ASYMPTOTIC ANALYSIS OF AN ε-STOKES PROBLEM CONNECTING STOKES AND PRESSURE-POISSON PROBLEMS

Kazunori Matsui*
Division of Mathematical and Physical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 Japan
(E-mail: first-lucky@stu.kanazawa-u.ac.jp)

and

Adrian Muntean
Department of Mathematics and Computer Science, Karlstad University, Universitetsgatan 2, 65188 Karlstad Sweden
(E-mail: adrian.muntean@kau.se)

Abstract

In this Note, we prepare an ε-Stokes problem connecting the Stokes problem and the corresponding pressure-Poisson equation using one parameter $\varepsilon>0$. We prove that the solution to the ε-Stokes problem, convergences as ε tends to 0 or ∞ to the Stokes and pressure-Poisson problem, respectively.

[^0]
1 Introduction

Let Ω be a bounded domain in $\mathbb{R}^{n}(n \geq 2, n \in \mathbb{N})$ with Lipschitz continuous boundary Γ and let $F \in L^{2}(\Omega)^{n}, u_{b} \in H^{1 / 2}(\Gamma)^{n}$ satisfy $\int_{\Gamma} u_{b} \cdot \nu=0$, where ν is the unit outward normal vector for Γ. The weak form of the Stokes problem is: Find $u_{S} \in H^{1}(\Omega)^{n}$ and $p_{S} \in L^{2}(\Omega) / \mathbb{R}$ satisfying

$$
\begin{cases}-\Delta u_{S}+\nabla p_{S}=F & \text { in } H^{-1}(\Omega)^{n}, \tag{S}\\ \operatorname{div} u_{S}=0 & \text { in } L^{2}(\Omega), \\ u_{S}=u_{b} & \text { on } H^{1 / 2}(\Gamma)^{n} .\end{cases}
$$

We refer to [20] for details on the Stokes problem, (i.e. more physical background and corresponding mathematical analysis). Taking the divergence of the first equation, we are led to

$$
\begin{equation*}
\operatorname{div} F=\operatorname{div}\left(-\Delta u_{S}+\nabla p_{S}\right)=-\Delta\left(\operatorname{div} u_{S}\right)+\Delta p_{S}=\Delta p_{S} \tag{1.1}
\end{equation*}
$$

in distributions sense. This is often called pressure-Poisson equation and is used in MAC, SMAC or projection method (cf. [1, 4, 7, 12, 13, 15, 17, 19], e.g.). Bearing this in mind, we consider a similar problem: Find $u_{P P} \in H^{1}(\Omega)^{n}$ and $p_{P P} \in H^{1}(\Omega)$ satisfying

$$
\begin{cases}-\Delta u_{P P}+\nabla p_{P P}=F & \text { in } H^{-1}(\Omega)^{n}, \tag{PP}\\ -\Delta p_{P P}=-\operatorname{div} F & \text { in } H^{-1}(\Omega), \\ u_{P P}=u_{b} & \text { on } H^{1 / 2}(\Gamma)^{n}, \\ p_{P P}=p_{b} & \text { on } H^{1 / 2}(\Gamma)\end{cases}
$$

with $p_{b} \in H^{1 / 2}(\Gamma)$. Let this problem be called pressure-Poisson problem. This idea using (1.1) instead of $\operatorname{div} u_{S}=0$ is useful to calculate the pressure numerically in the NavierStokes equation. For example, the idea is used in both the MAC, SMAC and projection methods $[1,4,7,12,13,15,17,19]$. Dirichlet boundary condition for pressure can be found in many circumstances such as outflow boundary [3, 21]. (See also [5, 6, 16].)

In this Note, we prepare on an "interpolation" between these problems (S) and (PP), i.e. we introduce an intermediate problem: For $\varepsilon>0$, find $u_{\varepsilon} \in H^{1}(\Omega)^{n}$ and $p_{\varepsilon} \in H^{1}(\Omega)$ which satisfy

$$
\begin{cases}-\Delta u_{\varepsilon}+\nabla p_{\varepsilon}=F & \text { in } H^{-1}(\Omega)^{n} \tag{ES}\\ -\varepsilon \Delta p_{\varepsilon}+\operatorname{div} u_{\varepsilon}=-\varepsilon \operatorname{div} F & \text { in } H^{-1}(\Omega) \\ u_{\varepsilon}=u_{b} & \text { on } H^{1 / 2}(\Gamma)^{n} \\ p_{\varepsilon}=p_{b} & \text { on } H^{1 / 2}(\Gamma)\end{cases}
$$

Let this problem be called ε-Stokes problem. In [8, 11, 14], they treat this problem as approximation of the Stokes problem to avoid numerical instabilities. The ε-Stokes problem (ES) formally approximates the Stokes problem (S) as $\varepsilon \rightarrow 0$ and the pressurePoisson problem (PP) as $\varepsilon \rightarrow \infty$ (Figure 1). We show here that (ES) is a natural link between (S) and (PP) in Proposition 2.7. The aim of this Note is to give a precise asymptotic estimates for (ES) when ε tends to zero or ∞.

Figure 1: Sketch of the connections between the problems (S), (PP) and (ES).

2 Well-posedness

2.1 Notation

We set

$$
\begin{aligned}
C_{0}^{\infty}(\Omega)^{n} & :=\left\{f \in C^{\infty}(\Omega)^{n} \mid \operatorname{supp}(f) \text { is compact subset in } \Omega\right\} \\
L^{2}(\Omega) / \mathbb{R} & :=\left\{u \in L^{2}(\Omega) \mid \int_{\Omega} u=0\right\}
\end{aligned}
$$

For $m=1$ or $n, H^{-1}(\Omega)^{m}=\left(H_{0}^{1}(\Omega)^{m}\right)^{*}$ is equipped with the norm $\|f\|_{H^{-1}(\Omega)^{m}}:=$ $\sup _{\varphi \in S_{m}}\langle f, \varphi\rangle$ for $f \in H^{-1}(\Omega)^{m}$, where $S_{m}=\left\{\varphi \in H_{0}^{1}(\Omega)^{m} \mid\|\nabla \varphi\|_{L^{2}(\Omega)^{n \times m}}=1\right\}$. We define $[p]:=p-(1 /|\Omega|) \int_{\Omega} p$ and $\|p\|_{L^{2}(\Omega) / \mathbb{R}}:=\inf _{a \in \mathbb{R}}\|p-a\|_{L^{2}(\Omega)}=\|[p]\|_{L^{2}(\Omega)}$ for all $p \in L^{2}(\Omega)$, where $|\Omega|$ is the volume of Ω.

