

where we denote by |0€2] a volume of 02 and use the following property (see [9]):

lle1llze@a) < [le1]lze@)-
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On the other hand, if v = 2 and a < 23, then it follows from Schwarz’s inequality and
Young’s inequality

(6 — 2) / uzp1dS + a(b+ )q)/ Usp1dS
27 Jaa 29

<C+p0b+ )\1)/ usp1dS
[2)9]

< C 4B+ M) (/muggoldS)Q (/mgold5>2

1

< O+ B0+ M)lloll e 02 ( / uzsolds)
o0

< C+%<B—%> éﬂu§¢1d5.

For the case of v =2 and a = 2, from (2.12) it is clear that

16 ugp1dS < C.
a0

Thus we obtain (2.13).

Now, we derive H'-estimate for u;. Multiplying the first equation of (2.6) by ¢; and
using integration by parts, we get

(A +0) / upprde = / urugprdr + A(Ay + b) (2.14)
Q Q
Similarly, multiplying the second equation of (2.6) by @1, we get
Al/uggold:r;—i-ﬁ ugfltpldS — a/ Ugp1dS = a/ uprde. (2.15)
Q o9 o9 Q

Then by (2.14), (2.15), (2.11) and (2.13), we obtain

/ uyprde < C)| / urugprdr < C. (2.16)
Q Q

Hence, by Lemma 2.2, we get a priori bounds for fQ urdx and fQ urusdx. Now we are
going to establish a priori bound of u; in H'(Q) for the case of N € [3,5]. Multiplying
the first equation of (2.6) by u; and using integration by parts, we obtain

uugdr + Nb+ ) / uyprdr
Q

IVt + /8 s+ bl = /

Q

s 1-6
< / (Ulll,g)e <u11 u2) dx + C
Q

0 - 1-0
< (/ uluzdx) (/ ul“’ugdx) +C, (2.17)
Q 0

N

N
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where we apply Holder’s 1nequahty with exponent (4 5T 0) for the first term on the right
hand side. Here we take 6 = T (0,1), then by applying Hoélder’s inequality with
exponent (]3—112, =),
2— 9 1-0 N+2 ¥ +2 —2
-0
(/Q h ugdx) = (/Q uy uzdm) < HulHLQ* ||uQ||L2* )’
where 2* = 2% is the critical Sobolev exponent. Using Sobolev’s embedding H'(2) —

L¥ (Q) and (2.11), we obtain

N+2 N-2 e

Since ([|[Vur[[72g) + @ foq uids 4 bllual[32q))"/? is equivalent to the usual H'-norm of u
due to trace inequality and Poincaré—Friedrlchs type inequality, as a consequence we have

N2
||U1||%11(Q) < C”ul”H%(Q) +C.

Since N € [3,5], we have & +2 < 2. Hence it follows from Young’s inequality

N+2 1
lr Iy < Cllnll @) + € < 5l llan ) + C:

Thus we derive
] i) < C. (2.18)
Next, we derive L>®-estimates for u; as for the case N € [3,5]. From Sobolev’s
embedding H(Q) < L5 (Q), we can see that uy, us € L3 (Q) and ujup € L5 (). We get
u; € Wzg(Q) by the elliptic estimate for the first equation of (2.6). Moreover, u; € L*(Q)
by Sobolev’s embedding W23 () < L3(Q). Then by Hélder’s inequality,

2.3 : 2.3 5
/u1u2dac < (/ Uy 2dx> (/ Ugy ) ,
Q Q Q

we can see that wjus € LQ(Q). By the same reason as before, we know that u; €
W22(Q) — L'%(Q). By Holder’s inequality, we have uju, € L%(Q) Hence applying
elliptic estimate and Sobolev’s embedding again, we get u; € W23(Q) < L4(Q) for any
q € [1,00). Therefore ujuy € L&IM%(Q) and uy € WQ&IH%(Q) Choosing ¢ > 10, we have

||| ooy < Ch,

where we use the Sobolev’s embedding Wqul%(Q) — L>(Q) for ¢ > 10.
Thus we obtain L>-estimate of u; for the case of N € [3,5]. About the regularity for
usg, it suffices to consider the following problem for given u; € L™ (£):

— Auy = auy € L*(Q), =€,
Oy + Blug| 2uy =0, x € 0.
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Therefore we can derive L>-estimate for us, i.e.,
[ual[ree@) < Co

by the same arguments as for the compactness of ¥ applying Lemma 2.3. Choosing
R > C1 + (5, we can see that the conclusion of this lemma holds.

As for the case N = 1,2, it suffices to obtain L*-estimate for each component. First,
let N = 2. Choosing 0 = % in (2.17), we see that it follows from Sobolev’s embedding
HY(Q) — LP(Q) (for all p € [1,00) )

||VU1||%2(Q) + a/ ulds + b||u1||%2(9) = / uugdz + Nb+ ) / uyprde
o9 Q Q

< / (uluQ)% (u:{’ug)% de +C
Q

< (/ ulqu$) (/ ui’uzd:v) +C
Q Q

<(C (/ ui’qux) +C
Q

3 1

< C||U1||i6(g)||“2||z2(g) +C
3

< Clluallzp o) + €

Here we note that we have already had H'-estimate for us without restrictions on the
space dimension. Thus we also get H!-estimate for u;. In the similar way as for the
previous case N € [3, 5], we can derive L*>-estimates for u; and us.

