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1 Introduction

Viscoelasticity describes a property of materials exhibiting both viscous and elastic char-
acteristics under deformation. Such a material may show elastic behavior as well as
fluid properties. We are interested in stability of viscoelastic Poiseuille-type flows in two
space dimensions in a layer. A Poiseuille-type flow has a horizontal flow-profile that is
completely determined by the vertical component.

There is an earlier work by Endo, Götz, Liu and the first author [6], where they
used an energy argument to prove L2-type stability results for a small Poiseuille-type flow
subject to 

∂tF + u · ∇F = F∇u,
div u = 0,

∂tu− ν∆u+ u · ∇u+∇π = divF TF,
(1)

where F denotes the deformation tensor, u the velocity, π the pressure and ν the viscosity.
The present paper considers a similar problem in an Lp-setting.

We shall show stability of small viscoelastic Poiseuille-type flows in layer domains
under a periodicity condition in one direction and under the assumption that the height
of the layer is sufficiently small.

The above viscoelastic model is due to considerations by Lin, Liu and Zhang [10].
There, the authors use weak theory to obtain local-in-time smooth solutions in bounded
domains in R2 and R3 with smooth boundary, the whole space R2 and R3 or a periodic
box. They show global-in-time existence of solutions with small initial data in the case
of R2 and the periodic box. Existence of local-in-time strong solutions has been shown
by Kreml and Pokorný [9]. Using maximal regularity methods, Geissert, Götz and
Nesensohn [7] proved for a related model large-data local Lp well-posedness as well as
existence and uniqueness of strong solutions for arbitrarily large times in a variety of
domains.

Stability of a flow parallel to the boundary like the Poiseuille flow or the Couette flow
is a very important topic in fluid mechanics. In fact it is known that the Couette flow
for the incompressible Navier-Stokes equations in a layer domain is stable under a small
perturbation, irrespective of how large its velocity is [8]; see [12] for a pioneering work.

Let us briefly explain our approach. By a change of variables introduced in [10], the
problem is transformed into a parabolic quasilinear evolution equation for the velocity
coupled with a damped quasilinear transport equation for the deformation tensor. We
then show unique global-in-time existence of the perturbed flow for small initial pertur-
bations. Our main ingredient is the maximal regularity estimate of the generalized Stokes
problem with inhomogeneous divergence, which is due to Abels [1] in the non-periodic
case. The adapted version for the periodic layer has recently been given in [13]. Let us
emphasize at this point, that it is not enough to have the (strong) maximal regularity
estimates, but that we also have to use an a priori estimate in weaker norms. This is due
to the fact that we cannot use a simple Banach fixed point argument, as it is not possible
to show contraction in the high norms of the expected solution spaces. To overcome this
difficulty, we use as another vital ingredient a fixed point argument due to Kreml and
Pokorný [9], see Lemma 1 below.
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In the remaining part of the introduction we first rewrite the model for viscoelastic
fluids in terms of a stream function for the deformation tensor. Then we establish a model
for a perturbation of a Poiseuille-type flow. In the third part we apply a transformation
to the equation for the stream function which reveals the hidden dampening term of the
equation. The main result is stated at the end of the introduction.

1.1 Viscoelastic Fluids

We consider the general system (1) describing the flow of viscoelastic fluids set in a two-
dimensional layer Ωd = R× (0, d) and demand that for F0 := F |t=0 we have

detF0 = 1, divF0 = 0 in Ω. (2)

By formally taking the matrix-valued divergence on the first equation in (1), we obtain
by employing Einstein’s sum convention

∂t∂jFij + (∂juk)∂kFij + uk∂k∂jFij = (∂jFik)∂kuj + Fik∂j∂kuj .

Using div u = 0 in the second term of the right-hand side and noting that the second term
on the left-hand side equals the first term on the right-hand side, we obtain the following
equation for divF :

∂tdivF + (u · ∇)divF = 0, in (0, T )× Ωd. (3)

Therefore, the initial datum divF0 = 0 is merely transported and hence

divF = 0 in (0, T )× Ωd. (4)

By an analogous argumentation it follows

detF = 1 in (0, T )× Ωd. (5)

In two space dimensions, we obtain for a solenoidal matrix field an R2-valued stream
function ζ0 such that

F0 = ∇⊥ζ0 =

(
−∂2ζ01 ∂1ζ01

−∂2ζ02 ∂1ζ02

)
.

Moreover, if this quantity is propagated in time subject to the transport equation

∂tζ + u · ∇ζ = 0,
ζ(0) = ζ0,

(6)

then for F = ∇⊥ζ, the first equation of (1), is fulfilled, see [10]. This system is much more
friendly to analyze and hence we will in the following consider the function ζ instead of
F . With this new variable, it is computed in [10] that

divF TF =
1

2
∇|∇ζ|2 −∆ζ1∇ζ1 −∆ζ2∇ζ2. (7)
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Notice that the first term is a gradient that can be absorbed into the pressure function
in the momentum balance equation in (1). Therefore, let us introduce a new pressure
function π̃ = π− 1

2
|∇ζ|2, which is again denoted by π in the following. With this we end up

with an equivalent system that is valid in two space-dimensions for (u, F, π) = (u,∇⊥ζ, π),
when we apply Einstein’s sum convention:

∂tζ + u · ∇ζ = 0,

div u = 0,

∂tu− ν∆u+ u · ∇u+∇π = −∆ζk∇ζk.
(8)

We now want to construct a suitable Poiseuille-type flow solution ū to (1) or equiv-
alently (8), i.e., a solution with horizontal flow-profile that is completely determined by
the vertical component. Hence, we assume that ū takes the form

ū(t, x) =

(
ψ(t, x2)

0

)
,

with homogeneous Dirichlet boundary conditions. Then the divergence condition in (1)
is trivially fulfilled.

In order to adequately determine the corresponding deformation tensor F̄ or, equiva-
lently, the corresponding stream function ζ̄, we introduce the flow map xi(t, ξ), 0 ≤ t < T ,
corresponding to Lagrangian coordinates ξ. These flow maps are given by the system of
ordinary differential equations

d

dt
x1(t, ξ) = ū1(t, x1(t, ξ), x2(t, ξ)) = ψ(t, x2(t, ξ)), x1(0) = ξ1,

d

dt
x2(t, ξ) = ū2(t, x1(t, ξ), x2(t, ξ)) = 0, x2(0) = ξ2,

which can easily be solved by

x1(t, ξ) = ξ1 +

∫ t

0

ψ(s, x2(s, ξ)) ds = ξ1 +

∫ t

0

ψ(s, ξ2) ds,

x2(t, ξ) = ξ2,

as long as ψ admits sufficient regularity. Let us abbreviate

φ(t, x2) =

∫ t

0

ψ(s, x2) ds. (9)

Then, we can calculate the deformation tensor and the resulting elastic force

F̄ =

(
1 0
∂2φ 1

)
, F̄ T F̄ =

(
1 + (∂2φ)2 ∂2φ

∂2φ 1

)
and div F̄ T F̄ =

(
∂2

2φ
0

)
.

Note here, that with x2(t, ξ) = ξ2 it is also ∂
∂ξ2

= ∂
∂x2

= ∂2. Let us also remark at this

point that div F̄ = 0.
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The stream function ζ̄ corresponding to F̄ may be chosen as

ζ̄(t, x) =

(
−x2

x1 − φ(t, x2)

)
(10)

solving the system {
∂tζ̄ + ū · ∇ζ̄ = 0, in (0, T )× Ωd,

ζ̄(0, x) = x⊥, for x ∈ Ωd.

Here we have used the notation x⊥ :=

(
−x2

x1

)
. We note that while ζ̄ is not constant in

the horizontal variable, derivatives of ζ̄ are.
We insert the elastic force into the balance of momentum for ū, i.e.,

∂tū− µ∆ū+ ū · ∇ū+∇π̄ = div F̄ T F̄ , in (0, T )× Ωd,

which yields the equivalent formulation

∂tψ + ∂1π̄ = µ∂2
2ψ + ∂2

2φ,

∂2π̄ = 0.

