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form

x′(t) + p(t)x (τ(t)) = 0 [x′(t)− q(t)x (σ(t)) = 0] , t ≥ t0,

where p(t) ≥ 0, q(t) ≥ 0 and τ(t), σ(t) are functions of positive real numbers such that
τ(t) < t for t ≥ t0, limt→∞ τ(t) = ∞ and σ(t) > t for t ≥ t0. Sufficient conditions,
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are established. Examples illustrating the significance of the results are also given.
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1 Introduction

Consider the first-order linear differential equation with variable retarded argument

x′(t) + p(t)x (τ(t)) = 0, t ≥ t0, (E)

where p(t) ≥ 0 and τ(t) are continuous functions and τ satisfies

0 < τ(t) < t for t ≥ t0, and lim
t→∞

τ(t) =∞. (1.1)

By a solution of (E) we mean a continuously differentiable function defined on [τ(T0),∞)
for some T0 ≥ t0 and such that (E) is satisfied for t ≥ T0. A solution of (E) is called
oscillatory if it has arbitrarily large zeros. Otherwise, it is called nonoscillatory. When
all solutions of (E) oscillate we say that (E) is oscillatory.

When τ(t) ≡ t, equation (E) reduces to an ordinary differential equation (o.d.e.), and
it is well known that a first-order o.d.e. with constant coefficients does not possess oscil-
latory solutions. On the contrary, presence of even a very small delay in the argument of
(E) may create oscillatory solutions. After the pioneering work of Myshkis [27], the study
of the oscillatory character of (E) has attracted considerable interest and the problem of
establishing sufficient conditions for the oscillation of all solutions of equation (E) has
been the subject of many investigations. Besides its mathematical interest, considerable
attention to this problem is given by the fact that the mathematical modelling of sev-
eral real-world problems leads to differential equations that depend on the past history
rather than only on the current state. The reader is referred to [1]−[6], [9], [10], [13]−[23],
[25]−[27], [29]-[32], and the references cited therein. For the general oscillation theory of
differential equations with deviating arguments we refer to the monographs [8], [11], and
[24].

While most of the papers cited above concern the case where the arguments are non-
decreasing, only a small number of papers are dealing with the general case where the
arguments are not necessarily monotone. See, for example, [1]−[6], [18], [26], [29] and the
references cited therein. The interest of considering equation (E) with non-monotone ar-
guments is justified not only by its the pure mathematical interest, but also because such
equations describe in a more realistic way a wide class of natural phenomena as natural
disturbances (e.g. noise in communication systems) affecting parameters of the equation
cause non-monotone deviations in the argument of the solutions. In the present paper we
establish a number of oscillation criteria for all solutions of (E) when the argument is not
necessarily monotone. Our results essentially improve several known criteria existing in
the literature.

A parallel problem to that of establishing oscillating criteria for the solutions of the
equation (E) is the one concerning the solutions to the equation of advanced type

x′(t)− q(t)x (σ(t)) = 0, t ≥ t0, (E ′)

where q(t) ≥ 0 and σ(t) are continuous functions defined on [t0,∞) and σ satisfies

σ(t) > t for t ≥ t0. (1.2)
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Perhaps not widely known, the idea of advanced arguments seems to originate as early as
1903 in a paper by Schwarschild presenting a model where charged particles influence each
other at a distance via both retarded and advanced arguments (see, [7], [12], [28]). For
instance, the appearance of advanced arguments in an equation bends on the consideration
that if two or more classical charged particles are moving in space, each particle’s motion
is influenced by the electromagnetic field of the other. If one assumes that the basic laws
of Physics are symmetric with respect to time reversal, then the existence of time delays
caused by interactions implies that there should also be advanced terms in the equations.

Dual criteria for the oscillation of all solutions of (E ′) may be established by following
parallel argumentation to that employed for obtaining the results concerning the retarded
equation (E). Thus, we focus on the ones concerning the equation (E) presenting them
in detail, and consider them as our main results, while we simply cite the corresponding
theorems for (E ′) omitting their proofs.

2 Retarded differential equations: History and mo-

tivation

The first systematic study for the oscillation of all solutions to equation (E) was made
by Myshkis in 1950 [27] when he proved that every solution of (E) oscillates if

lim sup
t→∞

[t− τ(t)] <∞ and lim inf
t→∞

[t− τ(t)] lim inf
t→∞

p(t) >
1

e
. (2.1)

In 1972, Ladas, Lakshmikantham and Papadakis [22] proved that, if

τ is nondecreasing and lim sup
t→∞

∫ t

τ(t)

p(s)ds > 1, (2.2)

then all solutions of (E) oscillate. The next essential step was taken by Ladas [21] in
1979, and, by Koplatadze and Chanturija [17] in 1982 who improved (2.1) to

α := lim inf
t→∞

∫ t

τ(t)

p(s)ds >
1

e
. (2.3)

Conserning the constant 1
e

in (2.3), it is to be pointed out that if the inequality∫ t

τ(t)

p(s)ds ≤ 1

e

holds eventually, then, according to a result in [17], (E) has a nonoscillatory solution.
Obviously when the limit

lim
t→∞

∫ t

τ(t)

p(s)ds

does not exist a gap appears between the conditions (2.2) and (2.3). How to fill this gap is
an interesting problem which has attracted the attention of several authors. For example,
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in 1999, Jaroš and Stavroulakis [15] proved that, if τ is nondecreasing and

lim sup
t→∞

∫ t

τ(t)

p(s)ds >
1 + lnλ0

λ0
− 1− α−

√
1− 2α− α2

2
, (2.4)

where λ0 is the smaller root of the transcendental equation λ = eαλ, then all solutions of
(E) oscillate.