Let N =1 and Q = (ag, by) with ag < by. Since u; € C(Q), there exists zy €  such
that

uy (o) = minuy ().
zeQ

Furthermore, since it holds that ||u;]|11(q) < C for any space dimension, we have

1
min u (x) < —/ulda: <C.
€[ Jo

z€Q

Here by the fundamental theorem of calculus,

wle) = wfan) + [ (e
x0
Therefore we get the following inequality:

bo
[ut][ o) < / i (E)]dE + [ur(zo)| < Uil L1(0) + C. (2.19)

ao
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From (2.19), Schwarz’s inequality and Young’s inequality, we see that

nw@+g@ﬁ@+wm;=/

utugdr + N(b+ A1) / uyprde
Q

Q

< ||u1||Loo/Qu1u2dm+C'

< C (|l +C) +C

< Clhillis +C < Gl + €

Hence we obtain a priori bound for ||ui||gi(q). Since Sobolev’s embedding H'(Q) —
L>(Q) holds for N = 1, we obtain the desired estimates. O

Proof of Theorem 2.1. By applying Lemma 2.4, Lemma 2.5 and Lemma 2.1, we can verify
that Theorem 2.1 holds. O

2.2 Ordered Uniqueness

Next, we discuss the ordered uniqueness of the positive solutions for (S-NR). We now
prepare the following inequality.

Lemma 2.6. ([5]) For any vy € [2,00), there exists C,, > 0 such that
(z=y)- (l2] 22 = |y ?y) = Cyle =y
for all x, y € RV,

Theorem 2.2. Let (uy,us) and (vi,vs) be two positive solutions of (S-NR) satisfying
w; < vy orug < vy. Then up = v; and uy = 5.

Proof. Suppose that u; #Z vy or uy # ve. Without loss of generality, we only have to
consider the case where us # vo and uy < vy. In fact, if u; < vy, by the second equation
of (S-NR) we have

—A(ug — v2) = a(u; —vy) <0. (2.20)

Multiplying (2.20) by [us — vo]™ := max{uy — v9,0} and using integration by parts, we
obtain

HV[UQ — U2]+H%2(Q) + ﬁ/ [Ug — U2]+ (”UQ”Y_ZUQ — ‘U2|7_2U2) dS <0. (221)
o0

Note that by Lemma 2.6

/ [Ug - U2]+ (|U,2|7_2U2 - |'U2|’Y_2U2) dS = / (Ug - ’02) (|U2|7_2U2 - |Ug|’y_21}2) dS
a0 {u2>v2}
2 / C’Y(UQ — /UQ)’de
{u2>va}

=C, /m ([u2 - UQ]’L)WdS.
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By this inequality and (2.21), we get

19tz — 2] [2ay + 07/ (2 — o] )7 dS < 0.
o0

Therefore we have
V[U/Q — ’02]+ = 0,

[Ug — U2]+‘8Q = 0.

Hence we deduce [ug — vo]™ =0, i.e., uy < vs.

Next we consider the following eigenvalue problems:

—Aw+ (b—uy(x))w = p'w in Q,
(b= wala)) (2.22)
dw~+ aw =0 on 01,
and
—Aw+ (b—vy(z))w=nw in Q,
( 2()) (2.23)
o,w+aw =0 on 0f).

If necessary, we take some nonnegative constant L > 0 and add both sides of equations
of (2.22) and (2.23) by L, and we can assume U(z) := b — us(z) + L > 1 and V(z) :=
b—wve(xz)+ L > 1. Thus we consider the following problems in stead of (2.22) and (2.23):

—Aw+U(z)w = pw in €,
(2.24)
d,w—+ aw =0 on 0,
and
— Aw+ V(x)w=nw in £,
(2.25)
o,w+ aw =0 on 0f).

By applying the compactness argument for the associate Rayleigh’s quotients of (2.24) and
(2.25) , we know that the smallest positive eigenvalues of (2.24) and (2.25) are attained
and we denote them by o and 79. Moreover, thanks to uy # v, and us < v9, we see that
no < po. On the other hand, since (u1,us) and (v1,v2) are positive stationary solutions
for (S-NR), u; > 0 and v, > 0 satisfy

— Aul + (b — UQ(CC) + L) uy = Lu1 n Q,
Oyur +auy =0 on 0f),

and

— Avy + (b —wvy(x) + L)vy = Lv; in Q,
o,v1 +avy =0 on 0f).