Let $\gamma_{0} \in B\left(H^{1}(\Omega), H^{1 / 2}(\Gamma)\right)$ be the standard trace operator. It is known that (see e.g. [20, pp.10-11, Lemma 1.3]) there exists a linear continuous operator $\gamma_{\nu}: H^{1}(\Omega)^{n} \rightarrow$ $H^{-1 / 2}(\Gamma)$ such that $\gamma_{\nu} u=\left.u \cdot \nu\right|_{\Gamma}$ for all $u \in C^{\infty}(\bar{\Omega})^{n}$, where ν is the unit outward normal for Γ and $H^{-1 / 2}(\Gamma):=H^{1 / 2}(\Gamma)^{*}$. Then, the following generalized Gauss divergence formula holds:

$$
\int_{\Omega} u \cdot \nabla \omega+\int_{\Omega}(\operatorname{div} u) \omega=\left\langle\gamma_{\nu} u, \gamma_{0} \omega\right\rangle \quad \text { for all } u \in H^{1}(\Omega)^{n}, \omega \in H^{1}(\Omega)
$$

We recall the following Theorem 2.1 that plays an important role in the proof of the existence of pressure solution of Stokes problem; see [18, pp.187-190, Lemme 7.1, $l=0$] and [9 , pp.111-115, Theorem 3.2 and Remark 3.1 (Ω is C^{1} class)] for the proof.

Theorem 2.1. There exists a constant $c>0$ such that

$$
\|f\|_{L^{2}(\Omega)} \leq c\left(\|f\|_{H^{-1}(\Omega)}+\|\nabla f\|_{H^{-1}(\Omega)}\right)
$$

for all $f \in L^{2}(\Omega)$.
The following result follows from Theorem 2.1.
Theorem 2.2. [10, pp.20-21] There exists a constant $c>0$ such that

$$
\|f\|_{L^{2}(\Omega) / \mathbb{R}} \leq c \mid\|\nabla f\|_{H^{-1}(\Omega)^{n}}
$$

for all $f \in L^{2}(\Omega)$.

2.2 Well-posedness

Theorem 2.3. For $F \in L^{2}(\Omega)^{n}$ and $u_{b} \in H^{1 / 2}(\Gamma)^{n}$, there exists a unique pair of functions $\left(u_{S}, p_{S}\right) \in H^{1}(\Omega)^{n} \times\left(L^{2}(\Omega) / \mathbb{R}\right)$ satisfying (S).

See [20, pp.31-32, Theorem 2.4 and Remark 2.5] for the proof.
Theorem 2.4. For $F \in L^{2}(\Omega)^{n}, u_{b} \in H^{1 / 2}(\Gamma)^{n}$ and $p_{b} \in H^{1 / 2}(\Gamma)$, there exists a unique pair of functions $\left(u_{P P}, p_{P P}\right) \in H^{1}(\Omega)^{n} \times H^{1}(\Omega)$ satisfying $(P P)$.
Proof. From the second and fourth equations of (PP), $p_{P P} \in H^{1}(\Omega)$ is uniquely determined. Then $u_{P P} \in H^{1}(\Omega)^{n}$ is also uniquely determined from the first and third equations.
Corollary 2.5. If the solution $\left(u_{P P}, p_{P P}\right) \in H^{1}(\Omega)^{n} \times H^{1}(\Omega)$ of $(P P)$ satisfies $\operatorname{div} u_{P P}=$ 0 , by Theorem 2.3, $u_{S}=u_{P P}$ and $p_{S}=\left[p_{P P}\right]$ hold.
Theorem 2.6. For $\varepsilon>0, F \in L^{2}(\Omega)^{n}$, $u_{b} \in H^{1 / 2}(\Gamma)^{n}$ and $p_{b} \in H^{1 / 2}(\Gamma)$, there exists a unique pair of functions $\left(u_{\varepsilon}, p_{\varepsilon}\right) \in H^{1}(\Omega)^{n} \times H^{1}(\Omega)$ satisfying the problem (ES).
Proof. We pick $u_{1} \in H^{1}(\Omega)^{n}$ and $p_{0} \in H^{1}(\Omega)$ with $\gamma_{0} u_{1}=u_{b}, \gamma_{0} p_{0}=p_{b}$. Since div : $H_{0}^{1}(\Omega)^{n} \rightarrow L^{2}(\Omega) / \mathbb{R}$ is surjective [10, p.24, Corollary 2.4, $\left.\left.2^{\circ}\right)\right]$ and [20, p.32, Lemma 2.4, Chapter 1], there exists $u_{2} \in H_{0}^{1}(\Omega)^{n}$ such that $\operatorname{div} u_{2}=\operatorname{div} u_{1}$. We put $u_{0}:=$ $u_{1}-u_{2}$, and then $\gamma_{0} u_{0}=u_{b}$ and $\operatorname{div} u_{0}=0$ in Ω. To simplify the notation, we set $u:=u_{\varepsilon}-u_{0}\left(\in H_{0}^{1}(\Omega)^{n}\right), p:=p_{\varepsilon}-p_{0}\left(\in H_{0}^{1}(\Omega)\right), f \in H^{-1}(\Omega)^{n}$ and $g \in H^{-1}(\Omega)$ such that $\langle f, v\rangle=\int_{\Omega} F v-\int_{\Omega} \nabla u_{0}: \nabla v-\int_{\Omega}\left(\nabla p_{0}\right) \cdot v\left(v \in H_{0}^{1}(\Omega)^{n}\right),\langle g, q\rangle=\int_{\Omega} F \cdot \nabla q-\int_{\Omega} \nabla p_{0} \cdot \nabla q(q \in$ $\left.H_{0}^{1}(\Omega)\right)$. Then we have

$$
\begin{cases}\int_{\Omega} \nabla u: \nabla \varphi+\int_{\Omega}(\nabla p) \cdot \varphi=\langle f, \varphi\rangle & \text { for all } \varphi \in H_{0}^{1}(\Omega)^{n} \tag{2.2}\\ \varepsilon \int_{\Omega} \nabla p \cdot \nabla \psi+\int_{\Omega}(\operatorname{div} u) \psi=\varepsilon\langle g, \psi\rangle & \text { for all } \psi \in H_{0}^{1}(\Omega)\end{cases}
$$

