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1 Introduction

The present paper is devoted to a systematic study of a class of singular optimal control
problems whose state systems are governed by doubly nonlinear variational evolution
equations generated by time-dependent subdifferentials of convex functionals.

Let V be a (real) uniformly convex Banach space with uniformly convex dual space
V ∗ and let H be a real Hilbert space such that

V ↪→ H ↪→ V ∗ with dense and compact embeddings. (1.1)

Recently, in [22] we introduced the following type of doubly nonlinear evolution equa-
tions governed by time-dependent subdifferentials in V ∗:

(P)

{
∂∗ψ

t(u′(t)) + ∂∗ϕ
t(u(t)) + g(t, u(t)) 3 f(t) in V ∗ for a.a. t ∈ (0, T ),

u(0) = u0 in V,
(1.2)

where 0 < T < ∞, u′ = du/dt in V , ψt : V → R ∪ {∞} is a time-dependent proper,
lower semi-continuous (l.s.c.), and convex function for each t ∈ [0, T ], ϕt : V → R
is a time-dependent, non-negative, continuous convex function for each t ∈ [0, T ], the
subdifferential ∂∗ψ

t of ψt is a multivalued operator from V into V ∗, the subdifferential
∂∗ϕ

t of ϕt is single-valued and linear from V into V ∗, g(t, ·) is a single-valued Lipschitz
operator from V into V ∗, f is a given V ∗-valued function on [0, T ], and u0 ∈ V is a given
initial datum. In [22, Theorem 1], we established the abstract existence of solutions to
(P). Additionally, we showed the non-uniqueness of solutions, giving an example in [22,
Section 4]. Moreover, in [22, Theorem 2], we showed the uniqueness of solutions to (P)
under the assumption that ∂∗ψ

t is strongly monotone from V into V ∗.
As shown in [22, Section 4], problem (P) has multiple solutions, in general, and there-

fore the optimal control problem associated with state equation (P) is a singular optimal
control problem formulated for non-well-posed state systems. Indeed, for a control space
FM with constant M > 0, defined by:

FM :=

{
f ∈ W 1,2(0, T ;V ∗) ∩ L2(0, T ;H) ;

|f |W 1,2(0,T ;V ∗) ≤M,

|f |L2(0,T ;H) ≤M

}
, (1.3)

where | · |W 1,2(0,T ;V ∗) (resp. | · |L2(0,T ;H)) is the norm of W 1,2(0, T ;V ∗) (resp. L2(0, T ;H)),
we consider the following optimal control problem for (P):

Problem (OP): Find a control f ∗ ∈ FM such that

J(f ∗) = inf
f∈FM

J(f);

such a function f ∗ is called an optimal control. Here, J(f) is a functional defined by

J(f) := inf
u∈S(f)

πf (u), (1.4)

where f ∈ FM is any control and S(f) is the set of all solutions to (P) associated with
control f . In addition, πf (u) is the functional of u ∈ S(f) defined by:

πf (u) :=
1

2

∫ T

0

|u(t)− uad(t)|2V dt+
1

2

∫ T

0

|f(t)|2V ∗dt, (1.5)
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where uad ∈ L2(0, T ;V ) is a given target profile and | · |V (resp. | · |V ∗) is the norm of V
(resp. V ∗).

There is a vast amount of literature on optimal control problems for (parabolic or
elliptic) variational inequalities. For instance, see [8, 14, 15, 17, 24, 25, 27, 28, 29, 36]. In
particular, Lions [25], Neittaanmäki and Tiba [28], and Neittaanmäki et al. [29, Section
3.1.3.1] discussed singular control problems. Indeed, using the admissible pairs and the
adapted penalization method, Neittaanmäki et al. [29] discussed a singular control prob-
lem for linear elliptic equations of second-order with the homogeneous Dirichlet boundary
condition. However, as (P) is an abstract time-dependent doubly nonlinear evolution
equation, it seems very hard to directly apply the penalization method established in
[17, 25, 27, 28, 29] to our problem.

The theory of nonlinear evolution equations is useful in any systematic study of varia-
tional inequalities. For instance, many mathematicians have studied nonlinear evolution
equations of the form:

u′(t) + ∂ϕt(u(t)) 3 f(t) in H for a.a. t ∈ (0, T ), (1.6)

where ϕt : H → R∪ {∞} is a time-dependent proper, l.s.c., and convex function for each
t ∈ [0, T ]. For fundamental results on (1.6), we refer to [15, 19, 30, 35]. In particular,
Hu–Papageorgiou [15] treated some optimal control problems for (1.6). Furthermore, the
optimal control of parameter-dependent evolution equations for (1.6) has previously been
considered (cf. [15, 31]).

Doubly nonlinear evolution equations have been studied, for instance, by Kenmochi–
Pawlow [21], in which nonlinear evolution equations of the following type were discussed:

d

dt
∂ψ(u(t)) + ∂ϕt(u(t)) 3 f(t) in H for a.a. t ∈ (0, T ), (1.7)

where ψ : H → R ∪ {∞} is a proper, l.s.c., and convex function. The abstract results
for (1.7) can be applied to elliptic-parabolic equations. From the viewpoint of (1.7),
Hoffmann et al. [14] studied optimal control problems for quasi-linear elliptic-parabolic
variational inequalities with time-dependent constraints. Additionally, Kadoya–Kenmochi
[16] touched on the optimal shape design of elliptic-parabolic equations.

Akagi [2], Arai [3], Aso et al. [4, 5], Colli [11], Colli–Visintin [12], and Senba [32]
investigated the following type of doubly nonlinear evolution equation:

∂ψt(u′(t)) + ∂ϕ(u(t)) 3 f(t) in H for a.a. t ∈ (0, T ). (1.8)

Note that the second term ∂ϕ in (1.8) is independent of time and, in the case of double
time-dependent subdifferentials such as (1.2), no general theoretical results have yet been
derived.

In [22], we evolved the abstract theory of (1.2). As mentioned above, one interesting
feature is that (1.2) is not generally well-posed; namely, it lacks the uniqueness of solutions.
In this respect, Farshbaf-Shaker and Yamazaki [13] studied the optimal control problem
without the uniqueness of solutions in the state system (1.8) by employing the idea of
Kadoya et al. [17, 27]; more precisely, they used cost functionals formulated by (1.4) and
(1.5). In this paper, we show the existence of optimal control for (OP) under the abstract
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doubly time-dependent evolution equation (P) with a non-monotone perturbation g(t, ·).
Although there are some mathematical results dealing with optimal control without the
uniqueness of solutions for state equations (cf. [13, 17, 25, 27, 28, 29]), it is still difficult
to establish an approximation procedure for the singular control problem (OP). In this
paper, we systematically investigate (OP). To this end, we recall the precise construction
of solutions to (P), although this has already been discussed in [22], and then propose an
approximation procedure from a numerical point of view.

In [22, Section 5], we also introduced the following doubly nonlinear quasi-variational
evolution equation governed by double time-dependent subdifferentials:

(QP)

{
∂∗ψ

t(u′(t)) + ∂∗ϕ
t(u;u(t)) + g(t, u(t)) 3 f(t) in V ∗ for a.a. t ∈ (0, T ),

u(0) = u0 in V,
(1.9)

where ϕt(v; z) is a time-dependent, non-negative, continuous convex function in z ∈ V ,
and (t, v) ∈ [0, T ]×L2(0, T ;V ) is a parameter that determines the convex function ϕt(v; ·)
on V . The dependence of function v upon ϕt(v; ·) is, in general, allowed to be non-local (see
Section 11). Moreover, the subdifferential ∂∗ϕ

t(v; z) of ϕt(v; z) is single-valued, linear, and
bounded with respect to z from V into V ∗. Under such a set-up, we showed the existence
of a solution to (QP) in [22]; however, the uniqueness question was not discussed. For the
systematic investigation of (QP) and the corresponding optimal control problem, we use
the same approach to that of (P) and (OP), namely, we carefully recall the construction
of solutions to (QP) described in [22, Section 5], and propose an approximation procedure
for them. During this derivation, we shall show the non-uniqueness of solutions to (QP),
giving an example, and present a sufficient condition to ensure the uniqueness of solutions
to (QP). Finally, we consider the singular optimal control problem for the state system
(QP) and its approximation from a numerical point of view.

The novelties of this work (although items (a) and (d) are somewhat reliant on [22])
are as follows:

(a) We show the existence of solutions to (P) for each f ∈ L2(0, T ;V ∗) and u0 ∈ V .

(b) We show the existence of optimal control for (OP).

(c) We propose an approximation procedure for (P) and (OP), and clarify the relationship
between the original problems and their approximations.

(d) We show the existence of solutions to (QP) for each f ∈ L2(0, T ;V ∗) and u0 ∈ V .

(e) We show that (QP) is generally not a well-posed state system by giving an example
of the non-uniqueness of solutions to (QP). Moreover, we discuss the uniqueness of
solutions to (QP) under some additional condition.

(f) We formulate a singular optimal control problem for (QP).

(g) We establish an approximate procedure to investigate the singular optimal control
problem for (QP) from a numerical point of view.
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The remainder of this paper is organized as follows. In Section 2, we state the abstract
result of the existence–uniqueness of solutions to (P) for each f ∈ L2(0, T ;V ∗) and u0 ∈ V .
In Section 3, we give a proof of the existence of solutions to (P), which is the main result
corresponding to item (a). In Section 4, concerning the singular optimal control problem
(OP), we give a proof of the main result corresponding to item (b). In Section 5, we
propose a general approximate procedure for (P) and (OP) and construct a solution as
the limit of the approximate optimal controls using the results of item (c). In Section
6, we state the solvability result of (QP) for each f ∈ L2(0, T ;V ∗) and u0 ∈ V and
give a proof of the main result corresponding to item (d). In Section 7, we discuss the
uniqueness question of solutions to (QP), which gives an answer to item (e). In Section 8,
we consider the singular optimal control problem for (QP) and give a proof of the main
result, corresponding to item (f). In Section 9, we establish an approximation procedure to
construct an optimal control for (QP) and give a proof of the main result, corresponding to
item (g). In Section 10, we consider another type of singular optimal control problem for
doubly nonlinear parameter-dependent evolution state equations. Additionally, we give
another approximation procedure for the optimal control of (QP). In the final section,
we apply our general results to some model problems: parabolic variational and quasi-
variational inequalities with time-dependent constraints.

Notation

Throughout this paper, let H be a (real) Hilbert space with inner product (·, ·) and norm
| · |H . Let V be a (real) uniformly convex Banach space with the uniformly convex dual
space V ∗; denote by | · |V and | · |V ∗ the norms of V and V ∗, respectively. Assume that
V ⊂ H, V is dense in H, and V ↪→ H ↪→ V ∗, where ↪→ denotes the compact embedding.
Therefore, (V,H, V ∗) is the standard triplet and

〈u, v〉 = (u, v) for u ∈ H and v ∈ V,

where 〈·, ·〉 is the duality pairing between V ∗ and V .
Let F : V → V ∗ be the duality mapping.
We now list some notation and definitions of subdifferentials of convex functions. Let

φ : V → R ∪ {∞} be a proper (i.e., not identically equal to infinity), l.s.c., and convex
function. Then, the effective domain D(φ) is defined by

D(φ) := {z ∈ V ; φ(z) <∞}.

The subdifferential ∂∗φ : V → V ∗ of φ is a possibly multi-valued operator from V into
V ∗, and is defined by z∗ ∈ ∂∗φ(z) if and only if

z ∈ D(φ) and 〈z∗, y − z〉 ≤ φ(y)− φ(z) for all y ∈ V.

Its graph is the set {[z, z∗] ∈ V × V ∗ | z∗ ∈ ∂∗φ(z)}, which is often identified with ∂∗φ,
namely, z∗ ∈ ∂∗φ(z) is denoted by [z, z∗] ∈ ∂∗φ.

For various properties and related notions of a proper, l.s.c., convex function φ and its
subdifferential ∂∗φ, we refer to the monographs by Barbu [7, 9]. In particular, for those
in Hilbert spaces, we refer to the monographs by Brézis [10].

We also recall a notion of convergence for convex functions, developed by Mosco [26].



318

Definition 1.1 (cf. [26]). Let φ, φn (n ∈ N) be proper, l.s.c., and convex functions on
V . Then, we say that φn converges to φ on V in the sense of Mosco [26] as n→∞ if the
following two conditions are satisfied:

(i) for any subsequence {φnk
}k∈N ⊂ {φn}n∈N, if zk → z weakly in V as k →∞, then

lim inf
k→∞

φnk
(zk) ≥ φ(z);

(ii) for any z ∈ D(φ), there is a sequence {zn}n∈N in V such that

zn → z in V as n→∞ and lim
n→∞

φn(zn) = φ(z).

For some important characterizations of the Mosco convergence of convex functions,
we refer to the monographs by Attouch [6] and Kenmochi [20].

2 Solvability of (P)

We begin with the notion of a solution to (P).

Definition 2.1. Given f ∈ L2(0, T ;V ∗) and u0 ∈ V , the function u : [0, T ]→ V is called
a solution to (P), or (P; f, u0) when the data f and u0 are indicated, on [0, T ], if and only
if the following conditions are satisfied:

(i) u ∈ W 1,2(0, T ;V ).

(ii) There exists a function ξ ∈ L2(0, T ;V ∗) such that

ξ(t) ∈ ∂∗ψt(u′(t)) in V ∗ for a.a. t ∈ (0, T ),

ξ(t) + ∂∗ϕ
t(u(t)) + g(t, u(t)) = f(t) in V ∗ for a.a. t ∈ (0, T ).

(iii) u(0) = u0 in V .

Now, we list some assumptions on ψt, ϕt, g(t, ·), and F .
We suppose that the duality mapping F : V → V ∗ is strongly monotone; more

precisely, there is a positive constant CF such that

〈Fz1 − Fz2, z1 − z2〉 ≥ CF |z1 − z2|2V , ∀z1, z2 ∈ V. (2.1)

(Assumption (A))

Let ψt(·) : V → R ∪ {∞} be a proper, l.s.c., and convex function with D(ψt) ⊂ V for
all t ∈ [0, T ], and assume:

(A1) If {tn}n∈N ⊂ [0, T ] and t ∈ [0, T ] with tn → t as n→∞, then

ψtn(·)→ ψt(·) in the sense of Mosco [26] as n→∞.
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(A2) There exist constants C1 > 0 and C2 > 0 such that

ψt(z) ≥ C1|z|2V − C2, ∀t ∈ [0, T ], ∀z ∈ D(ψt).

(A3) ∂∗ψ
t(0) 3 0 for all t ∈ [0, T ] and ψ(·)(0) ∈ L1(0, T ).

(Assumption (B))

Let ϕt(·) : V → R ∪ {∞} be a non-negative, finite, continuous, and convex function
with D(ϕt) = V for all t ∈ [0, T ], and assume:

(B1) For each t ∈ [0, T ], the subdifferential ∂∗ϕ
t : D(∂∗ϕ

t) = V → V ∗ is linear and
uniformly bounded, i.e., there exists a constant C3 > 0 such that

|∂∗ϕt(z)|V ∗ ≤ C3|z|V , ∀t ∈ [0, T ], ∀z ∈ V.

(B2) ϕ0(0) = 0 and there exists a constant C4 > 0 such that

ϕ0(z) ≥ C4|z|2V , ∀z ∈ V.

(B3) There is a function α ∈ W 1,1(0, T ) such that

|ϕt(z)− ϕs(z)| ≤ |α(t)− α(s)|ϕs(z), ∀s, t ∈ [0, T ], ∀z ∈ V.

(Assumption (C))

Let g be a single-valued operator from [0, T ]× V into V ∗ such that g(t, z) is strongly
measurable in t ∈ [0, T ] for each z ∈ V , and assume:

(C1) For each t ∈ [0, T ], the operator z → g(t, z) is continuous from Vw into V ∗, i.e., if
zn → z weakly in V as n → ∞, then g(t, zn) → g(t, z) in V ∗ as n → ∞, where Vw
is the linear space V with the weak topology.

(C2) g(t, ·) is uniformly Lipschitz from V into V ∗, i.e., there is a constant Lg > 0 such
that

|g(t, z1)− g(t, z2)|V ∗ ≤ Lg|z1 − z2|V , ∀t ∈ [0, T ], ∀zi ∈ V (i = 1, 2).

Remark 2.1. The assumption (B3) is one of the standard time-dependence conditions of
convex functions in the theory of evolution equations generated by time-dependent subdif-
ferentials (cf. [19, 30, 35]).

Condition (B2) is slightly weaker than that required in [22, Section 2]. However, the
following lemma shows that it is sufficient to assume (B2), as long as (B1) and (B3) are
required together. In fact, we have:
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Lemma 2.1. Suppose that Assumption (B) holds. Then, the following inequalities hold:

(i)

C4

|α′|L1(0,T ) + 1
|z|2V ≤ ϕt(z) ≤

(
|α′|L1(0,T ) + 1

)
C3|z|2V , ∀t ∈ [0, T ], ∀z ∈ V. (2.2)

(ii)

〈∂∗ϕt(z), z〉 ≥ C4

|α′|L1(0,T ) + 1
|z|2V , ∀t ∈ [0, T ], ∀z ∈ V.

Proof. We show (i). We observe from (B1) with t = 0, (B2), and the definition of ∂∗ϕ
0

that
ϕ0(z) = ϕ0(z)− ϕ0(0) ≤ 〈∂∗ϕ0(z), z〉 ≤ |∂∗ϕ0(z)|V ∗|z|V ≤ C3|z|2V ,

and also, by (B2),
C4|z|2V ≤ ϕ0(z) ≤ C3|z|2V , ∀z ∈ V. (2.3)

Note from (B3) with s = 0 that

|ϕt(z)− ϕ0(z)| ≤ |α(t)− α(0)|ϕ0(z) ≤
∫ t

0

|α′(τ)|dτ · ϕ0(z), ∀t ∈ [0, T ], ∀z ∈ V,

which implies that

ϕt(z) ≤
(
|α′|L1(0,T ) + 1

)
ϕ0(z), ∀t ∈ [0, T ], ∀z ∈ V.