By the fact that the eigenvalue corresponding to the positive eigenfunction is the smallest
one, we deduce g = L = ny. This contradicts ny < po. Thus the proof is completed. [J



208

3 Nonstationary Problem

In this section, we investigate the large time behavior of solutions to (NR) and prove
that the positive stationary solution plays a role of threshold to classify initial data into
two groups; namely corresponding solutions of (NR) blow up in finite time or exist globally.

3.1 Local Well-posedness
First we state the local well-posedness of problem (NR).

Theorem 3.1. Assume (ujg,uz) € L>®(Q) x L>®(Q). Then there exists T > 0 such
that (NR) possesses a unique solution (up,ug) € (L>(0,T;L>(Q)) N C([0,T); L*(Q2)))?
satisfying

Vt0yuy, Vg, ViAuL, ViAu, € L*(0,T; L*(Q)). (3.1)

Furthermore, if the initial data is nonnegative, then the local solution (uy,us) for (NR) is
nonnegative.

In order to prove this theorem, we rely on L>-energy method developed in [18]. To
this end, we prepare some crucial lemmas.

Lemma 3.1. ([18]) Let Q be any domain in RY and assume that exists a number ro > 1
and a constant C independent of r € [ry,00) such that

|l try < C Vr € [rg, o),
then u belongs to L>(Q2) and the following property holds.
Jim {|ul[zr @) = [lullz=0)- (3.2)

Conversely, assume that uw € L™(2) N L>®(QY) for some 1o € [1,00), then u satisfies
(3.2).

Lemma 3.2. ([18]) Let y(t) be a bounded measurable non-negative function on [0,T] and
suppose that there ezists yo > 0 and a monotone non-decreasing function m(-) : [0, +00) —
[0, +00) such that

y(t) <yo+ /Otm(y(s))ds a.e. t € (0,7T).

Then there exists a number Ty = Ty(yo, m(-)) € (0,T] such that
y(t) <yo+1 a.e. t € [0, Tp).

Proof of Theorem 3.1. (Existence and regularity) We consider the following approximate
problem:
Oup — Auq = [Ul]M[Ug]M — bul, x € Q, t >0,

Orug — Aug = auy, re, t>0,
o,uy + auy = O, uy + B|U2|V_2u2 =0, €0, t>0,
w1 (z,0) = uio(x), uz(x,0) = ug(x), =z €L,

(3.3)
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where M > 0 is a given constant and the cut-off function [u] is defined by

M, u> M,
[ulp = qu,  |ul <M,
—M, u<-—-M.

Since u > [u]ys is Lipschitz continuous from L?() into itself, it is well known that (3.3)
has a unique global solution (uj,us) satisfying (3.1) by applying the abstract theory on
maximal monotone operators developed by H. Brézis [2].

By multiplying the first equation of (3.3) by |ui|""2u; and using integration by parts,

1d
——||u1(t)||2r+(r—1)/ |Vu1|2u’1“_2d35+a/ lup|"dS < / |u1|r|uz|dzv—b/ luy|"dx.
rdt Q 9 ) Q

Hence 14
;%HUIG)HZT < g () || oo | (£)]] -

Divide both sides by ||u /7" and integrate with respect to ¢ on [0, ], then we get

t
lur()||r < [Jusol|r +/ lws (7) || o7 || uz () || Lo d.
0

Letting r tend to oo (Lemma 3.1), we derive

t
[ua (8) ]| oo < Jlunol| o +/O [[ur (7) | oo [[ua(T) | L d.

Similarly, we can get the following L> estimate for us ;

t
[ua ()]l oo < [luzoll e +/ al|ur (7)| oo
0

Therefore setting y(t) = |Ju1(t)|| L) + [|u2(t)||L=(q), We get

y(t) < y(0) + / (s(r) + ay(r) dr.

Thus applying Lemma 3.2, we find that there exists a number 7' > 0 depending only on
10| oo () and. [Jugol| Lo () such that

y(t) <y(0)+1 a.e. t € [0,T].
In other words, we get
lur ()] o) + lua ()l Lo@) < llutollze@) + lluzoll L) +1 a.e. t €[0,T].

Hence choosing M > [[uo|| e () + |[t20]| oo () + 1, we can see that (u;,us) gives a solution
for (NR) on [0,7] by the definition of the cut-off function [u]y;. Note that even though
|u (t)]|7-" attains zero, we can justify this argument by Proposition 1 in [16]. To get the
regularity estimate of the solution for (NR) is standard, so we omit the details.
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(Uniqueness) Let (uy,u2) and (vq,v2) be two solutions to (NR) with initial data
(u10,u20) and (v1g,va0) respectively. We set w; = u; — vy and wy = uy — v9. From
(NR), we have

8tw1 - Awl = WUy + V1Wy — bwl, (34)
Opwy — Awy = awy, (3.5)
O, w1 + awy = d,ws + B (|U2|W_2u2 — |v2|7_21)2) =0, on 0f).

