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1 Introduction

This research aims to study the asymptotic behavior for curvature flow with driving force
when the curvature blows up. Precisely, we consider the following free boundary problem

ut =
uxx

1 + u2x
+ A

√
1 + u2x, x ∈ (−b(t), b(t)), 0 < t < T, (1.1)

u(−b(t), t) = 0, u(b(t), t) = 0, 0 ≤ t < T, (1.2)

ux(−b(t), t) =∞, ux(b(t), t) = −∞, 0 ≤ t < T, (1.3)

u(x, 0) = u0(x), −b0 ≤ x ≤ b0, (1.4)

where u0 ∈ C∞((−b0, b0)) ∩ C([−b0, b0]) is even and satisfies u0(x) > 0, −b0 < x < b0.
Moreover, we assume the curve Γ0 = {(x, y) | |y| = u0(x),−b0 ≤ x ≤ b0} is smooth. The
constant A called driving force is positive.

We say (u, b) is a solution of (1.1)-(1.4), if
(1). b(t) is a positive function and b ∈ C([0, T )) ∩ C1((0, T )).
(2). u ∈ C(DT ) ∩ C2,1(DT ), where DT = ∪0≤t<T

(
[−b(t), b(t)] × {t}

)
and DT =

∪0<t<T
(
(−b(t), b(t))× {t}

)
(DT 6= DT ).

(3). (u, b) satisfies (1.1)-(1.4).
The constant T denotes the maximal time such that Γ(t) = {(x, y) ∈ R2 | |y| =

u(x, t),−b(t) ≤ x ≤ b(t)} is smooth for 0 < t < T . And we explain the notation in (1.3)
by

ux(−b(t), t) = lim
x→−b(t)

u(x, t), ux(b(t), t) = lim
x→b(t)

u(x, t).

If T <∞, seeing Corollary 6.6 in [12], there exists t0 such that u(x, t) loses all its local
minimum, t0 < t < T and Γ(t) shrinks to the origin, as t→ T . More precisely, if we let

h(t) = max
−b(t)≤x≤b(t)

u(x, t),

there holds h(t)→ 0 and b(t)→ 0, t→ T .
Noting that the initial function u0 is even, u(x, t) is also even. Therefore for every

t > t0, u(x, t) is increasing for x ∈ (−b(t), 0) and u(x, t) is decreasing for x ∈ (0, b(t)).
Moreover, h(t) = u(0, t), t > t0.

Main results. Next, under the case T < ∞, we introduce the following similarity
transformation(first used by [4]):

z =
x√

2(T − t)
, τ = −1

2
ln(T − t) (1.5)

and

w(z, τ) =
1√
2
eτu(
√

2e−τz, T − e−2τ ). (1.6)

We also define

r(τ) =
1√
2
eτh(T − e−2τ ) and q(τ) =

1√
2
eτb(T − e−2τ ).
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Obviously, r(τ) = w(0, τ) = max
−q(τ)≤z≤q(τ)

w(z, τ), τ > −1
2

ln(T − t0). Then u satisfies (1.1),

(1.2), (1.3), (1.4) if and only if w satisfies

wτ =
wzz

1 + w2
z

− zwz + w +
√

2Ae−τ
√

1 + w2
z , z ∈ (−q(τ), q(τ)), τ > τ0, (1.7)

w(−q(τ), τ) = w(q(τ), τ) = 0, τ > τ0, (1.8)

wz(−q(τ), τ) =∞, wz(q(τ), τ) = −∞, τ > τ0, (1.9)

w0(z) := w(z, τ0) =
1√
2T

u0(
√

2Tz), z ∈ [−b(0)/
√

2T , b(0)/
√

2T ], (1.10)

where τ0 = −1
2

lnT . The stationary problem for (1.7), (1.8), (1.9), (1.10) is given by

ϕzz
1 + ϕ2

z

− zϕz + ϕ = 0, z ∈ (−q, q), (1.11)

ϕ(−q) = ϕ(q) = 0, (1.12)

ϕz(−q) =∞, ϕz(q) = −∞, (1.13)

for some q. Obviously, ϕ(z) =
√

1− z2 and q = 1 are the unique solution of the above
stationary problem (1.11)-(1.13).

Here we give our main result.

Theorem 1.1 (Asymptotic behavior). The solution (w(z, τ), q(τ)) of problem (1.7)-(1.10)
converges to the unique solution (ϕ(z), q) of (1.11)-(1.13) pointwise, as τ → +∞, where
w and ϕ are considered as 0 outside the interval.

Furthermore, there exists t1 such that Γ(t) is strict convex for t1 < t < T . Equivalently,
uxx(x, t) < 0, for −b(t) < x < b(t), t1 < t < T .

Remark 1.2. Indeed, we can prove the graph of w(z, τ) converges to the graph of ϕ(z)
under the Hausdorff distance.

Note that our result does not assume convexity for initial data as in [9]. Indeed, we
assume symmetry to the the initial curve.

Background Recently, the paper [12] has considered an axisymmetric closed curve
evolving by its mean curvature flow with driving force. It classifies the solution in three
categories and gives the asymptotic behavior for the case expanding and bounded. Here
we recall the results in [12].

Theorem 1.3 in [12] shows that the solution (u, b) of the free boundary problem (1.1),
(1.2), (1.3), (1.4) must fulfill one of the following situations.

(1) (Expanding) T =∞ and that both h(t) and b(t) tend to∞ as t→∞. Then there
exist R1(t), R2(t) such that

BR1(t)((0, 0)) ⊂ D(t) ⊂ BR2(t)((0, 0)),

where D(t) = {(x, y) ∈ R2 | |y| < u(x, t),−b(t) < x < b(t)}. Moreover lim
t→∞

R1(t)/t =

lim
t→∞

R2(t)/t = A.
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(2) (Bounded) T =∞ and that both h(t) and b(t) are bounded from above and below
by two positive constants for t > 0. Then lim

t→∞
dH(Γ(t), ∂B1/A((0, 0))) = 0.