}
in (0, T )× Ωd.

We conclude from the second equation that the pressure is a function depending only
on the horizontal variable π̄ = π̄(t, x1). Since ψ and φ depend only on t and x2, the first
equation implies that ∂1π̄ is a function of time only, i.e., ∂1π̄(t, x1) = −h(t) for some
function h. Inserting this into the system yields

∂tψ − ∂2
2φ = µ∂2

2ψ + h, in (0, d).

Finally, by the definition of φ it is ψ(t, x2) = ∂tφ(t, x2) and moreover, the homogeneous
Dirichlet boundary conditions for ū carry over to φ, i.e. φ(t, 0) = φ(t, 1) = 0. At initial
time we have φ(0, x2) = 0 and ∂tφ(0, x2) = ψ(0, x2) = ψ0(x2) for some function ψ0 that
will be given satisfying homogeneous Dirichlet conditions.

With this, we end up with a viscous wave equation in one dimension
∂2
t φ− ∂2

2φ = µ∂t∂
2
2φ+ h, in [0, T )× (0, d),

φ(t, 0) = φ(t, d) = 0, for t ∈ (0, T ),

φ(0) = 0, ∂tφ(0) = ψ0, in (0, d).

(11)

For sufficiently regular data (ψ0, h), this equation is uniquely solvable for all times,
see e.g. [6, Proposition 3.1] and cf. [2], [3], [5, Exercise 2 and 3, pp. 582]. Inserting the
function ψ = ∂tφ into the ansatz for ū, we receive a solution (ū, ζ̄, π̄) of the system

∂tζ̄ + ū · ∇ζ̄ = 0, in (0, T )× Ωd,

div ū = 0, in (0, T )× Ωd,

∂tū− µ∆ū+ ū · ∇ū+∇π̄ = −∆ζ̄k∇ζ̄k, in (0, T )× Ωd,

ū = 0, on (0, T )× ∂Ωd,

ζ̄(0) = x⊥, for x ∈ Ωd,

ū(0) = (ψ0, 0)T , in Ωd.

Due to the homogeneous Dirichlet boundary conditions for ū and the advective nature
of the equation for ζ̄, it is ζ̄|∂Ωd = x⊥ for all times.
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1.2 Perturbation of the flow through the layer

It is our aim to examine the stability of system (8) (or equivalently (1)) with respect to the
Poiseuille-type flow (ū, ζ̄, π̄) constructed in the previous section. For this, we introduce
the perturbation

(v, α, p) = (u, ζ, π)− (ū, ζ̄, π̄)

of the solution (u, ζ, π) to (8) around the Poiseuille-type flow (ū, ζ̄, π̄). We denote by G
the deformation tensor associated to ζ and by F the deformation tensor associated to α.

We are interested in solutions (u, ζ, π) that satisfy homogeneous Dirichlet boundary
conditions u|∂Ωd = 0, and have initial values ζ0 and u0. Let u0 satisfy the compatibility
condition

div u0 = 0.

Let us moreover assume that the initial stream function satisfies

ζ0|∂Ωd = x⊥ and (∂1ζ01)(∂2ζ02)− (∂1ζ02)(∂2ζ01) = 1.

The first assumption together with the homogeneous Dirichlet boundary conditions for
u guarantees ζ|∂Ωd = x⊥ for all times. The second assumption is a reformulation of the
incompressibility condition detG0 = 1, which by (5) ensures detG = 1 for all times.
Therefore it holds

1 = detG = det(F + F̄ ) = (F11 + 1)(F22 + 1)− (F21 + ∂2φ)F12

= detF + trF + 1− ∂2φF12,

due to the structure of F̄ . Consequently

detF = (∂2φ)F12 − trF = (∂2φ)∂1α1 + ∂2α1 − ∂1α2. (12)

On the other hand

detF = F11F22 − F12F21 = (∂1α2)∂2α2 − (∂2α1)∂1α2 (13)

Putting (12) and (13) together implies

divα⊥ = ∂2α1 − ∂1α2 = ∂1α1∂2α2 − ∂2α1∂1α2 − ∂2φ∂1α1. (14)

This quadratic structure of the divergence of α⊥ will be crucial later on in the application
of a fixed point argument. Lastly, we assume that the perturbations v, α and p are
periodic in the x1-variable with some fixed period L > 0.

Then (v, α, p) solves

∂tα+v ·∇α+ ū ·∇α = −v ·∇ζ̄ in (0, T )×Ωd,

div v = 0 in (0, T )×Ωd,

∂tv−ν∆v+v ·∇v+v ·∇ū+ ū ·∇v+∇p
= −∆αk∇αk−∆ζ̄k∇αk−∆αk∇ζ̄k in (0, T )×Ωd,

α|∂Ωd = 0, in (0, T ),

v|∂Ωd = 0, in (0, T ),

α(0) = ζ0(x)−x⊥ for x ∈ Ωd,

v(0) = u0− (ψ0, 0)T in Ωd.

(15)
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1.3 Change of variables

Using the definition of ζ̄ in (10), we obtain

∇ζ̄ =

(
0 1
−1 −∂2φ(t, x2)

)
, ∆ζ̄ =

(
0

−∂2
2φ(t, x2)

)
.

Writing α⊥ =

(
−α2

α1

)
, we deduce

−∆αk∇ζ̄k −∆ζ̄k∇αk = ∆α⊥ +∇φ∆α2 + ∂2
2φ∇α2.

If inserted into the momentum equation, this yields

∂tv − ν∆(v +
1

ν
α⊥) + v · ∇v + v · ∇ū+ ū · ∇v +∇p

= −∆αk∇αk +∇φ∆α2 + ∂2
2φ∇α2,

which suggests to introduce a new variable w to replace v:

w := v +
1

ν
α⊥. (16)

The next step is to determine the right system that defines w. It is easy to see with

−v · ∇ζ̄ =

(
v2

−v1 + ∂2φv2

)
,

that 1
ν
α⊥ satisfies

∂t
(1

ν
α⊥
)

+ v · ∇
(1

ν
α⊥
)

+ ū · ∇
(1

ν
α⊥
)

=
1

ν
v +

1

ν
v2∇φ⊥.

We add this equation to the system for v and insert the divergence relation (14). Then,
after rescaling to (0, T/d)×Ω with Ω := T× (0, 1) (where we encode the periodicity of α
and v in the horizontal variable by replacing the real line with a torus), we receive with
the notation

K(t, x) :=

(
d 0

∂2φ(t, x) d

)
.

a new system for the variables α and w

∂tα + (ū+ w +
1

ν
α⊥) · ∇α +

1

ν
Kα = −dw⊥ + w2∇φ

divw =
1

dν
(−∂1α1∂2α2 + ∂2α1∂1α2 + ∂2φ∂1α1),

∂tw −
ν

d
∆w +∇p = −1

ν
α · ∇ū− 1

d2
∆αk∇αk −

1

ν2
α1∇φ⊥

+
1

d2
∂2

2φ∇α2 −
d

ν2
α⊥ +

1

d2
∇φ∆α2

− ū · ∇w +
1

ν
w2∇φ⊥ +

d

ν
w − w · ∇w

+
1

ν
α⊥ · ∇w + w · ∇ū

(P)
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in (0, T/d)× Ω, with boundary and initial conditions
(w, α) = (0, 0), on (0, T/d)× ∂Ω,

α(0) = α0 := ζ0(x)− x⊥, in Ω.

w(0) = w0 := u0 − (ψ0, 0)T +
1

ν
a⊥0 , in Ω.

1.4 Formulation of the Main Result

We give our main result on strong stability in terms of function spaces that are introduced
in Section 2.