We multiply (3.4) and (3.5) by wy and ws respectively, integrate over €2 and use integration
by parts. Then we obtain

1d
3l Ol + [Vl o | wids
< /w%uzdx%—/vlwlwgdas
Q Q
< Nuallioiramion [ whde + lonllosorasy [ wnsds
Q Q

< € (llor(®)l3ag@ + lea(®) 22 )

and

Ld,
2dt

< a/wlwgd:r;
Q

a
< 5 (e ® 2@ + lea®) 22y -

wa ()| 720 + IIVwa|| 21 + 5/ (lual"Pu — |va] 7" ?v2) (up — ) dS
00

Noting that
/ (Jual s — [uaug) (g — v) dS > / C.uws|7dS > 0
o0 o0

by Lemma 2.6, we can get the following differential inequality:

d
= (I ()220 + oz (8) 320y ) < € (ln@l ey + lwa(®) ey ) -

whence, from Gronwall’s inequality;,
(ks (1) 220 + s @)l3a@y) < (lluso = vroli3aqay + luzo = v l3a(ey ) € ¢ € 0,T).

This yields the uniqueness of the solution for (NR).
(Nonnegativity) Multiplying the first equation of (NR) by u; := max{—u,,0}, we get

/8tu1u1dx—/Au1u1d:cZ —/ |u1\2|u2|dx—b/u1u1da:.
Q Q Q Q
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Here, we can see that

1d 1d 2
oru u_d:t:/ Opur (—uq )dx = ———/ —up)?dx = ———/ uy ) dx,
/ﬂ e fn<op 1(~) 2dt {ulso}( % 2dt Q( )

and

—/Aulul_dx:/Vul-Vul_dx—i—a/ uyuy dS
Q Q o9

:—/ |Vu1_|2dx—oz/ u%dS:—/ |Vu1_|2dx—oz/ (ul_)QdS.
Q {u1<0} Q G

Therefore we have

\2 _ -
(ul) dS = /Q |ug |2|U2|d$ — b||u; (t)H%?(Q)

o0
< uall oo o5z ) luy ()1 720y-
Applying Gronwall’s inequality, we obtain

lur (D1Z20) < lluz (0)][72ge?ele=eme=@nt ¢  [0,T),

where T is maximal existence time for (NR). Since w9 > 0, i.e., ||u; (0)||r2() = 0, it
holds that

u (t)=0 ae inQ Vtel0,T).

Hence u; > 0. Similarly, multiplying the second equation of (NR) by —u, , we get

1d, _ _ o -
33510 Ol + 1905 30y + 8 [ Jual 2z PdS = =a | wnuydz <0,
o0 Q

Therefore [luy (t)[|720y < [luz (0)[|72¢q) = 0, i.e., us > 0. O

3.2 Threshold Property

Finally, we study the threshold property and prove that every positive stationary
solution for (NR) gives a threshold for the blow up of solutions in the following sense.

Theorem 3.2. Let (u1,us) be a positive stationary solution of (NR), then the followings
hold.

(1) Let 0 < wp(x) < wy(x), 0 < ugy(x)
exists globally. In addition, if 0 < wujo(x)
0<ly <ly <1, then

< Ty(x), then the solution (uy,us) of (NR)
< huy

hn(z), 0 < ug(z) < Luy(z) for some

lim (uy(x,t), us(x,t)) = (0,0) pointwisely on Q.

t—+4o00

(2) Assume further v = 2, a < 2 and let uyo(x) > Liui(x), ux(x) > lots(x) for some
1 > 1y > 1, then the solution (uy,us) of (NR) blows up in finite time.
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Remark 3.3. The second assertion of Theorem 3.2 is also announced in [7] for the case
where o = 0 and v = 2. However it seems that their proof contains some serious gaps.

We first prepare the following comparison theorem.

Lemma 3.3 (Comparison theorem). If (ug, us0), (vi9,v20) are two initial data for (NR)
satisfying

0<wup<wvip, 0<uyp<wvy onl
then the corresponding solutions (uy,us), (v, ve) remain in the initial data order in time

interval where the solutions exist, i.e., ui(x,t) < vi(z,t) and us(x,t) < vo(z,t) a.e. x € Q
as long as (uy,us) and (v, vy) exist.

Proof. Let wy = uy — vy, we = uy — ve. By (NR) we have

Oyw — Awy = wiug + viwy — bwy, reQ te(0,T,),

Oywy — Awy = awy, r e, te(0,T,),

d,wy + awy = d,ws + 3 (|u2|7_2u2 — |vg|7_2v2) =0, z€0Q, te(0,T,,), (36)
wy(z,0) <0, we(z,0) <0, r € Q,

where T,,, > 0 is the maximum existence time for (uy,us) and (v, vy). We set
wr=wVv0, w =(-w)VO0,

where a V b = max{a, b}. It is easy to see that w™, w™ > 0 and
w=w"—w", |w=w"+w".