Now we come to the case that the argument τ(t) is not necessarily monotone. Set

h(t) := sup
s≤t

τ(s), t ≥ t0. (2.5)

Clearly, h is nondecreasing and τ(t) ≤ h(t) < t for all t ≥ t0, while τ ≡ h when τ is
nondecreasing. Essential progress was made by Koplatadze and Kvinikadze [18] in 1994
who proved that, if

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

h(s)

p(u)ψj(u)du

)
ds > 1−D(α), (2.6)

where

D(α) :=


0, if α > 1/e

1−α−
√
1−2α−α2

2
, if α ∈ [0, 1/e] ,

(2.7)

and

ψ1(t) = 0, ψj(t) = exp

(∫ t

τ(t)

p(u)ψj−1(u)du

)
, j ≥ 2, (2.8)

then all solutions of (E) oscillate.
In 2011 Braverman and Karpuz [3], proved that if

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

p(u)du

)
ds > 1, (2.9)

then all solutions of (E) oscillate, while Stavroulakis [29] in 2014 improved (2.9) to

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

p(u)du

)
ds > 1− 1− α−

√
1− 2α− α2

2
. (2.10)

Recently, Morshedy and Attia [26] proved that, if D(α) is defined by (2.7) and

lim sup
t→∞

[∫ t

g(t)

pn(s)ds+D(α) exp

(∫ t

g(t)

∑n−1

j=0
pj(s)ds

)]
> 1, (2.11)

with p0(t) = p(t) and

pn(t) = pn−1(t)

∫ t

g(t)

pn−1(s) exp

(∫ t

g(s)

pn−1(u)du

)
ds, n ≥ 1, (2.12)
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then all solutions of (E) oscillate. Here, g(t) is a nondecreasing continuous function such
that τ(t) ≤ g(t) ≤ t, t ≥ t1 for some t1 ≥ t0. Clearly, g(t) is more general than h(t)
defined by (2.5).

Chatzarakis [4], [5] proved that if for some j ∈ N

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

pj(u)du

)
ds > 1 (2.13)

or

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

pj(u)du

)
ds > 1− 1− α−

√
1− 2α− α2

2
, (2.14)

where

pj(t) = p(t)

[
1 +

∫ t

τ(t)

p(s) exp

(∫ h(t)

τ(s)

pj−1(u)du

)
ds

]
, (2.15)

with p0(t) = p(t), then all solutions of (E) oscillate.

3 Main results

A trivial observation concerning the solutions of equation (E) is that if x is a solution
of (E) then −x is also a solution. Hence, assuming that a nonoscillatory solution of (E)
does exist we may confine our study only to the case where x is eventually positive. Then
there exists t1 ≥ t0 such that x(t), x (τ(t)) > 0, for all t ≥ t1. Thus, from (E) we have

x′(t) = −p(t)x (τ(t)) ≤ 0, t ≥ t1,

meaning that x is an eventually nonincreasing function of positive numbers. So, in view
of the fact that limt→∞ τ(t) = ∞ we see that there is no loss of generality in assuming
that if x is a nonoscillatory solution of (E) then x is nonincreasing and positive for all
t ≥ t1 with t > τ (t) ≥ t1 and this is what we are going to use throughout the paper
without repeating argumentation.

Theorem 1. Assume that h is defined by (2.5), and for some j ∈ N it holds

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

Pj(u)du

)
ds > 1, (3.1)

where

Pj(t) = p(t)

[
1 +

∫ t

τ(t)

p(s) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

Pj−1(ξ)dξ

)
du

)
ds

]
, (3.2)

with P0(t) = p(t). Then all solutions of (E)oscillate.



6

Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory solution x
of (E) and let t1 ≥ t0 such that x(t), x (τ(t)) > 0, for all t ≥ t1. Taking into accout the
fact that τ(t) < t, (E) implies

x′(t) + p(t)x(t) ≤ 0, t1 ≤ τ (t) < t. (3.3)

Dividing the last inequality by x(t) > 0 and integrating inequality (3.3) on [s, t] we obtain∫ t

s

x′(u)

x (u)
du+

∫ t

s

p (ξ) dξ ≤ 0

or

x(s) ≥ x(t) exp

(∫ t

s

p(ξ)dξ

)
, t1 ≤ τ (s) < t. (3.4)

Now we divide (E) by x (t) > 0 and integrate on [s, t], so

−
∫ t

s

x′(u)

x(u)
du =

∫ t

s

p(u)
x (τ(u))

x(u)
du

or

ln
x(s)

x(t)
=

∫ t

s

p(u)
x (τ(u))

x(u)
du, t1 ≤ τ (t) < t. (3.5)

Since τ(u) < u, setting u = t, s = τ (u) in (3.4) we take

x (τ(u)) ≥ x(u) exp

(∫ u

τ(u)

p(ξ)dξ

)
, t1 ≤ τ (u) < u. (3.6)

Combining (3.5) and (3.6) we obtain, for sufficiently large t

ln
x(s)

x(t)
≥
∫ t

s

p(u) exp

(∫ u

τ(u)

p(ξ)dξ

)
du

or

x(s) ≥ x(t) exp

(∫ t

s

p(u) exp

(∫ u

τ(u)

p(ξ)dξ

)
du

)
. (3.7)

Integrating (E) from τ(t) to t, we have

x(t)− x(τ(t)) +

∫ t

τ(t)

p(s)x (τ(s)) ds = 0, (3.8)

while inequality (3.7) by replacing s by τ (s) gives

x(t) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

p(ξ)dξ

)
du

)
≤ x(τ (s)).

Since τ(s) < t, from (3.8) and the last inequality we find, for sufficiently larte t

x(t)− x(τ(t)) + x(t)

∫ t

τ(t)

p(s) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

p(ξ)dξ

)
du

)
ds ≤ 0.
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Multiplying the last inequality by p(t), (cf. [26]), we find

p(t)x(t)− p(t)x(τ(t))

+ p(t)x(t)

∫ t

τ(t)

p(s) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

p(ξ)dξ

)
du

)
ds ≤ 0,

which, in view of (E), becomes

x′(t) + p(t)x(t) + p(t)x(t)

∫ t

τ(t)

p(s) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

p(ξ)dξ

)
du

)
ds ≤ 0.

Hence,

x′(t) + p(t)

[
1 +

∫ t

τ(t)

p(s) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

p(ξ)dξ

)
du

)
ds

]
x(t) ≤ 0,

or
x′(t) + P1(t)x(t) ≤ 0, (3.9)

where

P1(t) = p(t)

[
1 +

∫ t

τ(t)

p(s) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

p(ξ)dξ

)
du

)
ds

]
, t2 ≤ t.