Adding the equations in (2.2), we get

$$
\left(\binom{u}{p},\binom{\varphi}{\psi}\right)_{\varepsilon}=\langle f, \varphi\rangle+\varepsilon\langle g, \psi\rangle
$$

Here, we denote

$$
\left(\binom{u}{p},\binom{\varphi}{\psi}\right)_{\varepsilon}:=\int_{\Omega} \nabla u: \nabla \varphi+\varepsilon \int_{\Omega} \nabla p \cdot \nabla \psi+\int_{\Omega}(\nabla p) \cdot \varphi+\int_{\Omega}(\operatorname{div} u) \psi .
$$

We check that $(*, *)_{\varepsilon}$ is a continuous coercive bilinear form on $H_{0}^{1}(\Omega)^{n} \times H_{0}^{1}(\Omega)$. The bilinearity and continuity of $(*, *)_{\varepsilon}$ are obvious. The coercivity of $(*, *)_{\varepsilon}$ is obtained in the following way: Let ${ }^{t}(u, p) \in H_{0}^{1}(\Omega)^{n} \times H_{0}^{1}(\Omega)$. We have the following sequence of inequalities;

$$
\begin{aligned}
\left(\binom{u}{p},\binom{u}{p}\right)_{\varepsilon} & =\int_{\Omega} \nabla u: \nabla u+\varepsilon \int_{\Omega} \nabla p \cdot \nabla p+\int_{\Omega} \operatorname{div}(u p) \\
& =\|\nabla u\|_{L^{2}(\Omega)}^{2}+\varepsilon\|\nabla p\|_{L^{2}(\Omega)}^{2} \\
& \geq \min \{1, \varepsilon\}\left(\|\nabla u\|_{L^{2}(\Omega)}^{2}+\|\nabla p\|_{L^{2}(\Omega)}^{2}\right) \\
& \geq c \min \{1, \varepsilon\}\left(\|u\|_{H^{1}(\Omega)^{n}}^{L^{1}}+\|p\|_{H^{1}(\Omega)}\right)
\end{aligned}
$$

by the Poincaré inequality. Summarizing, $(*, *)_{\varepsilon}$ is a continuous coercive bilinear form and $H_{0}^{1}(\Omega)^{n+1}$ is a Hilbert space. Therefore, the conclusion of Theorem 2.6 follows based on the Lax-Milgram Theorem.

From now on, let the solutions of (S), (PP) and (ES) be denoted by $\left(u_{S}, p_{S}\right),\left(u_{P P}, p_{P P}\right)$ and $\left(u_{\varepsilon}, p_{\varepsilon}\right)$, respectively.

Proposition 2.7. Suppose that $p_{S} \in H^{1}(\Omega)$. Then there exists a constant $c>0$ independent of ε such that

$$
\left\|u_{S}-u_{P P}\right\|_{H^{1}(\Omega)^{n}} \leq c\left\|\gamma_{0} p_{S}-p_{b}\right\|_{H^{1 / 2}(\Gamma)}, \quad\left\|u_{S}-u_{\varepsilon}\right\|_{H^{1}(\Omega)^{n}} \leq c\left\|\gamma_{0} p_{S}-p_{b}\right\|_{H^{1 / 2}(\Gamma)}
$$

In particular, if $\gamma_{0} p_{S}=p_{b}$, then $p_{P P}=p_{\varepsilon}=p_{S}$ hold for all $\varepsilon>0$.
Proof. From (S) and (PP), we have

$$
\begin{cases}\int_{\Omega} \nabla\left(u_{S}-u_{P P}\right): \nabla \varphi=-\int_{\Omega}\left(\nabla\left(p_{S}-p_{P P}\right)\right) \cdot \varphi & \text { for all } \varphi \in H_{0}^{1}(\Omega)^{n} \tag{2.3}\\ \int_{\Omega} \nabla\left(p_{S}-p_{P P}\right) \cdot \nabla \psi=0 & \text { for all } \psi \in H_{0}^{1}(\Omega)\end{cases}
$$

Putting $\varphi:=u_{S}-u_{P P} \in H_{0}^{1}(\Omega)^{n}$ in (2.3), we get

$$
\begin{aligned}
\left\|\nabla\left(u_{S}-u_{P P}\right)\right\|_{L^{2}(\Omega)^{n \times n}}^{2} & =-\int_{\Omega}\left(\nabla\left(p_{S}-p_{P P}\right)\right) \cdot\left(u_{S}-u_{P P}\right) \\
& \leq\left\|\nabla\left(p_{S}-p_{P P}\right)\right\|_{L^{2}(\Omega)^{n}}\left\|u_{S}-u_{P P}\right\|_{L^{2}(\Omega)^{n}}
\end{aligned}
$$

and then

$$
\begin{equation*}
\left\|u_{S}-u_{P P}\right\|_{H^{1}(\Omega)^{n}} \leq c_{1}\left\|\nabla\left(p_{S}-p_{P P}\right)\right\|_{L^{2}(\Omega)^{n}} \tag{2.4}
\end{equation*}
$$

follows. We pick up $p_{0} \in H^{1}(\Omega)$ such that $\gamma_{0} p_{0}=p_{b}$. From the fourth equation of (PP) and the second equation of (2.3), we obtain $p_{P P}-p_{0} \in H_{0}^{1}(\Omega)$ and

$$
\int_{\Omega} \nabla\left(p_{P P}-p_{0}\right) \cdot \nabla \psi=\int_{\Omega} \nabla\left(p_{S}-p_{0}\right) \cdot \nabla \psi,
$$

and, by Stampacchia Theorem [2, Theorem 5.6], it follows that

$$
\begin{aligned}
& \min _{\psi \in H_{0}^{1}(\Omega)^{n}}\left(\frac{1}{2}\|\nabla \psi\|_{L^{2}(\Omega)^{n}}^{2}-\int_{\Omega} \nabla\left(p_{S}-p_{0}\right) \cdot \nabla \psi\right) \\
= & \frac{1}{2}\left\|\nabla\left(p_{P P}-p_{0}\right)\right\|_{L^{2}(\Omega)^{n}}^{2}-\int_{\Omega} \nabla\left(p_{S}-p_{0}\right) \cdot \nabla\left(p_{P P}-p_{0}\right) \\
= & \frac{1}{2}\left\|\nabla p_{P P}\right\|_{L^{2}(\Omega)^{n}}^{2}-\frac{1}{2}\left\|\nabla p_{0}\right\|_{L^{2}(\Omega)^{n}}^{2}-\int_{\Omega} \nabla p_{S} \cdot \nabla p_{P P}+\int_{\Omega} \nabla p_{S} \cdot \nabla p_{0}
\end{aligned}
$$