(3) (Shrinking) T < ∞ and that both h(t) and b(t) tend to 0 as t → T . Then Γ(t)
shrinks to a point at t = T .

We recall h(t) = max
−b(t)≤x≤b(t)

u(x, t). Here dH(A,B) denotes the Hausdorff metric de-

fined as
dH(A,B) = max{sup

x∈A
inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)},

where A, B are subsets in R2.
The results in [12] do not contain the asymptotic behavior for the shrinking condition.

Therefore, this paper is a continuation of the research in [12].
A short review for mean curvature flow. For the classical mean curvature flow

V = −κ, where V denotes the outer normal velocity and κ denotes the mean curvature.
Concerning this problem, Huisken [6] showed that any solution that starts out as a smooth,
compact and convex surface remains so until it shrinks to a ”round point”, its asymptotic
shape is a sphere just before it disappears. He proves this result for hypersurfaces of Rn+1

with n ≥ 2, but Gage and Hamilton [2] showed that it still holds when n = 1, the curves
in the plane. Gage and Hamilton also showed that embedded curve remains embedded,
i.e. the curve will not intersect itself. Grayson [5] proved the remarkable fact that such
family must become convex eventually. Thus, any embedded curve in the plane will shrink
to “round point” under the curvature flow.

For the problem V = −κ+A, where A > 0, in [3], they investigate the equation (1.1)
with the following free boundary condition and appropriate initial data

u(l−(t), t) = 0 = u(l+(t), t) = 0, 0 ≤ t < T, (1.14)

ux(l−(t), t) = tanψ−, ux(l+(t), t) = − tanψ+, 0 ≤ t < T, (1.15)

where 0 < ψ−, ψ+ < π/2. They also give the classifications of the solution into three
types like the results in [12]. Moreover, for the shrinking case, they prove that the curve
will become convex eventually. Since the contact angles 0 < ψ−, ψ+ < π/2, it is easy to
get |ux(x, t)| ≤ M , l−(t) ≤ x ≤ l+(t), 0 < t < T , for some M > 0. Then there exists
C > 0 such that

l+(t)− l−(t) ≥ C

∫ l+(t)

l−(t)

√
1 + u2x(x, t)dx.

But in our condition, seeing ψ− = ψ+ = π/2, the derivative ux is unbounded. We have
to find a new method to get the conclusion

b(t) ≥ C

∫ l+(t)

l−(t)

√
1 + u2x(x, t)dx.

The most important tool in this paper is the comparison principle for extrinsic and
intrinsic distances. Let the flow G : [0, L∗(t)]× [0, T )→ R2 be the smooth closed curves
evolving by the classical curve shortening flow

∂

∂t
G(s, t) =

∂2

∂s2
G(s, t),
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where s denotes the arc length parameter, L∗(t) denotes the perimeter of G(·, t). For
any two points on mean curvature flow G(s, t), denoted by G(s1, t), G(s2, t). Denote
d = |G(s1, t)−G(s2, t)|. l = |s2−s1| is the length of the curve between G(s1, t), G(s2, t).
More precisely, l and d are called the intrinsic and extrinsic distances, respectively. The
paper [7] shows that m(t) = min

(s1,s2)∈[0,L∗(t)]×[0,L∗(t)]
(d/l)(s1, s2, t) is non-decreasing in time.

The ratio between extrinsic and intrinsic distance is also used by [10] and [11].
In our problem, if we let F satisfy

Γ(t) = {(x, y) ∈ R2 | |y| = u(x, t),−b(t) ≤ x ≤ b(t)} = {F(s, t) ∈ R2 | s ∈ [0, L(t)]},

L(t) denotes the perimeter of Γ(t). Then F satisfies

∂

∂t
F(s, t) =

∂2

∂s2
F(s, t)− AN,

where N denotes the unit inner normal vector. We will see the result in [7] does not hold.
In section 2, we can see the curvature flow with driving force does not intersect itself
interior, but could intersects itself exterior(Section 4).

The rest of this paper is organized as follows. In Section 2, we first recall the basic
facts for curvature flow with driving force. The similar results for A = 0 are given in [2].
Next, a special comparison principle for extrinsic and intrinsic distances will be proved
in this section. In Section 3, the proof of Theorem 1.1 will be given by using Lyapunov
function. In section 4, we give an example for the comparison principle for extrinsic and
intrinsic distances not holding.

2 Comparison principle between extrinsic and intrin-

sic distances

In this section, we will give the proof of the comparison principle between extrinsic and
intrinsic distances.

First, we give some basic results for general mean curvature flow with driving force.
For A = 0, the results are proved by Gage and Hamilton in [2]. Let M be an one-dimension
Riemannian manifold and F : M × [0, T )→ R2 be a smooth map. F satisfies

∂

∂t
F(p, t) = κN− AN, (2.1)

where the sign of κ is determined by

∂2

∂s2
F(s, t) = κN,

where we recall N is the unit inner normal velocity, s is the arc length parameter.
In this section, for convenience, we take M = S1 with parameter p. Let F : S1 ×

[0, T )→ R2 be a closed embedded curve moving by (2.1).
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Using the arclength parameter s,

∂

∂s
=

1

v

∂

∂p
,

where v = |∂F/∂p|. The sign of κ will be determined by

∂2F

∂s2
= κN.

Let T be the unit tangent vector given by

T =
∂F/∂p

|∂F/∂p|
.

The Frenet equations show that

1

v

∂

∂p

(
T
N

)
=

(
0 κ
−κ 0

)(
T
N

)
.