Main Theorem. Let T ∈ (0,∞], p ∈ (4,∞) and ν > 0. There is τ > 0 such that for all
d ∈ (0, τν) there are ε, δ, κ > 0, such that if

‖ū‖Eδ + |||∇φ,∇2φ,∇3φ||| ≤ κ,

the perturbed Poiseuille problem (P) with data (α0, w0) ∈ Bε(0) ⊆ D(∆p)×TrE satisfying
the compatibility condition

divw0 =
1

ν
divα⊥0 in TrG,

admits a unique small solution

(α,w,∇p) ∈ Aδ × Eδ × Fδ.

Furthermore, there is a constant c > 0 such that for all such compatible

(α0, w0), (ᾱ0, w̄0) ∈ Bε(0)

the weak estimate

‖∇α−∇ᾱ‖Fp/2,p+‖∇w −∇w̄‖Fp/2,p
≤ c(‖∇α0 −∇ᾱ0‖Lp(Ω)2 + ‖∇w0 −∇w̄0‖(

Tr
(p/2)′,p′
E

)′) (17)

is valid.

Let us give some comments on the result. Formally, Eδ controls the Lp-norm up to
first time and second spatial derivatives, while Aδ controls additionally the Lp norm of
the mixed derivative ∂t∇. One might be surprised that Aδ does not control derivatives
of the form ∂t∇2 (since only then the trace space of Aδ would be given by D(∆q)).
This is because Aδ has to be stable under transition between Eulerian and Lagrangian
coordinates, see Proposition 5. On the other hand, control of the ∂t∇ terms is necessary,
since Aδ has to be chosen such that one can make use of the quadratic structure of the
divergence of w in problem (P), see Lemma 7. Moreover, one cannot expect a smoothing
effect for α, which forces us to assume control of the full second derivatives for the initial
value α0.
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Also, a comment on estimate (17) is in order. It is here that one of the main obstacles
and at the same time one of the vital ingredients of our proof are visible in the result.
Namely, a simple application of the contraction mapping principle is not possible due to
the hyperbolic nature of the first equation in (P). Instead, we apply a fixed point argument
where contraction has to be shown only in weak norms, see Lemma 1. These low norms
we choose to be dual norms, since then we can apply the theory of very weak solutions,
which can handle well inhomogeneous divergence data by design, see Proposition 3.

Our plan of the remaining part of this paper is as follows. After introducing the ap-
propriate function spaces in Section 2, we develop the necessary linear theory in Section 3.
We then treat the quasilinear transport equation in Lagrangian coordinates with a delicate
fixed point argument in Section 4. Due to the dampening term in the transport equation
we obtain exponential decay of α. Section 5 is devoted to estimating the corresponding
nonlinearities. Finally, in Section 6, we use an argumentation similar to Clément-Li [4]
in order to derive our result via a fixed point argument, using the quadratic structure of
both the divergence and the right-hand side of the momentum equation.

2 Function Spaces

From now on, we will always assume T ∈ (0,∞], r, q ∈ [1,∞] and p ∈ (4,∞). The
restriction to large p is due to embedding properties, see (18) below. Define the spaces

Ar,q := Lr(0, T ;D(∆q)) ∩W 1,r(0, T ;W 1,q(Ω)2),

Er,q := Lr(0, T ;D(∆q)) ∩W 1,r(0, T ;Lq(Ω)2),

Fr,q := Lr(0, T ;Lq(Ω)2),

Gr,q := Lr(0, T ;W 1,q(Ω)) ∩W 1,r(0, T ;W−1,q
0 (Ω)),

where

D(∆q) := W 2,q(Ω)2 ∩W 1,q
0 (Ω)2,

and where W−1,q
0 (Ω) is the dual space of W 1,q′(Ω) with q′ being the Hölder conjugate

exponent of q. In analogy, the dual space of W 1,q′

0 (Ω) will be denoted by W−1,q(Ω).
Moreover, if r = q = p, we simply write A := Ap,p and similarly for the spaces E, F and
G.

In fact, as we are aiming for exponential decay, we will work in time weighted spaces.
More precisely, for δ > 0 consider the spaces

Ar,q
δ := {α ∈ Ar,q : etδα ∈ Ar,q}, ‖α‖Ar,qδ := ‖etδα‖Ar,q .

Er,qδ := {w ∈ Er,q : etδw ∈ Er,q}, ‖w‖Er,qδ := ‖etδw‖Er,q ,
Fr,qδ := {f ∈ Fr,q : etδf ∈ Fr,q}, ‖f‖Fr,qδ := ‖etδf‖Fr,q ,
Gr,q
δ := {g ∈ Gr,q : etδg ∈ Gr,q}, ‖g‖Gr,qδ := ‖etδg‖Gr,q .

The corresponding trace spaces to Er,qδ and Gr,q
δ are given, respectively, by

Trr,qE = (Lq(Ω)2, D(∆q))1−1/r,r, Trr,qG := (W−1,q
0 (Ω),W 1,q(Ω))1−1/r,r.
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Note that these trace spaces are independent of the exponential time weights; see, for
example, [11, Remark 1.16]. Moreover, due to p > 4 we have

Aδ ↪→ Eδ ↪→ BUC([0, T );BUC1(Ω̄)2), W 1,p(Ω) ↪→ L∞(Ω). (18)

For notational convenience, we will assume without loss of generality that the correspond-
ing embedding constants are bounded by 1, which is possible since we will always think of
the time T > 0 being large. Furthermore, for finite T , Ar.q = Ar.q

δ , Er.q = Er.qδ , Fr.q = Fr.qδ
and Gr.q = Gr.q

δ with equivalent norms. For brevity, set for f ∈ F∞,∞

|||f ||| := ‖f‖F∞,∞ .

In order to treat our problem at hand, we will want to use a fixed point argument.
As mentioned in the introduction, it turns out that we cannot show contraction in the
high norms that one expects for the solutions and therefore need a suitable variant of the
Banach fixed point theorem, see [9, Lemma 2.5].

Lemma 1. Let X be a reflexive Banach space or let X have a separable pre-dual. Let H
be a nonempty, convex, closed and bounded subset of X and let X ↪→ Y , where Y is a
Banach space. Let T : X → X map H into H and let there be ρ < 1 such that for all
u, v ∈ H we have a contraction in the lower norms, that is

‖Tu− Tv‖Y ≤ ρ‖u− v‖Y .

Then there exists a unique fixed point of T in H.

3 Solvability of a Generalized Stokes Problem

In this section we investigate the following generalized linear Stokes problem
∂tw −∆w +∇p = f, in (0, T )× Ω,

divw = g, in (0, T )× Ω,

w|∂Ω = 0, on (0, T )× ∂Ω,

w|t=0 = w0 on Ω.

(S)

We use the analysis of the partially periodic Stokes operator and its reduced counter-
part that has been carried out in [13] to treat this system.

Proposition 2. Let r, q ∈ (1,∞). There is δ0 > 0 such that for every 0 ≤ δ ≤ δ0 Problem
(S) admits a unique solution (w,∇p) ∈ Er,qδ × Fr,qδ if

f ∈ Fr,qδ , g ∈ Gr,q
δ , w0 ∈ Trr,qE ,

satisfy the compatibility condition

divw0 = g(0) in Trr,qE .