Hence,

$$
\frac{1}{2}\left\|\nabla\left(p_{S}-p_{P P}\right)\right\|_{L^{2}(\Omega)^{n}}^{2}=\min _{\psi \in H_{0}^{1}(\Omega)^{n}}\left(\frac{1}{2}\left\|\nabla\left(p_{S}-p_{0}-\psi\right)\right\|_{L^{2}(\Omega)^{n}}^{2}\right) .
$$

Since γ_{0} is surjective and the space $\operatorname{Ker}\left(\gamma_{0}\right)=H_{0}^{1}(\Omega), H^{1}(\Omega) / H_{0}^{1}(\Omega)$ and $H^{1 / 2}(\Gamma)$ are isomorphic, there exists a constant $c_{2}>0$ such that $\|q\|_{H^{1}(\Omega) / H_{0}^{1}(\Omega)} \leq c_{2}\left\|\gamma_{0} q\right\|_{H^{1 / 2}(\Gamma)}$ for all $q \in H^{1}(\Omega)$. Hence, we obtain

$$
\begin{aligned}
\left\|\nabla\left(p_{S}-p_{P P}\right)\right\|_{L^{2}(\Omega)^{n}} & \leq \min _{\psi \in H_{0}^{1}(\Omega)^{n}}\left\|\nabla\left(p_{S}-p_{0}-\psi\right)\right\|_{L^{2}(\Omega)^{n}} \\
& \leq \min _{\psi \in H_{0}^{1}(\Omega)^{n}}\left\|p_{S}-p_{0}-\psi\right\|_{H^{1}(\Omega)} \\
& =\left\|p_{S}-p_{P P}\right\|_{H^{1}(\Omega) / H_{0}^{1}(\Omega)} \\
& \leq c_{2}\left\|\gamma_{0} p_{S}-\gamma_{0} p_{0}\right\|_{H^{1 / 2}(\Gamma)} .
\end{aligned}
$$

Together with (2.4) and the assumption $\gamma_{0} p_{0}=p_{b}$, we obtain $\left\|u_{S}-u_{P P}\right\|_{H^{1}(\Omega)^{n}} \leq$ $c_{1} c_{2}\left\|\gamma_{0} p_{S}-p_{b}\right\|_{H^{1 / 2}(\Gamma)}$.

Let $w_{\varepsilon}:=u_{S}-u_{\varepsilon} \in H_{0}^{1}(\Omega)^{n}, r_{\varepsilon}:=p_{P P}-p_{\varepsilon} \in H_{0}^{1}(\Omega)$. By (S), (PP) and (ES), we have

$$
\begin{cases}\int_{\Omega} \nabla w_{\varepsilon}: \nabla \varphi+\int_{\Omega}\left(\nabla r_{\varepsilon}\right) \cdot \varphi=-\int_{\Omega}\left(\nabla\left(p_{S}-p_{P P}\right)\right) \cdot \varphi & \text { for all } \varphi \in H_{0}^{1}(\Omega)^{n}, \tag{2.5}\\ \varepsilon \int_{\Omega} \nabla r_{\varepsilon} \cdot \nabla \psi+\int_{\Omega}\left(\operatorname{div} w_{\varepsilon}\right) \psi=0 & \text { for all } \psi \in H_{0}^{1}(\Omega) .\end{cases}
$$

Putting $\varphi:=w_{\varepsilon}$ and $\psi:=r_{\varepsilon}$ and adding two equations of (2.5), we get

$$
\left\|\nabla w_{\varepsilon}\right\|_{L^{2}(\Omega)^{n \times n}}^{2}+\varepsilon\left\|\nabla r_{\varepsilon}\right\|_{L^{2}(\Omega)^{n}}^{2}=-\int_{\Omega}\left(\nabla\left(p_{S}-p_{P P}\right)\right) \cdot w_{\varepsilon} \leq\left\|\nabla\left(p_{S}-p_{P P}\right)\right\|_{L^{2}(\Omega)^{n}}\left\|w_{\varepsilon}\right\|_{L^{2}(\Omega)^{n}}
$$

from $\int_{\Omega}\left(\nabla r_{\varepsilon}\right) \cdot w_{\varepsilon}=-\int_{\Omega}\left(\operatorname{div} w_{\varepsilon}\right) r_{\varepsilon}$. Thus it leads $\left\|w_{\varepsilon}\right\|_{H^{1}(\Omega)^{n}} \leq c_{3}\left\|\nabla\left(p_{S}-p_{P P}\right)\right\|_{L^{2}(\Omega)^{n}}$. Hence we obtain $\left\|u_{S}-u_{\varepsilon}\right\|_{H^{1}(\Omega)^{n}}=\left\|w_{\varepsilon}\right\|_{H^{1}(\Omega)^{n}} \leq c_{2} c_{3}\left\|\gamma_{0} p_{S}-p_{b}\right\|_{H^{1 / 2}(\Gamma)}$.
Proposition 2.8. Under the hypotheses of Proposition 2.7, if $\tilde{p} \in H^{1}(\Omega)$ satisfies $\gamma_{0} \tilde{p}=$ p_{b}, then we have

$$
\left\|\nabla\left(\tilde{p}-p_{P P}\right)\right\|_{L^{2}(\Omega)^{n}} \leq\left\|\nabla\left(\tilde{p}-p_{S}\right)\right\|_{L^{2}(\Omega)^{n}}
$$

Proof. By the second equation of (2.3) and $\tilde{p}-p_{P P} \in H_{0}^{1}(\Omega)$, it yields

$$
\int_{\Omega} \nabla\left(p_{S}-p_{P P}\right) \cdot \nabla\left(\tilde{p}-p_{P P}\right)=0
$$