Clearly (3.9) resembles (3.3) with p replaced by P1, so an integration of (3.9) on [s, t]
leads to

x(s) ≥ x(t) exp

(∫ t

s

P1(ξ)dξ

)
, 0 ≤ s ≤ t. (3.10)

Taking the steps starting from (3.3) to (3.6) we may see that x satisfies the inequality

x (τ(u)) ≥ x(u) exp

(∫ u

τ(u)

P1(ξ)dξ

)
. (3.11)

Combining now (3.5) and (3.11), we obtain

ln
x(s)

x(t)
≥
∫ t

s

p(u) exp

(∫ u

τ(u)

P1(ξ)dξ

)
du

or

x(s) ≥ x(t) exp

(∫ t

s

p(u) exp

(∫ u

τ(u)

P1(ξ)dξ

)
du

)
,

from which we take

x(τ(s)) ≥ x(t) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

P1(ξ)dξ

)
du

)
. (3.12)

Since τ(s) ≤ h(s) ≤ h(t) < t, (3.8) and (3.12) give

x(t)− x(τ(t)) + x(t)

∫ t

τ(t)

p(s) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

P1(ξ)dξ

)
du

)
ds ≤ 0.
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Multiplying the last inequality by p(t), as before, we find

x′(t) + p(t)

[
1 +

∫ t

τ(t)

p(s) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

P1(ξ)dξ

)
du

)
ds

]
x(t) ≤ 0.

Therefore, for sufficiently large t

x′(t) + P2(t)x(t) ≤ 0, (3.13)

where

P2(t) = p(t)

[
1 +

∫ t

τ(t)

p(s) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

P1(ξ)dξ

)
du

)
ds

]
, t3 ≤ t.

It is apparent, now, that the steps leading from (3.3) to (3.9), then to inequality (3.13),
can be repeated, and the inductive procedure leads to the conclusion that for a sufficiently
large tj+1, the positive solution x satisfies the inequality

x′(t) + Pj(t)x(t) ≤ 0, t ≥ tj+1, (j ∈ N) , (3.14)

where

Pj(t) = p(t)

[
1 +

∫ t

τ(t)

p(s) exp

(∫ t

τ(s)

p(u) exp

(∫ u

τ(u)

Pj−1(ξ)dξ

)
du

)
ds

]
, t ≥ tj+1.

In order to take our final step, we recall that

h (t) := sup
s≤t

τ (t)

and note that h is a nondecreasing function. Moreover, since τ (s) ≤ h (s) ≤ h (t) from
(3.10)we have

x (h (t)) exp

(∫ h(t)

τ(s)

Pj (u) du

)
≤ x (τ (s)) .

Integrating (E) from h(t) to t and repeating the same procedure as in (3.9), in view of
the last inequality we see that for sufficiently large t it holds

x(t)− x(h(t)) + x(h(t))

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

Pj(u)du

)
ds ≤ 0. (3.15)

Since x(t) > 0, the last inequality implies

x(h(t))

[∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

Pj(u)du

)
ds− 1

]
< 0,

which contradicts (3.1).
The proof of the theorem is complete.
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We now cite two lemmas which will be used in the proof of our next results. We note
that the first one (see, [32]) provides a lower estimate for the ratio x(t)/x(h(t)) in terms
of the smaller root of the equation ξ2 − (1− α)ξ + α2/2 = 0, where α is given by (2.3).

Lemma 1. [32] Assume that x is an eventually positive solution of (E) and

0 < α := lim inf
t→∞

∫ t

τ(t)

p(s)ds ≤ 1

e
. (3.16)

Then

lim inf
t→∞

x(t)

x(h(t))
≥ 1− α−

√
1− 2α− α2

2
. (3.17)

Lemma 2. ([8], Lemma 2.1.1) In addition to hypothesis (1.1), assume that h is defined
by (2.5). Then

lim inf
t→∞

∫ t

τ(t)

p(s)ds = lim inf
t→∞

∫ t

h(t)

p(s)ds. (3.18)

Based on the above lemmas, we establish the following two theorems.

Theorem 2. Assume that (3.16) holds and for some j ∈ N

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

Pj(u)du

)
ds > 1− 1− α−

√
1− 2α− α2

2
, (3.19)

where Pj is defined by (3.2). Then all solutions of (E) oscillate.

Proof. Let x be an eventually positive solution of (E). Then, as in the proof of Theorem
1, we obtain (3.15), i.e, for sufficiently large t we have

x(t)− x(h(t)) + x(h(t))

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

Pj(u)du

)
ds ≤ 0.

That is, ∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

Pj(u)du

)
ds ≤ 1− x(t)

x(h(t))
,

which gives

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

Pj(u)du

)
ds ≤ 1− lim inf

t→∞

x(t)

x(h(t))
.

In view of (3.17), the last inequality contradicts (3.19).
The proof of the theorem is complete.

It is clear that the left-hand sides of both conditions (3.1) and (3.19) are identical,
also the right hand side of condition (3.19) reduces to (3.1) in case that α = 0. So it
seems that Theorem 2 is the same as Theorem 1 when α = 0. However, one may notice
that condition (3.16) is required in Theorem 2 but not in Theorem 1
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Theorem 3. Assume that (3.16) holds and for some j ∈ N

lim sup
t→∞

∫ t

h(t)

p(s) exp

( ∫ t

τ(s)

Pj(u)du

)
ds >

2

1− α−
√

1− 2α− α2
, (3.20)

where Pj is defined by (3.2). Then all solutions of (E) oscillate.

Proof. Assume, for the sake of contradiction, that there exists a nonoscillatory solution
x of (E) and that x is eventually positive. Then, as in the proof of Theorem 1, and
similarily to (3.10), from (3.14) we get that for sufficiently large values of s, t we have

x(s) ≥ x(t) exp

(∫ t

s

Pj(ξ)dξ

)
, (3.21)

from which for τ (s) in place of s we take

x(τ (s)) ≥ x(t) exp

(∫ t

τ(s)

Pj(ξ)dξ

)
. (3.22)

Integrating (E) from h(t) to t, we have

x(t)− x(h(t)) +

∫ t

h(t)

p(s)x(τ(s))ds = 0,

which, in view of (3.22), gives

x(t)− x(h(t)) +

∫ t

h(t)

p(s)x(t) exp

(∫ t

τ(s)

Pj(u)du

)
ds ≤ 0.