Therefore, it follows from (2.3) that

ϕt(z) ≤
(
|α′|L1(0,T ) + 1

)
C3|z|2V , ∀t ∈ [0, T ], ∀z ∈ V. (2.4)

Similarly, note from (B3) that

|ϕ0(z)− ϕt(z)| ≤ |α(0)− α(t)|ϕt(z) ≤
∫ t

0

|α′(τ)|dτ · ϕt(z), ∀t ∈ [0, T ], ∀z ∈ V,

which implies that

ϕ0(z) ≤
(
|α′|L1(0,T ) + 1

)
ϕt(z), ∀t ∈ [0, T ], ∀z ∈ V.

Hence, we infer from (B2) (cf. (2.3)) that

ϕt(z) ≥ 1

|α′|L1(0,T ) + 1
ϕ0(z) ≥ C4

|α′|L1(0,T ) + 1
|z|2V , ∀t ∈ [0, T ], ∀z ∈ V. (2.5)

Thus, we conclude from (2.4) and (2.5) that (2.2) holds.
Now, we show (ii). To this end, we note from (2.2) that

ϕt(0) = 0, ∀t ∈ [0, T ].

Therefore, we observe from the definition of ∂∗ϕ
t, and (2.2) (cf. (2.5)) that

〈∂∗ϕt(z), z〉 ≥ ϕt(z)− ϕt(0) = ϕt(z) ≥ C4

|α′|L1(0,T ) + 1
|z|2V , ∀t ∈ [0, T ], ∀z ∈ V.

Thus, we conclude (ii), and the proof of Lemma 2.1 is complete.
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Remark 2.2 (cf. [22, Remark 1]). We derive from (B1) and (i) of Lemma 2.1 that the
subdifferential ∂∗ϕ

t satisfies

C3|z|2V ≥ 〈∂∗ϕt(z), z〉 ≥ ϕt(z) ≥ C4

|α′|L1(0,T ) + 1
|z|2V , ∀z ∈ V, ∀t ∈ [0, T ]. (2.6)

Additionally, it follows from (B3) that the function t → ∂∗ϕ
t(z) is weakly continuous

from [0, T ] into V ∗ for all z ∈ V . Indeed, let z be any element in V . Furthermore, let
{tn}n∈N ⊂ [0, T ] and t ∈ [0, T ] with tn → t as n → ∞. Then, note from (B1) that
t→ ∂∗ϕ

t(z) is bounded in V ∗. Hence, taking a subsequence if necessary (still denoted by
{tn}n∈N), we observe that

∂∗ϕ
tn(z)→ ξ∗ weakly in V ∗ for some ξ∗ ∈ V ∗ as n→∞. (2.7)

From the definition of ∂∗ϕ
tn, we infer that

〈∂∗ϕtn(z), v − z〉 ≤ ϕtn(v)− ϕtn(z), ∀v ∈ V.

Letting n→∞, we observe from (B3) that

〈ξ∗, v − z〉 ≤ ϕt(v)− ϕt(z), ∀v ∈ V,

which implies that ξ∗ ∈ ∂∗ϕ
t(z). As ∂∗ϕ

t is single-valued (cf. (B1)), we conclude that
ξ∗ = ∂∗ϕ

t(z) and (2.7) holds without extracting any subsequence from {tn}n∈N. Thus, the
function t→ ∂∗ϕ

t(z) is weakly continuous from [0, T ] into V ∗ for all z ∈ V .

We now state the first main result of this paper, which is concerned with the existence
of a solution to problem (P) on [0, T ].

Theorem 2.1 (cf. [22, Theorem 1]). Suppose that Assumptions (A), (B), and (C) hold.
Then, for each f ∈ L2(0, T ;V ∗) and u0 ∈ V , there exists at least one solution u to (P;f, u0)
on [0, T ]. Moreover, there exists a constant N0 > 0, independent of f and u0, such that∫ T

0

ψt(u′(t))dt+ sup
t∈[0,T ]

ϕt(u(t)) ≤ N0

(
ϕ0(u0) + |f |2L2(0,T ;V ∗) + 1

)
(2.8)

for any solution u to (P;f, u0) on [0, T ].

The above theorem was proved in [22, Theorem 1]. However, we shall carefully repeat
the proof in Section 3 to make use of a similar idea in the singular optimal control problem
(OP) and clarify the similarity between Theorem 2.1 and Theorem 5.1, as well as Theorem
10.2, which is treated later.

It is known that solutions to (P;f, u0) are not, in general, unique (cf. [22, Example
4.1]). We can show the uniqueness of solutions under the additional assumption on ∂∗ψ

t

stated below.

Theorem 2.2 (cf. [22, Theorem 2]). Suppose that Assumptions (A), (B), and (C) are
satisfied. In addition, assume that ∂∗ψ

t is strongly monotone in V ∗; more precisely,
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(A4) There exists a constant C5 > 0 such that

〈z∗1 − z∗2 , z1 − z2〉 ≥ C5|z1 − z2|2V , ∀[zi, z∗i ] ∈ ∂∗ψt (i = 1, 2), ∀t ∈ [0, T ].

Then, (P;f, u0) has at most one solution.

This theorem was proved in [22, Theorem 2], and it will be generalized to the case
of doubly nonlinear quasi-variational problems of the form (QP) (cf. Theorem 7.1). The
proof is included in that of Theorem 7.1 as a special case. Therefore, we omit here the
detailed proof of Theorem 2.2.

Remark 2.3. Colli [11, Theorem 5] and Colli–Visintin [12, Remark 2.5] gave several
criteria for the uniqueness of the following type of doubly nonlinear time-independent
evolution equations:

∂ψ(u′(t)) + ∂ϕ(u(t)) 3 f(t) in H for a.a. t ∈ (0, T ). (2.9)

For instance, if ∂ϕ is linear and positive in H and ∂ψ is strictly monotone in H, then
the solution to the Cauchy problem for (2.9) is unique.

Remark 2.4. When g(t, ·) is Lipschitz from V into H in the sense that

|g(t, z1)− g(t, z2)|H ≤ L′g|z1 − z2|H , ∀z1, z2 ∈ V

for a positive constant L′g, condition (A4) in Theorem 2.2 can be replaced by the following:
There exists a constant C ′5 > 0 such that

〈z∗1 − z∗2 , z1 − z2〉 ≥ C5|z1 − z2|2H , ∀[zi, z∗i ] ∈ ∂∗ψt (i = 1, 2), ∀t ∈ [0, T ]. (2.10)

This is easily checked by a slight modification of the proof given in [22, Theorem 2].

3 Existence of solutions to (P; f, u0)

In this section, we discuss the solvability of (P; f, u0) for each f ∈ L2(0, T ;V ∗) and u0 ∈ V .
One of the main objectives of this paper is to establish a systematic approach to

singular optimal control problems. To this end, it is very important to carefully review
the construction of solutions to the state system (P; f, u0) and its approximate state
systems, as these could be used in proving the convergence of their solutions with respect
to the data f and u0 (cf. Proposition 4.1 and Proposition 5.2). Therefore, in this section,
we repeat the detailed construction of solutions to (P; f, u0), although this was covered
in [22, Theorem 1].

Throughout this section, we suppose that all the assumptions of Theorem 2.1 are
made. We construct a solution to (P; f, u0) by considering the convergence of approximate
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solutions of (P; f, u0). Indeed, for each ε ∈ (0, 1], we consider the following problem,
denoted by (P)ε, or (P; f, u0)ε when the data are specified:

(P)ε


εFu′ε(t) + ∂∗ψ

t(u′ε(t)) + ∂∗ϕ
t(uε(t)) + g(t, uε(t)) 3 f(t) in V ∗

for a.a. t ∈ (0, T ),
uε(0) = u0 in V,

(3.1)

where F : V → V ∗ is the duality mapping. Based on this, the solutions to (P) are to be
obtained through the limiting process for (P)ε as ε→ 0.

We begin with the following key lemma, which gives an a priori estimate of solutions
to (P)ε.

Lemma 3.1 (cf. [19, Lemma 2.1.1], [22, Lemma 1]). Suppose that Assumption (B) holds.
Let v ∈ W 1,1(0, T ;V ). Then, we have:

d

dt
ϕt(v(t))− 〈∂∗ϕt(v(t)), v′(t)〉 ≤ |α′(t)|ϕt(v(t)), a.a. t ∈ (0, T ). (3.2)

Proof. Lemma 3.1 will be proved using a similar approach as for the proof of [22, Lemma
1]. Indeed, we observe from (2.2) that ϕt(v(t)) is bounded on [0, T ]. Therefore, we infer
from (B3) that ϕt(v(t)) is absolutely continuous on [0, T ]. Taking account of this fact and
the definition of subdifferential ∂∗ϕ

t, we have:

ϕt(v(t))− ϕs(v(s))− 〈∂∗ϕt(v(t)), v(t)− v(s)〉
≤ϕt(v(s))− ϕs(v(s))

≤|α(t)− α(s)|ϕs(v(s)) for all s, t ∈ [0, T ].

Thus, dividing the above inequality by t− s and letting s ↑ t, we get (3.2).

Taking Lemma 3.1 into account, we can prove the existence–uniqueness of solutions
to (P)ε for each ε ∈ (0, 1] as follows.

Proposition 3.1 (cf. [22, Proposition 1]). Suppose that Assumptions (A), (B), and (C)
are satisfied. Then, for each ε ∈ (0, 1], f ∈ L2(0, T ;V ∗), and u0 ∈ V , there exists a
unique solution uε ∈ W 1,2(0, T ;V ) to (P; f, u0)ε on [0, T ] satisfying uε(0) = u0 in V , and
the following statements hold:

(•) There exists a function ξε ∈ L2(0, T ;V ∗) such that

ξε(t) ∈ ∂∗ψt(u′ε) in V ∗ for a.a. t ∈ (0, T ),

εFu′ε(t) + ξε(t) + ∂∗ϕ
t(uε(t)) + g(t, uε(t)) = f(t) in V ∗ for a.a. t ∈ (0, T ).

Moreover, there exists a constant N1 > 0, independent of ε, f , and u0, such that∫ T

0

ψt(u′ε(t))dt+ sup
t∈[0,T ]

ϕt(uε(t)) ≤ N1

(
ϕ0(u0) + |f |2L2(0,T ;V ∗) + 1

)
. (3.3)
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Proof. We easily observe that the approximate problem (P; f, u0)ε can be reformulated
as: 

u′ε(t) = (εF + ∂∗ψ
t)−1 (f(t)− ∂∗ϕt(uε(t))− g(t, uε(t))) in V

for a.a. t ∈ (0, T ),
uε(0) = u0 in V.

(3.4)

Putting
B(t)z∗ := (εF + ∂∗ψ

t)−1z∗ for all z∗ ∈ V ∗

and
F(t, z) := f(t)− ∂∗ϕt(z)− g(t, z) for all z ∈ V,

we show the existence–uniqueness of solutions to (3.4) by applying the Cauchy–Lipschitz–
Picard existence theorem.

To this end, we first show that the operator B(t)z∗ : [0, T ] × V ∗ → V is Lipschitz in
z∗ ∈ V ∗, and is bounded and continuous in t ∈ [0, T ]. We fix any t ∈ [0, T ] to show that
z∗ ∈ V ∗ 7→ B(t)z∗ ∈ V is Lipschitz continuous. Setting zi = B(t)z∗i (i = 1, 2), we observe
that

z∗i = εFzi + zi,∗ for some zi,∗ ∈ ∂∗ψt(zi).

By (2.1) and the monotonicity of ∂∗ψ
t(·), we have:

〈z∗1 − z∗2 , z1 − z2〉 =〈εFz1 + z1,∗ − εFz2 − z2,∗, z1 − z2〉
≥ε〈Fz1 − Fz2, z1 − z2〉
≥εCF |z1 − z2|2V .

Hence, we conclude that

|B(t)z∗1 − B(t)z∗2 |V = |z1 − z2|V ≤
1

εCF
|z∗1 − z∗2 |V ∗ .

Thus, the operator B(t)z∗ is Lipschitz in z∗ ∈ V ∗ for all t ∈ [0, T ].
Next, we fix any z∗ ∈ V ∗ to show that t ∈ [0, T ] 7→ B(t)z∗ ∈ V is bounded. Setting

zt := B(t)z∗, we observe from the definition of B(t) that

z∗ = εFzt + zt∗ for some zt∗ ∈ ∂∗ψt(zt). (3.5)

Hence, we infer from (3.5) and the monotonicity of ∂∗ψ
t(·) with ∂∗ψ

t(0) 3 0 (cf. (A3))
that

|zt|2V = 〈Fzt, zt〉 =

〈
1

ε
z∗ − 1

ε
zt∗, z

t

〉
=

1

ε
〈z∗, zt〉 − 1

ε
〈zt∗, zt〉

≤1

ε
|z∗|V ∗|zt|V ,

which implies that

|B(t)z∗|V = |zt|V ≤
1

ε
|z∗|V ∗ for all t ∈ [0, T ]. (3.6)
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Thus, the operator B(t)z∗ is bounded in t ∈ [0, T ] for all z∗ ∈ V ∗.
In addition, we fix any z∗ ∈ V ∗ to show that t ∈ [0, T ] 7→ B(t)z∗ ∈ V is continuous.

Setting zt := B(t)z∗, we observe from the definition of B(t) that

εFzt + ∂∗ψ
t(zt) 3 z∗.

Let {sn}n∈N ⊂ [0, T ] with sn → t as n→∞. Note that zsn ∈ D(∂∗ψ
sn) and

z∗ = εFzsn + zsn∗ for some zsn∗ ∈ ∂∗ψsn(zsn). (3.7)

Additionally, note from (A1) that ∂∗ψ
sn converges to ∂∗ψ

t in the sense of its graph as n→
∞ (cf. [6, 20]); namely, for [zt, z∗ − εFzt] ∈ ∂∗ψt, there exists a sequence {[zn, z∗n]}n∈N ⊂
V × V ∗ such that [zn, z

∗
n] ∈ ∂∗ψsn in V × V ∗,

zn → zt in V and z∗n → z∗ − εFzt in V ∗ as n→∞. (3.8)

As the dual space V ∗ is uniformly convex, the duality mapping F is uniformly continuous
on every bounded subset of V . Therefore, we observe from (3.8) that

z∗n + εFzn → z∗ − εFzt + εFzt = z∗ in V ∗ as n→∞. (3.9)

Note from (3.6) that {zsn}n∈N is bounded in V . Hence, we infer from (2.1), (3.7), (3.9),
and the monotonicity of ∂∗ψ

sn that

0 = lim
n→∞
〈z∗n + εFzn − z∗, zn − zsn〉

= lim
n→∞
〈z∗n + εFzn − εFzsn − zsn∗ , zn − zsn〉

≥ lim sup
n→∞

ε〈Fzn − Fzsn , zn − zsn〉

≥εCF lim sup
n→∞

|zn − zsn|2V ,

which implies from (3.8) that

zsn = B(sn)z∗ → zt = B(t)z∗ in V as sn → t.

Thus, the operator B(t)z∗ is continuous in t ∈ [0, T ] for all z∗ ∈ V ∗.
Similarly, it follows from (B1), (B3), (C2), and f ∈ L2(0, T ;V ∗) that the operator

F(t, z) : [0, T ]× V → V ∗ is strongly measurable in t ∈ [0, T ] and Lipschitz in z ∈ V .
We now show the existence–uniqueness of solutions to (3.4), i.e., (P; f, u0)ε on [0, T ].

To this end, we define the operator S : C([0, T ];V )→ C([0, T ];V ) by:

S(u)(t) := u0 +

∫ t

0

B(s)[F(s, u(s))]ds, ∀t ∈ [0, T ], ∀u ∈ C([0, T ];V ).

Note that the operator B(·)[F(·, ·)] : [0, T ]×V → V satisfies the Carathéodory condition,
B(·)[F(·, z)] is Lipschitz in z ∈ V , and B(·)[F(·, u)] ∈ L1(0, T ;V ) for all u ∈ C([0, T ];V ).
Therefore, by the Cauchy–Lipschitz–Picard existence theorem, we can show that S has a
unique fixed point u ∈ C([0, T0];V ) for some small T0 ∈ (0, T ], which is a unique solution
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to (P; f, u0)ε on [0, T0]. By repeating this local existence argument as above, a unique
solution uε to (P; f, u0)ε is obtained on the time interval [0, T ].