Define θ by T = (cos θ, sin θ). We can deduce that

∂s

∂θ
=

1

κ
.

Lemma 2.1.
∂v

∂t
= −κ2v + Aκv.

Proof. By (2.1) and the Frenet equations,

∂v

∂t
=

∂|∂F/∂p|
∂t

= 〈T,Fpt〉 = 〈T,Ftp〉 = 〈T, (κN− AN)p〉

= 〈T, (κ− A)Np〉 = 〈T,−vκ(κ− A)T〉 = −κ2v + Aκv.

Lemma 2.2. Denote l =
∫ p2
p1
vdp = s(p2)− s(p1), p1, p2 ∈ S1, then

∂l

∂t
= A

∫ s(p2)

s(p1)

κds−
∫ s(p2)

s(p1)

κ2ds.

In particular, dL(t)/dt = 2πA −
∫ L(t)
0

κ2ds, where we recall L(t) is the perimeter of the
curve.

Proof. Using ∂v/∂t = −κ2v+Aκv and ∂θ/∂s = κ, this lemma can be proved at once.

We note that the arc length parameter s depends on t, then ∂/∂t does not commute
with ∂/∂s. The following lemma gives the relation between them.

Lemma 2.3.
∂

∂t

∂

∂s
=

∂

∂s

∂

∂t
+ (κ2 − Aκ)

∂

∂s
.
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Proof. Apply Lemma 2.1, we get

∂

∂t

∂

∂s
=

∂

∂t

(
1

v

∂

∂p

)
=

∂

∂s

∂

∂t
+
∂

∂t

(
1

v

)
∂

∂p
=

∂

∂s

∂

∂t
− ∂v/∂t

v2
∂

∂p

=
∂

∂s

∂

∂t
+ (κ2 − Aκ)

∂

∂s
.

The derivatives of T and N are related as follows:

Lemma 2.4.
∂T

∂t
=
∂κ

∂s
N and

∂N

∂t
= −∂κ

∂s
T.

Proof. By Lemma 2.3, (2.1) and Frenet equations,

∂T

∂t
=

∂2F

∂t∂s
=

∂2F

∂s∂t
+ (κ2 − Aκ)

∂F

∂s
=

∂

∂s
(κN− AN) + (κ2 − Aκ)T

=
∂κ

∂s
N− (κ2 − Aκ)T + (κ2 − Aκ)T =

∂κ

∂s
N.

On the other hand,

0 =
∂

∂t
〈T,N〉 = 〈∂κ

∂s
N,N〉+ 〈T, ∂N

∂t
〉.

Note that ∂N/∂t must be perpendicular to N. We complete the proof.

Lemma 2.5.
∂θ

∂t
=
∂κ

∂s

Proof. Since T = (cos θ, sin θ)

∂T

∂t
=
∂θ

∂t
(− sin θ, cos θ).

On the other hand, we use the formula in Lemma 2.4 to calculate

∂T

∂t
= −∂κ

∂s
N =

∂κ

∂s
(− sin θ, cos θ).

Comparing components the proof is completed.

Lemma 2.6. Let S(t) be the area enclosed by the curve F(·, t). Then

d

dt
S(t) = −2π + AL(t).

Proof. By Gauss-Green’s Theorem,

S(t) = −1

2

∫ L(t)

0

〈F,N〉ds.
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Using above lemmas, we get

d

dt
S(t) = −1

2

∫ 2π

0

〈∂F

∂t
, vN〉dp− 1

2

∫ 2π

0

〈F, ∂v
∂t

N〉dp− 1

2

∫ 2π

0

〈F, v ∂N

∂t
〉dp

= −1

2

∫ 2π

0

〈κN− AN, vN〉dp− 1

2

∫ 2π

0

〈F, (−κ2v + Aκv)N〉dp

+
1

2

∫ 2π

0

〈F, v ∂κ
∂s

T〉dp = −π +
1

2
AL(t)− 1

2

∫ L(t)

0

〈F, AκN〉ds

+
1

2

∫ L(t)

0

〈F, κ2N〉ds− 1

2

∫ L(t)

0

κds− 1

2

∫ L(t)

0

κ2〈F,N〉ds

= −2π +
1

2
AL(t)− 1

2

∫ L(t)

0

〈F, A∂T

∂s
〉ds = −2π +

1

2
AL(t) +

A

2

∫ L(t)

0

ds

= −2π + AL(t).

In the third and fifth equalities, we use the integral by parts.

Next we are going to prove the comparison principle for extrinsic and intrinsic distances
under mean curvature flow with driving force in a special case.

Theorem 2.7. For our flow

Γ(t) = {(x, y) | |y| = u(x, t),−b(t) ≤ x ≤ b(t)}, t0 < t < T,

let d = 2x and l(x, t) =
∫ x
−x

√
1 + u2xdx, 0 ≤ x ≤ b(t). Then

m(t) = min
0≤x≤b(t)

d/ψ

is strictly increasing provided that m(t) < 1, for t0 < t < T , where

ψ =
L

π
sin

lπ

L
,

where we recall t0 is defined in Section 1 such that u(x, t) loses all its local minimum,
t0 < t < T .

Remark 2.8. (1) The quantities d and l are the extrinsic and intrinsic distances between
(−x, u(x, t)) and (x, u(x, t)) and l ≤ L(t)/2. Hence d = 2x and l = 2

∫ x
0

√
1 + u2xdx.

(2) Noting that lim
x→0+

d/ψ = 1, d/ψ can not attain its minimum which is less than 1 at

x = 0.

Proof. Case 1: Let 0 < x0 < b(t) be a minimum point of d/ψ defined through the relation

m(t) = (d/ψ)(x0, t).