Since x(t) > 0, the last inequality leads to

x(h(t))

[
x(t)

x(h(t))

∫ t

h(t)

p(s) exp

(∫ t

τ(s)

Pj(u)du

)
ds− 1

]
< 0.

That is, for all sufficiently large t it holds∫ t

h(t)

p(s) exp

(∫ t

τ(s)

Pj(u)du

)
ds <

x(h(t))

x(t)
,

and therefore

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ t

τ(s)

Pj(u)du

)
ds ≤ lim sup

t→∞

x(h(t))

x(t)
.

In view of (3.17), the last inequality contradicts (3.20).
The proof of the theorem is complete.

The next lemma (see [20]) provides a lower estimate for the ratio x(h(t))/x(t) in terms
of the smaller root of the transcendental equation λ = eαλ.
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Lemma 3. Assume that (3.16) holds and let x be a positive solution of (E). Then

lim inf
t→∞

x(h(t))

x(t)
≥ λ0, (3.23)

where λ0 is the smaller root of the transcendental equation λ = eαλ.

Based on inequality (3.23), we establish the following theorem.

Theorem 4. Assume that (3.16) holds and for some j ∈ N

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(s)

τ(s)

Pj(u)du

)
ds >

1 + lnλ0
λ0

− 1− α−
√

1− 2α− α2

2
, (3.24)

where Pj is defined by (3.2) and λ0 is the smaller root of the transcendental equation
λ = eαλ. Then all solutions of (E) oscillate.

Proof. Let x be an eventually positive solution and obtain (3.22) as in Theorem 1.
Observe that (3.23) implies that for each ε > 0 there exists a tε such that

λ0 − ε <
x(h(t))

x(t)
for all t ≥ tε . (3.25)

Noting that by nondecreasing nature of the function x(h(t))
x(s)

in s, it holds

1 =
x(h(t))

x(h(t))
≤ x(h(t))

x(s)
≤ x(h(t))

x(t)
, tε ≤ h(t) ≤ s ≤ t,

in particular for ε ∈ (0, λ0 − 1), by continuity we see that there exists a t∗ ∈ (h(t), t] such
that

1 < λ0 − ε =
x(h(t))

x(t∗)
. (3.26)

Employing (3.21) with τ(s) and h(s) in place of s and t respectively (we always have
τ(s) ≤ h(s)), we see that there exists a t1 ≥ tε ≥ t0 such that

x(τ(s)) ≥ x(h(s)) exp

(∫ h(s)

τ(s)

Pj(ξ)dξ

)
, t1 ≤ τ(s) ≤ h(s) ≤ t. (3.27)

Integrating (E) from t∗ to t we have

x(t)− x(t∗) +

∫ t

t∗
p(s)x(τ(s))ds = 0,

so, by using (3.27) along with h(s) ≤ h(t) in combination with the nonincreasingness of
x, we have

x(t)− x(t∗) + x(h(t))

∫ t

t∗
p(s) exp

(∫ h(s)

τ(s)

Pj(u)du

)
ds ≤ 0,
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or ∫ t

t∗
p(s) exp

(∫ h(s)

τ(s)

Pj(u)du

)
ds ≤ x(t∗)

x(h(t))
− x(t)

x(h(t))
.

In view of (3.26) and Lemma 1, for the ε considered, there exists t′ε ≥ tε such that∫ t

t∗
p(s) exp

(∫ h(s)

τ(s)

Pj(u)du

)
ds <

1

λ0 − ε
− 1− α−

√
1− 2α− α2

2
+ ε, (3.28)

for t ≥ t′ε.
Dividing (E) by x(t) and integrating from h(t) to t∗ we find∫ t∗

h(t)

p (s)
x(τ (s))

x(s)
ds = −

∫ t∗

h(t)

x′(s)

x(s)
ds,

and using (3.27), we find∫ t∗

h(t)

p(s)
x(h(s))

x(s)
exp

(∫ h(s)

τ(s)

Pj(u)du

)
ds ≤ −

∫ t∗

h(t)

x′(s)

x(s)
ds. (3.29)

By (3.25), for s ≥ h(t) ≥ t′ε, we have x(h(s))
x(s)

> λ0 − ε, so from (3.29) we get

(λ0 − ε)
∫ t∗

h(t)

p(s) exp

(∫ h(s)

τ(s)

Pj(u)du

)
ds < −

∫ t∗

h(t)

x′(s)

x(s)
ds .

Hence, for all sufficiently large t we have∫ t∗

h(t)

p(s) exp

(∫ h(s)

τ(s)

Pj(u)du

)
ds

< − 1

λ0 − ε

∫ t∗

h(t)

x′(s)

x(s)
ds =

1

λ0 − ε
ln
x(h(t))

x(t∗)
=

ln (λ0 − ε)
λ0 − ε

,

i.e., ∫ t∗

h(t)

p(s) exp

(∫ h(s)

τ(s)

Pj(u)du

)
ds <

ln (λ0 − ε)
λ0 − ε

. (3.30)

Adding (3.28) and (3.30), and then taking the limit as t→∞, we have

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(s)

τ(s)

Pj(u)du

)
ds

≤ 1 + ln(λ0 − ε)
λ0 − ε

− 1− α−
√

1− 2α− α2

2
+ ε.

Since ε may be taken arbitrarily small, this inequality contradicts (3.24).
The proof of the theorem is complete.
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Theorem 5. Assume that for some j ∈ N

lim inf
t→∞

∫ t

h(t)

p(s) exp

(∫ h(s)

τ(s)

Pj(u)du

)
ds >

1

e
, (3.31)

where Pj is defined by (3.2). Then all solutions of (E) oscillate.

Proof. For the sake of contradiction, let x be a nonincreasing eventually positive solution
and t1 > t0 be such that x(t) > 0 and x (τ(t)) > 0 for all t ≥ t1.

Firstly we note that we may obtain (3.22) in the way discribed in Theorem 3, i.e.,

x(τ (s)) ≥ x(t) exp

(∫ t

τ(s)

Pj(ξ)dξ

)
.