Multiplying the first equation of (3.6) by w;, we get

/@wlwfdaz—/Awlwfda::/wluzwfdx—l—/vlwgwfdx—b/wlwfdx.
Q 0 0 Q Q

Here, we see that

1d 1d 2
8ww+dx:/ 6wwdx:——/ deiL':——/ wy) dex.
/Q S {w1>0} S 2dt {w1>0} : 2dt Q( 1)

Similarly,

—/Awlwfdx:/le-wad.?c%-a/ wywy dS
0 0 00

=/ \Vwﬂzdx—l—oz/ wde:/Wwﬂde—l—oz/ (wf)zdS.
{w1>0} {w1>0} Q a0
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Hence noting that v; > 0, we obtain for any 7" € (0,7,,)

%% (wf)zdx+/|wa|2da:—l—oz/ (wf)2d5
Q Q o0

= /wlqufrd:v+/vlw2wfdx—b/wlwf“dx
Q Q Q
— / (wi —wy) uowy dz + / vr (wy —wy ) wide — b/ (wf)Zda:
Q Q Q
2
< luall o (o,720 () / (wi)” da + [vi || o= o502 (52) / wiwy dz
Q Q
< (Il ()220 + Ihod ()2 -
Hence we get
Sl Ol < € (lef Ol + lwf (B)l)) - (3.7)

Next we do the same calculation for the second equation of (3.6) and get

1d 2 a
yip | @i de s [ (VuiPdo - [ @uautds < 5 (lul Ol + 0 Olze)
and
—/ (O wo)wydS = 5/ (Jua"2us — |va|"%v2) w3 dS
oN onN
= 5 (‘UQPiZUQ — ‘02‘772’02) (UQ — UQ) dS > 0.
{u2>va}
Therefore 14
a
Sl @@ < 5 (lef Ol + luf Ol (3.:8)

Thus by (3.7), (3.8) and Gronwall’s inequality, we get
[l (D12 + g ()I2) < (wa(U)H%z(Q) + |!w§(0)|!%2<9)> et vt e[0,T).

Since w (0) = w; (0) = 0, the above inequality means w;” = wy = 0. Hence, we have the
desired result. O

Proof of Theorem 3.2. (1) If 0 < uj9 < T and 0 < wugy < Uy, then since (uy,Uz) is a
global solution for (NR), 0 < wuy(z,t) < uy(x) and 0 < wug(z,t) < Uy(z) follow directly
from Lemma 3.3. That is, we have

sup [|u;(+, )| (@) < Uille@) (i =1,2).
tel0,T)

Hence the solution (uq,us) exists globally.
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In addition, let uyg(x) < L (x), ug(z) < lhtz(x) for some 0 < I3 < Iy < 1. Since the
comparison theorem holds, without loss of generality, we can assume that uy(x) = I3 (),
ugo(x) = latia(z) and Iy < Iy < 1. We here note that du; = ui(t + h) — uy(t) and
dug 1= ug(t + h) — ug(t) for h > 0 satisfy the following equations:
8t (5u1) - A (5U1) = ((5’&1) Ug(t + h) + uq (t) ((5’&2) —b (5U1) s
8t ((SUQ - A (5U2) =a ((sul) )

Oy (dur)+a (duy) =0, (Juz)+B (Jus(t+h)|" 2uz(t+h) —|uz(t)| us(t)) =0,
du1(0) = u1 (0 + h) —uq1(0), duz(0) = ua(0+ h) — uz(0).

(3.9)

Multiplying the first and second equation of (3.9) by [dui]T and [dus]™ respectively and
using integration by parts and repeating the same argument as for (3.7), we obtain the
following inequality:

18] ey + N0wa]* oy < (160a(O)]* I3y + N[5 0)] [ ) €t € [0,00).

We divide both sides of this inequality by h?:
2
bur ] * Buy ) *
h h

L2(Q) ‘
Since we know that uy, us is differentiable on a.e. t by the regularity results of Theorem
4.1, by letting h \, 0, we obtain

2
et

{5@61(0)]* ’

! {5@62(0)]* ’

h

L2(Q) L2(Q) ‘ L2(Q)

10aun 117 + 0] *I172 < (1[0rua (O FIIZ2 + Oru2(0)]F[[72) e ace. t € [0, 00).

We here note that since (I, lous) is strict upper solution for (S-NR), it holds that

Oyu1(0) = Augg + ugpugg — bugg
= L ATy + l1lyuay — blyuy
<l (Auy + U Uy — buy) = 0,
Oyuz(0) = Augg + augg
= 1, Ay + aliyuy
<y (AUy + auy) = 0,

which imply that [Oyu;(0)]T = [9;u2(0)]" = 0. Hence we find that dyu; < 0 and dyus < 0,
i.e., ui(x,t) and ug(z,t) are monotone decreasing in t for a.e. x € 2. Thus

Jim (o (. 1) ua(a, 1) =+ (i (). ()

exists and satisfies (0,0) < (@, us) < (LT, lolin) < (Uy,U2). Now we prove that (g, 4s)
is a nonnegative stationary solution of (NR). First we note that

w;(t) — u; strongly in LP(Q2) as k— oo Vp € (1,00) (i=1,2). (3.10)



215

In fact, since |u;(z,t) — @ (z)[P — 0 ae. © € Q as t — oo and |u;(x,t) — 4(x)P <
2| (2)[P < 2°[|Wil| ey a-e. @ € €, Lebesgue’s dominant convergence theorem assures
(3.10). Next multiplying the first and the second equations of (NR) by dyu; and Oyus
respectively, we get

d (1 o b
[orus(®E + 5 {51900y + S0l + gl Ol

:/ U usOpurdr < 0,
Q

d |1 I6;
Jorus() o + 5 {51900 + 2 Nea(O gy | = [ wiOuvndo <.