Finally, we derive the a priori estimate (3.3). Multiplying (3.1) by u′ε, we get:

〈εFu′ε(t), u′ε(t)〉+ 〈ξε(t), u′ε(t)〉+ 〈∂∗ϕt(uε(t)), u′ε(t)〉+ 〈g(t, uε(t)), u
′
ε(t)〉

= 〈f(t), u′ε(t)〉 for a.a. t ∈ (0, T ),
(3.10)

with ξε ∈ L2(0, T ;V ∗) satisfying ξε(t) ∈ ∂∗ψt(u′ε(t)) in V ∗ for a.a. t ∈ (0, T ).
By (A3), the definitions of F and ∂∗ψ

t, and Lemma 3.1, we have:

〈εFu′ε(t), u′ε(t)〉 = ε|u′ε(t)|2V , (3.11)

〈ξε(t), u′ε(t)〉 ≥ ψt(u′ε(t))− ψt(0), (3.12)

〈∂∗ϕt(uε(t)), u′ε(t)〉 ≥
d

dt
ϕt(uε(t))− |α′(t)|ϕt(uε(t)) (3.13)

for a.a. t ∈ (0, T ). Additionally, from (A2), (C2), Lemma 2.1(i), and Schwarz’s inequality,
it follows that

|〈g(t, uε(t)), u
′
ε(t)〉| ≤ |g(t, uε(t))|V ∗|u′ε(t)|V

≤C1

4
|u′ε(t)|2V +

1

C1

|g(t, uε(t))|2V ∗

≤1

4
ψt(u′ε(t)) +

C2

4
+

1

C1

(|g(t, 0)|V ∗ + Lg|uε(t)|V )2

≤1

4
ψt(u′ε(t)) +

C2

4
+

2|g(t, 0)|2V ∗
C1

+
2L2

g(|α′|L1(0,T ) + 1)

C1C4

ϕt(uε(t)) (3.14)

and

|〈f(t), u′ε(t)〉| ≤
C1

4
|u′ε(t)|2V +

1

C1

|f(t)|2V ∗ ≤
1

4
ψt(u′ε(t)) +

C2

4
+

1

C1

|f(t)|2V ∗ (3.15)

for a.a. t ∈ (0, T ).
Using (3.11)–(3.15), it follows from (3.10) that:

ε|u′ε(t)|2V +
1

2
ψt(u′ε(t)) +

d

dt
ϕt(uε(t))

≤ M1 (|α′(t)|+ 1)ϕt(uε(t)) +M2(|f(t)|2V ∗ + ψt(0) + |g(t, 0)|2V ∗ + 1)

for a.a. t ∈ (0, T ),

(3.16)

where M1,M2 > 0 are constants independent of ε ∈ (0, 1]; for instance:

M1 =
2L2

g(|α′|L1(0,T ) + 1)

C1C4

+ 1 and M2 =
2

C1

+
C2

2
+ 1.

Multiplying (3.16) by e−
∫ t
0 M1(|α′(τ)|+1)dτ gives:

εe−
∫ t
0 M1(|α′(τ)|+1)dτ |u′ε(t)|2V +

1

2
e−

∫ t
0 M1(|α′(τ)|+1)dτ (ψt(u′ε(t)) + C2),
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+
d

dt

{
e−

∫ t
0 M1(|α′(τ)|+1)dτϕt(uε(t))

}
(3.17)

≤ C2

2
e−

∫ t
0 M1(|α′(τ)|+1)dτ +M2e

−
∫ t
0 M1(|α′(τ)|+1)dτ (|f(t)|2V ∗ + ψt(0) + |g(t, 0)|2V ∗ + 1)

=: M3(t).

Integrating (3.17) in time, we obtain:∫ T

0

ψt(u′ε(t))dt+ sup
t∈[0,T ]

ϕt(uε(t))

≤ 3e
∫ T
0 M1(|α′(τ)|+1)dτ

{
ϕ0(u0) +

∫ T

0

M3(τ)dτ

}
.

(3.18)

It is easy to observe from the above inequality that (3.3) holds for some positive constant
N1 independent of ε ∈ (0, 1], f , and u0. Thus, the proof of Proposition 3.1 is complete.

By taking the limit as ε → 0, we have proved Theorem 2.1 concerning the existence
of solutions to (P) on [0, T ].

Proof of Theorem 2.1. Let uε be a unique solution to (P; f, u0)ε on [0, T ], as obtained in
Proposition 3.1. Then, there exists a function ξε ∈ L2(0, T ;V ∗) such that

ξε(t) ∈ ∂∗ψt(u′ε(t)) in V ∗ for a.a. t ∈ (0, T ) (3.19)

and

εFu′ε(t) + ξε(t) + ∂∗ϕ
t(uε(t)) + g(t, uε(t)) = f(t) in V ∗ for a.a. t ∈ (0, T ). (3.20)

From (A2), (2.2), (3.3), and the Ascoli–Arzelà theorem, we can derive a sequence
{εn}n∈N with εn → 0 and a function u ∈ W 1,2(0, T ;V ) such that

uεn → u weakly in W 1,2(0, T ;V ),

in C([0, T ];H),

weakly-∗ in L∞(0, T ;V )

 (3.21)

and
uεn(t)→ u(t) weakly in V for all t ∈ [0, T ] (3.22)

as n→∞.
Here, for each t ∈ [0, T ], we define the function Ψt on L2(0, t;V ) by:

Ψt(z) :=

∫ t

0

ψs(z(s))ds, ∀z ∈ L2(0, t;V ). (3.23)

Then, Ψt is a proper, l.s.c., and convex function on L2(0, t;V ) for each t ∈ [0, T ] (cf.
[10, Proposition 2.16] and [19, Section 0.3]). Therefore, from (3.21) and the weak lower
semicontinuity of Ψt, it follows that∫ t

0

ψτ (u′(τ))dτ ≤ lim inf
n→∞

∫ t

0

ψτ (u′εn(τ))dτ ≤ Ñ1 for all t ∈ [0, T ],
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where Ñ1 =: N1

(
ϕ0(u0) + |f |2L2(0,T ;V ∗) + 1

)
is the same constant as in (3.3).

Additionally, we infer from (C1), (C2), (2.2), (3.3), (3.21), and the Lebesgue dominated
convergence theorem that

g(·, uεn(·))→ g(·, u(·)) in L2(0, T ;V ∗) as n→∞. (3.24)

Now, we show that uεn → u in C([0, T ];V ) as n→∞. To this end, we multiply (3.20)
by u′εn − u

′ to obtain:

〈εnFu′εn(t), u′εn(t)− u′(t)〉+ 〈ξεn(t), u′εn(t)− u′(t)〉
+〈∂∗ϕt(uεn(t)), u′εn(t)− u′(t)〉+ 〈g(t, uεn(t)), u′εn(t)− u′(t)〉

= 〈f(t), u′εn(t)− u′(t)〉 for a.a. t ∈ (0, T ).

(3.25)

Here, by the definition of ∂∗ψ
t (cf. (3.19)), we have:

〈ξεn(t), u′εn(t)− u′(t)〉 ≥ ψt(u′εn(t))− ψt(u′(t)) for a.a. t ∈ (0, T ). (3.26)

As ∂∗ϕ
t is linear from V into V ∗ (cf. (B1)), it follows from Lemma 3.1 that

〈∂∗ϕt(uεn(t)), u′εn(t)− u′(t)〉
= 〈∂∗ϕt(uεn(t)− u(t)), u′εn(t)− u′(t)〉+ 〈∂∗ϕt(u(t)), u′εn(t)− u′(t)〉

≥ d

dt
ϕt(uεn(t)− u(t))− |α′(t)|ϕt(uεn(t)− u(t))

+〈∂∗ϕt(u(t)), u′εn(t)− u′(t)〉 for a.a. t ∈ (0, T ).

(3.27)

In addition, we have:

〈g(t, uεn(t)), u′εn(t)− u′(t)〉
= 〈g(t, uεn(t))− g(t, u(t)), u′εn(t)− u′(t)〉+ 〈g(t, u(t)), u′εn(t)− u′(t)〉

for a.a. t ∈ (0, T ).

(3.28)

Therefore, from (3.25)–(3.28), we obtain that:

d

dt
ϕt(uεn(t)− u(t)) + 〈g(t, uεn(t))− g(t, u(t)), u′εn(t)− u′(t)〉

≤ |α′(t)|ϕt(uεn(t)− u(t)) + L(t) + ψt(u′(t))− ψt(u′εn(t)) for a.a. t ∈ (0, T ),
(3.29)

where L(·) is the function defined by:

L(t) := 〈f(t)− ∂∗ϕt(u(t))− g(t, u(t)), u′εn(t)− u′(t)〉

+εn|Fu′εn(t)|V ∗ |u′εn(t)− u′(t)|V for a.a. t ∈ (0, T ).

Multiplying (3.29) by e−
∫ t
0 |α
′(τ)|dτ , we get:

d

dt

{
e−

∫ t
0 |α
′(τ)|dτϕt(uεn(t)− u(t))

}
+e−

∫ t
0 |α
′(τ)|dτ 〈g(t, uεn(t))− g(t, u(t)), u′εn(t)− u′(t)〉

≤ e−
∫ t
0 |α
′(τ)|dτL(t) + e−

∫ t
0 |α
′(τ)|dτψt(u′(t))− e−

∫ t
0 |α
′(τ)|dτψt(u′εn(t)).

(3.30)
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Integrating (3.30) in time and noting that ϕ0(0) = 0 (cf. (2.2)), we obtain:

e−
∫ t
0 |α
′(τ)|dτϕt(uεn(t)− u(t))

+

∫ t

0

e−
∫ s
0 |α

′(τ)|dτ 〈g(s, uεn(s))− g(s, u(s)), u′εn(s)− u′(s)〉ds

≤
∫ t

0

e−
∫ s
0 |α

′(τ)|dτL(s)ds+

∫ t

0

e−
∫ s
0 |α

′(τ)|dτ (ψs(u′(s)) + C2)ds

−
∫ t

0

e−
∫ s
0 |α

′(τ)|dτ (ψs(u′εn(s)) + C2)ds

(3.31)

for all t ∈ [0, T ].
Here, we define the function Ψ̃t on L2(0, t;V ) for each t ∈ [0, T ] by:

Ψ̃t(z) :=

∫ t

0

e−
∫ s
0 |α

′(τ)|dτ (ψs(z(s)) + C2)ds, ∀z ∈ L2(0, t;V ). (3.32)

Then, Ψ̃t is a proper, l.s.c., and convex function on L2(0, t;V ) for each t ∈ [0, T ] (cf.
[10, Proposition 2.16] and [19, Section 0.3]). Therefore, from (3.21) and the weak lower
semicontinuity of Ψ̃t, we observe that

lim sup
n→0

{∫ t

0

e−
∫ s
0 |α

′(τ)|dτ (ψs(u′(s)) + C2)ds

−
∫ t

0

e−
∫ s
0 |α

′(τ)|dτ (ψs(u′εn(s)) + C2)ds

}
≤ 0.

(3.33)

Additionally, we infer from (3.3), (3.21), and (3.24) that

lim
n→0

∫ t

0

e−
∫ s
0 |α

′(τ)|dτ 〈g(s, uεn(s))− g(s, u(s)), u′εn(s)− u′(s)〉ds

= lim
n→0

∫ t

0

〈e−
∫ s
0 |α

′(τ)|dτg(s, uεn(s))− e−
∫ s
0 |α

′(τ)|dτg(s, u(s)), u′εn(s)− u′(s)〉ds

= 0

(3.34)

and

lim
n→0

∫ t

0

e−
∫ s
0 |α

′(τ)|dτL(s)ds

= lim
n→0

∫ t

0

〈e−
∫ s
0 |α

′(τ)|dτf(s), u′εn(s)− u′(s)〉ds

− lim
n→0

∫ t

0

〈e−
∫ s
0 |α

′(τ)|dτ∂∗ϕ
s(u(s)), u′εn(s)− u′(s)〉ds

− lim
n→0

∫ t

0

〈e−
∫ s
0 |α

′(τ)|dτg(s, u(s)), u′εn(s)− u′(s)〉ds

= 0.

(3.35)

Therefore, we see from (3.31), (3.33), (3.34), and (3.35) that

lim sup
n→0

e−
∫ t
0 |α
′(τ)|dτϕt(uεn(t)− u(t)) ≤ 0 uniformly in t ∈ [0, T ].
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Hence,
lim sup
n→0

ϕt(uεn(t)− u(t)) ≤ 0 uniformly in t ∈ [0, T ],

which implies by (2.2) that

uεn → u in C([0, T ];V ) as n→∞. (3.36)

Now, we show that u is a solution to (P; f, u0) on [0, T ]. Note that, from (B1), (2.2),
(3.3), (3.36), and the Lebesgue dominated convergence theorem,

∂∗ϕ
(·)(uεn(·))→ ∂∗ϕ

(·)(u(·)) in L2(0, T ;V ∗) as n→∞. (3.37)

Additionally, by (A2), (3.3), and εn ↓ 0, we have

εnFu
′
εn → 0 in L2(0, T ;V ∗) as n→∞. (3.38)

As a consequence, (3.20), (3.24), (3.37), and (3.38) imply that

{ξεn}n∈N is bounded in L2(0, T ;V ∗).

Therefore, taking a subsequence if necessary (still denoted by {εn}n∈N), we observe that:

ξεn → ξ weakly in L2(0, T ;V ∗) for some ξ ∈ L2(0, T ;V ∗) as n→∞. (3.39)

Hence, we infer from (3.20), (3.24), and (3.37)–(3.39) that:

ξεn = f − ∂∗ϕ(·)(uεn)− g(·, uεn)− εnFu′εn → f − ∂∗ϕ(·)(u)− g(·, u) = ξ

in L2(0, T ;V ∗) as n→∞.
(3.40)

Thus, from (3.19), (3.20), (3.40), and the demi-closedness of the maximal monotone
operator ∂∗ψ

(·) in L2(0, T ;V ∗), we conclude that

ξ ∈ ∂∗ψ(·)(u′) in L2(0, T ;V ∗), (3.41)

or, equivalently ([18, Proposition 1.1 and Lemma 3.3]), that

ξ(t) ∈ ∂∗ψt(u′(t)) in V ∗ for a.a. t ∈ (0, T ).

Additionally, from (3.36), we have u(0) = u0 in V . Therefore, u is a solution to
(P; f, u0) on [0, T ].

Note that, from a priori estimate (3.3) and the convergence results (3.21), (3.36) and
the lower semi-continuity of Ψt in (3.23), the bounded estimate (2.8) holds by setting
N0 := N1.

Finally, we show that estimate (2.8) is valid for any solution to (P; f, u0). Let u be
any solution to (P; f, u0) on [0, T ]. Then, u is also a solution to the following equation for
every ε > 0:

εFu′(t) + ξ(t) + ∂∗ϕ
t(u(t)) + g(t, u(t)) = f(t) + εFu′(t) in V ∗ for a.a. t ∈ (0, T ),

ξ(t) ∈ ∂∗ψt(u′(t)) in V ∗ for a.a. t ∈ (0, T ).

Therefore, by Proposition 3.1 (cf. (3.3)), we have∫ T

0

ψt(u′(t))dt+ sup
t∈[0,T ]

ϕt(u(t)) ≤ N1

(
ϕ0(u0) + |f + εFu′|2L2(0,T ;V ∗) + 1

)
.

Letting ε→ 0, we conclude that estimate (2.8) is valid for any solution u to (P; f, u0).
Thus, the proof of Theorem 2.1 is complete.
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4 Singular optimal control problem (OP)

In this section, we consider the singular optimal control problem (OP). In Theorem 2.2, we
showed the uniqueness of solutions to state system (P) under the additional assumption
(A4). However, it seems that Assumption (A4) is too strong when we consider a class of
interesting variational inequalities (cf. [22, Section 6] and Proposition 11.1 in Section 11).

Now, we state the main result of this paper, which is directed toward the existence of
an optimal control for problem (OP) without the uniqueness of solutions to state system
(P).

Theorem 4.1. Suppose that Assumptions (A), (B), and (C) hold. Let u0 be any initial
datum in V , and let uad be a given function in L2(0, T ;V ). Then, (OP) has at least one
optimal control f ∗ ∈ FM , namely,

J(f ∗) = inf
f∈FM

J(f),

where J(·) is the cost functional of (OP) defined by (1.4) and (1.5).

We begin with the following result on the convergence of solutions to (P), which is a
key component in the proof of Theorem 4.1.

Proposition 4.1. Suppose that Assumptions (A), (B), and (C) are satisfied. Let {fn}n∈N ⊂
L2(0, T ;V ∗), {u0,n}n∈N ⊂ V , f ∈ L2(0, T ;V ∗), and u0 ∈ V . Assume that

fn → f in L2(0, T ;V ∗), (4.1)

u0,n → u0 in V (4.2)

as n→∞. Let un be a solution to (P;fn, u0,n) on [0, T ]. Then, there exist a subsequence
{nk}k∈N ⊂ {n}n∈N and a function u ∈ W 1,2(0, T ;V ) such that u is a solution to (P;f, u0)
on [0, T ] and

unk
→ u in C([0, T ];V ) as k →∞. (4.3)

Proof. As {u0,n}n∈N is bounded in V by (4.2), we observe from (2.3) that

ϕ0(u0,n) is bounded in n ≥ 1 (4.4)

and
lim
n→∞

ϕ0(u0,n − u0) = 0. (4.5)

From (A2), (2.2), the bounded estimate (2.8), (4.1), (4.4), and the Ascoli–Arzelà the-
orem, we derive the existence of a subsequence {nk}k∈N of {n}n∈N and a function u ∈
W 1,2(0, T ;V ) satisfying nk →∞,

unk
→ u weakly in W 1,2(0, T ;V ),

in C([0, T ];H),

weakly-∗ in L∞(0, T ;V ),

 (4.6)
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and
unk

(t)→ u(t) weakly in V for all t ∈ [0, T ]

as k →∞. From (4.6) and the weak lower semicontinuity of Ψt given in (3.23), we observe
that ∫ t

0

ψτ (u′(τ))dτ ≤ lim inf
k→∞

∫ t

0

ψτ (u′nk
(τ))dτ < +∞ for all t ∈ [0, T ].

Additionally, by (C1), (C2), (2.2), (2.8), (4.6), and the Lebesgue dominated convergence
theorem,

g(·, unk
(·))→ g(·, u(·)) in L2(0, T ;V ∗) as k →∞. (4.7)

Next, we show that unk
→ u in C([0, T ];V ) as k → ∞. To this end, we multiply

(P;fnk
, u0,nk

) by u′nk
− u′. Then, just as for the derivation of (3.29), we have:

d

dt
ϕt(unk

(t)− u(t)) + 〈g(t, unk
(t))− g(t, u(t)), u′εn(t)− u′(t)〉

−〈fnk
(t)− f(t), u′nk

(t)− u′(t)〉
≤ |α′(t)|ϕt(unk

(t)− u(t)) + L̃(t) + ψt(u′(t))− ψt(u′nk
(t)) for a.a. t ∈ (0, T ),

(4.8)

where L̃(·) is the function defined by:

L̃(t) := 〈f(t)− ∂∗ϕt(u(t))− g(t, u(t)), u′nk
(t)− u′(t)〉 for a.a. t ∈ (0, T ).