Then
∂2

∂x2
d

ψ
(x0, t) ≥ 0
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and

0 =
∂

∂x

d

ψ
(x0, t) =

2

ψ
− 2d cosα

ψ2

√
1 + u2x,

where α = l(x0, t)π/L. Consequently,

1√
1 + u2x

=
d

ψ
cosα,

at x = x0. Let 0 < β < π/2 satisfy tan β = −ux(x0, t)(recall ux(x0, t) < 0), then

cos β =
1√

1 + u2x
(x0, t) =

(
d

ψ
cosα

)
(x0, t). (2.2)

Since d/ψ(x0, t) < 1, we observe that 0 < α < β < π/2. Moreover,

0 ≤ ∂2

∂x2
d

ψ
(x0, t) = −4 cosα

ψ2

√
1 + u2x −

4 cosα

ψ2

√
1 + u2x +

8d

ψ3
cos2 α(1 + u2x)

+
4πd sinα

Lψ2
(1 + u2x)−

2d cosα

ψ2

uxuxx√
1 + u2x

=
4πd sinα

Lψ2
(1 + u2x)−

2d cosα

ψ2

uxuxx√
1 + u2x

=
4π2d

L2ψ
(1 + u2x)−

2d cosα

ψ2

uxuxx√
1 + u2x

,

where we invoked (2.2) and ψ = L/π sin(lπ/L). Consequently,

−2d cosα

ψ2

uxuxx
(1 + u2x)

3/2
(x0, t) ≥ −

4π2d

L2ψ
(x0, t). (2.3)

∂l

∂t
(x0, t) =

∂

∂t

(∫ x

−x

√
1 + u2xdx

)
(x0, t) =

∫ x0

−x0

ux√
1 + u2x

dut =
2uxut√
1 + u2x

(x0, t)

−
∫ x0

−x0

utuxx
(1 + u2x)

3/2
dx =

2uxuxx
(1 + u2x)

3/2
(x0, t) + 2Aux(x0, t)−

∫ l

0

κ2ds

− 2A arctanux(x0, t) =
2uxuxx

(1 + u2x)
3/2

(x0, t)− 2A tan β −
∫ l

0

κ2ds+ 2Aβ,

where we again invoked (2.2) and tan β = −ux(x0, t). Using the Hölder inequality, we
have

l

∫ l

0

κ2ds ≥
(∫ l

0

κds

)2

= 4β2 (2.4)

and

L

∫ L

0

κ2ds ≥
(∫ L

0

κds

)2

= 4π2. (2.5)
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m′(t) =
d

dt

(
d

ψ

)
(x0, t) = −d sinα

ψ2π

(
2πA−

∫ L

0

κ2ds

)
+
dl cosα

ψ2L

(
2πA−

∫ L

0

κ2ds

)
− d cosα

ψ2

(
2uxuxx

(1 + u2x)
3/2

(x0, t)− 2A tan β −
∫ l

0

κ2ds+ 2Aβ

)
=

2Ad cosα

ψ2

(
(tan β − β)− (tanα− α)

)
− d cosα

ψ2

2uxuxx
(1 + u2x)

3/2
(x0, t) +

d sinα

ψ2π

∫ L

0

κ2ds

− dl cosα

ψ2L

∫ L

0

κ2ds+
d cosα

ψ2

∫ l

0

κ2ds > −4dπ2

ψL2
+
d cosα

ψ2π
(tanα− α)

∫ L

0

κ2ds

+
d cosα

ψ2

∫ l

0

κ2ds ≥ −4dπ2

ψL2
+

4πd cosα

ψ2L
(tanα− α) +

4β2d cosα

lψ2
= −4πdα cosα

ψ2L

+
4β2d cosα

lψ2
=

4β2d cosα

lψ2
− 4α2d cosα

lψ2
> 0,

where we use (2.2), (2.3), (2.4), (2.5) and tanα− α is increasing, 0 < α < π/2.
Case 2: For x0 = b(t) such that

m(t) = (d/ψ)(x0, t).

Since u(x, t) is increasing for −b(t) < x < 0 and decreasing for 0 < x < b(t), t0 < t < T ,
we let x = v(y, t) be the inverse of y = u(x, t) in the first quadrant. Consider

L(y, t) =

 2
∫ h(t)
y

√
1 + v2y(y, t)dy, y > 0,

L(t)− 2
∫ h(t)
y

√
1 + v2y(y, t)dy, y ≤ 0,

recalling h(t) = u(0, t) = max
−b(t)<x<b(t)

u(x, t).

It is easy to see l(x, t) = L(u(x, t), t), for 0 ≤ x ≤ b(t), specially, l(b(t), t) = L(0, t).
Since y = 0 is an interior point and ψ = L

π
sin Lπ

L
is smooth, we can prove this case

similarly as in case 1. The proof is now complete.

Similarly, we can obtain

Theorem 2.9. For our flow

Γ(t) = {(x, y) | |y| = u(x, t),−b(t) ≤ x ≤ b(t)}, t0 < t < T,

where t0 is the same as in Theorem 2.7. Let

d = 2y, and l = 2

∫ y

0

√
1 + v2y(y, t)dy, 0 ≤ y ≤ h(t),

where v(y, t) is the inverse of u(x, t) in the first quadrant as in the proof of Theorem 2.7.
Then

m(t) = min
0≤y≤h(t)

d/ψ

is strictly increasing provided that m(t) < 1, t0 < t < T .
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Using Theorems 2.7 and 2.9, we obtain

Corollary 2.10. There exists a constant C > 0 such that

d ≥ Cl, t0 < t < T,

where d and l are the extrinsic and intrinsic distances in Theorem 2.7 or 2.9. In particular,

h(t) ≥ CL(t) and b(t) ≥ CL(t), t0 < t < T.

Remark 2.11. To explain the geometric meaning in the proof of Theorem 2.7, we will give
the calculation in geometric method for closed curve moving by (2.1).