Then integration of these over (0,7) for any 7" > 0 gives

/O 0y1a1 (8) 22 et + / 10yt (8) 22 gt < Cor (3.11)

sup { e (1) s e + w0l } < Cor (312

where Cj is a positive constant depending on |uio||g1(q), ||t2o|lrr@) and ||uso|l Ly o0)-
Hence since u; € L>(0,00; L>*(Q2)) (i = 1,2), from equation (NR), we derive

n+1
[ {10 + @l fdt 50 s noo (313)

n+1
sup [ {18 @) ey + 80Ol dt < Co (3.14)
Furthermore, since ||ua()|| e @0) < ||ua(t)| o) (see [9]), we obtain

Stlig [u2(t) |z @0) < ([T L= (). (3.15)

Here we put
ul(w,t) = ui(z,n+1t) € A = L*0,1; L*()) t€(0,1) (i=1,2). (3.16)
Then u(t) satisfy

Ou(t) — Aul(t) = ul (t)uy (t) — bul(t), r e, te(0,1),
Oyuy (t) — Aug (t) = aul(t), reQ te(0,1), (3.17)
O, uy (t) + aul (t) = d,ul(t) + Bluy(t)"2uy(t) =0, x €99, t e (0,1).



216

Then, by virtue of (3.10), (3.12), (3.13), (3.14) and (3.15), there exists subsequence of
{u?(t)} denoted again by {u?(t)} such that

Owul(t) — 0 strongly in 7 as n — oo, (3.18)
ul(t) — w;(t) = w strongly in 2 as n — oo, (3.19)
up(t)uy(t) — a1 (t)us(t) = atuy  strongly in 7 as n — oo, (3.20)
Aul(t) = Au,(t) = A, weakly in J# as n — oo, (3.21)
ul(t) — 4;(t) = strongly in  L*(0,1; L?(09)) as n — oo, (3.22)
[uby ()7 2uly () — |die|" 20y weakly in L*(0,1; L*(0Q)) as n — oo, (3.23)
dyul(t) — 0,4, weakly in  L*(0,1; L*(0Q)) as n — oo. (3.24)

Thus @, and uy satisfy
— Aﬂl = ﬂlﬂg — bfbl, x € Q,
—Aﬂgzaﬂl, Z'EQ,

O,y + iy = O,y + Blia|" %l = 0, x € 0N,

Since (0,0) < (uy,09) < (liy, lous) < (U, us), it follows that (@ (z), d(z)) is nothing
but (0,0) from the ordered uniqueness of positive stationary solutions.

(2) Let v = 2 and o < 2. By the comparison theorem, we can assume without loss
of generality that uio(x) = l1U1(x), ug(z) = lats(z) for some l; > Iy > 1. Suppose that
the solution (u,us) of (NR) exists globally, i.e.,

sup ||wi(-,t)|| o) <00, (i=1,2) VT >0. (3.25)

te[0,7)

Now we are going to construct a subsolution. For this purpose, we first note that there
exists a sufficiently small number € > 0 such that

a(ly — 1)@ + €lyTiy <0 on Q,
(lo =) 1_ 2U2 > (3.26)
€+<1—12)U2<0 on ).

Here we used the fact that % (z) > 0, Us(x) > 0 on €, which is assured by Hopf’s type
maximum principle. Let uj(z,t) = lie*u;(z) and ub(x,t) = leuy(x). Then using (3.26),
we get

Ot — Auf — uiuy + buj = el uy — Le Auy — e ulye™ iy + bl
= €l1€Etﬂ1 + lleat (ﬂlﬂg — bﬂ1> — lleatﬂllgedﬂg + blledﬂl
S Elleatﬂl + lleatﬂlﬂg — lllgeatﬂlﬂg
— t—

= {8 + (1 — 12) UQ} 1166 U < 0,

Opul — Auly — au} = elye™uy — loe®t ATy — alieuy
_ et— et — et—
= elae Uy + lae au; — alie*uy

= {é?ZQEQ +a (lg — ll)ﬂl} et < 0,
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where we used the fact that (uy,uy) satisfies

{ — Auy = w7, — b,

— Aﬂg = aﬂl.