Multiplying (4.8) by e−
∫ t
0 |α
′(τ)|dτ and integrating in time, we get:

e−
∫ t
0 |α
′(τ)|dτϕt(unk

(t)− u(t))

+

∫ t

0

e−
∫ s
0 |α

′(τ)|dτ 〈g(s, unk
(s))− g(s, u(s)), u′nk

(s)− u′(s)〉ds

−
∫ t

0

e−
∫ s
0 |α

′(τ)|dτ 〈fnk
(s)− f(s), u′nk

(s)− u′(s)〉ds

≤ ϕ0(u0,nk
− u0) +

∫ t

0

e−
∫ s
0 |α

′(τ)|dτ L̃(s)ds+

∫ t

0

e−
∫ s
0 |α

′(τ)|dτ (ψs(u′(s)) + C2)ds

−
∫ t

0

e−
∫ s
0 |α

′(τ)|dτ (ψs(u′nk
(s)) + C2)ds

(4.9)

for all t ∈ [0, T ].
Using similar arguments to (3.33)–(3.35), we infer from (4.9) with (4.1), (4.2), (4.5)–

(4.7), and the weak lower semicontinuity of Ψ̃t given by (3.32) that

lim sup
k→∞

e−
∫ t
0 |α
′(τ)|dτϕt(unk

(t)− u(t)) ≤ 0 uniformly in t ∈ [0, T ],

or, equivalently,

lim sup
k→∞

ϕt(unk
(t)− u(t)) ≤ 0 uniformly in t ∈ [0, T ],

which implies by (2.2) that

unk
→ u in C([0, T ];V ) as k →∞. (4.10)
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Finally, we show that u is a solution to (P; f, u0) on [0, T ]. From (B1), (2.2), (2.8),
(4.10), and the Lebesgue dominated convergence theorem, it follows that

∂∗ϕ
(·)(unk

(·))→ ∂∗ϕ
(·)(u(·)) in L2(0, T ;V ∗) as k →∞. (4.11)

As unk
is a solution to (P;fnk

, u0,nk
) on [0, T ], there exists a function ξnk

∈ L2(0, T ;V ∗)
such that

ξnk
(t) ∈ ∂∗ψt(u′nk

(t)) in V ∗ for a.a. t ∈ (0, T )

and

ξnk
(t) + ∂∗ϕ

t(unk
(t)) + g(t, unk

(t)) = fnk
(t) in V ∗ for a.a. t ∈ (0, T ). (4.12)

By (4.12) with (4.1), (4.7), and (4.11), we see that

{ξnk
}k∈N is bounded in L2(0, T ;V ∗).

Therefore, taking a subsequence if necessary (still denoted by {nk}k∈N), we observe that:

ξnk
→ ξ weakly in L2(0, T ;V ∗) for some ξ ∈ L2(0, T ;V ∗) as k →∞. (4.13)

In addition, we infer from (4.1), (4.7), (4.11), (4.12), and (4.13) that:

∂∗ψ
(·)(u′nk

) 3 ξnk
→ ξ = f − ∂∗ϕ(·)(u)− g(·, u) in L2(0, T ;V ∗) as k →∞. (4.14)

Thus, from (4.6), (4.14), and the demi-closedness of the maximal monotone operator
∂∗ψ

(·) in L2(0, T ;V ∗), we infer that

ξ ∈ ∂∗ψ(·)(u′) in L2(0, T ;V ∗),

or, equivalently,
ξ(t) ∈ ∂∗ψt(u′(t)) in V ∗ for a.a. t ∈ (0, T ).

From (4.10), we have u(0) = u0 in V . Hence, we conclude that u is a solution to (P; f, u0)
on [0, T ]. Thus, the proof of Proposition 4.1 is complete.

Using the above convergence result of solutions to state problem (P), we prove the
main theorem in our paper (Theorem 4.1), which is concerned with the existence of an
optimal control for problem (OP).

Proof of Theorem 4.1. We are going to prove the existence of an optimal control for (OP)
without the uniqueness of solutions to state problem (P).

Note that, from (1.4) and (1.5), J(f) ≥ 0 for all f ∈ FM . Let {fn}n∈N ⊂ FM be a
minimizing sequence of the functional J on FM , namely,

d∗ := inf
f∈FM

J(f) = lim
n→∞

J(fn).

By the definition in (1.4) of J(fn), for each n, there is a solution un ∈ S(fn) such that

πfn(un) < J(fn) +
1

n
. (4.15)
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Here, we observe from {fn}n∈N ⊂ FM and (1.3) that

{fn}n∈N is bounded in W 1,2(0, T ;V ∗) ∩ L2(0, T ;H).

Thus, by the Aubin compactness theorem (cf. [23, Chapter1, Section 5]), there is a
subsequence {nk}k∈N ⊂ {n}n∈N and a function f ∗ ∈ FM such that

fnk
→ f ∗ weakly in W 1,2(0, T ;V ∗),

weakly in L2(0, T ;H),

in L2(0, T ;V ∗)

 (4.16)

as k →∞.
Now, taking a subsequence if necessary, we infer from Proposition 4.1 that there is a

solution u∗ to (P;f ∗, u0) on [0, T ] satisfying

unk
→ u∗ in C([0, T ];V ) as k →∞. (4.17)

Therefore, it follows from (4.15)–(4.17) and u∗ ∈ S(f ∗) that

d∗ = inf
f∈FM

J(f) ≤ J(f ∗) = inf
u∈S(f∗)

πf∗(u)

≤ πf∗(u
∗) =

1

2

∫ T

0

|u∗(t)− uad(t)|2V dt+
1

2

∫ T

0

|f ∗(t)|2V ∗dt

= lim
k→∞

πfnk
(unk

)

≤ lim
k→∞

{
J(fnk

) +
1

nk

}
= lim

k→∞
J(fnk

) = d∗.

Hence, we have d∗ = inff∈FM
J(f) = J(f ∗), which implies that f ∗ ∈ FM is an optimal

control for (OP). Thus, the proof of Theorem 4.1 is complete.

5 Approximation for (P) and (OP)

The non-uniqueness situation of state problem (P), as in Section 4, makes the numerical
approach to (OP) quite difficult. In this section, we establish an approximation procedure
to (P) and (OP) from the viewpoint of numerical analysis.

Throughout this section, we fix the initial datum u0 ∈ V . We begin by setting up
approximate problems for (P). For each ε ∈ (0, 1] and each h ∈ L2(0, T ;V ), we consider
(P; f + εFh, u0)ε as the approximate problem to (P; f, u0):

εFu′ε(t) + ∂∗ψ
t(u′ε(t)) + ∂∗ϕ

t(uε(t)) + g(t, uε(t)) 3 f(t) + εFh(t) in V ∗

for a.a. t ∈ (0, T ),
uε(0) = u0 in V,

(5.1)

where F : V → V ∗ is the duality mapping (cf. (2.1)).

We immediately obtain the following from Proposition 3.1.
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Proposition 5.1 (cf. Proposition 3.1). Suppose that Assumptions (A), (B), and (C) hold.
Then, for each ε ∈ (0, 1], f ∈ L2(0, T ;V ∗), h ∈ L2(0, T ;V ), and u0 ∈ V , there exists a
unique solution uε to (P; f + εFh, u0)ε on [0, T ], namely, uε satisfies uε ∈ W 1,2(0, T ;V ),
uε(0) = u0 in V and the following holds:

(•) There exists a function ξε ∈ L2(0, T ;V ∗) such that

ξε(t) ∈ ∂∗ψt(u′ε(t)) in V ∗ for a.a. t ∈ (0, T ),

εFu′ε(t) + ξε(t) + ∂∗ϕ
t(uε(t)) + g(t, uε(t)) = f(t) + εFh(t) in V ∗ for a.a. t ∈ (0, T ).

Moreover, there exists a constant N2 > 0, independent of ε, f , h, and u0, such that∫ T

0

ψt(u′ε(t))dt+ sup
t∈[0,T ]

ϕt(uε(t))

≤ N2

(
ϕ0(u0) + |f |2L2(0,T ;V ∗) + |h|2L2(0,T ;V ) + 1

)
.

(5.2)

It is easy to see that Proposition 5.1 is a direct consequence of Proposition 3.1 with
estimate (5.2) as well.

We now state the first main result of this section, which is concerned with the rela-
tionship between (P;f, u0) and (P; f + εFh, u0)ε.

Theorem 5.1. Suppose that Assumptions (A), (B), and (C) hold. Let f ∈ L2(0, T ;V ∗)
and u0 ∈ V . Then, we have:

(i) Let ε ∈ (0, 1] and let {hε}ε∈(0,1] be a bounded set in L2(0, T ;V ). Additionally, let uε
be a unique solution to (P; f + εFhε, u0)ε on [0, T ]. Then, there exist a sequence
{εn}n∈N ⊂ {ε}ε∈(0,1] with εn → 0 (as n→∞) and a function u ∈ W 1,2(0, T ;V ) such
that u is a solution to (P; f, u0) on [0, T ] and

uεn → u in C([0, T ];V ) as n→∞.

(ii) Let u be any solution to (P; f, u0) on [0, T ]. Then, there exist sequences {εn}n∈N ⊂
(0, 1] with εn → 0 (as n→∞), {fn}n∈N ⊂ L2(0, T ;V ∗), {hn}n∈N ⊂ L2(0, T ;V ), and
{uεn}n∈N ⊂ W 1,2(0, T ;V ) such that uεn is a unique solution to (P; fn + εnFhn, u0)εn
on [0, T ], {hn}n∈N is bounded in L2(0, T ;V ), and

uεn → u in C([0, T ];V ), fn → f in L2(0, T ;V ∗) as n→∞.

Proof. We first show (i). As {hε}ε∈(0,1] is bounded in L2(0, T ;V ) and F : V → V ∗ is the
duality mapping, we observe that

εFhε → 0 in L2(0, T ;V ∗) as ε→ 0.

Therefore, assertion (i) can be shown in a similar manner to the proof of Theorem 2.1 (cf.
Section 3).
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Next, we show (ii). To this end, let {εn}n∈N ⊂ (0, 1] be a sequence with εn → 0 as n→
∞. Additionally, let u be any solution to (P; f, u0) on [0, T ]. Note that u ∈ W 1,2(0, T ;V )
and the following equation holds:

∂∗ψ
t(u′(t)) + ∂∗ϕ

t(u(t)) + g(t, u(t)) 3 f(t) in V ∗ for a.a. t ∈ (0, T ). (5.3)

Adding εnFu
′(t) to both sides in (5.3), we observe that the function u is also a solution

to (P; f + εnFu
′, u0)εn on [0, T ]. Hence, we conclude that assertion (ii) holds for uεn := u,

fn := f and hn := u′.
Thus, Theorem 5.1 has been proved.

Next, we consider an approximate problem for (OP), fixing an initial datum u0 ∈ V .
Note from (A2) and (2.8) that any solution u to (P; f, u0) on [0, T ] satisfies the following
estimate: ∫ T

0

|u′(t)|2V dt ≤
N0

(
ϕ0(u0) + |f |2L2(0,T ;V ∗) + 1

)
+ C2T

C1

. (5.4)

Therefore, we take and fix a positive number N > 0 so that

N2 ≥ N0 (ϕ0(u0) +M2 + 1) + C2T

C1

, (5.5)

where M > 0 is the same positive constant as in the control space FM (cf. (1.3)).
For each ε ∈ (0, 1], we consider a perturbation of the control space Hε

N defined by

Hε
N :=

h ∈ W 1,2(0, T ;V ) ∩ L2(0, T ;X) ;

|h|L2(0,T ;V ) ≤ N,

|h′|L2(0,T ;V ) ≤ ε−1N,

|h|L2(0,T ;X) ≤ ε−1N

 , (5.6)

where X is a reflexive Banach space such that X is densely and compactly embedded into
V .

Now, for each ε ∈ (0, 1], we study the following control problem for the state system
(P; f + εFh, u0)ε, denoted by (OP)ε:

Problem (OP)ε: Find a control (f ∗ε , h
∗
ε) ∈ FM × Hε

N , called an optimal control, such
that

Jε(f
∗
ε , h

∗
ε) = inf

(f,h)∈FM×Hε
N

Jε(f, h).

Here, Jε(f, h) is the cost functional defined by

Jε(f, h) :=
1

2

∫ T

0

|uε(t)− uad(t)|2V dt+
1

2

∫ T

0

|f(t)|2V ∗dt+
ε

2

∫ T

0

|h(t)|2V dt, (5.7)

where (f, h) is any control in FM × Hε
N , uε is a unique solution to the state system

(P; f + εFh, u0)ε, and uad ∈ L2(0, T ;V ) is the target profile.

Note that (OP)ε is the standard optimal control problem, because the state system
(P; f + εFh, u0)ε has a unique solution on [0, T ].

We now state the second result of this section, which is concerned with the relationship
between (OP) and (OP)ε.
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Theorem 5.2. Suppose that Assumptions (A), (B), and (C) hold. Let u0 ∈ V and
uad ∈ L2(0, T ;V ). Then, we have:

(i) For each ε ∈ (0, 1], (OP)ε has at least one optimal control (f ∗ε , h
∗
ε) ∈ FM × Hε

N ,
namely,

Jε(f
∗
ε , h

∗
ε) = inf

(f,h)∈FM×Hε
N

Jε(f, h).

(ii) Let ε ∈ (0, 1], and let (f ∗ε , h
∗
ε) ∈ FM ×Hε

N be an optimal control of the approximate
problem (OP)ε. Additionally, assume that

(D) For any function h ∈ L2(0, T ;V ) with |h|L2(0,T ;V ) ≤ N , there exists a sequence
{hε}ε∈(0,1] of functions hε ∈ Hε

N such that

hε → h in L2(0, T ;V ) as ε→ 0.

Then, there exists a sequence {εn}n∈N ⊂ {ε}ε∈(0,1] with εn → 0 (n → ∞) such that
any weak limit function f ∗ of {f ∗εn}n∈N in L2(0, T ;V ∗) is an optimal control for
(OP).

Remark 5.1. The main point of Assumption (D) is to guarantee the compactness of Hε
N

in L2(0, T ;V ). In any application treated in Section 11, Assumption (D) is automati-
cally checked by the usual smoothness argument (e.g., the regularization method using the
mollifier and the convolution [1, Sections 2.28 and 3.16]). For instance, in the case of
V = W 1,p(Ω), 2 ≤ p < ∞, Assumption (D) is easily verified by choosing W 2,p(Ω) as the
space X.

The following convergence result for solutions is a key component in the proof of
Theorem 5.2.

Proposition 5.2. Suppose that Assumptions (A), (B), and (C) hold. Let {fn}n∈N ⊂
L2(0, T ;V ∗), {u0,n}n∈N ⊂ V , f ∈ L2(0, T ;V ∗), and u0 ∈ V . Assume that

fn → f in L2(0, T ;V ∗), u0,n → u0 in V as n→∞.

Then, the following statements hold:

(i) Assume {hn}n∈N ⊂ L2(0, T ;V ), h ∈ L2(0, T ;V ) and

hn → h in L2(0, T ;V ) as n→∞. (5.8)

For a fixed parameter ε ∈ (0, 1], let un be a unique solution to (P;fn+εFhn, u0,n)ε on
[0, T ]. Then, there is a function u ∈ W 1,2(0, T ;V ) such that u is a unique solution
to (P;f + εFh, u0)ε on [0, T ] and

un → u in C([0, T ];V ) as n→∞.
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(ii) Assume that {hn}n∈N is a bounded set in L2(0, T ;V ). Let {εn}n∈N ⊂ (0, 1] with
εn → 0 (as n→∞). Let uεn be a unique solution to (P;fn+εnFhn, u0,n)εn on [0, T ].
Then, there exist a subsequence {nk}k∈N ⊂ {n}n∈N and a function u ∈ W 1,2(0, T ;V )
such that u is a solution to (P;f, u0) on [0, T ] and

uεnk
→ u in C([0, T ];V ) as k →∞.

Proof. We first prove (i). From the uniform convexity of V and V ∗ and the properties of
the duality mapping F : V → V ∗, it follows that

Fhn → Fh in L2(0, T ;V ∗) as n→∞.

Therefore, similar to the proof of Proposition 4.1, we can prove assertion (i).
Next, we show (ii). As {hn}n∈N is bounded in L2(0, T ;V ), we observe that

εnFhn → 0 in L2(0, T ;V ∗) as n→∞.

Therefore, assertion (ii) is proved in a similar way to Theorem 2.1 (cf. Theorem 5.1(i)),
and the detailed proof is omitted.

Additionally, the following convergence result for solutions is a key component in the
proof of Theorem 5.2(ii).

Proposition 5.3. Suppose that Assumptions (A), (B), (C), and (D) hold. Let f ∈ FM
and u0 ∈ V . Additionally, let u be any solution to (P;f, u0) on [0, T ]. Then, there
are sequences {εn}n∈N ⊂ (0, 1] with εn → 0 (as n → ∞), {fn}n∈N ⊂ FM , {hn}n∈N ⊂
L2(0, T ;V ) with hn ∈ Hεn

N , and {uεn}n∈N ⊂ W 1,2(0, T ;V ) such that uεn is a unique
solution to (P;fn + εnFhn, u0)εn on [0, T ], and

uεn → u in C([0, T ];V ), fn → f in L2(0, T ;V ∗) as n→∞.

Proof. Note from (5.4) and (5.5) that the solution u to (P;f, u0) on [0, T ] satisfies the
following:

|u′|L2(0,T ;V ) ≤ N, (5.9)

∂∗ψ
t(u′(t)) + ∂∗ϕ

t(u(t)) + g(t, u(t)) 3 f(t) in V ∗ for a.a. t ∈ (0, T ). (5.10)

Let δ ∈ (0, 1] be any constant. Then, adding δFu′(t) to both sides of (5.10), we observe
that the function u is also a solution to (P; f + δFu′, u0)δ on [0, T ] (cf. Theorem 5.1(ii)).