Dividing (E) by x(t) and integrating from h(t) to t we have

ln

(
x(h(t))

x(t)

)
=

∫ t

h(t)

p(s)
x (τ(s))

x (s)
ds for all t ≥ t2 ≥ t1,

from which in view of τ(s) ≤ h(s) and by (3.22), we obtain

ln

(
x(h(t))

x(t)

)
≥
∫ t

h(t)

p(s)
x(h(s))

x (s)
exp

(∫ h(s)

τ(s)

Pj(u)du

)
ds,

where Pj is defined by (3.2).
Taking into account that x is nonincreasing and h(s) < s, the last inequality leads to

ln

(
x(h(t))

x(t)

)
≥
∫ t

h(t)

p(s) exp

(∫ h(s)

τ(s)

Pj(u)du

)
ds. (3.32)

From (3.31), it follows that there exists a constant c > 0 such that for a sufficiently large
t3 it holds ∫ t

h(t)

p(s) exp

(∫ h(s)

τ(s)

Pj(u)du

)
ds ≥ c >

1

e
, t ≥ t3. (3.33)

Combining inequalities (3.32) and (3.33), we obtain

ln

(
x(h(t))

x(t)

)
≥ c, t ≥ t3.

Thus
x(h(t))

x(t)
≥ ec ≥ ec > 1,

which implies for some t ≥ t4 ≥ t3

x(h(t)) ≥ (ec)x(t)



14

Repeating the above procedure, it follows by induction that for any positive integer k ,

x(h(t))

x(t)
≥ (ec)k, for sufficiently large t,

Since ec > 1, there is k ∈ N satisfying k > 2[ln 2−ln c]
1+ln c

such that for t sufficiently large

x(h(t))

x(t)
≥ (ec)k >

4

c2
. (3.34)

Further (cf. [17], [2], [11]), for sufficiently large t, there exists a tm ∈ (h(t), t) such
that ∫ tm

h(t)
p(s) exp

(∫ h(s)
τ(s)

Pj(u)du
)
ds ≥ c

2
,

∫ t
tm
p(s) exp

(∫ h(s)
τ(s)

Pj(u)du
)
ds ≥ c

2
.

(3.35)

Integrating (E) from h(t) to tm, using (3.22) and the fact that x(t) > 0, we obtain

x(h(t)) > x(h(tm))

∫ tm

h(t)

p(s) exp

(∫ h(s)

τ(s)

Pj(u)du

)
ds,

which, in view of the first inequality in (3.35), implies

x(h(t)) >
c

2
x(h(tm)). (3.36)

Similarly, integrating (E) from tm to t, using (3.22) and the fact that x(t) > 0, we have

x(tm) > x(h(t))

∫ t

tm

p(s) exp

(∫ h(s)

τ(s)

Pj(u)du

)
ds,

which, in view of the second inequality in (3.35), implies

x(tm) >
c

2
x(h(t)). (3.37)

Combining inequalities (3.36) and (3.37), we obtain

x(h(tm)) <
2

c
x(h(t)) <

4

c2
x(tm),

which contradicts (3.34).
The proof of the theorem is complete.

Before closing this section we note that one can easily see that conditions (3.1), (3.19),
(3.24), and (3.31) substantially improve conditions (2.2) (also, (2.9), (2.13), (2.10), (2.4)
and (2.3)). That can immediately be observed, if we compare the corresponding parts on
the left-hand side of these conditions.
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4 Examples and comments

The examples below illustrate that our conditions essentially improve known results in
the literature yet indicate a type of independence among some of them. Not to pursue
complexity any further, we choose to present examples with constant coefficients and
variable non-monotone delays. These examples not only illustrate the significancy of
our results but also indicate high level of improvement in the oscillation criteria. The
calculations were made by the use of MATLAB software.

Example 1. Consider the retarded differential equation

x′(t) +
1

8
x(τ(t)) = 0, t ≥ 0, (4.1)

with (see Fig. 1, (a))

τ(t) =



t− 1, if t ∈ [8k, 8k + 2]
−4t+ 40k + 9, if t ∈ [8k + 2, 8k + 3]
5t− 32k − 18, if t ∈ [8k + 3, 8k + 4]
−4t+ 40k + 18, if t ∈ [8k + 4, 8k + 5]
5t− 32k − 27, if t ∈ [8k + 5, 8k + 6]
−2t+ 24k + 15, if t ∈ [8k + 6, 8k + 7]
6t− 40k − 41, if t ∈ [8k + 7, 8k + 8]

, k ∈ N0,

where N0 is the set of non-negative integers.

By (1.6), we see (Fig. 1, (b)) that

h(t) =



t− 1, if t ∈ [8k, 8k + 2]
8k + 1, if t ∈ [8k + 2, 8k + 19/5]
5t− 32k − 18, if t ∈ [8k + 19/5, 8k + 4]
8k + 2, if t ∈ [8k + 4, 8k + 29/5]
5t− 32k − 27, if t ∈ [8k + 29/5, 8k + 6]
8k + 3, if t ∈ [8k + 6, 8k + 44/6]
6t− 40k − 41, if t ∈ [8k + 44/6, 8k + 8]

, k ∈ N0.

Let the function Fj : R0 → R+ (j ∈ N) be defined by

Fj(t) =

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

Pj(u)du

)
ds, (4.2)

with Pj given by (3.2). Noting that Fj attains its maximum at t = 8k+ 44/6, k ∈ N0, for
every j ∈ N, and using an algorithm on MATLAB software, we obtain

lim sup
t→∞

F1(t) = lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

P1(u)du

)
ds ' 1.0097 > 1.
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FIGURE (for Example 1) 
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Figure 1: The graphs of τ(t) and h(t)

That is, condition (3.1) of Theorem 1 is satisfied for j = 1, and therefore all solutions of
(4.1) oscillate.