Moreover, there is an M > 0 such that

‖w‖Er,qδ + ‖∇p‖Fr,qδ ≤M(‖w0‖Trr,qE
+ ‖f‖Fr,qδ + ‖g‖Gr,qδ ). (19)
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Proof. For δ = 0, the assertion is contained in [13, Theorem 1.3]. We note that as
a particular instance, this shows that the (partially periodic) Stokes operator A with
D(A) = X1 ∩ Lpσ(Ω) – the closure of divergence-free test functions in Lp(Ω)2 – possesses
maximal Lp regularity on (0, T ) for all 0 < T ≤ ∞. By [13, Theorem 1.4], A is invertible,
and so maximal Lp regularity remains valid even for the slightly shifted operator A− δ0

for some small δ0 > 0.
Let now 0 ≤ δ ≤ δ0. Observe that since (etδf, etδg, w0) ∈ F × G × Trr,qE , the result in

[13] gives a unique solution (v, pv) ∈ E× F to
∂tv −∆v +∇pv = etδf, in (0, T )× Ω,

div v = etδg, in (0, T )× Ω,

v|∂Ω = 0, on (0, T )× ∂Ω,

v|t=0 = w0 on Ω,

with a corresponding estimate

‖v‖Er,q + ‖∇pv‖Fr,q ≤ C(‖w0‖Trr,qE
+ ‖f‖Fr,qδ + ‖g‖Gr,qδ ). (20)

On the other hand, since A− δ0 possesses maximal Lp regularity,
∂tu−∆u− δu+∇pu = δv, in (0, T )× Ω,

div u = 0, in (0, T )× Ω,

u|∂Ω = 0, on (0, T )× ∂Ω,

u|t=0 = 0, on Ω

is uniquely solvable for every 0 ≤ δ < δ0 and there is a C > 0 such that (without loss of
general δ0 ≤ 1)

‖u‖Er,q + ‖∇pu‖Fr,q ≤ C‖v‖Fr,q ≤ C‖v‖Er,q . (21)

But then

w := e−tδ(v + u), ∇p := e−tδ(∇pv +∇pu)

is the unique solution to (S) and by (20) and (21) there is a C > 0 such that

‖w‖Er,qδ + ‖∇p‖Fr,qδ ≤ ‖u‖Er,q + ‖v‖Er,q + ‖∇pu‖Fr,q + ‖∇pv‖Fr,q
≤ C‖v‖Er,q + ‖∇pv‖Fr,q
≤ C(‖w0‖Trr,qE

+ ‖f‖Fr,qδ + ‖g‖Gr,qδ ).

This is the assertion.

Besides strong solutions to (S) with corresponding estimates, Lemma 1 suggests that
weaker notions of estimates have to be investigated as well. Here, it turns out that it is
convenient to work with a dual version of estimate (19). These dual estimates are closely
related to the concept of very weak solutions, as pointed out by Schumacher [14, 15].
Therefore, we usually refer to them as very weak estimates.
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Proposition 3. In the situation of Proposition 2 with δ > 0, it holds for all s ∈ (1, r]

f ∈ Ls(0, T ;D(∆q′)
′), g ∈ Ls(0, T ;W−1,q

0 (Ω)2), w0 ∈ (Trs
′,q′

E )′,

and we have the estimate

‖w‖Fs,q ≤M(‖w0‖(
Trs
′.q′

E

)′ + ‖f‖Ls(0,T ;D(∆q′ )
′) + ‖g‖Ls(0,T ;W−1,q

0 (Ω)2)). (22)

Proof. Let us first show the estimate for T < ∞. Let v ∈ (Fs,q)∗ = Fs′,q′ and use
Proposition 2 to obtain a unique solution

(ϕ,∇ψ) ∈ Es′,q′ × Fs′,q′

to the backwards-in-time problem
−∂tϕ−∆ϕ−∇ψ = v, in (0, T )× Ω,

divϕ = 0, in (0, T )× Ω,

ϕ|∂Ω = 0, on (0, T )× ∂Ω,

ϕ|t=T = 0 on Ω.

This solution enjoys the estimate

‖ϕ‖Es′,q′ + ‖∇ψ‖Fs′,q′ ≤M‖v‖Fs′,q′ ,

which we will use in the weaker form

‖ϕ(0)‖
Trs
′,q′

E
+ ‖ϕ‖Ls′ (D(∆q′ ))

+ ‖∇ψ‖Fs′,q′ ≤M‖v‖Fs′,q′ .

This latter estimate is indeed weaker, since Trs
′,q′

E is the trace space of Es′,q′ . With this
decomposition, we note that w satisfies

(w, v)T,Ω = −(w, ∂tϕ)T,Ω − (w,∆ϕ)T,Ω − (w,∇ψ)T,Ω

= (f, ϕ)T,Ω + (w0, ϕ(0))Ω + (g, ψ)T,Ω,

whence the estimate (22) readily follows.
If T = ∞, we choose a function v ∈ Lr′(0, T ;Lp

′
(Ω)2) with supp v ⊂ (0, N) × Ω for

some N ∈ N and let N →∞, see [14, Theorem 9.2.1] for details.

4 Transport equation

To treat the first equation in the Perturbation Equation (P), we work in Lagrangian
coordinates. For a fixed velocity field ũ, we consider x = x(t, ξ) to be the solution of

d

dt
x = ũ(t, x), t ≥ 0, x|t=0 = ξ.
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The transformation x = x(t, ξ) connects the Eulerian coordinate x = (x1, x2) and the
Lagrangian coordinate ξ = (ξ1, ξ2) of the same fluid particle. Moreover,

x = ξ +

∫ t

0

u(s, ξ) ds =: Xu(t, ξ),

where u(t, ξ) := ũ(t,Xu(t, ξ)). If ũ is Lipschitz in x and
∫ t

0
‖∇ũ‖∞ ds <∞ for t ≥ 0, then

x = Xu(t, ξ) is well defined for any t ≥ 0, ξ ∈ Ω.
We would like to show that for small drifts u, the spaces F, E and A are stable under

transformation between Eulerian and Lagrangian coordinates. To this end, we first prove
the following lemma on multiplicative estimates.

Lemma 4. Let δ > 0 and assume we are given two functions f and g such that f ∈ Fδ
and g ∈ Fp,∞. Then h ∈ F, where

h(t, x) := g(t, x)

∫ t

0

f(s, x) ds,

and it holds the estimate

‖h‖F ≤
1

(δp′)1/p′
‖f‖Fδ‖g‖Fp,∞ . (23)

Proof. We observe

‖h‖F ≤ ‖
∫ t

0

f ds‖F∞,p‖g‖Fp,∞ .

With Minkowski’s inequality we obtain for the first factor

‖
∫ t

0

f ds‖F∞,p = ess sup
t∈(0,T )

|(
∫

Ω

|
∫ t

0

f ds|p dx)
1
p | ≤

∫ T

0

‖f‖Lp(Ω)2 ds

=

∫ T

0

e−δs‖eδsf‖Lp(Ω)2 ds ≤ 1

(δp′)1/p′
‖f‖Fδ ,

which is the assertion.

Proposition 5. Let T ∈ (0,∞], r, q ∈ [1,∞], p ∈ (4,∞) and δ > 0. Assume that u ∈ Eδ
is a given velocity. There is a σ > 0 such that whenever ‖u‖Eδ ≤ σδ, the coordinate
transformation

(t, ξ) 7→ Φu(t, ξ) := (t,Xu(t, ξ)) (24)

for t ∈ [0, T ), ξ ∈ Ω, yields for λ ≥ 0 the homeomorphism

Yλ → Yλ : v 7→ v̂ := v ◦ Φu,

where Yλ may be any of the spaces Fr,qλ , Eλ or Aλ.
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Proof. Let A = A(t, ξ) denote the spatial Jacobian of Xu, then, for i, j = 1, 2, its com-
ponents read Aij = δij +

∫ t
0
∂ui
∂ξj

(s, ξ)ds. Hence, choosing σ > 0 small enough, A(t, ξ) is a

perturbation of the identity for all times t ≤ T , since∫ t

0

‖∂ui
∂ξj

(s, ·)‖∞ ds ≤ δ−1‖etδu‖E < σ. (25)

Furthermore, A−1 = I + V0(
∫ t

0
∇ξu(s, ξ)ds) holds for some C∞-function V0 defined on

matrices K ∈ R2×2, |K| < 2σ.

