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1 Introduction

Let 2 be a bounded domain in R"(n > 2,n € N) with Lipschitz continuous boundary
I and let F € L*(Q)",u, € HY?*(T')" satisfy [ u, - v = 0, where v is the unit outward

normal vector for I'. The weak form of the Stokes problem is: Find ug € H*(Q2)" and
ps € L*(Q)/R satisfying

—Aug 4+ Vps=F in Hﬁl(Q)n,

divug =0 in L?(92), (S)

Uug = Up on HY(I')".

We refer to [20] for details on the Stokes problem, (i.e. more physical background and
corresponding mathematical analysis). Taking the divergence of the first equation, we are
led to

div F' = div(—Aug + Vpg) = —A(divug) + Aps = Apg (1.1)

in distributions sense. This is often called pressure-Poisson equation and is used in MAC,
SMAC or projection method (cf. [1, 4, 7, 12, 13, 15, 17, 19], e.g.). Bearing this in mind,
we consider a similar problem: Find upp € H(Q)" and ppp € H(Q) satisfying

—Aupp + vppp =F in Hil(Q)n,

—Appp = —divF in Hﬁl(Q),

Upp = Up on Hl/Q(F)n,
)

Prp = Db on H'*(T).

(PP)

with p, € HY2(T'). Let this problem be called pressure-Poisson problem. This idea using
(1.1) instead of divug = 0 is useful to calculate the pressure numerically in the Navier-
Stokes equation. For example, the idea is used in both the MAC, SMAC and projection
methods [1, 4, 7, 12, 13, 15, 17, 19]. Dirichlet boundary condition for pressure can be
found in many circumstances such as outflow boundary [3, 21]. (See also [5, 6, 16].)

In this Note, we prepare on an “interpolation” between these problems (S) and (PP),
i.e. we introduce an intermediate problem: For ¢ > 0, find u. € H*(Q)" and p. € H'(2)
which satisfy

—Au, +Vp. =F in H-*(Q)",

—eAp. +divu, = —edivF in H (),

Ue = Wp on HY(I)", (ES)
De = Db on HY2(T).

Let this problem be called e-Stokes problem. In [8, 11, 14], they treat this problem
as approximation of the Stokes problem to avoid numerical instabilities. The e-Stokes
problem (ES) formally approximates the Stokes problem (S) as ¢ — 0 and the pressure-
Poisson problem (PP) as ¢ — oo (Figure 1). We show here that (ES) is a natural link
between (S) and (PP) in Proposition 2.7. The aim of this Note is to give a precise
asymptotic estimates for (ES) when ¢ tends to zero or co.
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Figure 1: Sketch of the connections between the problems (S), (PP) and (ES).

2 Well-posedness

2.1 Notation

We set
Ce(Q)r = {f e C®(Q)" | supp(f) is compact subset in 2},

L2(Q)/R = {u€L2 ‘/u_o}

For m =1 or n, H ()" = (H}(Q2)™)* is equipped with the norm || f]|g-1qym =
subyes, () for [ € H)™, where S, = {¢ € HYQ)"™ | 96z — 1. We

define [p] := p — (1/|2]) Jop and ||pl|r20)/m = infeer [P — allr29) = [l[p]l|12(0) for all
p € L*(Q), where |Q] is the volume of Q.
Let v € B(HY (), H/?(T")) be the standard trace operator. It is known that (see
g. [20, pp.10-11, Lemma 1.3]) there exists a linear continuous operator v, : H*(Q)" —
H~Y%(T) such that v,u = u-v|p for allu € C>(Q)", where v is the unit outward normal for
I and H-V2(T') := HY?(T")*. Then, the following generalized Gauss divergence formula
holds:

/ u-Vw + /(divu)w = {(yu,yw) forallu € HY(Q)",we H(Q).
Q Q

We recall the following Theorem 2.1 that plays an important role in the proof of the
existence of pressure solution of Stokes problem; see [18, pp.187-190, Lemme 7.1, [ = 0]
and [9, pp.111-115, Theorem 3.2 and Remark 3.1 (€ is C"! class)] for the proof.

Theorem 2.1. There exists a constant ¢ > 0 such that
ez < clllf 1) + IV flla-12)
for all f € L*(Q).
The following result follows from Theorem 2.1.
Theorem 2.2. [10, pp.20-21] There exists a constant ¢ > 0 such that
2@ m < IV flla-1(

for all f € L*(Q).
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2.2 Well-posedness

Theorem 2.3. For F' € L*(Q)" and u, € HY?(I')", there exists a unique pair of functions
(ug,ps) € HY(Q)" x (L*(Q)/R) satisfying (S).

See [20, pp.31-32, Theorem 2.4 and Remark 2.5] for the proof.
Theorem 2.4. For F € L*(Q)",u, € HY2(T)" and p, € HY?(T"), there exists a unique
pair of functions (upp,ppp) € HY(Q)" x HY(Q) satisfying (PP).