Observe, however, that

lim sup
t→∞

∫ t

h(t)

p(s)ds = lim sup
k→∞

∫ 8k+44/6

8k+3

1

8
ds = 0.5417 < 1,

α = lim inf
t→∞

∫ t

τ(t)

p(s)ds = lim inf
k→∞

∫ 8k+2

8k+1

1

8
ds = 0.125 <

1

e
,

0.5417 <
1 + lnλ0

λ0
− 1− α−

√
1− 2α− α2

2
' 0.9815,

where λ0 = 1.15537 is the smaller solution of e0.125λ = λ.
Noting that the function Φj defined by

Φj(t) =

∫ t

h(t)

p(s) exp

(∫ h(t)

h(s)

p(u)ψj(u)du

)
ds, (j ≥ 2) , (4.3)

(with ψj defined by (2.8)) attains its maximum at t = 8k + 44/6, k ∈ N0 for every j ≥ 2.
Specifically, we find

lim sup
t→∞

Φ2(t) ' 0.6450 < 1− 1− α−
√

1− 2α− α2

2
' 0.99098.
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Also

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

p(u)du

)
ds ' 0.74354 < 1

and

0.74354 < 1− 1− α−
√

1− 2α− α2

2
' 0.99098.

As each one of the functions Gj (j ∈ N) defined by

Gj(t) =

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

pj(u)du

)
ds, (j ∈ N) (4.4)

attains its maximum at t = 8k + 44/6, k ∈ N0, for every j ∈ N we find

lim sup
t→∞

G1(t) = lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

p1(u)du

)
ds ' 0.8626 < 1

and

0.8626 < 1− 1− α−
√

1− 2α− α2

2
' 0.99098.

That is, none of the conditions (2.2), (2.3) (2.4), (2.6) (for j = 2), (2.9), (2.10) and (2.13)
(for j = 1), is satisfied. In addition, observe that conditions (2.6) and (2.13) do not lead
to oscillation for first iteration. On the contrary, condition (3.1) is satisfied from the first
iteration. This means that our condition is better and much faster than (2.6) and (2.13).

In addition,

lim sup
t→∞

∫ t

h(t)

p(s) exp

( ∫ t

τ(s)

P1(u)du

)
ds ' 4.8243 <

2

1− a−
√

1− 2a− a2
' 110.85,

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(s)

τ(s)

P1(u)du

)
ds ' 0.7983

<
1 + lnλ0

λ0
− 1− a−

√
1− 2a− a2
2

' 0.9815,

lim inf
t→∞

∫ t

h(t)

p(s) exp

(∫ h(s)

τ(s)

P1(u)du

)
ds = α = 0.125 <

1

e
,

that is, none of the conditions (3.20) (for j = 1), (3.24) (for j = 1) and (3.31) (for j = 1),
is satisfied.

The next example concerns the result in Theorem 2. It will be apparent that it may
imply oscillation when other known criteria cited in the paper (including Theorem 1) fail.
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Example 2. Consider the retarded differential equation

x′(t) +
25

27e
x(τ(t)) = 0, t ≥ 0, (4.5)

with (see Fig. 2, blue line)

τ(t) = t− 1.5 + sin (2t) , t ≥ 0.

By (2.5), we see (Fig. 2, red line) that

FIGURE (for Example 1) 
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Figure 2: The graphs of τ(t) and h(t)

h(t) =


t− 1.5 + sin (2t) , if t ∈ [0, π/3] ∪

⋃∞
k=0 [2.6938 + kπ, (k + 1)π + π/3]

2π−9+3
√
3

6
+ kπ if t ∈

⋃∞
k=0 [kπ + π/3, 2.6938 + kπ]

.

It is easy to see that

α = lim inf
t→∞

∫ t

τ(t)

p(s)ds = lim inf
k→∞

∫ π/4+kπ

π/4+kπ−0.5

25

27e
ds ' 0.170314556 <

1

e
.

Observe that the function Fj defined by (4.2) in Example 1, attains its maximum at t =
2.6938 + kπ, k ∈ N0, for every j ∈ N. By using an algorithm on MATLAB software, we
obtain

lim sup
t→∞

F1(t) ' 0.9836 > 1− 1− α−
√

1− 2α− α2

2
' 0.9629.
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That is, condition (3.19) of Theorem 2 is satisfied for j = 1, and therefore all solutions
of (4.5) oscillate.

However,

lim sup
t→∞

∫ t

h(t)

p(s)ds = lim sup
k→∞

∫ 2.6938+kπ

2π−9+3
√
3

6
+kπ

25

27e
ds ' 0.7768 < 1,

and the value of the constant α is found to be

α ' 0.170314556 <
1

e
.

Consequently, the smaller solution of the equation eαλ = λ is approximately λ0 = 1.23386,
so

0.7768 <
1 + lnλ0

λ0
− 1− α−

√
1− 2α− α2

2
' 0.9629,

indicating that condition (2.4)does not hold.
Observe that the function Φ2 defined by (4.3) in Example 1 attains its maximum at

t = 2.6938 + kπ, k ∈ N0. Specifically, we find

lim sup
t→∞

Φ2(t) ' 0.7971 < 1− 1− α−
√

1− 2α− α2

2
' 0.9821,

and

lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

p(u)du

)
ds ' 0.8776 < 1,

0.8776 < 1− 1− α−
√

1− 2α− α2

2
' 0.9821.

Also, specifically for the function G1 : R0 → R+ defined by (4.4) in Example 1, we find

lim sup
t→∞

G1(t) = lim sup
t→∞

∫ t

h(t)

p(s) exp

(∫ h(t)

τ(s)

p1(u)du

)
ds ' 0.9555 < 1,

so we see that

0.9555 < 1− 1− α−
√

1− 2α− α2

2
' 0.9821.

That is, none of conditions (3.1) (for j = 1), (2.2), (2.3) (2.4), (2.6) (for j = 2), (2.9),
(2.10), (2.13) (for j = 1) and (2.14) (for j = 1), is satisfied. Consequently, all crite-
ria given in Section 2 fail to apply, neither does Theorem 1. In addition, observe that
conditions (3.1), (2.6), (2.13) and (2.14) do not lead to oscillation for first iteration. On
the contrary, condition (3.19) is satisfied from the first iteration. This means that our
condition is better and much faster than (3.1), (2.6), (2.13) and (2.14).

In addition,

lim sup
t→∞

∫ t

h(t)

p(s) exp

( ∫ t

τ(s)

P1(u)du

)
ds ' 3.87 <

2

1− a−
√

1− 2a− a2
' 55.974,
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lim inf
t→∞

∫ t

h(t)

p(s) exp

(∫ h(s)

τ(s)

P1(u)du

)
ds = α ' 0.170314556 <

1

e
.