Let F : S1× [0, T )→ R2 be a closed embedded curve moving by (2.1). In this remark,
we let

d(p1, p2, t) = |F(p1, t)− F(p2, t)|, l(p1, p2, t) = |s(p1)− s(p2)|,

where s denotes the arc length parameter at time t. ψ is also defined as in Theorem 2.7
by

ψ =
L

π
sin

lπ

L
.

We define
m(t) = min

(p1,p2)∈S1×S1
d/ψ(p1, p2, t).

Assume that d/ψ attains its minimum at (p1, p2) ∈ S1 × S1, i.e.,

m(t) = (d/ψ)(p1, p2, t) < 1.

Here we abuse the notation (p1, p2) to shorten the notations in the following argument.
Let s be the arc length parameter at time t and without loss of generality 0 ≤ s(p1) <

s(p2) < L/2 such that l(p1, p2, t) = s(p2) − s(p1). Next we represent l, d by arclength
parameter

l = s2 − s1 and d = |F(s1, t)− F(s2, t)|.

Then
∂

∂si
(d/ψ)(p1, p2, t) = 0, i = 1, 2 and

( ∂2

∂si∂sj
(d/ψ)

)
2×2(p1, p2, t) ≥ 0.

Let

ei :=
∂F

∂si
(p1, p2, t) and ω :=

F(p2, t)− F(p1, t)

d(p1, p2, t)
.

Then there holds

0 =
∂

∂s1
(d/ψ)(p1, p2, t) = −〈ω, e1〉

ψ
+

d

ψ2
cosα,

where α = l(p1, p2, t)π/L = (s(p2)− s(p1))π/L ∈ (0, π/2). Consequently,

〈ω, ei〉 =
d

ψ
cosα, i = 1, 2 (2.6)
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at (p1, p2, t). We can choose 0 < β < π/2 such that

cos β = 〈ω, ei〉 = d/ψ cosα < cosα. (2.7)

Then β > α.
Since matrix

(
∂2

∂si∂sj
(d/ψ)

)
2×2(p1, p2, t) is non-negative, then for every vector ξ ∈ R2

there holds

ξ
( ∂2

∂si∂sj
(d/ψ)

)
2×2(p1, p2, t)ξ

t ≥ 0, (2.8)

where ξt denotes the transposition of ξ.
In view of relations of (2.6), there are two possible cases:

Case 1: e1 = e2. We choose ξ = (1, 1) in (2.8).

0 ≤ (1, 1)
( ∂2

∂si∂sj
(d/ψ)

)
2×2(p1, p2, t)(1, 1)t =

1

ψ
〈ω, (κN)(p2, t)− (κN)(p1, t)〉. (2.9)

Case 2: e1 6= e2. We choose ξ = (1,−1) in (2.8).

0 ≤ (1,−1)
( ∂2

∂si∂sj
(d/ψ)

)
2×2(p1, p2, t)(1,−1)t

=
1

ψ
〈ω, (κN)(p2, t)− (κN)(p1, t)〉+

4π2d

L2ψ
.

Then

−4π2d

L2ψ
≤ 1

ψ
〈ω, (κN)(p2, t)− (κN)(p1, t)〉. (2.10)

Since there is no t derivative in above calculation, more precise calculation is necessary
which is found in [7], Theorem 2.3. Here we safely omit it.

Therefore, by (2.1) and Lemma 2.2

∂

∂t

(
d

ψ

)
= − d

ψ2

∂ψ

∂t
+

1

ψ

∂d

∂t
= − d

ψ2

(
1

π

dL

dt
sinα +

∂l

∂t
cosα− l

L

dL

dt
cosα

)
+

1

dψ
〈ω, ∂

∂t
F(p2, t)−

∂

∂t
F(p1, t)〉 = − d

ψ2

(
1

π
(2πA−

∫ L

0

κ2ds) sinα

+ (A

∫ l

0

κds−
∫ l

0

κ2ds) cosα− l

L
(2πA−

∫ L

0

κ2ds) cosα

)
+

1

dψ
〈ω, (κ− A)N(p2, t)− (κ− A)N(p1, t)〉 = −2Ad

ψ2
sinα

− dA

ψ2
cosα

∫ l

0

κds+
2πdlA

ψ2L
cosα− A

ψ
〈ω,N(p2, t)−N(p1, t)〉

+
1

ψ
〈ω, (κN)(p2, t)− (κN)(p1, t)〉+

d sinα

πψ2

∫ L

0

κ2ds+
d cosα

ψ2

∫ l

0

κ2ds

− dl

ψ2L
cosα

∫ L

0

κ2ds.
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In the following step, we assume that

−A
ψ
〈ω,N(p2, t)−N(p1, t)〉 > 0. (2.11)

Seeing Figure 1, there holds

−A
ψ
〈ω,N(p2, t)−N(p1, t)〉 =

2A

ψ
sin β. (2.12)



1( , )N p t

2( , )F p t

1( , )F p t

2( , )N p t

/ 2 

/ 2 

Figure 1: Assumption (2.11)

Case 1: e1 = e2. By calculation,

dA

ψ2
cosα

∫ l

0

κds = 0.

Then

∂

∂t

(
d

ψ

)
≥ −2Ad

ψ2
sinα +

2πdlA

ψ2L
cosα +

2A

ψ
sin β +

d sinα

πψ2

∫ L

0

κ2ds+
d cosα

ψ2

∫ l

0

κ2ds

− dl

ψ2L
cosα

∫ L

0

κ2ds ≥ 2A

ψ

(
sin β − d

ψ
sinα

)
+

d

πψ2
(sinα− α cosα)

∫ L

0

κ2ds

> 0,

where we use (2.7), (2.9), d/ψ < 1 and sinα− α cosα > 0, for 0 < α < π/2.
Case 2: e1 6= e2.