Hence we obtain

$$
\begin{aligned}
\left\|\nabla\left(\tilde{p}-p_{P P}\right)\right\|_{L^{2}(\Omega)^{n}}^{2} & =\int_{\Omega} \nabla\left(\tilde{p}-p_{S}+p_{S}-p_{P P}\right) \cdot \nabla\left(\tilde{p}-p_{P P}\right) \\
& \leq\left\|\nabla\left(\tilde{p}-p_{S}\right)\right\|_{L^{2}(\Omega)^{n}}\left\|\nabla\left(\tilde{p}-p_{P P}\right)\right\|_{L^{2}(\Omega)^{n}} .
\end{aligned}
$$

Therefore, $\left\|\nabla\left(\tilde{p}-p_{P P}\right)\right\|_{L^{2}(\Omega)^{n}} \leq\left\|\nabla\left(\tilde{p}-p_{S}\right)\right\|_{L^{2}(\Omega)^{n}}$ holds.
Remark 2.9. If $p_{S} \in H^{1}(\Omega)$, then we have

$$
\left\|\nabla\left(p_{\varepsilon}-p_{P P}\right)\right\|_{L^{2}(\Omega)^{n}} \leq\left\|\nabla\left(p_{\varepsilon}-p_{S}\right)\right\|_{L^{2}(\Omega)^{n}}
$$

for all $\varepsilon>0$, (from Proposition 2.8). Hence, if $\left(\nabla p_{\varepsilon}\right)_{\varepsilon>0}$ converges strongly to ∇p_{S} in $L^{2}(\Omega)^{n}$, then there exists a constant $c \in \mathbb{R}$ such that $u_{P P}=u_{S}$ and $p_{P P}=p_{S}+c$, which imply $\gamma_{0} p_{S}=p_{b}+c$ for some $c \in \mathbb{R}$. In other words, if $p_{S} \in H^{1}(\Omega)$ satisfies $\gamma_{0} p_{S} \neq p_{b}+c$ for all $c \in \mathbb{R}$, then ∇p_{ε} does not converge to ∇p_{S} in $L^{2}(\Omega)^{n}$ as $\varepsilon \rightarrow 0$.

3 Links between (ES) and (PP)

Theorem 3.1. There exists a constant $c>0$ independent of ε satisfying

$$
\left\|u_{\varepsilon}-u_{P P}\right\|_{H^{1}(\Omega)^{n}} \leq \frac{c}{\varepsilon}\left\|\operatorname{div} u_{P P}\right\|_{H^{-1}(\Omega)}, \quad\left\|p_{\varepsilon}-p_{P P}\right\|_{H^{1}(\Omega)} \leq \frac{c}{\varepsilon}\left\|\operatorname{div} u_{P P}\right\|_{H^{-1}(\Omega)}
$$

for all $\varepsilon>0$. In particular, we have

$$
\left\|u_{\varepsilon}-u_{P P}\right\|_{H^{1}(\Omega)^{n}} \rightarrow 0,\left\|p_{\varepsilon}-p_{P P}\right\|_{H^{1}(\Omega)} \rightarrow 0 \quad \text { as } \varepsilon \rightarrow \infty .
$$

Proof. From (PP) and (ES), we have

$$
\begin{cases}\int_{\Omega} \nabla\left(u_{\varepsilon}-u_{P P}\right): \nabla \varphi+\int_{\Omega}\left(\nabla\left(p_{\varepsilon}-p_{P P}\right)\right) \cdot \varphi=0 & \text { for all } \varphi \in H_{0}^{1}(\Omega)^{n}, \tag{3.6}\\ \varepsilon \int_{\Omega} \nabla\left(p_{\varepsilon}-p_{P P}\right) \cdot \nabla \psi+\int_{\Omega}\left(\operatorname{div}\left(u_{\varepsilon}-u_{P P}\right)\right) \psi=-\int_{\Omega}\left(\operatorname{div} u_{P P}\right) \psi & \text { for all } \psi \in H_{0}^{1}(\Omega)\end{cases}
$$

Putting $\varphi:=u_{\varepsilon}-u_{P P} \in H_{0}^{1}(\Omega)^{n}$ and $\psi:=p_{\varepsilon}-p_{P P} \in H_{0}^{1}(\Omega)$ and adding two equations of (3.6), we obtain

$$
\left\|\nabla\left(u_{\varepsilon}-u_{P P}\right)\right\|_{L^{2}(\Omega)^{n \times n}}^{2}+\varepsilon\left\|\nabla\left(p_{\varepsilon}-p_{P P}\right)\right\|_{L^{2}(\Omega)^{n}}^{2} \leq\left\|\operatorname{div} u_{P P}\right\|_{H^{-1}(\Omega)}\left\|\nabla\left(p_{\varepsilon}-p_{P P}\right)\right\|_{L^{2}(\Omega)^{n}}
$$

where we have used $\int_{\Omega}\left(\nabla\left(p_{\varepsilon}-p_{P P}\right)\right) \cdot\left(u_{\varepsilon}-u_{P P}\right)=-\int_{\Omega}\left(\operatorname{div}\left(u_{\varepsilon}-u_{P P}\right)\right)\left(p_{\varepsilon}-p_{P P}\right)$. Thus

$$
\left\|\nabla\left(p_{\varepsilon}-p_{P P}\right)\right\|_{L^{2}(\Omega)^{n}} \leq \frac{1}{\varepsilon}\left\|\operatorname{div} u_{P P}\right\|_{H^{-1}(\Omega)}
$$

follows. In addition, by (3.6) and the Poincaré inequality, we have

$$
\begin{aligned}
\left\|\nabla\left(u_{\varepsilon}-u_{P P}\right)\right\|_{L^{2}(\Omega)^{n}}^{2} & =-\int_{\Omega}\left(\nabla\left(p_{\varepsilon}-p_{P P}\right)\right) \cdot\left(u_{\varepsilon}-u_{P P}\right) \\
& \leq\left\|\nabla\left(p_{\varepsilon}-p_{P P}\right)\right\|_{L^{2}(\Omega)^{n}}\left\|u_{\varepsilon}-u_{P P}\right\|_{L^{2}(\Omega)^{n}} \\
& \leq c\left\|\nabla\left(p_{\varepsilon}-p_{P P}\right)\right\|_{L^{2}(\Omega)^{n}}\left\|\nabla\left(u_{\varepsilon}-u_{P P}\right)\right\|_{L^{2}(\Omega)^{n \times n}}
\end{aligned}
$$

and then $\left\|\nabla\left(u_{\varepsilon}-u_{P P}\right)\right\|_{L^{2}(\Omega)^{n}} \leq(c / \varepsilon)\left\|\operatorname{div} u_{P P}\right\|_{H^{-1}(\Omega)}$ follows.
Corollary 3.2. If $u_{P P}$ satisfies div $u_{P P}=0$, then $u_{\varepsilon}=u_{P P}$ and $p_{\varepsilon}=p_{P P}$ hold for all $\varepsilon>0$. Furthermore, $u_{S}=u_{\varepsilon}=u_{P P}$ and $p_{S}=\left[p_{\varepsilon}\right]=\left[p_{P P}\right]$ hold for all $\varepsilon>0$.