Moreover d,uf+au} = 0, O,us+ pus = 0 on 9Q and uj(x,0) = liuy (z), ui(z,0) = lyus(x).
Hence by the comparison principle, we have

Letuy (x) = uj(x,t) <wup(z,t), e uy(r) = uy(x,t) < ug(z,t). (3.27)
Multiplication of equations of (NR) by ¢; and integration by parts yield

d
— (/ u1901d113> + (b4 \p) / upprde = / uugprde, (3.28)
dt \ Jo Q Q

d
— (/ qupldx) + M\ / ugprde + (B — a)/ Usp1dS = a/ urprde, (3.29)
dt \Ja Q o9 Q

where A\; and ¢y are the first eigenvalue and the corresponding eigenfunction for (2.1).
We here normalize ¢; so that [|¢1]|z1o) = 1. Substituting (3.29) and u; = 1(Gyus — Auy)
in (3.28) and using integration by parts, we get

% {% (/Q u2§01dx> + )\1/QU2§01dx +(f—«a) /89 u2g01d5} (3.30)
o4 { g ([uents) [ oot (5-0) [ s}

1d A
= —— [ udpda +/ Vs Pprda + = / uzprde + (5 - 9) / uzp1dS,
2dt Jq Q 2 Jo 2/ Jaa

where we used the fact that

—/(AUQ)Ugcpldx:/VUQ-V(Uggpl)dx—/ (Oyug)ugp1dS
Q Q Py

N / [Vuo|*o1da + / usVug - Vorde + 8 | ujrdS
Q Q oN

1
Q Q oN

1
— / |Vus|?p1dr — §/U§Agplda; - %/ usprdS + B8 | uspidS
0 0

o0 o0

A o
:/\Vu2|2g01dx+31/uggoldx+ (ﬁ—§>/ uzp1dS.
Q Q o0
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We here assume 5 — « > 0. From (3.27), it follows that

A
é/“gwldﬁ—(b+)\1))\1/U2S@1dﬂf
Q

)\ 1
- uzprdr + A\ / {— —(b+A )} ugprdx

4 4

1

4

A
- uzgoldx—l— )\1/ {
4 Jq

1
> — Al {Zme“ —(b+ /\1)} ugprde,

2 Qu2901d:v+)\1/
where m := min, g lyUs(x) > 0. Hence there exists t; > 0 such that

Q
A
2L orde — (b+ M)\ /
Q

| \/

uy — (b+ A )}uzgold:v

A
usprdr > 2 / u3pide Vit>t. (3.31)
Q 4 Jo

Similarly, since

(ﬁ — %) /39 uzp1dS — (b+ M\)(B — ) /89 Ugp1dS
- (8-3) /muigoldm/m{%(ﬁ—%) U2—(b+A1)(ﬁ—a)}U2901dS
25 (5-5) [ aoas+ [ {3 (5-5)me - 0420005 - ) fuagaas,

there exists t; > 0 such that

B — & uzp1dS — (b+\)(B — a) Upp1dS
2/ Jaa 89

1 o 9
= - = > to. .
> 5 (8-3) /m BodS  Vt>t. o (3.32)
Therefore by (3.31), (3.32) and (3.30), we have

jt {jt (/ u2<p1dx)} o le)% (/Q quoldx) + (8- a)% </{m Wlds)

1d

A1
Zéa (/Q u%gpldx) " /Qu2g01d:17 + = (6 - —) /aQ uip1dS Vi>t;,  (3.33)

where t3 :=t; V t5. Now we integrate (3.33) with respect to t over [t3,t] to get
d

{/UQgpldI—i— —a// UQ@IdeT}

1 1
> —/u%gpldx —(b+ 2)\1)/U2901d$ - —/U§<t3)<ﬁ1d5€
2 Q Q 2 Q

1 t
L(s-9) / / 2iprdSdr + / Dy (t3) g1, (3.34)
2 ts JOQ Q
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where we neglected positive terms. Moreover we can see that there exists t4 > t3 such
that

1
—/u%gpldx—(b—i—%\l)/ug(pld:c
2 Ja Q

1 1
——/ug(t3)¢1dx+/8tu2(t3)g01dx2 —/u%gpldx (3.35)
2 Jq Q 4 Jq

for t > t4 by the same argument as before. Therefore from (3.34) and (3.35), we have

d {/ U2@1d$+ — / / Ug@ldeT}
dt 90
1 t
> —/uzgpldm—l— (5——)// usp dSdr. (3.36)
4 Q ts JOQ

Since ||¢1||r1) = 1, by Schwarz’s inequality, we get

1 1 2
Z/ﬂuggoldx > 1 (/Q uwndx) ,

and

2
1 o
> U 1dSdT
=50 2)||<,ol||m>|afz|t—t3{/ / 21 }

T {50 [ [ wsouasar)
= — —« U o1dSdT » .
2 o1ll e (0 |02/ (B —a)?t—tg o

By the above inequalities and (3.36), for t > t5 :=t, V (t3 + 1), we finally get

d {/ ugprde + (B — « / / uggoldeT}
dt 90
1
>— /u2¢1dx+ / / usp dSdr
4 Jq o0
= dx)Q ! ; o [ [ mnasi }2
- u — T
i\, 2 Teillz= ﬂ>|3Q|( —a)t— 1  Joa T
1 t 2
ZC (/ U2g01d$) + ((ﬁ - OZ)/ / UgQOﬂZSdT)
t—13 Q t5 JoQ
1 t 2
>C {/ uzgold:v+(/3—a)/ / uzgoldeT} ,
t—13 /o t5 J o0
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where C' denotes some general positive constant independent of ¢. Set y(t) := fQ Ugprdr+
(B —a) fttg Joq u21dSdr, then the above inequality yields the following:

d C

—y(t) > ——%(t) t>t
dty()_t_tgy() > ts,
y(ts) > 0.