Using Hölder inequality,

l

∫ l

0

κ2ds ≥
(∫ l

0

κds

)2

= 4β2

and

L

∫ L

0

κ2ds ≥
(∫ L

0

κds

)2

= 4π2.
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∂

∂t

(
d

ψ

)
≥ −2Ad

ψ2
sinα− 2βdA

ψ2
cosα +

2πdlA

ψ2L
cosα +

2A

ψ
sin β +

d sinα

πψ2

∫ L

0

κ2ds

+
d cosα

ψ2

∫ l

0

κ2ds− dl

ψ2L
cosα

∫ L

0

κ2ds− 4π2d

L2ψ

≥ 2A

ψ

(
sin β − β cos β − (

d

ψ
)(sinα− α cosα)

)
+

d

πψ2
(sinα− α cosα)

∫ L

0

κ2ds

+
d cosα

ψ2

∫ l

0

κ2ds− 4π2d

L2ψ
≥ 4π2d

πLψ2
(sinα− α cosα) +

d cosα

ψ2

∫ l

0

κ2ds− 4π2d

L2ψ

= −4dα2 cosα

lψ2
+
d cosα

ψ2

∫ l

0

κ2ds ≥ −4dα2 cosα

lψ2
+

4dβ2 cosα

lψ2
> 0,

where we use (2.7), (2.10), (2.12), d/ψ < 1, β > α and sinα − α cosα is increasing for
0 < α < π/2.

A sufficient condition for the assumption (2.11) is that the line connecting F(p2, t)
and F(p1, t) lies in the domain surrounded by the curve. In Theorem 2.7, the conclusion
that d/ψ is increasing provided that d/ψ < 1 is true in the direction (2x0, 0) instead of
all directions, since the line connecting (−x0, u(x0, t)) and (x0, u(x0, t)) just enough lies
in the domain surrounded by the curve Γ(t). This is the key point under the condition
A > 0. We cannot guarantee that d/ψ is non-decreasing in every direction even if d/ψ is
very small. We construct such an example in Section 4.

3 Proof of Theorem 1.1

Lemma 3.1. For the shrinking case in Theorem C, there exist C1, C2 > 0 such that

C1 ≤
b(t)√
T − t

≤ C2 and C1 ≤
h(t)√
T − t

≤ C2, t0 < t < T.

Proof. Since u(x, t) has only one maximum at x = 0, it is easy to see that 0 ≤ L(t) ≤
4h(t) + 4b(t) → 0, 0 ≤ S(t) ≤ 4b(t)h(t) → 0, t → T . Using Lemma 2.6 and S(t) → 0,
L(t)→ 0 as t→ T , there holds

S(t) = 2π(T − t)− A
∫ T

t

L(s)ds = 2π(T − t) + o(T − t).

By isoperimeter inequality L(t)2 ≥ 4πS(t),

lim inf
t→T

L(t)2

T − t
≥ lim

t→T

4πS(t)

T − t
= 8π2.

Using Corollary 2.10, there exists C > 0 such that

h(t) ≥ CL(t) and b(t) ≥ CL(t).

Then there exists C1 > 0 such that

lim inf
t→T

b(t)√
T − t

≥ C1 and lim inf
t→T

h(t)√
T − t

≥ C1.
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Using similarity transformation (1.5) and (1.6), there exists C̃1 > 0 such that

r(τ) ≥ C̃1 and q(τ) ≥ C̃1.

We next prove upper bounds for r(τ), q(τ) by contradiction argument. Assume that

if there exists a sequence τk → ∞ such that r(τk) → ∞. S̃(τ) denotes the area enclosed
by w(z, τ) and axis z. By calculation,

S̃(τ) = 2

∫ q(τ)

0

w(z, τ)dz =

∫ b(t)
0

u(x, t)dx

T − t
=

S(t)

4(T − t)
≤ C,

for some C. Since w(z, τk) is even in z and w(z, τk) is monotone decreasing for z > 0,

C̃1w(−C̃1

2
, τk) ≤ S̃(τk) ≤ C, ∀k.

Consequently, w(−C̃1/2, τk) is bounded for all k. Consider the extrinsic and intrinsic

distances between (−C̃1/2, w(−C̃1/2, τk)) and (C̃1/2, w(C̃1/2, τk)) after transformation,

denoted by d̃(τk) and l̃(τk), respectively. Then there hold d̃(τk) = C̃1 and r(τk) −
w(−C̃1/2, τk) < l̃(τk). By the argument above, since w(−C̃1/2, τk) is bounded, l̃(τk)→∞,

as k →∞. Then d̃(τk)/l̃(τk)→ 0, as k →∞.
Consider the extrinsic and intrinsic distance between

(−
√

2(T − tk)C̃1/2, u(−
√

2(T − tk)C̃1/2, tk)) and (
√

2(T − tk)C̃1/2, u(
√

2(T − tk)C̃1/2, tk)),

denoted by d(tk) and l(tk) < L(tk)/2, respectively. By calculation,

d(tk) =
√

2(T − tk)d̃(τk) and l(tk) =
√

2(T − tk)l̃(τk).

Then d(tk)/l(tk) = d̃(τk)/l̃(τk) → 0, as k → ∞, which contradicts to Corollary 2.10.
Therefore, r(τ) is bounded. Similarly it also holds for q(τ). Consequently,

C1 ≤
b(t)√
T − t

≤ C2 and C1 ≤
h(t)√
T − t

≤ C2.

For the lemma above, it is obvious that there exist D1, D2 > 0 such that D1 < r(τ) <
D2 and D1 < q(τ) < D2.