4 Links between (ES) and (S)

Lemma 4.1. If $v \in H^{1}(\Omega)^{n}, q \in L^{2}(\Omega)$ and $f \in H^{-1}(\Omega)^{n}$ satisfy

$$
\int_{\Omega} \nabla v: \nabla \varphi+\langle\nabla q, \varphi\rangle=\langle f, \varphi\rangle \quad \text { for all } \varphi \in H_{0}^{1}(\Omega)^{n}
$$

then there exists a constant $c>0$ such that

$$
\|q\|_{L^{2}(\Omega) / \mathbb{R}} \leq c\left(\|\nabla v\|_{L^{2}(\Omega)^{n \times n}}+\|f\|_{H^{-1}(\Omega)^{n}}\right)
$$

Proof. Let c be the constant arising in Theorem 2.2. Then we have

$$
\begin{aligned}
\|q\|_{L^{2}(\Omega) / \mathbb{R}} & \leq c\|\nabla q\|_{H^{-1}(\Omega)^{n}}=c \sup _{\varphi \in S_{n}}|\langle\nabla q, \varphi\rangle| \\
& \leq c \sup _{\varphi \in S_{n}}\left(\left|\int_{\Omega} \nabla v: \nabla \varphi\right|+|\langle f, \varphi\rangle|\right) \\
& \leq c\left(\|\nabla v\|_{L^{2}(\Omega)^{n \times n}}+\|f\|_{H^{-1}(\Omega)^{n}}\right) .
\end{aligned}
$$

Theorem 4.2. There exists a constant $c>0$ independent of ε such that

$$
\left\|u_{\varepsilon}\right\|_{H^{1}(\Omega)^{n}} \leq c, \quad\left\|p_{\varepsilon}\right\|_{L^{2}(\Omega) / \mathbb{R}} \leq c \quad \text { for all } \varepsilon>0
$$

Furthermore, we have

$$
u_{\varepsilon}-u_{S} \rightharpoonup 0 \text { weakly in } H_{0}^{1}(\Omega)^{n},\left[p_{\varepsilon}\right]-p_{S} \rightharpoonup 0 \text { weakly in } L^{2}(\Omega) / \mathbb{R} \quad \text { as } \varepsilon \rightarrow 0 .
$$

Proof. We use the notations $u_{0} \in H^{1}(\Omega)^{n}, p_{0} \in H^{1}(\Omega), f \in H^{-1}(\Omega)^{n}$ and $g \in H^{-1}(\Omega)$ in Theorem 2.6. We put $\tilde{u}_{\varepsilon}:=u_{\varepsilon}-u_{0} \in H_{0}^{1}(\Omega)^{n}, \tilde{p}_{\varepsilon}:=p_{\varepsilon}-p_{0} \in H_{0}^{1}(\Omega)$. Then we have

$$
\begin{cases}\int_{\Omega} \nabla \tilde{u}_{\varepsilon}: \nabla \varphi+\int_{\Omega}\left(\nabla \tilde{p}_{\varepsilon}\right) \cdot \varphi=\langle f, \varphi\rangle & \text { for all } \varphi \in H_{0}^{1}(\Omega)^{n}, \tag{4.7}\\ \varepsilon \int_{\Omega} \nabla \tilde{p}_{\varepsilon} \cdot \nabla \psi+\int_{\Omega}\left(\operatorname{div} \tilde{u}_{\varepsilon}\right) \psi=\varepsilon\langle g, \psi\rangle & \text { for all } \psi \in H_{0}^{1}(\Omega) .\end{cases}
$$

Putting $\varphi:=\tilde{u}_{\varepsilon}, \psi:=\tilde{p}_{\varepsilon}$ and adding the two equations of (4.7), we get

$$
\left\|\nabla \tilde{u}_{\varepsilon}\right\|_{L^{2}(\Omega)^{n \times n}}^{2}+\varepsilon\left\|\nabla \tilde{p}_{\varepsilon}\right\|_{L^{2}(\Omega)^{n}}^{2} \leq\|f\|_{H^{-1}(\Omega)^{n}}\left\|\nabla \tilde{u}_{\varepsilon}\right\|_{L^{2}(\Omega)^{n \times n}}+\varepsilon\|g\|_{H^{-1}(\Omega)}\left\|\nabla \tilde{p}_{\varepsilon}\right\|_{L^{2}(\Omega)^{n}}
$$

since $\int_{\Omega}\left(\nabla \tilde{p}_{\varepsilon}\right) \cdot \tilde{u}_{\varepsilon}=-\int_{\Omega}\left(\operatorname{div} \tilde{u}_{\varepsilon}\right) \tilde{p}_{\varepsilon}$. It leads that $\left(\left\|\tilde{u}_{\varepsilon}\right\|_{H^{1}(\Omega)^{n}}\right)_{0<\varepsilon<1}$ and $\left(\left\|\sqrt{\varepsilon} \tilde{p}_{\varepsilon}\right\|_{H^{1}(\Omega)}\right)_{0<\varepsilon<1}$ are bounded. In addition,

$$
\|\tilde{\tilde{\varepsilon}}\|_{L^{2}(\Omega) / \mathbb{R}} \leq c\left(\left\|\nabla \tilde{u}_{\varepsilon}\right\|_{L^{2}(\Omega)^{n \times n}}+\|f\|_{H^{-1}(\Omega)^{n}}\right)
$$

by Lemma 4.1, which implies that $\left(\left\|\tilde{p}_{\varepsilon}\right\|_{L^{2}(\Omega) / \mathbb{R}}\right)_{0<\varepsilon<1}$ is bounded. By Theorem 3.1, $\left(\left\|u_{\varepsilon}\right\|_{H^{1}(\Omega)^{n}}\right)_{\varepsilon \geq 1}$ and $\left(\left\|\tilde{p}_{\varepsilon}\right\|_{L^{2}(\Omega) / \mathbb{R}}\right)_{\varepsilon \geq 1}$ are bounded, and then $\left(\left\|u_{\varepsilon}\right\|_{H^{1}(\Omega)^{n}}\right)_{\varepsilon>0}$ and $\left(\left\|\tilde{p}_{\varepsilon}\right\|_{L^{2}(\Omega) / \mathbb{R}}\right)_{\varepsilon>0}$ are bounded.