Proof. From the second and fourth equations of (PP), ppp € H'(Q) is uniquely de-
termined. Then upp € H'(Q)" is also uniquely determined from the first and third
equations. 0

Corollary 2.5. If the solution (upp,ppp) € H' ()" x HY(Q) of (PP) satisfies divupp =
0, by Theorem 2.3, ug = upp and ps = [ppp| hold.
Theorem 2.6. Fore > 0,F € L*(Q)",u, € HY/>(I)" and p, € HY?*(T), there eists a
unique pair of functions (u.,p.) € HY(Q)" x HY(Q) satisfying the problem (ES).
Proof. We pick u; € HY(Q)" and py € H*(Q) with you; = up, yopo = pp. Since div :
H} ()" — L*(Q)/R is surjective [10, p.24, Corollary 2.4, 2°)] and [20, p.32, Lemma
2.4, Chapter 1], there exists uy € H}(Q)" such that divu, = divu;. We put uy :=
up — ug, and then yyug = up, and divuy = 0 in Q. To simplify the notation, we set
u = u. —ug(€ HY(Q)"),p:=p. — po(€ H}(Q)), f € H Q)" and g € H () such that
(f,v) = [q Fv—[fq Vg : Vo= [(Vpo)-v (v € Hy()"),(9,9) = [o F-Va— [, Vpo-Vq (q €
H}(Q)). Then we have
/Vu:VgoJr/(Vp)-ga:(f,go) for all p € HY(Q)",
Q Q (2.2)
5/ Vp -V + /(divu)¢ =e(g,v) for all ¢ € Hj(9Q).
Q Q

Adding the equations in (2.2), we get

(8 (5 )= o+ ctonnn
Here, we denote

((2),(22))5 ::/QVu:Vgp—i—a/ﬂVp-V¢+/ﬂ(Vp)-g0+/ﬂ(divu)¢.

We check that (x,x). is a continuous coercive bilinear form on H}(Q)" x H}(€). The
bilinearity and continuity of (k,x*). are obvious. The coercivity of (x,x*). is obtained in
the following way: Let *(u,p) € Hg(Q)" x H}(2). We have the following sequence of

inequalities;
u u
(0 (o)

Vu:Vu—i—s/Vp~Vp—|—/div(up)
Q Q Q
IVullZ20) + el VP72

min{1, e}(|[Vull72(q) +1IVPl[72())
¢ min{lvd(“““%ﬂ(g)" + ||p||§{1(9))

(AVARAVAR
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by the Poincaré inequality. Summarizing, (*,*). is a continuous coercive bilinear form
and H}(Q)"*! is a Hilbert space. Therefore, the conclusion of Theorem 2.6 follows based
on the Lax-Milgram Theorem. O]

From now on, let the solutions of (S), (PP) and (ES) be denoted by (us, ps), (upp, ppp)
and (u, p.), respectively.

Proposition 2.7. Suppose that ps € H'(Q). Then there exists a constant ¢ > 0 indepen-
dent of € such that

s — UPP||H1 n < cf[yops — pb||H1/2 () lJus — ua“Hl n < cllvops — pb||H1/2
In particular, if yops = py, then ppp = p. = ps hold for all ¢ > 0.

Proof. From (S) and (PP), we have

V(us —upp) : Vo = —/(V(pg —ppp)) - forall p € HY(Q)",
o (2.3)
fV(pS —ppp) -V =0 for all ¢ € H ().

Q

Putting ¢ := ug — upp € HE(Q)" in (2.3), we get

19 s = ure) agyeen == [ (V05 = por)) - (us = ure)
Q
< ||V(ps — prp)|l 2" lts — upp||r2(0)

and then

s — upp|lm@r < al|V(ps — pee)|r2@) (2.4)

follows. We pick up po € H'(Q2) such that yopy = py. From the fourth equation of (PP)
and the second equation of (2.3), we obtain ppp — py € Hi(€2) and

/ V(pPP —Po) -V = / V(ps —po) -V,
Q Q

and, by Stampacchia Theorem [2, Theorem 5.6], it follows that

min (—||V@/)||L2 /V Ps —Po) - V¢)

YEH;(Q)
1
= I¥orr =l - Vs =) Tore
Q
1
= 5IVperliy = 5 IVmlisor = | Vos-Voee+ [ Vos- i

Hence,

1 1
—|IV(ps — 2 o = min =|IV(ps — po — 2o | -
51708 = o)l = min (51965 == D)l )
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Since 7 is surjective and the space Ker(y,) = H}(Q), H(Q)/H}(Q) and H'Y?(T) are
isomorphic, there exists a constant c; > 0 such that ||q||g1(q)/m1@) < c2ll0all g2 for
all ¢ € H'(Q2). Hence, we obtain