We can see that there exists T > t5 such that
lim y(t) = +o0. (3.37)
t—T*

In order to show the existence of T* satisfying (3.37), it suffices to consider the following
ordinary differential equation:

d . c

ay(t) =i Y (t) t=ts

y(ts) > 0.
Since £4(t) > 0 for all ¢ > ¢5 and §(t5) > 0, it is clear that §(¢) > 0 for all ¢ > ¢5. Divide
both sides by #%(¢) and integrate with respect to ¢ on [t5,t], then we have

1 d C

9 q ¢
/ —dy = Clog 3 ,
i) Y 5—ts
1 1 t—t
—— + = = C'log 3
y(t)  y(ts) ls — t3
Therefore we have 1
ﬂ(t) = 1 —
glts) ClOg tt5—tf3

1 T —t
- — C'log 5 =0
(ts) ts — 13
such that
lim g(t) = +o0.
t—T

Thus (3.37) holds by comparison theorem for ordinary differential equations. This con-
tradicts the assumption that (uq,us) exists globally.

For the case of § < 8 < «a, we can prove the same result with a slight modification.
Actually, we get from (3.30)

d [d
— { - / Ug(pldﬁ(] + /\1 / Ug(pldl’ + (6 - Oé)/ u2g01dS
d
+ (b + )\1) {E (/Q u2g01dx> + )\1/9u2g01d$}

1d A1
> §E/Qu§g01dx+7/gu§<p1dx.
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Using (3.31) and integrating above inequality with respect to t over [ty,t], we have

% (/Q uzgpldx) - /Qatu2(t1>901d$ + (8 —«a) /09 usp1dS — (B — a) /asz us(t)p1dS

1 1
2—/u§g01d:1:——/ug(tg)goldx—(b+2/\1)/uzgpld:v+(b—|—2)\1)/u2(t1)gpldx.
2 Jq 2 Jq Q Q

Repeating the same arguments as for (3.31), we see that there exists tg > ¢; such that

1 1
—/u%gpldx——/ug(t3)g01d:v—(b—{—2)\1)/u2g01dx
2 Jq 2 Jq Q

+ /S;atUQ(?H)QOle' -+ (B — Oé) /8Q u2<t1)901ds

1
> —/U§<p1dx
4 Jq

for all t > t5. From these inequalities and Schwarz’s inequality, it holds that

d / d >1/ d : Vit>t
i Qu2901$ = QU2901J7 = lg-

Therefore we can get the following differential inequality:

d
—y(t) > 2t t>t
IO RS ORE TS

Z/(t6) > 07
where y(t) = fQ usprdr. It is easy to see that there exists T** > tg such that

lim y(t) = +o0.

t—T**

This leads to a contradiction. O

Remark 3.4. Since the blow-up result is proved by contradiction, there is no knowing
if ||ui(t)||r~ and ||us(t)||L~ blow up simultaneously. However we can show by another
argument that L*°-norms of u; and us blow up at the same time, i.e., there exists T" > 0
such that

lim [Jur (8)[[ e (@) = 00 and i [[us(1)[] 1= (o) = o0

In fact, multiplying the first equation of (NR) by |u;|"~?u; and using integration by parts
and similar calculation in the proof of Theorem 3.1, we obtain

d
EHUI(t)HLT(Q) < ua (@)l oo @) lua ()] () vt € [0,7). (3.38)

From the second equation of (NR), we also have

t
lua ()l o= () < lluzol (@) +a/ lua(m)l[zoo@pdr V€ [0, 7). (3.39)
0



222

Suppose that

m flui(t)|| L@ =00  and My := sup |luz(t)|| (o) < oo,
t—T 0<t<T

then it follows from (3.38)

d
)

v < Mylur@)llry  VE€[0,T).

By Gronwall’s inequality, we get

Jur (£l ) < Nwaollzr@ye™ < lusollor@ye™” vt € [0,T).

Letting r tend to oo, we obtain

Jur ()| ooy < ol ey e™" vVt € [0,7),

which contradicts the fact limy_,7 ||uq(t)|| L) = 0o. Next, suppose that

My = sup [lus(t)|poey < oo and  lim [Juy(t)]] e () = o0,
0<t<T t—T

then by (3.39) we see that

|uz(t) || o) < l|usol| o) + aMiT vVt e [0,7).

Letting t tend to T, we get contradiction. Thus we see that u; and us blow up at the

same time.
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