By (5.9) and assumption (D), there exist a sequence {εk}k∈N ⊂ (0, 1] with εk → 0 and
a sequence {hεk}k∈N of functions hεk ∈ H

εk
N such that

hεk → u′ in L2(0, T ;V ) as k →∞. (5.11)

Let {δ`}`∈N be a sequence in (0, 1] so that δ` → 0 as `→∞. Now, for a fixed number
δ`, we consider the approximate system (P; f + δ`Fhεk , u0)δ` on [0, T ]. Then, taking a
subsequence if necessary (still denoted by {εk}k∈N), we observe from Proposition 5.2(i)
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with (5.11) that a unique solution u`εk ∈ W 1,2(0, T ;V ) to (P; f + δ`Fhεk , u0)δ` on [0, T ]
converges to the one ũ` to (P; f + δ`Fu

′, u0)δ` on [0, T ] in the following sense:

u`εk → ũ` in C([0, T ];V ) as k →∞.

As u is also a solution to (P; f + δ`Fu
′, u0)δ` on [0, T ], we infer from the uniqueness of

solutions to (P; f + δ`Fu
′, u0)δ` that u = ũ`, and hence

u`εk → u in C([0, T ];V ) as k →∞.

Note from hεk ∈ H
εk
N that {hεk}k∈N is bounded in L2(0, T ;V ); more precisely,

|hεk |L2(0,T ;V ) ≤ N for all k ≥ 1.

Therefore, from the diagonal argument with respect to the parameters k and `, we verify
the validity of Proposition 5.3. Indeed, taking δn := εn, we derive the convergence by
setting uεn := unεn , fn := f , and hn := hεn . Thus, the proof of Proposition 5.3 is
complete.

Now, let us prove Theorem 5.2, which is concerned with the relationship between (OP)
and (OP)ε.

Proof of Theorem 5.2. We first prove Theorem 5.2(i). Using the standard argument with
Proposition 5.2(i), we can show Theorem 5.2(i) concerning the existence of an optimal
control for (OP)ε. Indeed, let ε ∈ (0, 1] be fixed. Then, we observe from (5.7) that
Jε(f, h) ≥ 0 for all (f, h) ∈ FM × Hε

N . Let {(fn, hn)}n∈N ⊂ FM × Hε
N be a minimizing

sequence such that

d∗ε := inf
(f,h)∈FM×Hε

N

Jε(f, h) = lim
n→∞

Jε(fn, hn).

Here, we observe from {(fn, hn)}n∈N ⊂ FM ×Hε
N , (1.3), and (5.6) that

{fn}n∈N is bounded in W 1,2(0, T ;V ∗) ∩ L2(0, T ;H),

{hn}n∈N is bounded in W 1,2(0, T ;V ) ∩ L2(0, T ;X).

Thus, with the help of the Aubin compactness theorem (cf. [23, Chapter 1, Section 5]),
there exist a subsequence {nk}k∈N ⊂ {n}n∈N and a function (f ∗, h∗) ∈ FM × Hε

N such
that

fnk
→ f ∗ weakly in W 1,2(0, T ;V ∗),

weakly in L2(0, T ;H),

in L2(0, T ;V ∗)

 (5.12)

and
hnk
→ h∗ weakly in W 1,2(0, T ;V ),

weakly in L2(0, T ;X),

in L2(0, T ;V )

 (5.13)

as k →∞.
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Let unk
be a unique solution to (P;fnk

+ εFhnk
, u0)ε on [0, T ]. Then, we infer from

Proposition 5.2(i) with (5.12) and (5.13) that there is a unique solution u∗ to (P;f ∗ +
εFh∗, u0)ε on [0, T ] satisfying

unk
→ u∗ in C([0, T ];V ) as k →∞. (5.14)

Therefore, it follows from (5.12)–(5.14) that

Jε(f
∗, h∗) = lim

k→∞
Jε(fnk

, hnk
) = inf

(f,h)∈FM×Hε
N

Jε(f, h) = d∗ε,

which implies that (f ∗, h∗) ∈ FM ×Hε
N is an optimal control for (OP)ε. Thus, the proof

of Theorem 5.2(i) is complete.
Next, we prove Theorem 5.2(ii) by approximating the admissible optimal pair for

(OP).
Define d∗ := inff∈FM

J(f) and let f̃ ∗ be any optimal control for (OP) with its optimal
state ũ∗, namely, ũ∗ ∈ S(f̃ ∗) and

d∗ = J(f̃ ∗) =
1

2

∫ T

0

|ũ∗(t)− uad(t)|2V dt+
1

2

∫ T

0

|f̃ ∗(t)|2V ∗dt.

Now, we approximate the admissible optimal pair (ũ∗, f̃ ∗) for (OP) by applying Propo-
sition 5.3. Indeed, we observe from Proposition 5.3 that there exist sequences {εn}n∈N ⊂
(0, 1] with εn → 0 (as n → ∞), {fn}n∈N ⊂ FM , {hn}n∈N ⊂ L2(0, T ;V ) with hn ∈ Hεn

N ,
and {uεn}n∈N ⊂ W 1,2(0, T ;V ) such that uεn is a unique solution to (P; fn + εnFhn, u0)εn
on [0, T ],

uεn → ũ∗ in C([0, T ];V ) as n→∞, (5.15)

and
fn → f̃ ∗ in L2(0, T ;V ∗) as n→∞. (5.16)

Note from hn ∈ Hεn
N that {hn}n∈N is bounded in L2(0, T ;V ); more precisely,

|hn|L2(0,T ;V ) ≤ N for all n ≥ 1.

Therefore, from (1.4), (1.5), (5.7), (5.15), and (5.16), it follows that

d∗ = J(f̃ ∗) =
1

2

∫ T

0

|ũ∗(t)− uad(t)|2V dt+
1

2

∫ T

0

|f̃ ∗(t)|2V ∗dt

= lim
n→∞

{
1

2

∫ T

0

|uεn(t)− uad(t)|2V dt+
1

2

∫ T

0

|fn(t)|2V ∗dt
}

= lim
n→∞

Jεn(fn, hn)

≥ lim sup
n→∞

d∗εn , (5.17)

where d∗εn := inf(f,h)∈FM×Hεn
N
Jεn(f, h).

Now, let {(f ∗εn , h
∗
εn)}n∈N be any sequence of optimal controls (f ∗εn , h

∗
εn) for (OP)εn . In

addition, let u∗εn be a unique solution to (P; f ∗εn + εnFh
∗
εn , u0)εn on [0, T ]. Then, it follows

from (f ∗εn , h
∗
εn) ∈ FM ×Hεn

N , (1.3) and (5.6) that

{f ∗εn}n∈N is bounded in W 1,2(0, T ;V ∗) ∩ L2(0, T ;H),
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{h∗εn}n∈N is bounded in L2(0, T ;V ). (5.18)

Therefore, by the Aubin compactness theorem (cf. [23, Chapter 1, Section 5]), there exist
a subsequence {nk}k∈N ⊂ {n}n∈N and a function f ∗ ∈ FM such that

f ∗εnk
→ f ∗ weakly in W 1,2(0, T ;V ∗),

weakly in L2(0, T ;H),

in L2(0, T ;V ∗)

 (5.19)

as k → ∞. Then, taking a subsequence if necessary, we infer from Proposition 5.2(ii)
with (5.18) and (5.19) that there is a solution u∗ to (P;f ∗, u0) on [0, T ] satisfying

u∗εnk
→ u∗ in C([0, T ];V ) as k →∞. (5.20)

Next, taking a subsequence if necessary, we choose a subsequence of {nk}k∈N (still
denoted by {nk}k∈N) so that

lim inf
n→∞

d∗εn = lim
k→∞

d∗εnk
.

Therefore, it follows from (1.4), (1.5), (5.18)–(5.20), and u∗ ∈ S(f ∗) that

lim inf
n→∞

d∗εn

= lim
k→∞

d∗εnk
= lim

k→∞
Jεnk

(f ∗εnk
, h∗εnk

)

= lim
k→∞

{
1

2

∫ T

0

|u∗εnk
(t)− uad(t)|2V dt+

1

2

∫ T

0

|f ∗εnk
(t)|2V ∗dt+

εnk

2

∫ T

0

|h∗εnk
(t)|2V dt

}
=

1

2

∫ T

0

|u∗(t)− uad(t)|2V dt+
1

2

∫ T

0

|f ∗(t)|2V ∗dt

=πf∗(u
∗)

≥J(f ∗)

≥d∗. (5.21)

On account of (5.21) and inequality (5.17), we conclude that

d∗ = lim
n→∞

d∗εn = J(f ∗).

Hence, f ∗ ∈ FM is an optimal control for (OP) and u∗ is its optimal state. Thus, the
proof of Theorem 5.2 is complete.

6 Solvability of (QP)

In this section, we consider a doubly nonlinear quasi-variational evolution equation, as
introduced in [22, Section 5], of the form:

(QP)

{
∂∗ψ

t(u′(t)) + ∂∗ϕ
t(u;u(t)) + g(t, u(t)) 3 f(t) in V ∗ for a.a. t ∈ (0, T ),

u(0) = u0 in V,
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where ψt(z) and g(t, z) are as in (P), and ϕt(v; z) is precisely formulated below.

(Assumption (B’))

Setting

D0 :=

{
v ∈ W 1,2(0, T ;V )

∣∣∣∣ ∫ T

0

ψt(v′(t))dt <∞
}
,

we define a functional ϕt : [0, T ]×D0 × V → R such that ϕt(v; z) is non-negative, finite,
continuous, and convex in z ∈ V for any t ∈ [0, T ] and any v ∈ D0, and

ϕt(v1; z) = ϕt(v2; z), ∀z ∈ V, if v1 = v2 on [0, t],

for vi ∈ D0, i = 1, 2. We assume the following:

(B1’) The subdifferential ∂∗ϕ
t(v; z) of ϕt(v; z) with respect to z ∈ V is linear and bounded

from D(∂∗ϕ
t(v; ·)) = V into V ∗ for each t ∈ [0, T ] and v ∈ D0, and there is a positive

constant C ′3 such that

|∂∗ϕt(v; z)|V ∗ ≤ C ′3|z|V , ∀z ∈ V, ∀v ∈ D0, ∀t ∈ [0, T ].

(B2’) If {vn}n∈N ⊂ D0, supn∈N
∫ T

0
ψt(v′n(t))dt < ∞ and vn → v ∈ C([0, T ];H) (as

n→∞), then

∂∗ϕ
t(vn; z)→ ∂∗ϕ

t(v; z) in V ∗, ∀z ∈ V, ∀t ∈ [0, T ] as n→∞.

(B3’) ϕ0(v; 0) = 0 for all v ∈ D0. Moreover, there is a positive constant C ′4 such that

ϕ0(v; z) ≥ C ′4|z|2V , ∀z ∈ V, ∀v ∈ D0.

(B4’) There is a function α ∈ W 1,1(0, T ) such that

|ϕt(v; z)− ϕs(v; z)| ≤ |α(t)− α(s)|ϕs(v; z), ∀z ∈ V, ∀v ∈ D0, ∀s, t ∈ [0, T ].

Similar to Lemma 2.1, we can state the following.

Lemma 6.1 (cf. Lemma 2.1). Suppose that Assumption (B’) is satisfied. Then, the
following inequalities hold:

(i)
C ′4

|α′|L1(0,T ) + 1
|z|2V ≤ ϕt(v; z) ≤

(
|α′|L1(0,T ) + 1

)
C ′3|z|2V ,

∀t ∈ [0, T ], ∀z ∈ V, ∀v ∈ D0.
(6.1)

(ii)

〈∂∗ϕt(v; z), z〉 ≥ C ′4
|α′|L1(0,T ) + 1

|z|2V , ∀t ∈ [0, T ], ∀z ∈ V, ∀v ∈ D0.
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Remark 6.1 (cf. Remark 2.2). From (B1’) and Lemma 6.1(i), we can derive that the
subdifferential ∂∗ϕ

t(v; ·) satisfies

C ′3|z|2V ≥ 〈∂∗ϕt(v; z), z〉 ≥ ϕt(v; z) ≥ C ′4
|α′|L1(0,T ) + 1

|z|2V ,

∀t ∈ [0, T ], ∀z ∈ V, ∀v ∈ D0,
(6.2)

and from (B4’), we have that the function t→ ∂∗ϕ
t(v; z) is weakly continuous from [0, T ]

into V ∗ for all (v, z) ∈ D0 × V .

Note that Assumption (B4’) is also a typical time-dependence condition of convex
functions (cf. [19, 30, 35], Remark 2.1). In a similar manner to the proof of Lemma 3.1
(cf. [22, Lemma 1]), we have the following:

Lemma 6.2 (cf. Lemma 3.1, [19, Lemma 2.1.1], [22, Lemma 1]). Suppose that Assump-
tion (B’) holds. Let v ∈ D0 and w ∈ W 1,1(0, T ;V ). Then, we have:

d

dt
ϕt(v;w(t))− 〈∂∗ϕt(v;w(t)), w′(t)〉 ≤ |α′(t)|ϕt(v;w(t)), a.a. t ∈ (0, T ). (6.3)

For each v ∈ D0, we consider the doubly nonlinear evolution equation, denoted by
(QP)v, or (QP;f, u0)v when the data are indicated, on [0, T ]:

(QP)v
{
∂∗ψ

t(u′(t)) + ∂∗ϕ
t(v;u(t)) + g(t, u(t)) 3 f(t) in V ∗ for a.a. t ∈ (0, T ),

u(0) = u0 in V,

which is used in the proof of Theorem 6.1 and Section 10.

Definition 6.1. (I) Given v ∈ D0, f ∈ L2(0, T ;V ∗), and u0 ∈ V , the function u :
[0, T ] → V is called a solution to (QP; f, u0)v on [0, T ] if the following conditions are
satisfied:

(i) u ∈ W 1,2(0, T ;V ).

(ii) There exists a function ξ ∈ L2(0, T ;V ∗) such that

ξ(t) ∈ ∂∗ψt(u′(t)) in V ∗ for a.a. t ∈ (0, T ),

ξ(t) + ∂∗ϕ
t(v;u(t)) + g(t, u(t)) = f(t) in V ∗ for a.a. t ∈ (0, T ).

(iii) u(0) = u0 in V .

(II) Given f ∈ L2(0, T ;V ∗) and u0 ∈ V , the function u : [0, T ]→ V is called a solution to
(QP), or (QP; f, u0) when the data are indicated, on [0, T ] if u is a solution to (QP; f, u0)v

on [0, T ] with v = u.

We now state the existence result for problem (QP) on [0, T ].
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Theorem 6.1 (cf. [22, Theorem 3]). Suppose that Assumptions (A), (B’), and (C) are
satisfied. Let f be any function in L2(0, T ;V ∗) and u0 be any element in V . Then,
(QP; f, u0) admits at least one solution u on [0, T ]. Moreover, there exists a constant
N3 > 0, independent of f and u0, such that∫ T

0

ψt(u′(t))dt+ sup
t∈[0,T ]

ϕt(u;u(t)) ≤ N3

(
|u0|2V + |f |2L2(0,T ;V ∗) + 1

)
(6.4)

for any solution u to (QP; f, u0) on [0, T ].

Proof. Theorem 6.1 can be proved using a very similar approach to that in [22, Theorem 3].
We repeat it here to clarify the connection between the above theorem and the approach
to its optimal control problem (see Theorem 8.1).

By considering approximate problems for (QP), we are going to prove Theorem 6.1.
Indeed, for each ε ∈ (0, 1], we consider the following approximate Cauchy problem for
any given v ∈ D0:

(QP)vε


εFu′(t) + ∂∗ψ

t(u′(t)) + ∂∗ϕ
t(v;u(t)) + g(t, u(t)) 3 f(t) in V ∗

for a.a. t ∈ (0, T ),
u(0) = u0 in V.

(6.5)

Then, (QP)vε can be considered as (P; f, u0)ε with ∂∗ϕ
t(·) replaced by ∂∗ϕ

t(v; ·). By virtue
of Proposition 3.1, problem (QP)vε possesses one and only one solution u in the same sense
as (I) of Definition 6.1, and has the estimate∫ T

0

{ε|u′(t)|2V + ψt(u′(t))}dt+ sup
t∈[0,T ]

ϕt(v;u(t))

≤ N0

(
ϕ0(v;u0) + |f |2L2(0,T ;V ∗) + 1

)
.

(6.6)

From (6.1) of Lemma 6.1, it follows that

ϕ0(v;u0) ≤
(
|α′|L1(0,T ) + 1

)
C ′3|u0|2V . (6.7)

Now, setting

Ñ3 := N0

((
|α′|L1(0,T ) + 1

)
C ′3|u0|2V + |f |2L2(0,T ;V ∗) + 1

)
and

X(u0) :=

{
v ∈ W 1,2(0, T ;V )

∣∣∣∣ v(0) = u0,

∫ T

0

ψt(v′(t))dt ≤ Ñ3

}
,

we define a mapping S : X(u0)→ X(u0) that maps v ∈ X(u0) ⊂ D0 to a unique solution
u of (6.5), namely, Sv = u; from (6.6), note that u ∈ X(u0). Clearly, X(u0) is non-empty,
convex, and compact in C([0, T ];H).

Next, we show that S is continuous inX(u0) with respect to the topology of C([0, T ];H).
Let v ∈ C([0, T ];H), and let {vn}n∈N be a sequence in X(u0) such that

vn → v in C([0, T ];H) as n→∞, (6.8)
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and set un = Svn. Then, we see that v ∈ X(u0), vn → v weakly in W 1,2(0, T ;V ), and

supn∈N
∫ T

0
ψt(v′n(t))dt ≤ Ñ3. From (6.6) and (6.7), it follows that there exist a subsequence

of {un}n∈N, denoted by {un}n∈N again, and a function u ∈ W 1,2(0, T ;V ) such that

un → u in C([0, T ];H), weakly in W 1,2(0, T ;V ) as n→∞ (6.9)

and

un(t)→ u(t) weakly in V for all t ∈ [0, T ] as n→∞.