IV(ps — ppp)llr2r < min |[V(ps — po — V)2
YEH(Q)
< min_|lps —po — Y|z @)
YEH(Q)

= |lps — PPP||H1(Q)/H3(Q)
< e2l[vops — Yool gz

Together with (2.4) and the assumption ypy = py, we obtain |lug — upp||gi(@y <

c1ca|[yvops — pb||H1/2(F)-
Let w. == ug —u. € HY(Q)", 7. := ppp —p- € H}(Q). By (S), (PP) and (ES), we have

/ Vw, : Vo + /(Vrs) Cp = —/(V(ps —ppp)) - forall o € HI(Q)",
Q Q Q

E/QVTE -V + /Q(divwg)w =0 for all ¢ € Hg(9).

(2.5)

Putting ¢ := w. and ¥ := r. and adding two equations of (2.5), we get
IVwe [ 72 qymcn +elIVTe] [Z2ayn = —/Q(V(ps—ppp))'wa < |IV(ps—ppp)|l2@)|lwel| L2
from [,(Vr.) - we = — [,(divw.)re. Thus it leads ||we|[g @ < cs||V(ps — pre)l|L2@)-

Hence we obtain ||lus — uc|| g1y = [|[w:|[a1» < cacsllvops — poll gz r)- O

Proposition 2.8. Under the hypotheses of Proposition 2.7, if p € HY(Q) satisfies vop =
Dy, then we have
V(B — pee)ll2@ < IV — ps)ll 2@

Proof. By the second equation of (2.3) and p — ppp € H(Q), it yields

/ V(ps —ppp) - V(p —ppp) = 0.
Q
Hence we obtain

V(B = prp)llZ2 g = /Qv(ﬁ —ps +ps —pep) - V(P — prp)
< IV = ps)ll2@ V(B = pep)ll 20
Therefore, ||V (p — ppp)||r2@r < ||V(P — ps)||r2@)r holds. O
Remark 2.9. If ps € H'(Q), then we have

|V (pe = pre)ll2r < [IV(Pe — p9)ll 20

for all ¢ > 0, (from Proposition 2.8). Hence, if (Vp.).~o converges strongly to Vpg in
L%(Q)", then there exists a constant ¢ € R such that upp = ug and ppp = pg + ¢, which
imply yops = pp + ¢ for some ¢ € R. In other words, if ps € H* () satisfies vops # py + ¢
for all ¢ € R, then Vp, does not converge to Vpg in L%(Q)" as ¢ — 0.
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3 Links between (ES) and (PP)

Theorem 3.1. There exists a constant ¢ > 0 independent of € satisfying
c .
||U£ - UPP||H1 n < —||d1VUPP||H Q) ||p5 —pPP||H1(Q) < g||d1VUPP||H*1(Q)~
for all e > 0. In particular, we have

[ue = upp||lmr@r = 0, ||lp: — prp||lHri@) = 0 as e — oc.

Proof. From (PP) and (ES), we have

/ V(u. — upp) : Vo + /Q(V(pg —ppp)) - =0 for all ¢ € Hi(Q)",
/ V(p. — ppp) - VU + /Q (div(ue — upp))p = — /Q (divupp)y for all o € HA(Q).
(3.6)

Putting ¢ := u. — upp € H}(Q)" and ¢ := p. — ppp € HL(Q) and adding two equations
of (3.6), we obtain

IV (ue = upp)|[[2qmen + €l V(P = prp)lli2y < |Idivuppl[m-1@)l|V(p: = pre)ll2@),

where we have used [,,(V(p: —ppp)) - (e —upp) = — [,(div(u: —upp))(p: — ppp). Thus
I ..
IV (P = prp)lliz@r < Zlldivurellm-@
follows. In addition, by (3.6) and the Poincaré inequality, we have

V(e — upp) [Py = — / (V(p: — prp)) - (e — upp)

Q
< |IV(p: = pre)|| 2@ ||tue — upp||L2@)
< ||[V(pe — pep)llre@ IV (ue — uPP)HLQ(Q)"X”’

and then ||V (u: — upp)||r2@n < (¢/€)|| divupp||g-1(q) follows. O

Corollary 3.2. If upp satisfies divupp = 0, then u. = upp and p. = ppp hold for all
e > 0. Furthermore, ug = u. = upp and ps = [pe] = [ppp] hold for all € > 0.