Consequently, for f ∈ Fr,qλ , there is a C > 0 such that

‖f̂‖Fr,qλ =

(∫ T

0

(∫
Ω

|etλf(t,Xu(t, ξ))|q dξ

) r
q

dt

) 1
r

=

(∫ T

0

(∫
Ω

|etλf(t, x))|q| detA−1| dx

) r
q

dt

) 1
r

≤ C‖f‖Fr,qλ ,

(26)

since Φu preserves [0, T ]× Ω by the boundary condition. Similarly,

‖f ◦ Φ−1
u ‖Fr,qλ ≤ C‖f‖Fr,qλ .

As we do not only want to estimate f by f̂ and vice versa in Fλ, but in the higher order
spaces Eλ and Aλ, we have to compute also higher order derivatives. Formally, assuming
sufficient regularity of f , the following expressions hold

∂tf̂ = [∂tf + ũ · ∇xf ] ◦ Φu, (27)

∇ξf̂ = A[∇xf ◦ Φu] =
(
I +

∫ t

0

∇ξu ds
)
∇xf ◦ Φu, (28)

∇2
ξ f̂ =

( ∫ t

0

∇2
ξu ds

)
∇xf ◦ Φu +

(
I +

∫ t

0

∇ξu ds
)2∇2

xf ◦ Φu, (29)

∂t∇ξf̂ = ∇ξu(t, ξ)∇xf ◦ Φu +
(
I +

∫ t

0

∇ξu ds
)
(∂t∇xf + ũ · ∇2

xf) ◦ Φu. (30)

By the invertibility of Φu we see |||ũ||| = |||u||| ≤ ‖u‖Eδ < ∞. It hence follows with (26)
and the embedding (18)

‖∂t(eλtf̂)‖F ≤ C(‖∂t(eλtf)‖F + |||u|||‖∇(eλtf)‖F) ≤ C‖f‖Eλ ,
‖∇(eλtf̂)‖F ≤ C‖∇(eλtf)‖F ≤ C‖f‖Eλ ,

and similarly

‖∂t∇(eλtf̂)‖F ≤ C(|||∇u|||‖∇(eλtf)‖F + ‖∂t∇eλtf‖F + |||u|||‖∇2(eλtf)‖F)

≤ C‖f‖Aλ ,
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In order to estimate also the expression in (29), we use Lemma 4 to obtain

‖
( ∫ t

0

∇2
ξu ds

)
∇(eλtf)‖F ≤

1

δ1/p′
‖∇2(eδtu)‖F‖∇(eλtf)‖Fp,∞

≤ σδ1/p‖∇2(eλtf)‖F.

Therefore, we have that both transformations are linear and continuous and, in par-
ticular, the following estimates hold

‖v̂‖Eλ ≤ CΦ‖v‖Eλ , ‖w̌‖Eλ ≤ CΦ‖w‖Eλ ,
‖β̂‖Aλ ≤ CΦ‖β‖Aλ , ‖γ̌‖Aλ ≤ CΦ‖γ‖Aλ ,

(31)

where CΦ > 0.

We consider the quasilinear problem{
∂tα + (b+ 1

ν
α⊥) · ∇α + 1

ν
Kα = f, t ∈ (0, T )

α(0) = α0,
(T )

with α0 ∈ D(∆p), b ∈ Eδ and f ∈ Eδ, and where K : (0, T ) × Ω → R2×2 denotes the
matrix-valued function

K(t, x) :=

(
d 0

∂2φ(t, x) d

)
.

Proposition 6. Let T ∈ (0,∞], p ∈ (4,∞), d, ν > 0 and δ ∈ (0, d
2ν

). Assume
‖∇φ,∇2φ,∇3φ‖ < ∞. Furthermore, suppose α0 ∈ D(∆p), b ∈ Eδ and f ∈ Eδ. There is
an ε > 0 such that whenever

‖α0‖D(∆p) + ‖b‖Eδ + ‖f‖Eδ ≤ ε, (32)

then problem (T ) has a unique small solution α ∈ Aδ. Moreover, there is c > 0 such that

‖α‖Aδ ≤ c(‖α0‖D(∆p) + ‖f‖Eδ). (33)

If (ᾱ0, b̄, f̄) is another set of data satisfying (32), then for q ∈ {p
2
, p} and r ∈ [q′, q] there

is a c > 0 such that the corresponding solutions α and ᾱ fulfill the lower order Lipschitz
assertion

‖α− ᾱ‖Fq,p ≤ c(‖α0 − ᾱ0‖Lp(Ω)2 + ‖f − f̄‖Fr,p + ‖b− b̄‖Fr,p). (34)

Proof. Step 1: Linear transport in Lagrangian coordinates
Formally, in Lagrangian coordinates with fixed velocity u ∈ Eδ, the transport problem
(T ) reads {

∂tα̂ + 1
ν
K̂α̂ = f̂ , t ∈ (0, T )

α̂(0) = α0,
(T̂ )
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where f̂ ∈ Eδ. By standard methods, there is a unique global-in-time solution of (T̂ )
given by

α̂1(t, ξ) = e−t
d
να0,1(ξ) +

∫ t

0

e−(t−τ) d
ν f̂1(τ, ξ)dτ,

α̂2(t, ξ) = e−dt/να0,2(ξ) +

∫ t

0

e−d(t−τ)/ν(f̂2(τ, ξ)− α̂1(τ, ξ)(∂̂2φ)(τ, ξ))dτ,

(35)

for any t > 0. Thus, we first obtain an estimate on α1, ∂tα1, ∇α1, ∇2α1 and ∂t∇α1

in terms of f and can subsequently use this information to also bound α2 by using the
assumption on φ. Therefore, there is a C > 0 such that

‖α̂‖A ≤ C(‖α0‖D(∆p) + ‖f̂‖E).

Similarly, if we look at{
∂tβ̂ + ( d

ν
− δ)β̂ = eδtf̂ , t ∈ (0, T )

β̂(0) = α0,
(T̂δ)

we obtain a unique solution β̂ ∈ A with ‖β̂‖A ≤ C̃(‖α0‖X1 + ‖eδtf̂‖E). By uniqueness
α̂ = e−tδβ̂, and so

‖α̂‖Aδ ≤ C̃(‖α0‖D(∆p) + ‖f̂‖Eδ).

Note that C̃ does not depend on δ since d
ν
− δ is bounded away from 0. In total we obtain

a bounded linear solution operator L : D(∆p) × Eδ → Aδ, with L(α0, f̂) = α̂ and with
bound CL := C̃ > 0.
Step 2: Pull-back to Eulerian coordinates
Let H ⊂ Aδ × Eδ be defined by

H := {(α, u) ∈ Aδ × Eδ : ‖α‖Aδ ≤ h :=
νδσ

4(1 + CΦ)
, ‖u‖Eδ ≤

δσ

2
},

where σ > 0 is chosen as in Proposition 5 and CΦ is the constant from (31). We consider
the mapping N : H → H defined via

N(α, u) :=

(
N1(u)
N2(α, u)

)
:=

(
(L(α0, f ◦ Φu)) ◦ Φ−1

u

(b+ 1
ν
α⊥) ◦ Φu

)
.

We would like to use Lemma 1 to obtain a fixed point of this mapping. First, we check
that for sufficiently small ε > 0, N is a self-mapping on H. Indeed, since ‖u‖Eδ ≤ σδ, we
can make use of Proposition 5 to see

‖N1(u)‖Aδ ≤ CΦCL(‖α0‖D(∆p) + CΦ‖f‖Eδ) ≤ CΦ(1 + CΦ)CLε ≤ h, (36)

‖N2(α, u)‖Eδ ≤ CΦ

(
ε+

1

ν

νδσ

4(1 + CΦ)

)
≤ δσ

2
.
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By Lemma 1, contraction needs to be shown only in the lower order Banach space Fδ×νFδ
with norm

‖α, u‖Fδ×νFδ := ‖α‖Fδ +
ν

2CΦ

‖u‖Fδ .