We now show that un → u in C([0, T ];V ) as n→∞. To this end, note that un(= Svn)
is a unique solution to the following equation with un(0) = u0 in V :

εFu′n(t) + ∂∗ψ
t(u′n(t)) + ∂∗ϕ

t(vn;un(t)) + g(t, un(t)) 3 f(t) in V ∗

for a.a. t ∈ (0, T ),
(6.10)

As for (3.29) in the proof of Theorem 2.1, we obtain the following by multiplying (6.10)
by u′n(s)− u′(s) for t = s and using (2.1) and Lemma 6.2:

εCF |u′n(s)− u′(s)|2V +
d

ds
ϕs(vn;un(s)− u(s))

≤ |α′(s)|ϕs(vn;un(s)− u(s)) + L̄n(s) + ψs(u′(s))− ψs(u′n(s))

for a.a. s ∈ (0, T ),

(6.11)

where

L̄n(s) = 〈f(s)− ∂∗ϕs(vn;u(s))− g(s, un(s)), u′n(s)− u′(s)〉
− ε〈Fu′(s), u′n(s)− u′(s)〉 for a.a. s ∈ (0, T ).

Multiplying (6.11) by e−
∫ s
0 |α

′(τ)|dτ and integrating in time, we use ϕ0(vn; 0) = 0 (cf. (6.1))
to obtain:

εCF

∫ t

0

e−
∫ s
0 |α

′(τ)|dτ |u′n(s)− u′(s)|2V ds+ e−
∫ t
0 |α
′(τ)|dτϕt(vn;un(t)− u(t))

≤
∫ t

0

e−
∫ s
0 |α

′(τ)|dτ L̄n(s)ds+

∫ t

0

e−
∫ s
0 |α

′(τ)|dτ (ψs(u′(s)) + C2)ds

−
∫ t

0

e−
∫ s
0 |α

′(τ)|dτ (ψs(u′n(s)) + C2)ds

(6.12)

for all t ∈ [0, T ].
Here, note from (B1’), (B2’), (6.8), and the Lebesgue dominated convergence theorem

that

∂∗ϕ
(·)(vn;u)→ ∂∗ϕ

(·)(v;u) in L2(0, T ;V ∗) as n→∞. (6.13)

As in the case of (3.33)–(3.35), we infer from (6.12) with (C1), (6.9), (6.13), and the
weak lower semicontinuity of Ψ̃t given by (3.32) that

lim sup
n→∞

e−
∫ t
0 |α
′(τ)|dτϕt(vn;un(t)− u(t)) ≤ 0 uniformly in t ∈ [0, T ] (6.14)
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and

lim sup
n→∞

εCF

∫ t

0

e−
∫ s
0 |α

′(τ)|dτ |u′n(s)− u′(s)|2V ds ≤ 0, ∀t ∈ [0, T ]. (6.15)

Hence, we observe from (6.14) that

lim sup
n→∞

ϕt(vn;un(t)− u(t)) ≤ 0 uniformly in t ∈ [0, T ],

which implies by (6.1) that

un → u in C([0, T ];V ) as n→∞. (6.16)

Additionally, we infer from (6.9) and (6.15) that

u′n → u′ in L2(0, T ;V ) as n→∞. (6.17)

We now show that u is a solution to (QP)vε on [0, T ], namely, u = Sv.
From (B1’), (B2’), and (6.16), we see that

∂∗ϕ
t(vn;un(t))→ ∂∗ϕ

t(v;u(t)) in V ∗ for all t ∈ [0, T ] as n→∞.

Therefore, from the Lebesgue dominated convergence theorem, it follows that

∂∗ϕ
(·)(vn;un(·))→ ∂∗ϕ

(·)(v;u(·)) in L2(0, T ;V ∗) as n→∞. (6.18)

Additionally, we observe from (6.17) that

εFu′n → εFu′ in L2(0, T ;V ∗) as n→∞. (6.19)

Hence, it follows from (C2), (6.16), and (6.18) that

εFu′n + ∂∗ψ
(·)(u′n) 3 ξn := f − ∂∗ϕ(·)(vn;un)− g(·, un)

→ f − ∂∗ϕ(·)(v;u)− g(·, u) =: ξ in L2(0, T ;V ∗)

as n→∞. Thus, from (6.17), (6.19), and the demi-closedness of the maximal monotone
operator ∂∗ψ

(·) in L2(0, T ;V ∗), we infer that

ξ ∈ εFu′ + ∂∗ψ
(·)(u′) in L2(0, T ;V ∗),

or, equivalently,

ξ(t) ∈ εFu′(t) + ∂∗ψ
t(u′(t)) in V ∗ for a.a. t ∈ (0, T ).

Additionally, we observe from (6.16) that u(0) = u0 in V . Therefore, we conclude that
u is a solution to (QP)vε on [0, T ], namely, u = Sv. From the uniqueness of solutions to
(QP)vε , we conclude that Svn = un → u = Sv in C([0, T ];V ), and hence in C([0, T ];H),
without extracting any subsequence from {un}n∈N. Thus, S is continuous in X(u0) with
respect to the topology of C([0, T ];H). Therefore, by the Schauder fixed point theorem,
S has at least one fixed point u in X(u0). This is a solution to (QP)vε with v = u.
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We showed above that, for every small ε > 0, the Cauchy problem

(QP; f, u0)ε


εFu′ε(t) + ∂∗ψ

t(u′ε(t)) + ∂∗ϕ
t(uε;uε(t)) + g(t, uε(t)) 3 f(t) in V ∗

for a.a. t ∈ (0, T ),
uε(0) = u0 in V

admits at least one solution uε ∈ W 1,2(0, T ;V ) in the same sense as (II) in Definition 6.1,
and has the estimate

ε

∫ T

0

|u′ε(t)|2V dt+

∫ T

0

ψt(u′ε(t))dt+ sup
t∈[0,T ]

ϕt(uε;uε(t)) ≤ Ñ3, ∀ε ∈ (0, 1]. (6.20)

Therefore, we can choose a sequence {εn}n∈N with εn ↓ 0 (as n → ∞) and a function
u ∈ D0 so that

un := uεn → u in C([0, T ];H), weakly in W 1,2(0, T ;V ) as n→∞,
un(t)→ u(t) weakly in V for all t ∈ [0, T ] as n→∞,

εnu
′
n → 0 in L2(0, T ;V ) as n→∞,

sup
n∈N

∫ T

0

ψt(u′n(t))dt ≤ Ñ3.

In a similar manner to the case of (6.16), we have:

un := uεn → u in C([0, T ];V ) as n→∞.

Therefore, in the same way as for the proof of convergence for Theorem 2.1, we can infer
from (B1’), (B2’), and (C1) that the limit u satisfies{

∂∗ψ
t(u′(t)) + ∂∗ϕ

t(u;u(t)) + g(t, u(t)) 3 f(t) in V ∗ for a.a. t ∈ (0, T ),

u(0) = u0 in V.

Hence, u is a required solution to (QP;f, u0) on [0, T ]. In addition, in the same way as
in the proof of the a priori estimate (3.18) (cf. (2.8)), we conclude that (6.4) holds by
setting N3 := Ñ3. Moreover, estimate (6.4) holds for any solution to (QP;f, u0) on [0, T ];
this is easily seen, as in the proof of Theorem 2.1. Thus, the proof of Theorem 6.1 is
complete.

7 Uniqueness of solutions to (QP)

In this section, we show that a solution to (QP;f, u0) on [0, T ] is not, in general, unique.
Indeed, we give a counterexample for the uniqueness of solutions to (QP;f, u0) as follows.

Example 7.1 (cf. [11, Section 2], [22, Example 4.1]). Let Ω = (0, 1), and set V = H1(Ω)
and H = L2(Ω). Additionally, let Q := (0, T ) × Ω, and let ρ be a prescribed obstacle
function in C(Q) such that

1 ≤ ρ(t, x) ≤ ρ∗, ∀(t, x) ∈ Q, (7.1)
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where ρ∗ is a positive constant.
Now, for each t ∈ [0, T ], define a closed convex subset K(t) of V by

K(t) := {z ∈ V ; |z(x)| ≤ ρ(t, x), |zx(x)| ≤ ρ(t, x) for a.a. x ∈ Ω} .

Then, we consider the following quasi-variational problem with constraint:
ut(t) ∈ K(t) for a.a. t ∈ (0, T ),∫

Ω

a(t, x, u(t, x))ux(t, x)(uxt(t, x)− wx(x))dx ≤ 0

for all w ∈ K(t) and a.a. t ∈ (0, T ),

u(0, x) = 0, x ∈ Ω,

(7.2)

where 0 < T < +∞, and a(t, x, r) is a prescribed function on Q×R satisfying the following
conditions: 

a∗ ≤ a(t, x, r) ≤ a∗, ∀(t, x) ∈ Q, ∀r ∈ R,

|a(t1, x, r1)− a(t2, x, r2)| ≤ La(|t1 − t2|+ |r1 − r2|),

∀ti ∈ [0, T ], ri ∈ R, i = 1, 2, ∀x ∈ Ω,

(7.3)

where a∗, a
∗ and La are positive constants.

Here, for each t ∈ [0, T ], the time-dependent convex functional ψt is defined by

ψt(z) := IK(t)(z) =

{
0, if z ∈ K(t),

+∞, otherwise,
∀z ∈ V. (7.4)

Furthermore, the (t, v)-dependent functional ϕt(v; z) is given by

ϕt(v; z) :=
1

2

∫
Ω

a(t, x, v(t, x))|zx(x)|2dx+
1

2

∫
Ω

|z(x)|2dx

for all t ∈ [0, T ], ∀v ∈ D0, ∀z ∈ V,
(7.5)

where
D0 =

{
v ∈ W 1,2(0, T ;V ) | v′(t) ∈ K(t) for a.a. t ∈ [0, T ]

}
.

Then, we have (cf. [22, Section 6]):

(i) z∗ ∈ ∂∗ψt(z) if and only if

z∗ ∈ V ∗, z ∈ K(t) and 〈z∗, w − z〉 ≤ 0 for all w ∈ K(t),

(ii) 〈∂∗ϕt(v; z), w〉 =

∫
Ω

a(t, x, v(t, x))zx(x)wx(x)dx +

∫
Ω

z(x)w(x)dx for all z, w ∈ V
and v ∈ D0

for all t ∈ [0, T ].
Additionally, we observe that problem (7.2) can be reformulated as (QP;0, 0) with

g(t, z) = −z. Using similar arguments to those in [22, Section 6], it is easy to check
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Assumptions (A), (B’), and (C). Therefore, applying Theorem 6.1, problem (7.2) has at
least one solution u on [0, T ].

Moreover, note that, for each constant c ∈ (0, 1), the function uc defined by

uc(t, x) := c(1− exp(−t)) for all (t, x) ∈ (0, T )× Ω

is a solution to (7.2) on [0, T ]. Indeed, we observe that

(uc)t(t, x) = c exp(−t), (uc)x(t, x) = 0, (uc)xt(t, x) = 0

for all (t, x) ∈ (0, T )× Ω. Therefore,

(uc)t(t) ∈ K(t) for a.a. t ∈ (0, T ).

Hence, we easily observe that, for each c ∈ (0, 1), the function uc satisfies (7.2). Thus,
{uc}c∈(0,1) provides an infinite family of solutions to (7.2) on [0, T ].

From the counterexample above, note that the uniqueness of solutions to (QP) is not
generally expected. However, if ∂∗ψ

t is strictly monotone from V into V ∗ and ∂∗ϕ
t(v; ·)

is Lipschitz in v ∈ D0, we have the following uniqueness result for (QP).

Theorem 7.1 (cf. Theorem 2.2, [22, Theorem 2]). Suppose that Assumptions (A), (B’),
and (C) are satisfied. Let f be any function in L2(0, T ;V ∗) and u0 be any element in
V . In addition, assume the strict monotonicity condition (A4) of ∂∗ψ

t in Theorem 2.2.
Furthermore, assume that ∂∗ϕ

t(v; ·) is Lipschitz in v ∈ D0, i.e.,

(B5’) There exists a positive constant C6 > 0 such that

|∂∗ϕt(v1; z)− ∂∗ϕt(v2; z))|V ∗ ≤ C6|v1(t)− v2(t)|V (1 + |z|V ) ,

∀vi ∈ D0 (i = 1, 2), ∀z ∈ D0, ∀t ∈ [0, T ].

Then, the solution to (QP; f, u0) on [0, T ] is unique.

Proof. Using a quite standard argument (cf. [22, Theorem 2]), we prove Theorem 7.1. To
this end, let ui, i = 1, 2, be two solutions to (QP; f, u0) on [0, T ]. Then, by Theorem 6.1
(cf. (6.4)), we have ui ∈ W 1,2(0, T ;V ) and ui ∈ D0 for i = 1, 2.

Subtract (QP; f, u0) for i = 2 from that for i = 1, and multiply the result by u′1 − u′2.
Then:

〈ξ1(t)− ξ2(t), u′1(t)− u′2(t)〉+ 〈∂∗ϕt(u1;u1(t))− ∂∗ϕt(u2;u2(t)), u′1(t)− u′2(t)〉
+〈g(t, u1(t))− g(t, u2(t)), u′1(t)− u′2(t)〉 = 0 for a.a. t ∈ (0, T ),

(7.6)

where ξi(t) ∈ ∂∗ψt(u′i(t)) for a.a. t ∈ (0, T ) (i = 1, 2). From (A4), we observe that

〈ξ1(t)− ξ2(t), u′1(t)− u′2(t)〉 ≥ C5|u′1(t)− u′2(t)|2V for a.a. t ∈ (0, T ) (7.7)
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and, by Lemma 6.2 and (B5’), that

〈∂∗ϕt(u1;u1(t))− ∂∗ϕt(u2;u2(t)), u′1(t)− u′2(t)〉
= 〈∂∗ϕt(u1;u1(t))− ∂∗ϕt(u2;u1(t)), u′1(t)− u′2(t)〉

+〈∂∗ϕt(u2;u1(t)− u2(t)), u′1(t)− u′2(t)〉
≥ −|∂∗ϕt(u1;u1(t))− ∂∗ϕt(u2;u1(t))|V ∗|u′1(t)− u′2(t)|V

+
d

dt
ϕt(u2;u1(t)− u2(t))− |α′(t)|ϕt(u2;u1(t)− u2(t))

≥ −C6|u1(t)− u2(t)|V (1 + |u1(t)|V ) |u′1(t)− u′2(t)|V

+
d

dt
ϕt(u2;u1(t)− u2(t))− |α′(t)|ϕt(u2;u1(t)− u2(t)) for a.a.t ∈ (0, T ).

(7.8)

Therefore, we observe from (7.6)–(7.8) and (C2) with the help of the Schwarz inequality
that

C5|u′1(t)− u′2(t)|2V +
d

dt
ϕt(u2;u1(t)− u2(t))

≤|α′(t)|ϕt(u2;u1(t)− u2(t)) + C6|u1(t)− u2(t)|V (1 + |u1(t)|V ) |u′1(t)− u′2(t)|V
+ |g(t, u1(t))− g(t, u2(t))|V ∗|u′1(t)− u′2(t)|V

≤|α′(t)|ϕt(u2;u1(t)− u2(t)) +
C2

6

C5

|u1(t)− u2(t)|2V (1 + |u1(t)|V )2 +
C5

4
|u′1(t)− u′2(t)|2V

+
1

C5

|g(t, u1(t))− g(t, u2(t))|2V ∗ +
C5

4
|u′1(t)− u′2(t)|2V

≤|α′(t)|ϕt(u2;u1(t)− u2(t)) +
C2

6

C5

|u1(t)− u2(t)|2V (1 + |u1(t)|V )2

+
L2
g

C5

|u1(t)− u2(t)|2V +
C5

2
|u′1(t)− u′2(t)|2V

for a.a. t ∈ (0, T ). From the above inequality with (6.1), we infer that

C5

2
|u′1(t)− u′2(t)|2V +

d

dt
ϕt(u2;u1(t)− u2(t))

≤ K1(|α′(t)|+ |u1(t)|2V + 1)ϕt(u2;u1(t)− u2(t)) for a.a. t ∈ (0, T )
(7.9)

for some constant K1 > 0, which is independent of ui (i = 1, 2). Hence, applying the
Gronwall inequality to (7.9), we conclude that

u1(t)− u2(t) = 0 in V for all t ∈ [0, T ].

Thus, the proof of Theorem 7.1 is complete.

Remark 7.1. In [22, Example 4.1], the authors showed a counterexample for the unique-
ness of solutions to the following type of doubly nonlinear evolution equations:

∂∗ψ
t(u′(t)) + ∂∗ϕ

t(u(t)) + g(t, u(t)) 3 f(t) in V ∗ for a.a. t ∈ (0, T ). (7.10)

Additionally, the uniqueness of solutions to (7.10) was proved there under the additional
condition (A4) regarding the strict monotonicity of ∂∗ψ

t (cf. Theorem 2.2, [22, Theorem 2]).
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Remark 7.2. As Example 7.1 demonstrates, for doubly nonlinear variational inequalities,
the uniqueness of solutions is quite independent of its regularity in time. It seems to depend
on the structure of the problem, and we need some strong conditions such as (A4) and
(B5’) to ensure unique solvability.

8 Singular optimal control problem for (QP)

In Theorem 7.1, we derived the uniqueness of solutions to state system (QP) under ad-
ditional assumptions (A4) and (B5’). However, Assumption (A4) cannot be expected in
many of the applications we shall treat in Section 11. Therefore, in this section, without
this assumption, we consider the singular optimal control problem that is a class of control
problems formulated for the non-well-posed state system (QP).