4 Links between (ES) and (S)
Lemma 4.1. Ifv € HY(Q)",q € L*(Q) and f € H7Y(Q)" satisfy
[ ViV (Vg = () for all g e B

then there exists a constant ¢ > 0 such that

lgll2@m < [Vl p2gpren + |1 flla-10)m)-
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Proof. Let ¢ be the constant arising in Theorem 2.2. Then we have

llallzz@m < el|Valla-r@r = e sup [(Va, )]
PESH

< csup(|/QVU1V90|+|<fa<P>|>

PESH

< clIVollpayon + 1 lla-1@r)-

Theorem 4.2. There exists a constant ¢ > 0 independent of € such that
el [ < e |pellz@r < ¢ for all e > 0.
Furthermore, we have
u. — ug — 0 weakly in Hy(Q)", [p:] — ps — 0 weakly in L*(Q)/R as e — 0.

Proof. We use the notations vy € H'(Q)",po € HY(Q), f € H Q)" and g € H~}(Q) in
Theorem 2.6. We put @, := u. —ug € H3(Q)", p- := p. — po € HL(2). Then we have

[V Ve [h)-0=(r)  torallge @),
Q Q

(4.7)
5/ Vp. - Vi + /(divﬂa)w =¢(g,v) forall ¥ € HJ(Q).
Q Q

Putting ¢ := ., ¢ := p. and adding the two equations of (4.7), we get
1 Vaie |72 qyuen + ellVBel 2@y < I Fllm-1(0) [ Vide]| p2ymen + ellgll -1V Pel 220

since [,(Vpe) e = — [o,(div tc)pe. It leads that (||te|] g1 () Jo<e<t and (|[vep:| |1 (@))o<e<
are bounded. In addition,

Pellz2@ym < c([[Vie|| poqyrxn + || fll-1@)n)

by Lemma 4.1, which implies that (||p||r2)/&)o<e<1 is bounded. By Theorem 3.1,
(JJue| 1) )e>1 and (||Pe||r2()/r)e>1 are bounded, and then (|[uc||m1 ()" )e>0 and
(AIFES /R)a>0 are bounded.

Since HZ(Q)" x (L2(2)/R) is reflexive and (i, [pc])occ<1 is bounded in HE(Q)" x
(L*(Q)/R), there exist (u,p) € Hi ()" x (L*(Q)/R) and a subsequence of pair (@i, , P, )xen
C H ()" x HI(Q) such that

i, — u weakly in Hy(Q)", [p.,] — p weakly in L*(Q2)/R as k — oco.

Hence, from (4.7) with € := ¢y, taking k — oo, we obtain

/ Vu: Vo + (Vp, o) = (f,) forall p € HY(Q)"

(4.8)
](div w) =0 for all ¢ € HJ (),
Q
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where

|€k/ Ve, - V| < Verl|Vepelm @l [¥] m ) — 0
Q

/vﬁ@c'wz_/[ﬁak]div¢_>_/pdiv¢:<vp790>
Q Q Q

as k — 0o. The first equation of (4.8) implies that
~A(u+u) +Vp+p)=F in HY(Q)"

From the second equation of (4.8), div(u+ug) = 0 follows. Hence, we obtain ug = u + ug
and ps = p + [po]. Then we have

~ . n
Ug, — Us = Us, — U — Uy = U, — ug — 0 weakly in Hg(Q)",

[pe,] = ps = [P, = p = po] = [P, — p — 0 weakly in L*(Q)/R.
An arbitrarily chosen subsequence of ((u., [pe]))o<e<1 has a subsequence which converges
to (ug,ps), so we can conclude the proof. ]

Theorem 4.3. Suppose that ps € H'(Q). Then we have
ue —ug — 0 strongly in H3(Q)", [p.] —ps — 0 strongly in L*(Q)/R as e — 0.
Proof. We have

/v —ug) w+/ﬂ<w —ps)-p=0 forall e HYQ)",

(4.9)
/ V(p ) -V + /(dlv u)Y =0 for all v € H} ().

We use the notations py € H(Q) in Theorem 2.6. Putting ¢ := u. —ug € H3(Q)", ¢ =
pe — po € Hy(Q) and ps := pg — po € H*(Q), we get
19 e — )] Baggyoen + €1V (02 = 95) By
= /(Vﬁs) (U —ug) — 5/ V(pe — ps) - Vbs
Q Q
< |IVbsllez@rllue = usllr2@r + €llV(pe = ps)llz@rIVPsll 2@

By Corollary 4.2 and the Rellich-Kondrachov Theorem, there exists a sequence (gg)reny C
R such that
u., — ug strongly in L*(Q)".

So, we can write that

9, =)l
< IVDsl 2@y [ue, — usl| 2@y + VERl|VERY (D, — Ps)||22@)" | VDs]| 2

It implies that
=] = psllzz@ym = lIpe, = psllrz@yr < |V (ue, — us)l] 2 gyren = 0

by Lemma 4.1. An arbitrarily chosen subsequence of ((ue, [p:]))o<c<1 has a subsequence
which converges to (ug, ps), so we can conclude the proof. O]
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