That is, none of conditions (3.20) (for j = 1) and (3.31) (for j = 1) is satisfied, so
Theorems 3 and 5 do not apply from the first iteration.

Our last example in this section deals with the result of Theorem 3.

Example 3. Consider the retarded differential equation

x′(t) +
97

625
x(τ(t)) = 0, t ≥ 0, (4.6)

where τ(t) is defined as in Example 1.
It is easy to see that

α = lim inf
t→∞

∫ t

τ(t)

p(s)ds = lim inf
k→∞

∫ 7k+2

7k+1

p(s)ds = 0.1552 <
1

e
.

As before, we may see that the function F̂j (j ∈ N) defined by

F̂j(t) =

∫ t

h(t)

p(s) exp

( ∫ t

τ(s)

Pj(u)du

)
ds, (j ∈ N),

attains its maximum at t = 8k + 44/6, k ∈ N0, for every j ∈ N. An algorithm on
MATLAB software gives

lim sup
t→∞

F̂1(t) ' 69.8327 >
2

1− α−
√

1− 2α− α2
' 68.9412,

that is, condition (3.20) of Theorem 3 is satisfied for j = 1, and therefore all solutions of
(4.6) oscillate.

However, we find

lim sup
t→∞

∫ t

h(t)

p(s)ds = lim sup
k→∞

∫ 8k+44/6

8k+3

97

625
ds ' 0.6725 < 1,

and

α = 0.1552 <
1

e
,

so

0.6725 <
1 + lnλ0

λ0
− 1− α−

√
1− 2α− α2

2
' 0.97,

where λ0 = 1.2058 is the smaller solution of e0.1552λ = λ.
Recalling that the function Φj defined as in Example 1, attains its maximum at t =

8k + 44/6, k ∈ N0, for every j ≥ 2. Specifically, we find

lim sup
t→∞

Φ2(t) ' 0.84 < 1− 1− α−
√

1− 2α− α2

2
' 0.9855,
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that is, none of conditions (2.2), (2.3), (2.4) and (2.6) (for j = 1) is satisfied.
In addition,

lim inf
t→∞

∫ t

h(t)

p(s) exp

(∫ h(s)

τ(s)

P1(u)du

)
ds = α = 0.1552 <

1

e
,

that is, condition (3.31) (for j = 1) is not satisfied.

In conclusion, Theorem 3 yields oscillation while none of the criteria in Section 2
applies, neihter does Theorem 5.

Finally, let us consider the differential inequalities

x′(t) + p(t)x (τ(t)) ≤ 0, t ≥ t0 (4.7)

and
x′(t) + p(t)x (τ(t)) ≥ 0, t ≥ t0 (4.8)

with p and τ as in the differential equation (E). Similarly to the corresponding defini-
tions for equation (E) we may briefly say that by the term solution x of either of these
inequalities we mean a continuously differentiable function which satisfies (4.7) or (4.8)
for all t ≥ t0. It is not difficult to see that slight modifications in the proofs of Theorems
1-5 may lead to the following oscillation results.

Theorem 6. Assume that the conditions of Theorem 1 (or 2, or 3, or 4, or 5) hold.
Then, the retarded differential inequality (4.7) has no eventually positive solutions, and,
the retarded differential inequality (4.8) has no eventually negative solutions.

5 Advanced differential equations

We now consider the advanced differential equation

x′(t)− q(t)x (σ(t)) = 0, t ≥ t0, (E ′)

where q(t) ≥ 0 and σ(t) are continuous functions with (1.2) holding.
An early oscillation result for the equation (E ′) is Theorem 2.4.3 in [25], stating that

if

σ is nondecreasing and lim sup
t→∞

∫ σ(t)

t

q(s)ds > 1, (5.1)

then all solutions of (E ′) oscillate.
In correspondance with the results by Ladas in [21], and, by Koplatadze and Chan-

turija [17] for the retarded equation (E), Fukagai and Kusano [10] proved that if

β := lim inf
t→∞

∫ σ(t)

t

q(s)ds >
1

e
, (5.2)

then all solutions of (E ′) oscillate, while if∫ σ(t)

t

q(s)ds ≤ 1

e
for all sufficiently large t,



22

then Eq. (E ′) has a nonoscillatory solution.
When the argument σ(t) is not necessarily monotone, we set

ρ(t) = inf
s≥t

σ(s), t ≥ t0, (5.3)

and we immediately see that the function ρ(t) is nondecreasing and σ(t) ≥ ρ(t) > t for
all t ≥ t0.

In 2015, Chatzarakis and Ocalan [6], proved that if

lim sup
t→∞

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

ρ(t)

q(u)du

)
ds > 1, (5.4)

or

lim inf
t→∞

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

ρ(t)

q(u)du

)
ds >

1

e
, (5.5)

then all solutions of (E ′) oscillate.
Recently, Chatzarakis [4], [5] proved that if for some j ∈ N

lim sup
t→∞

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

ρ(t)

qj(u)du

)
ds > 1, (5.6)

or

lim sup
t→∞

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

ρ(t)

qj(u)du

)
ds > 1− 1− β −

√
1− 2β − β2

2
, (5.7)

where

qj(t) = q(t)

[
1 +

∫ σ(t)

t

q(s) exp

(∫ σ(s)

ρ(t)

qj−1(u)du

)
ds

]
, (5.8)

with q0(t) = q(t), then all solutions of (E ′) oscillate.

Oscillation conditions analogous to those obtained for the retarded equation (E) may
be derived for the (dual) advanced differential equation (E ′) by following similar argu-
ments with the ones employed for obtaining Theorems 1-5. The corresponding Theorems
are stated below while their proofs are omitted, as they are quite similar to those for
Theorems 1-5.