Using arguments similar to those in Sections 4 and 5, we study the singular optimal
control problem for quasi-variational evolution equations (QP). Indeed, for a fixed number
M > 0, we consider the control space FM defined by (1.3) to give the following singular
optimal control problem for (QP), denoted by (OP)QV:

Problem (OP)QV: Find a control f ∗ ∈ FM , called an optimal control, such that

JQV(f ∗) = inf
f∈FM

JQV(f).

Here, JQV(f) is the cost functional defined by

JQV(f) := inf
u∈SQV(f)

πQV,f (u), (8.1)

where f ∈ FM is any control, and SQV(f) is the set of all solutions to (QP; f, u0) associated
with the control function f . In addition, for any solution u to the state system (QP; f, u0),
its functional πQV,f (u) is defined by

πQV,f (u) :=
1

2

∫ T

0

|u(t)− uad(t)|2V dt+
1

2

∫ T

0

|f(t)|2V ∗dt, (8.2)

where uad ∈ L2(0, T ;V ) is a given target profile.

Using a quite standard argument (cf. Proof of Theorem 4.1), we can show the existence
of optimal control f ∗ ∈ FM to Problem (OP)QV. Indeed, the following result on the
convergence of solutions to (QP; f, u0) is the key to the proof.

Proposition 8.1. Suppose that Assumptions (A), (B’), and (C) are satisfied. Let {fn}n∈N ⊂
L2(0, T ;V ∗) and {u0,n}n∈N ⊂ V . Additionally, let f ∈ L2(0, T ;V ∗) and u0 ∈ V . Assume
that

fn → f in L2(0, T ;V ∗), (8.3)

u0,n → u0 in V (8.4)

as n→∞. Let un be a solution to (QP;fn, u0,n) on [0, T ]. Then, there exist a subsequence
{nk}k∈N ⊂ {n}n∈N and a function u ∈ W 1,2(0, T ;V ) such that u is a solution to (QP; f, u0)
on [0, T ] and

unk
→ u in C([0, T ];V ) as k →∞. (8.5)
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Proof. As un is a solution to (QP;fn, u0,n) on [0, T ], by the definition of solutions, there
is a function ξn ∈ L2(0, T ;V ∗) such that

ξn(t) ∈ ∂∗ψt(u′n(t)) in V ∗ for a.a. t ∈ (0, T ), (8.6)

ξn(t) + ∂∗ϕ
t(un;un(t)) + g(t, un(t)) = fn(t) in V ∗ for a.a. t ∈ (0, T ). (8.7)

Note from (8.3) that {fn}n∈N is bounded in L2(0, T ;V ∗). In addition, note from (8.4)
that {u0,n}n∈N is bounded in V . Therefore, from (A2), (6.1), (6.4), and the Ascoli–Arzelà
theorem, it follows that there exist a sequence {nk}k∈N with nk →∞ (as k →∞) and a
function u ∈ W 1,2(0, T ;V ) such that

unk
→ u weakly in W 1,2(0, T ;V ), in C([0, T ];H)

and weakly-∗ in L∞(0, T ;V ) as n→∞,

}
(8.8)

unk
(t)→ u(t) weakly in V for all t ∈ [0, T ] as n→∞, (8.9)∫ t

0

ψτ (u′(τ))dτ ≤ lim inf
k→∞

∫ t

0

ψτ (u′nk
(τ))dτ ≤ Ň3 for all t ∈ [0, T ],

where Ň3 := N3

(
|u0|2V + |f |2L2(0,T ;V ∗) + 1

)
is the same constant as in (6.4).

Next, we show that unk
→ u in C([0, T ];V ) as k →∞. As with (6.11) in the proof of

Theorem 6.1, we multiply (QP;fnk
, u0,nk

) (cf. (8.7)) for t = s by u′nk
(s) − u′(s) and use

Lemma 6.2 to obtain:

d

ds
ϕs(unk

;unk
(s)− u(s))

≤ |α′(s)|ϕs(unk
;unk

(s)− u(s)) + L̃nk
(s) + ψs(u′(s))− ψs(u′nk

(s))

for a.a. s ∈ (0, T ),

(8.10)

where L̃nk
(·) is a function defined by:

L̃nk
(s) := 〈fnk

(s)− ∂∗ϕs(unk
;u(s))− g(t, unk

(s)), u′nk
(s)− u′(s)〉 for a.a. s ∈ (0, T ).

Multiplying (8.10) by e−
∫ s
0 |α

′(τ)|dτ and integrating in time, we obtain:

e−
∫ t
0 |α
′(τ)|dτϕt(unk

;unk
(t)− u(t))

≤ ϕ0(unk
;u0,nk

− u0) +

∫ t

0

e−
∫ s
0 |α

′(τ)|dτ L̃nk
(s)ds

+

∫ t

0

e−
∫ s
0 |α

′(τ)|dτ (ψs(u′(s)) + C2)ds

−
∫ t

0

e−
∫ s
0 |α

′(τ)|dτ (ψs(u′nk
(s)) + C2)ds

(8.11)

for all t ∈ [0, T ].
Here, note from (B1’), (B2’), (8.8), and the Lebesgue dominated convergence theorem

that
∂∗ϕ

(·)(unk
;u)→ ∂∗ϕ

(·)(u;u) in L2(0, T ;V ∗) as k →∞. (8.12)
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In a similar way to the case of (3.33)–(3.35), we infer from (8.11) with (C1), (6.1),
(8.3), (8.4), (8.8), (8.12), and the weak lower semicontinuity of Ψ̃t given by (3.32) that

lim sup
k→∞

e−
∫ t
0 |α
′(τ)|dτϕt(unk

;unk
(t)− u(t)) ≤ 0 uniformly in t ∈ [0, T ],

whence
lim sup
k→∞

ϕt(unk
;unk

(t)− u(t)) ≤ 0 uniformly in t ∈ [0, T ],

which implies by (6.1) that

unk
→ u in C([0, T ];V ) as k →∞. (8.13)

We now show that u is a solution to (QP;f, u0) on [0, T ]. We observe from (B1’),
(B2’), and (8.13) that

∂∗ϕ
t(unk

;unk
(t))→ ∂∗ϕ

t(u;u(t)) in V ∗ for all t ∈ [0, T ] as k →∞.

Therefore, from the Lebesgue dominated convergence theorem, it follows that

∂∗ϕ
(·)(unk

;unk
)→ ∂∗ϕ

(·)(u;u) in L2(0, T ;V ∗) as k →∞. (8.14)

From (C2), (8.3), (8.7), (8.13), and (8.14), we observe that

∂∗ψ
(·)(u′nk

) 3 ξnk
= fnk

− ∂∗ϕ(·)(unk
;unk

)− g(·, unk
(·))

→ f − ∂∗ϕ(·)(u;u)− g(·, u) =: ξ in L2(0, T ;V ∗)

as k →∞. Thus, from (8.8) and the demi-closedness of the maximal monotone operator
∂∗ψ

(·) in L2(0, T ;V ∗), we infer that

ξ ∈ ∂∗ψ(·)(u′) in L2(0, T ;V ∗),

or, equivalently,
ξ(t) ∈ ∂∗ψt(u′(t)) in V ∗ for a.a. t ∈ (0, T )

and
ξ(t) + ∂∗ϕ

t(u;u(t)) + g(t, u(t)) = f(t) in V ∗ for a.a. t ∈ (0, T ).

Additionally, by (8.4) and (8.13), we see u(0) = u0 in V . Therefore, we conclude that u
is a solution to (QP; f, u0) on [0, T ]. Thus, the proof of Proposition 8.1 is complete.

We now state the main result of this section, which is directed to the existence of an
optimal control for (OP)QV without the uniqueness of solutions to (QP; f, u0).

Theorem 8.1. Suppose that Assumptions (A), (B’), and (C) are satisfied. Let uad be a
given function in L2(0, T ;V ) and u0 be any element in V . Then, (OP)QV has at least one
optimal control f ∗ ∈ FM , namely,

JQV(f ∗) = inf
f∈FM

JQV(f),

where JQV(·) is the cost functional of (OP)QV, which is defined by (8.1) and (8.2).

Taking account of Proposition 8.1 concerning the convergence result of solutions to
(QP;f, u0), we can prove Theorem 8.1. Indeed, the proof of Theorem 8.1 is the same as
that of Theorem 4.1. Thus, we omit the detailed proof.
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9 Approximation for (QP) and (OP)QV

In Section 5, we established an approximate procedure to investigate the singular optimal
control problem (OP). In this section, we study similar approximate problems for (QP)
and (OP)QV from the viewpoint of numerical analysis. To this end, we assume (A), (B’),
(C), and (B5’) in Theorem 7.1. However, (A4) is not assumed. In this case, (QP; f, u0)
is generally a non-well-posed state system, even if (A), (B’), (C), and (B5’) are satisfied.

We begin with the setting of an approximation to (QP; f, u0). Indeed, for each ε ∈
(0, 1], f ∈ L2(0, T ;V ∗), h ∈ L2(0, T ;V ), and u0 ∈ V , we consider the following problem,
denoted by (QP; f + εFh, u0)ε:

(QP; f + εFh, u0)ε


εFu′ε(t) + ∂∗ψ

t(u′ε(t)) + ∂∗ϕ
t(uε;uε(t)) + g(t, uε(t))

3 f(t) + εFh(t) in V ∗ for a.a. t ∈ (0, T ),
uε(0) = u0 in V,

(9.1)

where F : V → V ∗ is the duality mapping.

The existence–uniqueness of solutions to (QP; f + εFh, u0)ε is proved using a slight
modification of the proof of Theorem 6.1 for each ε ∈ (0, 1], f ∈ L2(0, T ;V ∗), h ∈
L2(0, T ;V ), and u0 ∈ V . In fact, we have:

Proposition 9.1 (cf. Theorem 6.1, [22, Theorem 3]). Suppose that Assumptions (A),
(B’), (C), and (B5’) hold. Then, for each ε ∈ (0, 1], f ∈ L2(0, T ;V ∗), h ∈ L2(0, T ;V ),
and u0 ∈ V , there exists a unique solution uε to (QP; f + εFh, u0)ε on [0, T ] satisfying
uε(0) = u0 in V and:

(•) There exists a function ξε ∈ L2(0, T ;V ∗) such that

ξε(t) ∈ ∂∗ψt(u′ε(t)) in V ∗ for a.a. t ∈ (0, T ),

εFu′ε(t)+ξε(t)+∂∗ϕ
t(uε;uε(t))+g(t, uε(t)) = f(t)+εFh(t) in V ∗ for a.a. t ∈ (0, T ).

Moreover, there exists a positive constant N4 > 0, independent of ε, f , h, and u0, such
that ∫ T

0

ψt(u′ε(t))dt+ sup
t∈[0,T ]

ϕt(uε;uε(t))

≤ N4

(
|u0|2V + |f |2L2(0,T ;V ∗) + |h|2L2(0,T ;V ) + 1

)
.

(9.2)

Proof. As the proof is quite similar to those of Theorem 6.1 and Theorem 7.1, we omit
the detailed proof of Proposition 9.1.

We now state the first result of this section, which is concerned with the relationship
between (QP; f, u0) and (QP; f + εFh, u0)ε.

Theorem 9.1 (cf. Theorem 5.1). Suppose that Assumptions (A), (B’), (C), and (B5’)
hold. Let f ∈ L2(0, T ;V ∗) and u0 ∈ V . Then, we have:
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(i) Let ε ∈ (0, 1] and let {hε}ε∈(0,1] be a bounded set in L2(0, T ;V ). Additionally, let uε
be a unique solution to (QP; f + εFhε, u0)ε on [0, T ]. Then, there exist a sequence
{εn}n∈N ⊂ {ε}ε∈(0,1] with εn → 0 (as n→∞) and a function u ∈ W 1,2(0, T ;V ) such
that u is a solution to (QP; f, u0) on [0, T ] and

uεn → u in C([0, T ];V ) as n→∞.

(ii) Let u be any solution to (QP; f, u0) on [0, T ]. Then, there are sequences {εn}n∈N ⊂
(0, 1] with εn → 0 (as n → ∞), {fn}n∈N ⊂ L2(0, T ;V ∗), {hn}n∈N ⊂ L2(0, T ;V ),
and {uεn}n∈N ⊂ W 1,2(0, T ;V ) such that uεn is a unique solution to (QP; fn +
εnFhn, u0)εn, {hn}n∈N is bounded in L2(0, T ;V ), and

uεn → u in C([0, T ];V ), fn → f in L2(0, T ;V ∗) as n→∞.

Proof. The proof is quite similar to that of Theorem 5.1. Indeed, assertion (i) can be
shown in a way similar to the proof of Theorem 6.1 (cf. [22, Theorem 3]). In addition,
assertion (ii) can be shown by adding εnFu

′(t) to both sides of the equation for (QP; f, u0)
and setting uεn := u, fn := f , and hn := u′ (cf. (ii) of Theorem 5.1).

Next, by the same approach as in Section 5, let us consider an approximation to
optimal control problem (OP)QV. To this end, we fix an initial datum u0 ∈ V , and note
from (A2) and (6.4) that any solution u to (QP; f, u0) on [0, T ] satisfies the following
estimate: ∫ T

0

|u′(t)|2V dt ≤
N3

(
|u0|2V + |f |2L2(0,T ;V ∗) + 1

)
+ C2T

C1

. (9.3)

Therefore, we take and fix a positive number N > 0 so that

N2 ≥ N3 (|u0|2V +M2 + 1) + C2T

C1

, (9.4)

where M > 0 is the same positive constant as in the control space FM (cd. (1.3)).
For each ε ∈ (0, 1], let Hε

N be the perturbation of the control space defined by (5.6).
Then, we study the following control problem for approximate state system (QP; f +
εFhε, u0)ε, denoted by (OP)QV,ε:

Problem (OP)QV,ε: Find a control (f ∗ε , h
∗
ε) ∈ FM ×Hε

N , called an optimal control, such
that

JQV,ε(f
∗
ε , h

∗
ε) = inf

(f,h)∈FM×Hε
N

JQV,ε(f, h).

Here, JQV,ε(f, h) is the cost functional defined by

JQV,ε(f, h) :=
1

2

∫ T

0

|uε(t)− uad(t)|2V dt+
1

2

∫ T

0

|f(t)|2V ∗dt+
ε

2

∫ T

0

|h(t)|2V dt, (9.5)

where (f, h) ∈ FM × Hε
N is a control, uε is a unique solution to the approximate state

system (QP; f + εFhε, u0)ε, and uad ∈ L2(0, T ;V ) is the target profile.

Let us state the second result of this section, which is concerned with the relationship
between (OP)QV and (OP)QV,ε.
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Theorem 9.2. Suppose that Assumptions (A), (B’), (C), and (B5’) hold. Let u0 ∈ V
and uad ∈ L2(0, T ;V ). Then, we have:

(i) For each ε ∈ (0, 1], (OP)QV,ε has at least one optimal control (f ∗ε , h
∗
ε) ∈ FM × Hε

N ,
namely,

JQV,ε(f
∗
ε , h

∗
ε) = inf

(f,h)∈FM×Hε
N

JQV,ε(f, h).

(ii) Let ε ∈ (0, 1], and let (f ∗ε , h
∗
ε) ∈ FM ×Hε

N be any optimal control of the approximate
problem (OP)QV,ε. Additionally, suppose that Assumption (D) (cf. (ii) of Theorem
5.2) is satisfied. Then, any weak limit f ∗ of {f ∗ε } in L2(0, T ;V ∗) (as ε → 0) is
an optimal control of (OP)QV; more precisely, if εn → 0 and f ∗εn → f ∗ weakly in
L2(0, T ;V ∗) (as n→∞), then the weak limit f ∗ is an optimal control for (OP)QV.

We can prove Theorem 9.2 in the same way as Theorem 5.2, by making use of the
following two propositions. The first is concerned with the convergence of solutions to
(QP; f + εFhε, u0)ε on [0, T ].

Proposition 9.2 (cf. Proposition 5.2). Suppose that Assumptions (A), (B’), (C), and
(B5’) hold. Let {fn}n∈N ⊂ L2(0, T ;V ∗) and let {u0,n}n∈N ⊂ V such that

fn → f in L2(0, T ;V ∗), u0,n → u0 in V as n→∞.

Then, the following statements hold:

(i) Assume that {hn}n∈N ⊂ L2(0, T ;V ), h ∈ L2(0, T ;V ) and

hn → h in L2(0, T ;V ) as n→∞.

For any fixed parameter ε ∈ (0, 1], let un be a unique solution to (QP;fn+εFhn, u0,n)ε
on [0, T ]. Then, there is a function u ∈ W 1,2(0, T ;V ) such that u is a unique solution
to (QP;f + εFh, u0)ε on [0, T ] and

un → u in C([0, T ];V ) as n→∞.

(ii) Assume that {hn}n∈N is a bounded set in L2(0, T ;V ). Let {εn}n∈N be a sequence
in (0, 1] with εn → 0 (as n → ∞). Let uεn be a unique solution to (QP;fn +
εnFhn, u0,n)εn on [0, T ]. Then, there exist a subsequence {nk}k∈N ⊂ {n}n∈N and a
function u ∈ W 1,2(0, T ;V ) such that u is a solution to (QP; f, u0) on [0, T ] and

uεnk
→ u in C([0, T ];V ) as k →∞.

The proof of Proposition 9.2 is a slight modification of the proof of Proposition 5.2.
Therefore, we omit the detailed proof.

The second proposition is the key to the proof of Theorem 9.2(ii).
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Proposition 9.3 (cf. Proposition 5.3). Suppose that Assumptions (A), (B’), (C), (D),
and (B5’) hold. Let f ∈ FM and u0 ∈ V . Additionally, let u be any solution to (QP; f, u0)
on [0, T ]. Then, there exist sequences {εn}n∈N ⊂ (0, 1] with εn → 0 (as n → ∞),
{fn}n∈N ⊂ FM , {hn}n∈N ⊂ L2(0, T ;V ) with hn ∈ Hεn

N , and {uεn}n∈N ⊂ W 1,2(0, T ;V )
such that uεn is a unique solution to (QP;fn + εnFhn, u0)εn on [0, T ], and

uεn → u in C([0, T ];V ), fn → f in L2(0, T ;V ∗) as n→∞.