Since w(z, τ) is increasing for −q(τ) < z < 0 and decreasing for 0 < z < q(τ),
τ > −1

2
ln(T − t0), we can represent w = w(z, τ) under polar coordinate,{

z = ρ(θ, τ) cos θ,
w(z, τ) = ρ(θ, τ) sin θ,

0 ≤ θ ≤ π, τ > −1
2

ln(T − t0). Consequently, ρ(θ, τ) satisfies

ρτ =
ρθθ

ρ2 + ρ2θ
− 2ρ2θ + ρ2

ρ(ρ2θ + ρ2)
+ ρ+

√
2

ρ
Ae−τ

√
ρ2θ + ρ2, 0 < θ < π, τ > −1

2
ln(T − t0), (3.1)

ρθ(0, τ) = ρθ(π, τ) = 0, τ > −1

2
ln(T − t0). (3.2)
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Lemma 3.2. For any given ε > 0, there exist positive constant Ck and Bk such that

| ∂
k

∂θk
ρ(θ, τ)| < Ck, |

∂k

∂τ k
ρ(θ, τ)| < Bk, k = 1, 2, · · · , 0 ≤ θ ≤ π, τ ≥ −1

2
ln(T − t0) + ε.

Proof. Firstly, we prove that there exist constants ρ1, ρ2 > 0 such that ρ1 ≤ ρ ≤ ρ2.
Since r(τ) < D2, q(τ) < D2 and w(z, τ) has only one maximum point at x = 0, it is

easy to get ρ <
√

2D2 := ρ2.
Consider the intrinsic and extrinsic distances, l̃(τ) and d̃(τ), respectively, between

(W (D1/2, τ), D1/2) and (−W (D1/2, τ), D1/2), where z = W (r, τ) is the inverse of r =

w(z, τ), for z ≥ 0. By Corollary 2.10, d̃(τ) ≥ Cl̃(τ). Note that d̃(τ) = 2W (D1/2, τ) and

l̃(τ) ≥ r(τ)−D1/2 ≥ D1/2. Then W (D1/2, τ) ≥ CD1/4. Since z = W (r, τ) is decreasing
with respective to r, W (r, τ) ≥ W (D1/2, τ) ≥ CD1/4, 0 ≤ r ≤ D1/2. It is easy to see
ρ > min{D1/2, CD1/4} := ρ1.

Next, we are going to prove our main result. We extend ρ by even and periodic in θ.
Using the interior estimates in [8], we can get

| ∂
k

∂θk
ρ(θ, τ)| < Ck, |

∂k

∂τ k
ρ(θ, τ)| < Bk, 0 ≤ θ ≤ π, τ ≥ −1

2
ln(T − t0) + ε.

Proof of Theorem 1.1. Firstly, We introduce the following Lyapunov functional borrowed
from [6](The Lyapunov functional also is used by [3]):

E[w(·, τ)] =

∫ q(τ)

−q(τ)
exp

{
−z

2 + w2(z, τ)

2

}√
1 + w2

z(z, τ)dz.

We can compute that

d

dτ
E[w(·, τ)] = −

∫ q(τ)

−q(τ)
w2
τ (z, τ) exp

{
−z

2 + w2(z, τ)

2

}
(1 + w2

z(z, τ))−1/2dz + J,

where

J =
√

2Ae−τ
∫ q(τ)

−q(τ)
exp

{
−z

2 + w2(z, τ)

2

}
wτ (z, τ)dz.

We consider the following integral∣∣∣∣∣
∫ q(τ)

−q(τ)
exp

{
−z

2 + w2(z, τ)

2

}
wτ (z, τ)dz

∣∣∣∣∣ ≤
∫ q(τ)

−q(τ)

∣∣∣∣ wzz
1 + w2

z

− zwz + w +
√

2Ae−τ
√

1 + w2
z

∣∣∣∣ dz
≤

{∫ q(τ)

−q(τ)

∣∣∣∣ wzz
(1 + w2

z)
3/2

∣∣∣∣+ |z| |wz|√
1 + w2

z

+
w√

1 + w2
z

+
√

2A

}√
1 + w2

zdz.

We note that |q(τ)|, |w(z, τ)| are bounded. By Lemma 3.2, the curvature |wzz/(1 +
w2
z)

3/2| = |(−ρρθθ + 2ρ2θ + ρ2)/(ρ2θ + ρ2)3/2| is bounded, 0 ≤ θ ≤ π, τ > −1
2

ln(T − t0) + ε.
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Then

|J | ≤ C1

√
2Ae−τ

∫ q(τ)

−q(τ)

√
1 + w2

zdz ≤ C1

√
2Ae−τ (2r(τ) + 2q(τ)) ≤ Ce−τ ,

for τ > −1
2

ln(T − t0) + ε. Consequently,∫ ∞
− 1

2
ln(T−t0)+ε

|J |dτ <∞.

We note that

E(w(·, τ)) ≤ 2r(τ) + 2q(τ) ≤ C, τ > −1

2
ln(T − t0) + ε.

Therefore∫ ∞
− 1

2
ln(T−t0)+ε

∫ q(τ)

−q(τ)
w2
τ (z, τ) exp

{
−z

2 + w2(z, τ)

2

}
(1 + wz(z, τ))−1/2dzdτ <∞.

Finally, it suffices to show that, for any sequence τn → +∞, the sequence (w(z, τn), q(τn))
has a subsequence that converges to (ϕ, q), as n → ∞, where (ϕ, q) is the solution of
(1.11)-(1.13)(more precisely, the graph of r = w(z, τn) converges to the graph of r = ϕ(z)
under the Hausdorff distance).