We claim that this is true, i.e., there exists a ρ < 1 such that for (α, u), (β, v) ∈ H

‖N(α, u)−N(β, v)‖Fδ×νFδ ≤ ρ‖(α− β, u− v)‖Fδ×νFδ . (37)

Indeed, for the N2 part we note that for a sufficiently regular function g it holds for all
(t, ξ) ∈ [0, T ]× Ω the estimate

|g(t,Xu(t, ξ))− g(t,Xv(t, ξ))| ≤ |Xu(t, ξ)−Xv(t, ξ)| sup
x∈Ω
|∇g(t, x)|

= |
∫ t

0

u(s, ξ)− v(s, ξ) ds| sup
x∈Ω
|∇g(t, x)|

and so by Lemma 4 and the Sobolev embedding W 1,p(Ω)2 ↪→ L∞(Ω)2, we have

‖g ◦ Φu − g ◦ Φv‖Fδ ≤
1

(δp′)1/p′
‖u− v‖Fδ‖eδt∇g‖Fp,∞

≤ C

(δp′)1/p′
‖u− v‖Fδ(‖∇g‖Fδ + ‖∇2g‖Fδ)

≤ C

(δp′)1/p′
‖u− v‖Fδ‖g‖Eδ .

Choosing g := b − 1
ν
α⊥ such that ‖g‖Eδ = ‖b − 1

ν
α⊥‖Eδ ≤ ε + 1

ν
νδσ

4(1+CΦ)
≤ δσ

2
, we can

estimate

‖N2(α, u)−N2(β, v)‖νFδ ≤ ‖N2(α, u)−N2(α, v)‖νFδ + ‖N2(α, v)−N2(β, v)‖νFδ

≤ Cδ
1
p
σ

2p′
‖u− v‖νFδ +

CΦ

ν
‖α− β‖νFδ

= Cδ
1
p
σ

2p′
‖u− v‖νFδ +

1

2
‖α− β‖Fδ

≤ ρ‖(α− β, u− v)‖Fδ×νFδ .

For the N1 part, we observe that γ := N1(u)−N1(v) solves by construction{
∂tγ + ũ · ∇γ + 1

ν
Kγ = (ṽ − ũ) · ∇N1(v), t ∈ (0, T )

γ(0) = 0.

Therefore, appealing again to the Lagrangian analysis and in particular to formula (35),
we see

‖γ‖Fδ ≤ CΦ‖γ ◦ Φu‖Fδ ≤ CΦ‖[(ũ− ṽ) · ∇N1(v)] ◦ Φu‖Fδ
≤ C2

Φ‖u− v‖Fδ |||∇N1(v)||| ≤ C2
Φ‖u− v‖Fδ‖N1(v)‖Aδ

≤ C2
Φ

νδσ

4(1 + CΦ)
‖u− v‖Fδ ≤ ρ‖u− v‖νFδ ,
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where we have used ‖N1(v)‖Aδ ≤ νδσ
4(1+CΦ)

≤ δσ
2

ν
2CΦ

. Hence, (37) follows and by Lemma 1

we obtain a unique fixed point (α, u) ∈ H of the mapping N . In other words, α is the
unique small solution to (T ), and as in (36) we learn

‖α‖Aδ = ‖N1(α, u)‖Aδ ≤ CΦCL(‖α0‖D(∆p) + CΦ‖f‖Eδ),

which is (33).
It is left to show the Lipschitz assertion (34). We define γ := α− ᾱ and observe that

it solves {
∂tγ + (b+ 1

ν
α⊥) · ∇γ + 1

ν
Kγ = f − f̄ + (b− b̄+ 1

ν
γ⊥) · ∇ᾱ,

γ(0) = α0 − ᾱ0.

Let u ∈ Eδ be the drift associated to α, i.e., such that (α, u) ∈ H and N(α, u) = (α, u).
Then using once again formula (35), we can leverage upon the dampening term to change
the time integrability and obtain

‖γ‖Fq,p ≤ c‖γ ◦ Φu‖Fq,p
≤ c
(
‖α0 − ᾱ0‖Lp(Ω)2 + ‖[f − f̄ ] ◦ Φu‖Fr,p

+ ‖[(b− b̄) · ∇ᾱ] ◦ Φu‖Fr,p + ‖[ 1
ν
γ⊥ · ∇ᾱ] ◦ Φu‖Fq,p

)
≤ c
(
‖α0 − ᾱ0‖Lp(Ω)2 + ‖f − f̄‖Fr,p +

(
‖b− b̄‖Fr,p +

1

ν
‖γ‖Fq,p

)
|||∇ᾱ|||.

It follows with the embedding in (18)

‖γ‖Fq,p ≤c(
(
‖α0 − ᾱ0‖Lp(Ω)2 + ‖f − f̄‖Fr,p +

(
‖b− b̄‖Fr,p +

1

ν
‖γ‖Fq,p

)
‖ᾱ‖Aδ

)
,

and absorbing the term c
ν
‖γ‖Fq,p‖ᾱ‖Aδ � ‖γ‖Fq,p < ∞ on the right-hand side into the

left-hand side, we obtain the assertion.

5 Nonlinear Estimates

Lemma 7. Let T ∈ (0,∞] and p ∈ (4,∞). There is a C > 0 such that for δ ≥ 0 and
α, ᾱ ∈ Aδ, we have for l, k, i, j = 1, 2,

‖∂kαi∂lᾱj‖Gδ ≤ C‖α‖Aδ‖ᾱ‖Aδ (38)

and

‖∂kαi∂lᾱj‖Lp/2(0,T ;W−1,p
0 (Ω)2) ≤ c‖α‖F‖ᾱ‖Aδ . (39)

Proof. We start with estimate (38). We have

‖∂kαi∂lᾱj‖Gδ ≤ ‖etδ∂kαi∂lᾱj‖F + ‖etδ∇∂kαi∂lᾱj‖F
+ ‖etδ∂kαi∇∂lᾱj‖F + (1 + δ)‖etδ∂kαi∂lᾱj‖Lp(0,T ;W−1,p

0 (Ω))

+ ‖etδ∂t∂kαi∂lᾱj‖Lp(0,T ;W−1,p
0 (Ω)) + ‖etδ∂kαi∂t∂lᾱj‖Lp(0,T ;W−1,p

0 (Ω)).



161

For the first term, one observes

‖etδ∂kαi∂lᾱj‖F ≤ |||∂lᾱ|||‖etδα‖A ≤ ‖ᾱ‖Aδ‖α‖Aδ ,

and similarly, for the second and third term

‖etδ∇∂kαi∂lᾱj‖F ≤ |||∂lᾱ|||‖etδα‖A ≤ ‖ᾱ‖Aδ‖α‖Aδ .

For the fourth term, we obtain with 1/p′ + 1/p = 1,

‖etδ∂kαi∂lᾱj‖pLp(0,T ;W−1,p
0 (Ω))

=

∫ T

0

‖etδ∂kαi∂lᾱj‖pW−1,p
0 (Ω)

dt

=

∫ T

0

∣∣∣∣∣∣ sup
‖ϕ‖

W1,p′ (Ω)
=1

∫
Ω

etδ∂kαi(t, ·)∂lᾱj(t, ·)ϕdx

∣∣∣∣∣∣
p

dt.

But for ϕ ∈ W 1,p′(Ω)2 with ‖ϕ‖W 1,p′ (Ω) = 1 we have for almost all t ∈ [0, T ]

|
∫

Ω

etδ∂kαi(t, ·)∂lᾱj(t, ·)ϕdx| ≤ |||∇ᾱ|||‖etδ∇α(t, ·)‖Lp(Ω).