Since $H_{0}^{1}(\Omega)^{n} \times\left(L^{2}(\Omega) / \mathbb{R}\right)$ is reflexive and $\left(\tilde{u}_{\varepsilon},\left[\tilde{p}_{\varepsilon}\right]\right)_{0<\varepsilon<1}$ is bounded in $H_{0}^{1}(\Omega)^{n} \times$ $\left(L^{2}(\Omega) / \mathbb{R}\right)$, there exist $(u, p) \in H_{0}^{1}(\Omega)^{n} \times\left(L^{2}(\Omega) / \mathbb{R}\right)$ and a subsequence of pair $\left(\tilde{u}_{\varepsilon_{k}}, \tilde{p}_{\varepsilon_{k}}\right)_{k \in \mathbb{N}}$ $\subset H_{0}^{1}(\Omega)^{n} \times H_{0}^{1}(\Omega)$ such that

$$
\tilde{u}_{\varepsilon_{k}} \rightharpoonup u \text { weakly in } H_{0}^{1}(\Omega)^{n},\left[\tilde{p}_{\varepsilon_{k}}\right] \rightharpoonup p \text { weakly in } L^{2}(\Omega) / \mathbb{R} \quad \text { as } k \rightarrow \infty .
$$

Hence, from (4.7) with $\varepsilon:=\varepsilon_{k}$, taking $k \rightarrow \infty$, we obtain

$$
\begin{cases}\int_{\Omega} \nabla u: \nabla \varphi+\langle\nabla p, \varphi\rangle=\langle f, \varphi\rangle & \text { for all } \varphi \in H_{0}^{1}(\Omega)^{n} \tag{4.8}\\ \int_{\Omega}(\operatorname{div} u) \psi=0 & \text { for all } \psi \in H_{0}^{1}(\Omega)\end{cases}
$$

where

$$
\begin{gathered}
\left|\varepsilon_{k} \int_{\Omega} \nabla \tilde{p}_{\varepsilon_{k}} \cdot \nabla \psi\right| \leq \sqrt{\varepsilon_{k}}\left\|\sqrt{\varepsilon} \tilde{p}_{\varepsilon}\right\|_{H^{1}(\Omega)}\|\psi\|_{H^{1}(\Omega)} \rightarrow 0, \\
\int_{\Omega} \nabla \tilde{p}_{\varepsilon_{k}} \cdot \varphi=-\int_{\Omega}\left[\tilde{p}_{\varepsilon_{k}}\right] \operatorname{div} \varphi \rightarrow-\int_{\Omega} p \operatorname{div} \varphi=\langle\nabla p, \varphi\rangle
\end{gathered}
$$

as $k \rightarrow \infty$. The first equation of (4.8) implies that

$$
-\Delta\left(u+u_{0}\right)+\nabla\left(p+p_{0}\right)=F \quad \text { in } H^{-1}(\Omega)^{n} .
$$

From the second equation of (4.8), $\operatorname{div}\left(u+u_{0}\right)=0$ follows. Hence, we obtain $u_{S}=u+u_{0}$ and $p_{S}=p+\left[p_{0}\right]$. Then we have

$$
\begin{gathered}
u_{\varepsilon_{k}}-u_{S}=u_{\varepsilon_{k}}-u-u_{0}=\tilde{u}_{\varepsilon_{k}}-u_{S} \rightharpoonup 0 \text { weakly in } H_{0}^{1}(\Omega)^{n}, \\
{\left[p_{\varepsilon_{k}}\right]-p_{S}=\left[p_{\varepsilon_{k}}-p-p_{0}\right]=\left[\tilde{p}_{\varepsilon_{k}}\right]-p \rightharpoonup 0 \text { weakly in } L^{2}(\Omega) / \mathbb{R} .}
\end{gathered}
$$

An arbitrarily chosen subsequence of $\left(\left(u_{\varepsilon},\left[p_{\varepsilon}\right]\right)\right)_{0<\varepsilon<1}$ has a subsequence which converges to $\left(u_{S}, p_{S}\right)$, so we can conclude the proof.
Theorem 4.3. Suppose that $p_{S} \in H^{1}(\Omega)$. Then we have
$u_{\varepsilon}-u_{S} \rightarrow 0$ strongly in $H_{0}^{1}(\Omega)^{n},\left[p_{\varepsilon}\right]-p_{S} \rightarrow 0$ strongly in $L^{2}(\Omega) / \mathbb{R} \quad$ as $\varepsilon \rightarrow 0$.
Proof. We have

$$
\begin{cases}\int_{\Omega} \nabla\left(u_{\varepsilon}-u_{S}\right): \nabla \varphi+\int_{\Omega}\left(\nabla\left(p_{\varepsilon}-p_{S}\right)\right) \cdot \varphi=0 & \text { for all } \varphi \in H_{0}^{1}(\Omega)^{n}, \tag{4.9}\\ \varepsilon \int_{\Omega} \nabla\left(p_{\varepsilon}-p_{S}\right) \cdot \nabla \psi+\int_{\Omega}\left(\operatorname{div} u_{\varepsilon}\right) \psi=0 & \text { for all } \psi \in H_{0}^{1}(\Omega)\end{cases}
$$