We set

wn(z, τ) = w(z, τ + τn), qn(τ) = q(τ + τn), ρn(θ, τ) = ρ(θ, τ + τn), τ ∈ [a, a+ 1],

where a > −1
2

ln(T − t0) + ε. By Lemma 3.2, ∂k

∂θk
ρn(θ, τ) and ∂j

∂τ j
ρn(θ, τ) are uniformly

bounded for n, θ ∈ [0, π], τ ∈ [a, a + 1], k = 1, 2, 3, j = 1, 2. Then there exists ρ∗(θ, τ)
such that ρn converges to ρ∗ in C2,1([0, π]× [a, a+ 1]) as n→∞. Consequently, wn(z, τ)
converges to w∗(z, τ) as n → ∞, where w∗(z, τ) = ρ∗(θ, τ) sin θ. Obviously, w∗(z, τ)
satisfies

wτ =
wzz

1 + w2
z

− zwz + w, z ∈ (−q∗(τ), q∗(τ)), τ ∈ [a, a+ 1], (3.3)

w(−q∗(τ), τ) = w(q∗(τ), τ) = 0, τ ∈ [a, a+ 1], (3.4)

wz(−q∗(τ), τ) =∞, wz(q∗(τ), τ) = −∞, τ ∈ [a, a+ 1], (3.5)

where q∗(τ) denotes the limit of qn(τ) defined as above.
We next prove w∗τ (z, τ) = 0. By the argument of Lyapunov function above,∫ a+1

a

∫ q(τ+τn)

−q(τ+τn)
w2
τ (z, τ + τn) exp

{
−z

2 + w2(z, τ + τn)

2

}
(1 + w2

z(z, τ + τn))−1/2dzdτ

≤
∫ ∞
τn+a

∫ q(τ)

−q(τ)
w2
τ (z, τ) exp

{
−z

2 + w2(z, τ)

2

}
(1 + w2

z(z, τ))−1/2dzdτ.
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Using ρn converges to ρ∗ in C2,1([0.π]× [a, a+ 1]) and letting n→∞,∫ a+1

a

∫ q∗(τ)

−q∗(τ)
(w∗τ )

2(z, τ) exp

{
−z

2 + (w∗)2(z, τ)

2

}
(1 + (w∗z)

2(z, τ))−1/2dzdτ = 0,

which implies w∗τ ≡ 0 for −q∗(τ) < z < q∗(τ). So (w∗, q(τ)) is a stationary solution of
(3.3)-(3.5). Since the problem (1.11)-(1.13) is unique, q∗(τ) = q, where q is a constant.
Therefore, we prove that (w(z, τn), q(τn)) converges to (ϕ, q) up to a sequence. Therefore,
we have (w(z, τ), q(τ)) → (ϕ, q), as τ → ∞. Indeed, (ϕ, q) = (

√
1− z2, 1). The proof of

Theorem 1.1 is complete.
Since Γ(t) can be represented by F(p, t) : S1× [0, T ). Seeing the proof of Theorem 1.1,

κ(p, τ) =
−wzz

(1 + w2
z)

3/2
→ 1, uniformly on S1 ∩ {y ≥ 0},

as τ →∞. Then for τ large enough wzz < 0 for −q(τ) < z < q(τ). Consequently, seeing
the relation between w and u, there exists t1 such that uxx < 0, for −b(t) < x < b(t),
t1 < t < T .

4 An example for min d/ψ = 0

In this section we give an example that the comparison principle for extrinsic and intrinsic
distances does not hold for A > 0. First, we give some curves.

γ1 = {(x, y) | (x− 2

A
)2 + y2 = R2,−L ≤ y ≤ R}.

where L > 1/A and L < R < 2/A.

γ2 = {(x, y) | |x− 2

A
| = 1

2

√
R2 − L2,−2L− δ < y < −L− δ},

where 0 < δ < min{L/4, 2/A− 1
2

√
(2/A)2 − L2}.

γ3 = {(x, y) | |y + 2L+ 3δ| = δ, 0 ≤ x <
2

A
− 1

2

√
R2 − L2 − δ}.

We connect γ1, γ2, γ3 smoothly by short curves, called Γ1. Extend Γ1 by even, denoted
by Γ0. Let Γ(t) be the maximal smooth solution of V = −κ+A with initial curve Γ0 and
we show that the curve Γ(t) will intersect itself in a finite time. By the construction of
Γ0, there exist 1/A < R1 < R such that

BR1(2/A, 0) ⊂ U, BR1(−2/A, 0) ⊂ U,

where U is the domain surrounded by Γ0. Let R1(t) be the solution of

R′1(t) = A− 1

R1(t)
,
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Figure 2: Initial curve Γ0

with R(0) = R1. Then ∂BR1(t) evolves by V = −κ + A with ∂BR1 . By comparison
principle,

BR1(t)(2/A, 0) ⊂ U(t), BR1(t)(−2/A, 0) ⊂ U(t),

where U(t) is the domain surrounded by Γ(t). Let R2(t) be the solution of

R′2(t) = −A− 1

R2(t)
,

with R2(0) = R2 := min{2/A −
√

(2/A)2 − L2 − δ, L/2}. Then ∂BR2(t) evolves by V =
−κ−A with ∂BR2 . Here we note the direction of the driving force must be reversed. Since
U ⊂ R2 \ BR2(0,−3L/2− δ), by comparison principle, U(t) ⊂ R2 \ BR2(t)(0,−3L/2− δ),
0 ≤ t < t2, where t2 is the maximal existence time of R2(t). Note that t2 is independent
on R and R1. We can choose R and R1 very closed to 2/A and seeing R1(t) → ∞ as
t→∞, then there exists t0, t0 < t2 such that

BR1(t0)(2/A, 0) ∩BR1(t0)(−2/A, 0) 6= ∅.

Combining U(t) ⊂ R2 \ BR2(t)(0,−3L/2 − δ), 0 ≤ t < t2, this implies there exists t1,
t1 < t0 < t2 such that Γ(t1) intersects itself at origin. It means that m(t1) = min d/ψ = 0.
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