Hence, in total, we have for the fourth term

‖etδ∂kαi∂lᾱj‖Lp(0,T ;W−1,p
0 (Ω)) ≤ ‖α‖Aδ‖ᾱ‖Aδ

Similarly, for the fifth and sixth term, we have for almost all t ∈ [0, T ]

|
∫

Ω

etδ∂t∂kαi(t, ·)∂lᾱj(t, ·)ϕdx|

≤ (‖∂t∇(etδα(t, ·))‖Lp(Ω) + ‖δetδ∇α(t, ·)‖Lp(Ω))|||∇ᾱ|||‖ϕ‖Lp′ (Ω)

≤ (1 + δ)(‖∂t∇(etδα(t, ·))‖Lp(Ω) + ‖etδ∇α(t, ·)‖Lp(Ω))|||etδ∇ᾱ|||.

Hence in total, the fifth and sixth term can be estimated by ‖α‖Aδ‖ᾱ‖Aδ as well. This
establishes (38).

For (39), we observe that by Sobolev’s embedding theorem W 1,p′(Ω) ↪→ Lr
′
(Ω) for

r ∈ (1,∞) with 1
2

+ 1
p
≥ 1

r
. In particular, since p > 2, we can choose r = p/2. Thus, for

almost all t ∈ [0, T ] we see by integration by parts

|
∫

Ω

∂kαi(t, ·)∂lᾱj(t, ·)ϕdx|

≤ ‖αi(t, ·)∂k∂lᾱj(t, ·)ϕ‖L1(Ω) + ‖αi(t, ·)∂lᾱj(t, ·)∂kϕ‖L1(Ω)

≤ ‖α(t, ·)‖Lp(Ω)‖∇2ᾱ(t, ·)‖Lp(Ω)‖ϕ‖Lr′ (Ω) + |||∇ᾱ|||‖α(t, ·)‖Lp(Ω)‖∇ϕ‖Lp′ (Ω)

≤ ‖α(t, ·)‖Lp(Ω)‖∇2ᾱ(t, ·)‖Lp(Ω)‖ϕ‖W 1,p′ (Ω),

whence (39) follows by integrating over time and using once more Hölder’s inequality with
1
p

+ 1
p

= 2
p
.
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Next, we investigate the right-hand sides of (P). We formally set

F (α0, v) := −1

ν
α · ∇ū− 1

d2
∆αk∇αk −

1

ν2
α1∇φ⊥

+
1

d2
∂2

2φ∇α2 −
d

ν2
α⊥ +

1

d2
∇φ∆α2

− ū · ∇v +
1

ν
v2∇φ⊥ +

d

ν
v − v · ∇v

+
1

ν
α⊥ · ∇v + v · ∇ū

G(α0, v) := (dν)−1(∂1α1∂2α2 − ∂2α1∂1α2 − ∂2φ∂1α1),

(40)

where α = α(α0, v) is obtained in Proposition 6 with data f = dv⊥ − ∇φ · v, b = ū + v
and α0. Let (ū, ζ̄, π̄) ∈ BUC1(BUC3(Ω)) and assume that there is κ > 0 such that

‖ū‖Eδ + |||∇φ,∇2φ,∇3φ||| ≤ κ (41)

for all δ ∈ (0, δ0) for some δ0 > 0.

Lemma 8. Let d, ν > 0, p ∈ (4,∞), T ∈ (0,∞]. Assume that δ, s, κ, τ > 0 are sufficiently
small, where κ is the bound in (41), and where d/ν ≤ τ . There is a C > 0 such that for
α0, ᾱ0 ∈ D(∆p), v, v̄ ∈ Eδ

‖α0, ᾱ0‖D(∆p) ≤ ε, ‖v, v̄‖Eδ ≤ s,

where ε > 0 as in Proposition 6, we have

1. ‖F (α0, v)‖Fδ ≤ C(s+ ε+ κ+ τ)(s+ ε+ κ) and the very weak Lipschitz estimate

‖F (α0, v)−F (ᾱ0, v̄)‖
L
p
2 (0,T ;D(∆p′ )

′)

≤ C(s+ ε+ κ+ τ)(‖α0 − ᾱ0‖Lp(Ω)2 + ‖v − v̄‖Fp/2,p).

2. ‖G(α0, v)‖Gδ ≤ C(s+ ε+ κ)2 and the very weak Lipschitz estimate

‖G(α0, v)−G(ᾱ0, v̄)‖
L
p
2 (0,T ;W−1,p

0 (Ω)2)

≤ C(s+ ε+ κ)(‖α0 − ᾱ0‖Lp(Ω)2 + ‖v − v̄‖Fp/2,p).

The right-hand sides are finite due to D(∆p) ↪→ Lp(Ω)2 and Eδ ↪→ Fp/2,p.

Proof. Apply Proposition 6 with f = dv⊥−∇φ · v, b = ū+ v and α0 to obtain the unique
solution α = α(α0, v), and similarly ᾱ = α(ᾱ0, v̄) ∈ Aδ to (T ) which then satisfies by (33)

‖α‖Aδ ≤ c(‖α0‖X1 + (d+ κ)‖v‖Eδ) ≤ cd(ε+ s), (42)

and with both choices for q and r

(q, r) ∈ {(p
2
,
p

2
), (p,

p

2
)}
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by (34)

‖α− ᾱ‖Fq,p ≤ c(‖α0 − ᾱ0‖Lp(Ω)2 + (d+ κ+ 1)‖v − v̄‖Fr,p)
≤ c̃(‖α0 − ᾱ0‖Lp(Ω)2 + ‖v − v̄‖Fr,p).

(43)

For the first claim it holds with the embedding in (18) and estimate (42)

‖F (α0, v)‖Fδ ≤
1

ν
‖α · ∇ū‖Fδ +

1

d2
‖∆αk∇αk‖Fδ

+
1

ν2
‖α1∇φ⊥‖Fδ +

1

d2
‖∂2

2φ∇α2‖Fδ +
1

d2
‖∇φ∆α2‖Fδ

+
d

ν2
‖α⊥‖Fδ +

1

d2
‖∇φ∆α2‖Fδ + ‖ū · ∇v‖Fδ +

1

ν
‖v2∇φ⊥‖Fδ

+
d

ν
‖v‖Fδ + ‖v · ∇v‖Fδ +

1

ν
‖α⊥ · ∇v‖Fδ + ‖v · ∇ū‖Fδ

≤ κ

ν
‖α‖Fδ +

1

d2
|||∇α|||‖∆α‖Fδ

+
κ

ν2
‖α‖Fδ +

κ

d2
‖∇α‖Fδ +

κ

d2
‖∆α‖Fδ

+
d

ν2
‖α⊥‖Fδ +

κ

d2
‖∆α2‖Fδ + κ‖∇v‖Fδ +

κ

ν
‖v‖Fδ

+
d

ν
‖v‖Fδ + |||v|||‖∇v‖Fδ +

1

ν
|||α|||‖∇v‖Fδ + κ‖v‖Fδ

≤ C(κ+ τ + ‖α‖Aδ + ‖v‖Eδ)(‖α‖Aδ + ‖v‖Eδ)
≤ C(κ+ τ + cd(s+ ε) + s)(cd(s+ ε) + s).

For the Lipschitz estimate of F , we see that all terms in the expression F (α0, v)−F (ᾱ0, v̄)
that do not involve second order derivatives are estimated using the trivial embedding
Lp(Ω) ↪→ W−1,p(Ω) and estimate (43) with (q, r) = (p

2
, p

2
). The remaining terms are up to

a constant ∇φ∆(α2 − ᾱ2), and ∆αk∇αk −∆ᾱk∇ᾱk. The first term is estimated testing
with ϕ ∈ D(∆p′) subject to ‖ϕ‖D(∆p′ )

= 1, using integration by parts via

|
∫

Ω

∇φ∆(α2(t, ·)− ᾱ2(t, ·))ϕdx| ≤ |||∇φ,∇2φ,∇3φ|||‖α− ᾱ‖Lp(Ω)‖ϕ‖D(∆p′ )

≤ κ‖α− ᾱ‖Lp(Ω).