We use the notations $p_{0} \in H^{1}(\Omega)$ in Theorem 2.6. Putting $\varphi:=u_{\varepsilon}-u_{S} \in H_{0}^{1}(\Omega)^{n}, \psi:=$ $p_{\varepsilon}-p_{0} \in H_{0}^{1}(\Omega)$ and $\tilde{p}_{S}:=p_{S}-p_{0} \in H^{1}(\Omega)$, we get

$$
\begin{aligned}
& \left\|\nabla\left(u_{\varepsilon}-u_{S}\right)\right\|_{L^{2}(\Omega)^{n \times n}}^{2}+\varepsilon\left\|\nabla\left(p_{\varepsilon}-p_{S}\right)\right\|_{L^{2}(\Omega)^{n}}^{2} \\
= & \int_{\Omega}\left(\nabla \tilde{p}_{S}\right) \cdot\left(u_{\varepsilon}-u_{S}\right)-\varepsilon \int_{\Omega} \nabla\left(p_{\varepsilon}-p_{S}\right) \cdot \nabla \tilde{p}_{S} \\
\leq & \left\|\nabla \tilde{p}_{S}\right\|_{L^{2}(\Omega)^{n}}\left\|u_{\varepsilon}-u_{S}\right\|_{L^{2}(\Omega)^{n}}+\varepsilon\left\|\nabla\left(p_{\varepsilon}-p_{S}\right)\right\|_{L^{2}(\Omega)^{n}}\left\|\nabla \tilde{p}_{S}\right\|_{L^{2}(\Omega)^{n}} .
\end{aligned}
$$

By Corollary 4.2 and the Rellich-Kondrachov Theorem, there exists a sequence $\left(\varepsilon_{k}\right)_{k \in \mathbb{N}} \subset$ \mathbb{R} such that

$$
u_{\varepsilon_{k}} \rightarrow u_{S} \text { strongly in } L^{2}(\Omega)^{n} .
$$

So, we can write that

$$
\begin{aligned}
& \left\|\nabla\left(u_{\varepsilon_{k}}-u_{S}\right)\right\|_{L^{2}(\Omega)^{n \times n}}^{2} \\
\leq & \left\|\nabla \tilde{p}_{S}\right\|_{L^{2}(\Omega)^{n}}\left\|u_{\varepsilon_{k}}-u_{S}\right\|_{L^{2}(\Omega)^{n}}+\sqrt{\varepsilon_{k}}\left\|\sqrt{\varepsilon_{k}} \nabla\left(p_{\varepsilon_{k}}-p_{S}\right)\right\|_{L^{2}(\Omega)^{n}}\left\|\nabla \tilde{p}_{S}\right\|_{L^{2}(\Omega)^{n}} .
\end{aligned}
$$

It implies that

$$
\left\|\left[p_{\varepsilon_{k}}\right]-p_{S}\right\|_{L^{2}(\Omega) / \mathbb{R}}=\left\|p_{\varepsilon_{k}}-p_{S}\right\|_{L^{2}(\Omega) / \mathbb{R}} \leq c\left\|\nabla\left(u_{\varepsilon_{k}}-u_{S}\right)\right\|_{L^{2}(\Omega)^{n \times n}} \rightarrow 0
$$

by Lemma 4.1. An arbitrarily chosen subsequence of $\left(\left(u_{\varepsilon},\left[p_{\varepsilon}\right]\right)\right)_{0<\varepsilon<1}$ has a subsequence which converges to $\left(u_{S}, p_{S}\right)$, so we can conclude the proof.

Acknowledgments

We thank Professors M. Kimura, Kanazawa University, and H. Notsu, Kanazawa University and PRESTO, for fruitful discussions. A. Muntean acknowledges STINT grant nr. DD2017-6936 for partial funding.

References

[1] A. A. Amsden and F. H. Harlow, A simplified MAC technique for incompressible fluid flow calculations, J. Comput. Phys. 6 (1970), 322-325.
[2] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2010.
[3] R. K.-C Chan and R. L. Street, A computer study of finite-amplitude water waves, J. Comput. Phys. 6 (1970), 68-94.
[4] A. J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comput. 22 (1968), no. 104, 745-762.
[5] C. Conca, F. Murat, and O. Pironneau, The Stokes and Navier-Stokes equations with boundary conditions involving the pressure, Jpn. J. Math. 20 (1994), no. 2, 279-318.
[6] C. Conca, C. Pares, O. Pironneau, and M. Thiriet, Navier-Stokes equations with imposed pressure and velocity fluxes, Int. Numer. Meth. Fl. 20 (1995), 267-287.
[7] S. J. Cummins and M. Rudman, An SPH projection method, J. Comput. Phys. 152 (1999), 584-607.
[8] J. Douglas, Jr. and J. Wang, An absolutely stabilized finite element method for the Stokes problem, Math. Comput. 52 (1989), no. 186, 495-508.
[9] G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, 1976.
[10] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, 1986.
[11] R. Glowinski, Finite Element Methods for Incompressible Viscous Flow, Handbook of Numerical Analysis (P. G. Ciarlet and J. L. Lions, eds.), vol. 9, North-Holland, 2003, pp. 3-1176.
[12] J.-L. Guermond and L. Quartapelle, On stability and convergence of projection methods based on pressure Poisson equation, Int. J. Numer. Meth. Fluids 26 (1998), 1039-1053.
[13] F. H. Harlow and J. E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface, The Physics of Fluids 8 (1965), 2182-2189.
[14] T. J. R. Hughes, L. P. Franca, and M. Balestra, A new finite element formulation for computational fluid dynamics: V. circumventing the Babus̆ka-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equalorder interpolations, Comput. Methods Appl. Mech. Engrg. 59 (1986), 85-99.
[15] J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys. 59 (1985), 308-323.
[16] S. Marušić, On the Navier-Stokes system with pressure boundary condition, Ann. Univ. Ferrara 53 (2007), 319-331.
[17] S. McKee, M. F. Tomé, J. A. Cuminato, A. Castelo, and V. G. Ferreira, Recent advances in the marker and cell method, Arch. Comput. Meth. Engng. 2 (2004), 107-142.
[18] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Praha, and Masson et Cie, Editeurs, Paris, 1967.
[19] J. B. Perot, An analysis of the fractional step method, J. Comput. Phys. 108 (1993), 51-58.
[20] R. Temam, Navier-Stokes Equations, North Holland, 1979.
[21] J. A. Viecelli, A computing method for incompressible flows bounded by moving walls, J. Comput. Phys. 8 (1971), 119-143.

[^0]: *Corresponding author
 Communicated by Editors; Received January 23, 2018.
 AMS Subject Classification: 76D03, 35Q35, 35B40.
 Keywords: Stokes problem, Pressure-Poisson equation, Asymptotic analysis.

