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1 Introduction

Recently, there has been a tremendous increase in the use of fractional differential models
to simulate dynamics in many fields, e.g. physics, chemistry, biology, engineering and so
on [1],[4],[6],[7],[17]. In the models fractional order derivatives are used. They have a long
history and they have been studied in the field of fractional calculus. A list of promi-
nent mathematicians contributing to fractional calculus is found in [20]. Besides them,
Caputo gave a convenient definition for initial value problems of differential equations as
follows [5]: For 0 < α non-integer,

cD
α
0 u(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1 d
n u(s)

dsn
ds, (1)

where Γ is the gamma function, n = ⌈α⌉ is the least integer more than or equal to α, and
u is assumed to be sufficiently smooth. This definition is used in the paper because it is
convenient for our numerical computation.

It is hard to obtain exact solutions of fractional differential equations, or even if an
exact solution is available it may be too complicated to be used in practice. Thus the role
of numerical computation becomes important. Various numerical methods to fractional
differential equations such as the Adams-type predictor-corrector method, linear multi-
step methods, are presented in [1] and [7]. Spectral methods have also been applied to
fractional differential equations [7],[9],[21]. As for spectral methods it is well known that
they are superior in accuracy [3]. If a function u is m-times continuously differentiable,
then ∥u− uN∥ = O(N−m) where uN is the N -th order approximate function by the spec-
tral methods, and ∥·∥ is a suitable norm. This property is called spectral accuracy or
infinite-order accuracy. Moreover, if a function u is analytic in a strip of the complex
plane, then ∥u− uN∥ = O(e−γN) with some positive number γ. In [21] numerical results
for some fractional differential equations show spectral accuracy.

Spectral methods are roughly divided into the Galerkin type and the collocation type
[2],[3]. The latter type is called the spectral collocation method, and it is more convenient
for nonlinear problems or higher dimensional problems. In the paper the Chebyshev spec-
tral collocation method is adopted. Although in [7] and [21] spectral collocation methods
are already used, by using Chebyshev polynomials we can give a concrete expression of
coefficients in the linear combination of basis functions. In the paper multiple-precision
arithmetic is also used in numerical computation. To investigate mathematical properties
of solutions numerically it is necessary to eliminate the influence of rounding error. The
combination of spectral methods and multiple-precision arithmetic was presented in [16]
to realize the arbitrary reduction of numerical error. Such reduction is indispensable for
direct numerical simulations of inverse problems [10],[13],[15]. By using this combina-
tion we also investigated numerically mathematical properties of functions or solutions,
for instance, regularity or existence of solutions [8],[14],[19]. In the paper, by using the
combination we investigate analyticity of solutions of fractional differential equations.
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2 The Chebyshev Spectral Collocation Method

We derive a convenient form of fractional derivatives in terms of the Chebyshev spectral
method, which plays an essential role in our numerical studies.

First we briefly recall the Chebyshev spectral collocation method [2]. Let ŨN(x) be a
polynomial function of degree N defined on the interval [−1, 1]. The Chebyshev expansion
of ŨN(x) is

ŨN(x) =
N∑
k=0

āk Tk(x), (2)

where Tk(x) = cos (k arccosx) is the Chebyshev polynomial of order k. We also introduce
Chebyshev-Gauss-Lobatto collocation points as follows:

x̄j = cos
jπ

N
(j = 0, 1, 2, · · · , N). (3)

Letting Ũj = ŨN(x̄j), from (2) we have

Ũj =
N∑
k=0

āk Tk(x̄j).

The coefficients ak are given by the following inverse formula

āk =
2

Nck

N∑
j=0

1

cj
Tk(x̄j)Ũj, (k = 0, 1, 2, . . . , N) (4)

where

cj =

{
2, j = 0, N,

1, otherwise.

Substituting (4) to āk in (2) we obtain

ŨN(x) =
N∑
j=0

(
1

cj

N∑
k=0

2

Nck
Tk(x̄j)Tk(x)

)
Ũj.