Taking the p/2-th power and integrating over time, we obtain the correct estimate by
appealing to (43) with (q, r) = (p

2
, p

2
). For the second term, we observe

∆αk∇αk = div
[
∇αk ⊗∇αk −

1

2
id |∇αk|2

]
and hence

∆αk∇αk −∆ᾱk∇ᾱk = div
[
∇(αk − ᾱk)⊗∇αk −

1

2
id
(
∂j(αk − ᾱk)∂jαk

]
+ div

[
∇ᾱk ⊗∇(αk − ᾱk)−

1

2
id
(
∂jᾱk∂j(αk − ᾱk)

)]
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By symmetry, it suffices to estimate the second term on the right-hand side. For this, it
follows as in the proof of estimate (39) (where we replace α by α− ᾱ and the test function
ϕ by ∇ϕ) that

‖div
[
∇ᾱk ⊗∇(αk − ᾱk)−

1

2
id
(
∂jᾱk∂j(αk − ᾱk)

)]
‖
L
p
2 (0,T ;D(∆p′ )

′)

≤ c‖αk − ᾱk‖F‖ᾱk‖Aδ ,

which by (42) and (43) with (q, r) = (p, p
2
) gives the desired estimate.

For the second claim, we have with the compatibility of Aδ and Gδ in (38),

‖G(α0, v)‖Gδ ≤
1

dν
(‖∂1α1∂2α2‖Gδ + ‖∂2α1∂1α2‖Gδ + ‖∂2φ∂1α1‖Gδ)

≤ C(‖α‖Aδ + κ)‖α‖Aδ ≤ C(cd + 1)2(s+ ε+ κ)2.

For the Lipschitz assertion forG, let us for simplicity abbreviate the norm of L
p
2 (0, T ;W−1,p

0 (Ω)2)
by ‖ · ‖. Then we observe

‖G(α0, v)−G(ᾱ0, v̄)‖ ≤ (dν)−1
(
‖∂1α1∂2(α2 − ᾱ2)‖

+ ‖∂1(α1 − ᾱ1)∂2ᾱ2‖+ ‖∂2α1∂1(α2 − ᾱ2)‖
+ ‖∂2(α1 − ᾱ1)∂1ᾱ2‖+ ‖∂2φ∂1(α1 − ᾱ1)‖

)
,

and the bound follows via (39) and (43) with (q, r) = (p, p
2
) for all but the last term, for

which we obtain for almost all t ∈ [0, T ] by integration by parts and using ∂1φ = 0

|
∫

Ω

∂2φ(t, ·)∂1(α1(t, ·)− ᾱ1(t, ·))ϕdx| ≤ ‖∂2φ(t, ·)(α1(t, ·)− ᾱ1(t, ·))∂1ϕ‖L1(Ω)

≤ κ‖α(t, ·)− ᾱ(t, ·)‖Lp(Ω)‖∇ϕ‖Lp′ (Ω),

and integrating over time yields

‖∂2φ(∂1α1 − ∂1ᾱ1)‖ ≤ κ‖α− ᾱ‖Fp/2,p ,

so that (43) with (q, r) = (p
2
, p

2
) gives the assertion.

6 Proof of Main Theorem

We divide the proof into several steps.

Step 1: Preliminary definitions and embeddings

Proposition 2 yields that the generalized Stokes problem (S) is uniquely solvable in
the maximal regularity class Eδ for some δ > 0. Fix τ ∈ (0, 1) and s = s(τ) ∈ (0, τ),
ε = ε(s), κ = κ(s) ∈ (0, s) small enough such that τ < [12CM ]−1 and ε < s[3M ]−1, where
C > 0 is chosen as in Lemma 8 and M > 0 is chosen as in Proposition 2.

Let (α0, w0) ∈ B̄ε(0, 0) ⊆ D(∆p)× TrE. Our goal is to use the fixed point assertion in
Lemma 1 on the set

B := Bw0 := {v ∈ Eδ : v(0) = w0, ‖v‖Eδ ≤ s}.
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Note that B ⊂ Eδ is nonempty, convex, closed and bounded.

Step 2: Set-up for the fixed point argument

Given v ∈ B, consider the linear problem,
∂tu−∆u+∇q = F (α0, v),

div u = G(α0, v),

u(0) = w0,

(44)

where F and G are defined as in (40). Note that this problem has a unique solution
u ∈ Eδ with corresponding pressure ∇q ∈ Fδ due to Proposition 2 applied with r = q = p.
Define the solution operator of W : B→ Eδ via Wv := u, where u is the solution of (44).
We would now like to show that W (B) ⊆ B and that W is a contraction in a weak norm,
namely in ‖ · ‖Fp/2,p . Then by Lemma 1 there is a unique fixed point w ∈ B of W , which
yields the desired solution to problem (P).

Step 3: W is a self-mapping on B

By definition u(0) = w0, hence we need to verify ‖u‖Eδ ≤ s.

From Proposition 2 we learn

‖u‖Eδ + ‖∇q‖Fδ ≤M(‖F (·;α0, v)‖Fδ + ‖G(·;α0, v)‖Gδ + ‖w0‖TrE).

For F and G, we have by Lemma 8,

‖F (α0, ·, v)‖Fδ + ‖G(α0, ·, v)‖Gδ ≤ 2C(s+ ε+ κ+ τ)(s+ ε+ κ) ≤ 2

3M
s

Clearly, ‖w0‖TrE ≤ ε ≤ s
3M

. Thus, in total we have ‖u‖Eδ ≤ s and the assertion of this
step follows.

Step 4: W is a strict contraction on B with respect to a weak norm

Let v, v̄ ∈ B, and set Wv =: u and Wv̄ =: ū. Then subtracting the equations (44)
for v̄ and v, respectively, and noting that (v̄− v)(0) = 0, we obtain from the very weak a
priori estimate in Proposition 3 and Lemma 8

‖u− ū‖Fp/2,2 ≤M(‖F (·;α0, v)− F (·;α0, v̄)‖
L
p
2 (0,T ;D(∆p′ )

′)

+ ‖G(·;α0, v̄)−G(·;α0, v)‖
L
p
2 (0,T ;W−1,p

0 (Ω)2)
)

≤ 2CM(s+ ε+ κ+ τ)‖v − v̄‖Fp/2,2 <
2

3
‖v − v̄‖Fp/2,2 .

Therefore, Lemma 1 yields a unique fixed point u = v ∈ B.

Step 5: Proof of the Lipschitz continuity assertion
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Additionally to Bw0 , consider now Bw̄0 . For v ∈ Bw0 and v̄ ∈ Bw̄0 , let u := Ww0v and
ū := Ww̄0 v̄. Then, similarly to the estimates in Step 4,

‖u− ū‖Fp/2,2
≤M(‖w0 − w̄0‖(

Tr
(p/2)′,p′
E

)′ + ‖F (·;α0, v)− F (·; ᾱ0, v̄)‖
L
p
2 (0,T ;D(∆p′ )

′)

+ ‖G(·;α0, v)−G(·; ᾱ0, v̄)‖
L
p
2 (0,T ;W−1,p

0 (Ω)2)
)

≤M‖w0 − w̄0‖(
Tr

(p/2)′,p′
E

)′ + 2

3
(‖v − v̄‖Fp/2,2 + ‖α0 − ᾱ0‖Lp(Ω)2).

If we now choose v and v̄ to be the fixed points of the map Ww0 and Ww̄0 , respectively, we
may absorb the second term of the right hand side into the left-hand side. This concludes
the proof.
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