Theorem 7. Assume that ρ(t) is defined by (5.3), and for some j ∈ N

lim sup
t→∞

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

ρ(t)

Qj(u)du

)
ds > 1, (5.9)

where

Qj(t) = q(t)

[
1 +

∫ σ(t)

t

q(s) exp

(∫ σ(s)

t

q(u) exp

(∫ σ(u)

u

Qj−1(ξ)dξ

)
du

)
ds

]
, (5.10)

with Q0(t) = q(t). Then all solutions of (E ′) oscillate.
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Theorem 8. Assume that

0 < β := lim inf
t→∞

∫ σ(t)

t

q(s)ds ≤ 1

e
(5.11)

and for some j ∈ N

lim sup
t→∞

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

ρ(t)

Qj(u)du

)
ds > 1− 1− β −

√
1− 2β − β2

2
, (5.12)

where Qj is defined by (5.10) and ρ(t) by (5.3). Then all solutions of (E ′) oscillate.

Theorem 9. Assume that (5.11) holds and for some j ∈ N

lim sup
t→∞

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

t

Qj(u)du

)
ds >

2

1− β −
√

1− 2β − β2
, (5.13)

where Qj is defined by (5.10) and ρ(t) is defined by (5.3). Then all solutions of (E ′)
oscillate.

Theorem 10. Assume that (5.11) holds and for some j ∈ N

lim sup
t→∞

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

ρ(s)

Qj(u)du

)
ds >

1 + lnλ0
λ0

− 1− β −
√

1− 2β − β2

2
, (5.14)

where Qj is defined by (5.10), ρ(t) is defined by (5.3), and λ0 is the smaller root of the
transcendental equation λ = eβλ. Then all solutions of (E ′) oscillate.

Theorem 11. Assume that for some j ∈ N

lim inf
t→∞

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

ρ(s)

Qj(u)du

)
ds >

1

e
, (5.15)

where Qj is defined by (5.10) and ρ(t) is defined by (5.3). Then all solutions of (E ′)oscillate.

It is evident that comments analogous with those presented for the retarded equation
(E) can also be made for the advanced equation (E ′). Instead, we choose to present
an example illustrating the result of Theorem 11, also compare (5.15) with some of the
conditions found in other oscillation criteria.

Example 4. Consider the advanced differential equation

x′(t)− 321

1000
x(σ(t)) = 0, t ≥ 0, (5.16)

where (see Fig.3, a)

σ(t) =

{
3t− 2k + 1, if t ∈ [k, k + 1/2]
−t+ 2k + 3, if t ∈ [k + 1/2, k + 1]

.
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Figure for Example 4 
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Figure 3: The graphs of σ(t) and ρ(t)

By (5.3), we see (Fig.3, b) that

ρ(t) =

{
3t− 2k + 1, if t ∈ [k, k + 1/3]
k + 2, if t ∈ [k + 1/3, k + 1]

.

The function F̃j (j ∈ N) defined by

F̃j(t) =

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

ρ(s)

Qj(u)du

)
ds, t ≥ t0

attais its minimum at t = k+1, k ∈ N0, for every j ∈ N. Using an algorithm on MATLAB
software, one may find that

lim inf
t→∞

F̃1(t) = lim inf
t→∞

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

ρ(s)

Q1(u)du

)
ds ' 0.3685 >

1

e

that is, condition (5.15) of Theorem 11 is satisfied for j = 1, and therefore all solutions
of (5.16) oscillate.

However,

lim sup
t→∞

∫ ρ(t)

t

q(s)ds = lim sup
k→∞

∫ k+2

k+1/3

321

1000
ds = 0.535 < 1,
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β = lim inf
t→∞

∫ σ(t)

t

q(s)ds = lim inf
k→∞

∫ k+2

k+1

321

1000
ds = 0.321 <

1

e
,

lim sup
t→∞

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

ρ(t)

q(u)du

)
ds ' 0.6783 < 1.

Also, the function G̃j (j ∈ N) defined by

G̃j(t) =

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

ρ(t)

qj(u)du

)
ds, t ≥ t0,

attains its maximum at t = k + 1/3, k ∈ N0, for every j ∈ N. Specifically,

lim sup
t→∞

(t) = lim sup
t→∞

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

ρ(t)

q1(u)du

)
ds ' 0.75 < 1,

and

0.75 < 1− 1− β −
√

1− 2β − β2

2
' 0.9129.

That is, none of conditions (5.1), (5.2), (5.4), (5.6) (for j = 1) and (5.7) (for j = 1) is
satisfied.

In addition, we have

lim sup
t→∞

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

t

Q1(u)du

)
ds ' 4.3068

<
2

1− β −
√

1− 2β − β2
' 11.4899

and

lim sup
t→∞

∫ ρ(t)

t

q(s) exp

(∫ σ(s)

ρ(s)

Q1(u)du

)
ds ' 0.6299

<
1 + lnλ0

λ0
− 1− β −

√
1− 2β − β2

2
' 0.8026,

where λ0 = 1.75857 is the smaller solution of e0.321λ = λ and Qj is defined in (5.10).

That is, none of conditions (5.13) (for j = 1) and (5.14) (for j = 1) is satisfied.

In conclusion, Theorem 11 applies yielding that all solutions of (5.16) oscillate while
none of the criteria involving (5.1), (5.2), (5.4), (5.6) (for j = 1) and (5.7) (for j = 1) are
applicable, yet neither Theorem 9 nor Theorem 10 can be applied for j = 1. In addition,
observe that conditions (5.6) and (5.7) do not lead to oscillation for first iteration. On
the contrary, condition (5.15) is satisfied from the first iteration. This means that our
condition is better and much faster than (5.6) and (5.7).
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Parallel to the differential inequalities (4.7) and (4.8) and we may consider the ad-
vanced differential inequalities

x′(t)− q(t)x (σ(t)) ≥ 0, t ≥ t0, (5.17)

and

x′(t)− q(t)x (σ(t)) ≤ 0, t ≥ t0. (5.18)

It is not difficult to see that by slight modifications in the proofs of Theorems 7-11 lead
to the following oscillation results.

Theorem 12. Assume that all the conditions of Theorem 7, (or Theorem 8, or Theorem 9,
or Theorem 10, or Theorem 11) hold. Then the advanced differential inequality (5.17) has
no eventually positive solutions, and, the advanced differential inequality (5.18) has no
eventually negative solutions.

Acknowledgement 1. The authors would like to thank the referee for the constructive
remarks which greatly improved the paper.
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