This representation motivates an N -th order approximation UN(x) to a function U(x)
on [−1, 1] as

UN(x) =
N∑
j=0

(
1

cj

N∑
k=0

2

Nck
Tk(x̄j)Tk(x)

)
Uj, (5)

where Uj = U(x̄j). We should remark that if U(x) is a polynomial of degree m(≤ N) then
U(x) = UN(x). The truncation number N in (5) denotes the approximation order. On the
other hand, N in (3) denotes the number of collocation points; to be exact, the number
is (N + 1). This means that in spectral collocation methods the approximation order
can be easily controlled by the number of collocation points. As stated in Introduction,
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spectral collocation methods are applicable to nonlinear problems or higher dimensional
problems. These features are quite convenient to investigate mathematical properties of
solutions to various problems.

In spectral collocation methods, differential equations are satisfied at the collocation
points. Thus they require the derivative of the approximate function at each collocation
point. For instance, the first order derivative of UN(x) at the collocation point xi is given
by differentiating (5):

d

dx
UN(x̄i) =

N∑
j=0

(Dx)i,j Uj =
N∑
j=0

(
1

cj

N∑
k=0

2

Nck
Tk(x̄j)

d

dx
Tk(x̄i)

)
Uj, (6)

where Dx is called the first order derivative matrix.

Let u(t) be a function defined on [0, T ]. By substituting t =
T

2
(x+ 1), u

(
T

2
(x+ 1)

)
is a function on [−1, 1] and is approximated by the Chebyshev expansion

UN(x) =
(
T0(x) · · · TN(x)

)a0
...
aN

 .

By using a square matrix T̃ =
(
T̃kj

)
of order N + 1 with entries T̃kj =

2

Nckcj
Tk(xj), the

inverse formula (4) in the matrix form isa0
...
aN

 = T̃

U0
...

UN

 ,

where Uj = u

(
T

2
(xj + 1)

)
. Let C be a square matrix of order N + 1 which satisfies

C


1

T
2
(x+ 1)

...(
T
2

)N
(x+ 1)N

 =


T0(x)
T1(x)

...
TN(x)

 . (7)

We remark that T̃ and C are constant matrices. They lead to the expression

UN(x) =
(
1 T

2
(x+ 1) · · ·

(
T
2
(x+ 1)

)N)CT T̃

U0
...

UN

 ,

where CT is the transpose of C. Let tj =
T

2
(xj + 1), uj = u(tj), and uN(t) = UN(x) with

t =
T

2
(x+1). Then uj = Uj and the function uN is an approximation to u and is written
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as

uN(t) =
(
1 t · · · tN

)
CT T̃

u0
...
uN

 .

This immediately leads to the fractional derivative of uN at ti as

cD
α
0 uN(ti) =

(
cD

α
0 [1](ti) cD

α
0 [t](ti) · · · cD

α
0 [t

N ](ti)
)
CT T̃

u0
...
uN

 ,

which is a linear combination of uj, j = 0, . . . , N , and is similar to (6). It should be
emphasized that the Caputo derivatives of the unknown function at each collocation
points cD

α
0 [t

k](ti) are easily calculated since the Caputo derivatives of monomials tk for a
nonnegative integer k are given by

cD
α
0 [t

k] =

0, 0 ≤ k < α,

Γ(k+1)
Γ(k+1−α)

tk−α, α ≤ k.

It is noted in [21] that the entries of C are calculated by the use of inverse of the
Vandermonde matrix which is obtained by substituting N + 1 collocation points xj, j =
0, 1, . . . , N , into (7). However, the entries of C are calculated explicitly as follows. For
the purpose, we introduce two square matrices F =

(
fkj
)
and L =

(
ℓkj
)
of order N + 1,

which satisfy

T0(x)
...

TN(x)

 = F


1
x
...
xN

 and


1
x
...
xN

 = L


1

T
2
(x+ 1)

...(
T
2

)N
(x+ 1)N

 .

Firstly, the entries fkj are calculated from the recurrence relation T0(x) = 1, T1(x) = x
and Tk+1(x) = 2xTk(x)− Tk−1(x). Secondly, it follows from the binomial expansion that

xk = (x+ 1− 1)k =
k∑

j=0

(−1)k−j

(
k
j

)
(x+ 1)j.

Since (x+ 1)j, j = 0, . . . , N , are linearly independent, ℓkj is given by

ℓkj =

(−1)k−j

(
2

T

)j
(
k

j

)
, j ≤ k,

0, k < j.

Finally the product of two lower triangular matrices gives C = FL.
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3 Numerical Evaluation of Fractional Derivatives

This section is devoted to investigate accuracy of numerical integration appearing in (1)
and computational environments.

The integrand in (1) has a singularity at boundary s = t, and thus special attentions
should be paid for the sake of reliable and accurate computation. The use of double
exponential rule [18] is known as a novel method to overcome the difficulty. It is also
convenient due to returning numerical results in given tolerance automatically.

We demonstrate an example with 0 < α < 1 and u(t) = t2. Using the standard double

exponential transformation ϕ(y) = tanh
(π
2
sinh y

)
, the evaluation of integral at t = 1 is

cD
α
0 u(1) =

1

Γ(1− α)

∫ ∞

−∞

ϕ(y) + 1(
1−ϕ(y)

2

)α ϕ′(y)

2
dy

by introducing the discretization parameter h > 0 and yk = kh, k ∈ Z, “the composite
trapezoidal rule” gives an approximate series as

≈ 1

Γ(1− α)

∑
k∈Z

ϕ(yk) + 1(
1−ϕ(yk)

2

)α ϕ′(yk)

2
h

which is truncated to a finite sum as

≈ 1

Γ(1− α)

∑
K0≤k≤K1

ϕ(yk) + 1(
1−ϕ(yk)

2

)α ϕ′(yk)

2
h

with some integers K0 and K1.
As |k| → ∞, ϕ′(yk) converges to the zero more rapidly than growth of the integrand

caused by the singularity, and their products and accumulations are negligible for suffi-
ciently large |k|. Therefore choice of h, K0, and K1 is crucial for accuracy of numerical
integration. Table 1 and Table 2 show numerical evaluation of

Ih =
1

Γ(1− α)

∑
K0≤k≤K1

ϕ(yk) + 1(
1−ϕ(yk)

2

)α ϕ′(yk)

2
h

with α = 0.5, 0.9 respectively. In the tables, we show discretization and truncation
parameters as L = K0h, U = K1h, and K = K1 −K0. Values of the exact solution

cD
α
0

[
t2
] ∣∣∣

t=1
=

2

Γ(3− α)

are also shown in tables.
From Table 1, both double precision arithmetic and 100 decimal digit computation

enable us to find approximate values with (L,U) = (−5, 3.16) for α = 0.5. On the
other hand, for α = 0.9, parameters (L,U) = (−5, 5) and K ≥ 16 in 100 decimal digit
return approximations while the double precision arithmetic returns infinity if U is greater
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Table 1: Numerical integration Ih with α = 0.5.

L U K double precision 100 digits

−5.00 3.16 8 1.50652114572 1.50652118788
16 1.50451382597 1.50451384705
32 1.50450554499 1.50450555553

−5.00 3.17 8 +∞ 1.50798169193
16 +∞ 1.50451519723
32 +∞ 1.50450555566

exact value 1.50450555613 . . .

Table 2: Numerical integration Ih with α = 0.9.

L U K double precision 100 digits

−5.00 3.16 8 1.87072828925 1.90636895125
16 1.87900443987 1.89682476417
32 1.87188368373 1.88079405669

−5.00 3.17 8 +∞ 1.90645242453
16 +∞ 1.89759689138
32 +∞ 1.88210055004

−5.00 5.00 8 +∞ 1.90117136452
16 +∞ 1.91113179851
32 +∞ 1.91115819291

exact value 1.91115819293 . . .

than or equal to 3.17. This means that double precision arithmetic is not enough for
numerical evaluation of fractional derivatives without special treatments of singularities
in Ih, especially when the power −α is close to −1. In our numerical computation,
exflib [11] is used for multiple-precision arithmetic.

Figure 1 shows profiles of fractional derivatives cD
α
0 u(t) for u(t) = t2 obtained by

numerically integrating (1). Figure 1(a) and (b) are processed with double precision
arithmetic and 100 decimal digits arithmetic respectively. We set (L,U) = (−5, 3.16) in
double precision arithmetic, and (L,U) = (−5, 5) in 100 decimal digits arithmetic, with
sufficiently large K. Obviously, results for α = 0.9 do not coincide. This also shows that
double precision is not enough for reliable computations. More detail discussions and
other numerical examples will be found in [12].
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(a) Results by double precision
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(b) Results by 100 decimal digits

Figure 1: Fractional derivatives cD
α
0 u(t) of u(t) = t2.

4 Numerical Results for Fractional Differential Equa-

tions

In this section we shall demonstrate some examples which shows efficiency of combination
of the Chebyshev spectral method and multiple-precision arithmetic to achieve arbitrary
accurate numerical solutions to fractional order differential equations.

Example 1.

u(1/3)(t) = f(t), 0 < t < 3,

u(0) = 0.

Three cases are considered: f(t) = 5 !
Γ(17/3)

t14/3, 10 !
Γ(32/3)

t29/3, and 15 !
Γ(47/3)

t44/3. The exact

solutions are u(t) = t5, t10, and t15 respectively. Since each solution is a monomial, it is
exactly treated by the Chebyshev spectral method, and hence only rounding errors appear
as numerical errors.

In Figure 2, the horizontal axis is the spectral degree N and the vertical axis shows
errors in numerical results:

max
0≤j≤N

|u(xj)− uN(xj)|

in the logarithmic scale. In the figure, purple, green, and blue graph represent numerical
errors for u(t) = t5, t10, and t15 respectively. In each color, plus (+) sign and cross (×) are
error in 50 decimal digits and 100 decimal digits respectively. In each setting, behaviour
of errors suddenly changes at a certain order N0. More precisely, when N becomes larger
than or equal to N0, the numerical errors are less than 10−50 or 10−100 which correspond to
the rounding errors in each computation. This indicates that the solution is a polynomial
of degree almost N0.



177

 1e-120

 1e-100

 1e-80

 1e-60

 1e-40

 1e-20

 1e+00

 1e+20

 1e+40

 0  5  10  15  20

M
a

xi
m

u
m

 E
rr

o
r 

(l
o

g
a

ri
th

m
ic

 s
ca

le
)

N : Spectral Degree
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f(x)=x**4.666   50 digit
f(x)=x**9.666 100 digit
f(x)=x**9.666   50 digit

f(x)=x**14.666 100 digit
f(x)=x**14.666   50 digit

Figure 2: Error decay for Example 1, the exact solutions are monomials.

Example 2. [9]

u(5/2)(t)− 3u(2/3)(t) = f(t), 0 < t ≤ 1,

u(0) = 1, u′(0) = β, u′′(0) = β2.

We set the exact solution u(t) = eβt, and calculate f(t) as the left-hand side of the
equation by using (1). Figure 3 shows numerical results by double precision (blue), 50
decimal digits (green), and 100 decimal digits (purple). The error decreases exponentially
until the level of rounding error is almost reached. This behavior of errors is expected
from the property of the spectral methods.
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Figure 3: Error decay for Example 2, the exact solution is eβt.
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Example 3. [9]

u′′(t) + u(1.5)(t) + u(t) = f(t), 0 < t ≤ 1,

u(0) = 0, u′(0) = ω.

The equation is known as the Bagley-Torvik equation. We set the exact solution u(t) =
sinωt. Then f(t) is calculated by using (1). Numerical results in several precisions are
shown in Figure 4. The error decreases similarly in the preceding example, since the exact
solution is also analytic in this example.
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(a) ω = 1
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Figure 4: Error decay for Example 3, the exact solution is sinωt.

Example 4. In the same equation and initial condition as Example 1, we adopt f(t) =
Γ(7/3)t, and the exact solution is u(t) = t4/3. Figure 5 shows numerical results, where
both the horizontal and vertical axes are in the logarithmic scale. In this setting numerical
errors decay as O(N−2.66), which is not exponential decay but polynomial decay with
respect to N . This suggests that the exact solution is not analytic.

5 Conclusion

In the paper, by using the Chebyshev spectral collocation method a concrete expression
of coefficients in the linear combination of basis functions is derived. It is used for solving
one-dimensional fractional differential equations numerically. We also investigate analyt-
icity of solutions numerically. To do so, in numerical computation the multiple-precision
arithmetic is used to estimate the influence of rounding error. Numerical results are very
satisfactory. Spectral accuracy is seen and it shows analyticity of solutions. Moreover,
when exact solutions are monomials, numerical results are succeeded to determine the
degree of monomials.
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Figure 5: Error decay for Example 4 in double precision arithmetic (Blue) and 100 decimal
digits (Green), the exact solution is t4/3.
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