Proposition 9.3 can be proved using a slight modification of the proof of Proposition
5.3. Therefore, we omit the detailed proof.

10 Control of parameter-dependent evolution equa-

tions

In this section, we discuss another type of singular optimal control problem associated
with the following doubly nonlinear parameter-dependent evolution equation:

(DP;w, f, u0)


∂∗ψ

t(u′(t)) + ∂∗ϕ
t(w;u(t)) + g(t, u(t)) 3 f(t) in V ∗

for a.a. t ∈ (0, T ),
u(0) = u0 in V.

(10.1)

Here, ψt, ϕt, g(t, ·), and f are the same as in Section 6, and w is any function in D0,
where D0 is the set introduced in Assumption (B’).

A function u : [0, T ]→ V is called a solution to (DP;w, f, u0) on [0, T ] if u is a solution
to (P;f, u0) with ∂∗ϕ

t(·) replaced by ∂∗ϕ
t(w; ·).

The following theorem is an immediate consequence of Theorems 2.1 and 2.2.

Theorem 10.1 (cf. Theorems 2.1 and 2.2). Suppose that Assumptions (A), (B’), and
(C) are satisfied. Then, for each w ∈ D0, f ∈ L2(0, T ;V ∗), and u0 ∈ V , (DP;w, f, u0)
admits at least one solution u on [0, T ]. Additionally, there exists a constant N5 > 0,
independent of w ∈ D0, f , and u0, such that∫ T

0

ψt(u′(t))dt+ sup
t∈[0,T ]

ϕt(w;u(t)) ≤ N5

(
|u0|2V + |f |2L2(0,T ;V ∗) + 1

)
(10.2)

for any solution u to (DP;w, f, u0). Additionally, assume (A4). Then, the solution u to
(DP;w, f, u0) is unique.

Proof. From Assumption (B’), we observe that ϕt(w; ·) satisfies Assumption (B) for any
w ∈ D0. Therefore, by applying Theorem 2.1, we obtain a solution to (DP;w, f, u0) on
[0, T ] for each w ∈ D0, f ∈ L2(0, T ;V ∗), and u0 ∈ V . The estimate (10.2) is a direct
consequence of (2.8) in Theorem 2.1. Moreover, by applying Theorem 2.2, we observe
from Assumption (A4) that the solution to (DP;w, f, u0) on [0, T ] is unique.



358

Using arguments similar to (P) and (QP), we consider the singular optimal control
problem for (DP;w, f, u0). To this end, for given positive numbers M, M ′, we set up two
control spaces: FM given by (1.3) and WM ′ given by

WM ′ :=

{
w ∈ W 1,2(0, T ;V ) ;

∫ T

0

ψt(w′(t))dt ≤M ′
}
. (10.3)

Then, the singular optimal control problem with state (DP;w, f, u0) is formulated as
follows:

Problem (ÕP): Find an optimal control (w∗, f ∗) ∈ WM ′ ×FM , namely,

J̃(w∗, f ∗) = inf
(w,f)∈WM′×FM

J̃(w, f).

Here, J̃(w, f) is the cost functional defined by

J̃(w, f) := inf
u∈S(w,f)

π̃(w,f)(u), (10.4)

where (w, f) ∈ WM ′ × FM is any control, and S(w, f) is the set of all solutions to
(DP;w, f, u0) associated with control (w, f). Additionally, for any solution u to the state
system (DP;w, f, u0), its functional π̃(w,f)(u) is defined by:

π̃(w,f)(u) :=
1

2

∫ T

0

|u(t)− uad(t)|2V dt+
1

2

∫ T

0

|w(t)|2Hdt+
1

2

∫ T

0

|f(t)|2V ∗dt

where uad ∈ L2(0, T ;V ) is a given target profile.
Using a proof similar to that of Proposition 8.1, we obtain the convergence result of

solutions of (DP;w, f, u0) with respect to (w, f) ∈ WM ′ × FM . Therefore, we can easily

prove the following theorem concerning the existence of an optimal control for (ÕP)
without the uniqueness of solutions to (DP;w, f, u0).

Theorem 10.2. Suppose that Assumptions (A), (B’), and (C) are satisfied. Let uad be a

given function in L2(0, T ;V ) and u0 be any element in V . Then, (ÕP) has at least one
optimal control (w∗, f ∗) ∈ WM ′ ×FM , namely,

J̃(w∗, f ∗) = inf
(w,f)∈WM′×FM

J̃(w, f).

The approximate problems for (DP;w, f, u0) and (ÕP) are discussed as follows. For
each ε ∈ (0, 1] and h ∈ L2(0, T ;V ), the approximate state system is given by:

(DP;w, f + εFh, u0)ε


εFu′ε(t) + ∂∗ψ

t(u′ε(t)) + ∂∗ϕ
t(w;uε(t)) + g(t, uε(t))

3 f(t) + εFh(t) in V ∗ for a.a. t ∈ (0, T ),
uε(0) = u0 in V,

where F : V → V ∗ is the duality mapping.
Then, using similar arguments to those in Sections 5 and 9, we see that:
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(i) Problem (DP;w, f + εFh, u0)ε possesses one and only one solution uε in the same
sense as (P; f + εFh, u0)ε with ∂∗ϕ

t(·) replaced by ∂∗ϕ
t(w; ·) (cf. Proposition 3.1).

Additionally, (DP;w, f+εFh, u0)ε approximates problem (DP;w, f, u0) in the sense
of Theorem 5.1.

(ii) Approximate optimal control problems, denoted by (ÕP)ε, are formulated by:

Problem (ÕP)ε: Find an optimal control (w∗ε , f
∗
ε , h

∗
ε) ∈ WM ′ ×FM ×Hε

N , namely,

J̃ε(w
∗
ε , f

∗
ε , h

∗
ε) = inf

(w,f,h)∈WM′×FM×Hε
N

J̃ε(w, f, h).

Here, Hε
N is a bounded perturbation of the control space in L2(0, T ;V ) given by

(5.6) and

J̃ε(w, f, h) :=
1

2

∫ T

0

|uε(t)− uad(t)|2V dt+
1

2

∫ T

0

|w(t)|2Hdt+
1

2

∫ T

0

|f(t)|2V ∗dt

+
ε

2

∫ T

0

|h(t)|2V dt,

where (w, f, h) ∈ WM ′ × FM × Hε
N is a control, and uε is a unique solution to

(DP;w, f + εFh, u0)ε on [0, T ].

(iii) Suppose that Assumption (D) holds. Then, problem (ÕP)ε approximates (ÕP) as
ε→ 0 in the sense of Theorem 5.2.

Remark 10.1. There is a vast amount of literature on the optimal control of parameter-
dependent problems. For instance, refer to [15, 31, 33, 34]. Note that (DP;w, f, u0) is
a new type of parameter-dependent evolution equation, and it is worthwhile evolving this
system with related control problems.

In the rest of this section, we attempt to find another approximation procedure for
the singular optimal control problem (OP)QV with state (QP;f, u0) (see Section 6) as an
application of Theorem 10.2.

For each δ ∈ (0, 1], we consider the singular optimal control problem (D̂P)δ with
(DP;w, f, u0) as the state problem for w ∈ D0, f ∈ L2(0, T ;V ∗), and u0 ∈ V and with

the cost functional Êδ defined by

Êδ(w, f) := inf
u∈S(w,f)

π̂δ(w,f)(u), (10.5)

where S(w, f) is the set of all solutions to (DP;w, f, u0) and, for any u ∈ S(w, f),

π̂δ(w,f)(u) :=
1

2

∫ T

0

|u(t)− uad(t)|2V dt+
1

2

∫ T

0

|f(t)|2V ∗dt+
1

2δ

∫ T

0

|u(t)− w(t)|2V dt. (10.6)

Additionally, we choose the set ŴM ′(u0)×FM as the control space, where

ŴM ′(u0) := {w ∈ WM ′ | w(0) = u0}
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with a positive constant M and M ′ := N5(|u0|2V +M2 +1). Then, for each f ∈ FM , (10.2)
implies that

u ∈ ŴM ′(u0) for any solution u to (DP;w, f, u0) on [0, T ]. (10.7)

Now, for each δ ∈ (0, 1], the singular optimal control problem (D̂P)δ is precisely
formulated as follows:

Problem (D̂P)δ: Find an optimal control (w∗δ , f
∗
δ ) ∈ ŴM ′(u0)×FM , namely,

Êδ(w
∗
δ , f

∗
δ ) = inf

(w,f)∈ŴM′ (u0)×FM

Êδ(w, f).

Then, it follows from Proposition 8.1 and Theorem 8.1 (cf. Theorem 10.2) that, for each

δ ∈ (0, 1], problem (D̂P)δ possesses an optimal control.
Moreover, we have:

Theorem 10.3. Suppose that Assumptions (A), (B’), and (C) are satisfied. Let (w∗δ , f
∗
δ )

be an optimal control of (D̂P)δ for any δ ∈ (0, 1], and let (w∗, f ∗) be any weak limit of
{(w∗δ , f ∗δ )} as δ ↓ 0, namely, there is a sequence {δn} with δn ↓ 0 (as n→∞) such that

w∗δn → w∗ weakly in L2(0, T ;V ), f ∗δn → f ∗ weakly in L2(0, T ;V ∗).

Then, f ∗ is an optimal control of (OP)QV, w∗ is a solution of (QP;f ∗, u0), and

JQV(f ∗) (= inf
f∈FM

JQV(f)) = lim
δ↓0

Êδ(w
∗
δ , f

∗
δ ), (10.8)

where JQV is the functional on FM given by (8.1) and (8.2).

Proof. We use the same notation as in the statement of the theorem. Let f be any element
in FM and πQV,f (·) be the same functional defined by (8.2). Additionally, let SQV(f) be
the set of all solutions to (QP; f, u0). Then, u ∈ SQV(f) is also a solution to (DP;u, f, u0)
on [0, T ]. Therefore, we see that

Êδ(w
∗
δ , f

∗
δ ) ≤ π̂δ(u,f)(u) = πQV,f (u), ∀u ∈ SQV(f), ∀f ∈ FM ,

whence

Êδ(w
∗
δ , f

∗
δ ) ≤ inf

f∈FM

JQV(f) =: d∗. (10.9)

Now, let u∗δ be any optimal state corresponding to Êδ(w
∗
δ , f

∗
δ ), namely u∗δ ∈ S(w∗δ , f

∗
δ )

and

Êδ(w
∗
δ , f

∗
δ ) =

1

2

∫ T

0

|u∗δ(t)− uad(t)|2V dt+
1

2

∫ T

0

|f ∗δ (t)|2V ∗dt+
1

2δ

∫ T

0

|u∗δ(t)− w∗δ(t)|2V dt

≤ d∗. (10.10)
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As w∗δ ∈ ŴM ′(u0), u∗δ ∈ ŴM ′(u0) (cf. (10.7)), and f ∗δ ∈ FM , according to the Aubin
compactness theorem, there exist a subsequence {δn}n∈N ⊂ {δ}δ∈(0,1], a function (w∗, f ∗) ∈
ŴM ′(u0)×FM , and a function u∗ ∈ ŴM ′(u0) such that δn → 0 as n→∞,

w∗δn → w∗ weakly in W 1,2(0, T ;V ) and in C([0, T ];H),

w∗δn(t)→ w∗(t) weakly in V, ∀t ∈ [0, T ],

u∗δn → u∗ weakly in W 1,2(0, T ;V ) and in C([0, T ];H),

u∗δn(t)→ u∗(t) weakly in V, ∀t ∈ [0, T ],

and
f ∗δn → f ∗ in L2(0, T ;V ∗)

as n→∞.
Therefore, by (10.10), u∗δn − w

∗
δn
→ 0 in L2(0, T ;V ), which implies that

u∗ = w∗ in L2(0, T ;V ). (10.11)

Moreover, as in the last part of the proof of Theorem 6.1, u∗δn converges in C([0, T ];V ) to a
solution to (DP;w∗, f ∗, u0) that is equal to u∗. By (10.11), u∗ is a solution to (QP;f ∗, u0)
and (DP;w∗, f ∗, u0) on [0, T ].

Now, taking the limit of (10.10) as δ := δn ↓ 0, we obtain

d∗ ≤ JQV(f ∗) = inf
u∈SQV(f∗)

πQV,f∗(u)

≤ 1

2

∫ T

0

|u∗(t)− uad(t)|2V dt+
1

2

∫ T

0

|f ∗(t)|2V ∗dt

= lim
n→∞

{
1

2

∫ T

0

|u∗δn(t)− uad(t)|2V dt+
1

2

∫ T

0

|f ∗δn(t)|2V ∗dt
}

≤ lim inf
n→∞

{
1

2

∫ T

0

|u∗δn(t)− uad(t)|2V dt+
1

2

∫ T

0

|f ∗δn(t)|2V ∗dt

+
1

2δn

∫ T

0

|u∗δn(t)− w∗δn(t)|2V dt
}

= lim inf
n→∞

Êδn(w∗δn , f
∗
δn) ≤ lim sup

n→∞
Êδn(w∗δn , f

∗
δn) ≤ d∗,

and hence d∗ = JQV(f ∗) with

lim
n→∞

1

2δn

∫ T

0

|u∗δn(t)− w∗δn(t)|2V dt = 0. (10.12)

It is easy to see (10.8) from (10.12).

Remark 10.2. It is possible to prove Theorem 10.3 without using the results on (OP)QV in
Section 9; note that Assumption (D) is not required. In this sense, Theorem 10.3 provides
us with another approximation procedure for (OP)QV based on the theory of (P;f, u0) and
(QP;f, u0) (see Sections 3, 4, and 6).
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11 Applications

In this final section, we consider five applications of the general results (Theorems 2.1–5.2,
Theorems 6.1–9.2, and Theorems 10.1–10.3).

Let Ω be a bounded domain in RN (1 ≤ N < ∞) with smooth boundary Γ := ∂Ω,
and set

V := H1
0 (Ω), H := L2(Ω), X := H2(Ω).

Additionally, let T > 0 be a given real number, Q := (0, T )× Ω, and Σ := (0, T )× Γ.

11.1 Variational inequality with time-dependent gradient con-
straint

Let ρ be an obstacle function prescribed in C(Q) such that

ρ∗ ≤ ρ(t, x) ≤ ρ∗, ∀(t, x) ∈ Q, (11.1)

where ρ∗ and ρ∗ are positive constants. Our constraint setK(t) is defined for each t ∈ [0, T ]
by

K(t) := {z ∈ V ; |∇z(x)| ≤ ρ(t, x), a.a. x ∈ Ω} .

Now, we consider the following variational inequality with time-dependent gradient con-
straint:

ut(t) ∈ K(t) for a.a. t ∈ (0, T ),

τ

∫
Ω

ut(t, x)(ut(t, x)− v(x))dx

+

∫
Ω

a(t, x)∇u(t, x) · ∇(ut(t, x)− v(x))dx

+

∫
Ω

g(t, u(t, x))(ut(t, x)− v(x))dx

≤
∫

Ω

f(t)(ut(t, x)− v(x))dx for all v ∈ K(t) and a.a. t ∈ (0, T ),

u(0, x) = u0(x), x ∈ Ω,



(11.2)

where τ ≥ 0 is a constant, g(·, ·) is a Lipschitz continuous function on [0, T ] × R, f
is a function in L2(0, T ;H), u0 is an initial datum in V , and a(·, ·) is a function in
W 1,1(0, T ;C(Ω)) such that

a∗ ≤ a(t, x) ≤ a∗, ∀(t, x) ∈ Q,

where a∗ and a∗ are positive constants. All of them are prescribed as the data.
A function u : [0, T ] → V is called a solution to (11.2) on [0, T ] if u ∈ W 1,2(0, T ;V )

and all of the properties required in (11.2) are satisfied.

From Theorems 2.1 and 2.2, we obtain the existence–uniqueness result for problem
(11.2).
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Proposition 11.1 (cf. Theorems 2.1 and 2.2). Let τ ≥ 0 be a constant and K(t) be as
above. Then, for each f ∈ L2(0, T ;H) and u0 ∈ V , problem (11.2) admits at least one
solution u on [0, T ]. Moreover, if τ > 0, then the solution u to (11.2) is unique.

Proof. For each t ∈ [0, T ], define proper l.s.c., and convex functions ψt and ϕt on V by

ψt(z) :=
τ

2

∫
Ω

|z(x)|2dx+ IK(t)(z), ∀z ∈ V (11.3)

and

ϕt(z) :=
1

2

∫
Ω

a(t, x)|∇z(x)|2dx, ∀z ∈ V, (11.4)

respectively, where IK(t)(·) is the indicator function of K(t), namely,

IK(t)(z) :=

{
0, if z ∈ K(t),

+∞, otherwise.

It is easily observed that (11.2) can be reformulated in the abstract form (P; f, u0). In
addition, by an argument similar to that in [22, Application 1], we see that

(i) Assumption (A) holds. z∗ ∈ ∂∗ψt(z) if and only if z∗ ∈ V ∗, z ∈ K(t) and

τ

∫
Ω

z(x)(z(x)− v(x))dx+ 〈−z∗, z − v〉 ≤ 0, ∀v ∈ K(t), (11.5)

where 〈·, ·〉 is the duality pairing between V ∗ and V (= H1
0 (Ω)).

(ii) Assumption (B) holds. In particular, (B3) holds for

α(t) :=
1

a∗

∫ t

0

|a′(τ)|C(Ω)dτ, ∀t ∈ [0, T ].

Furthermore,

〈∂∗ϕt(z), v〉 =

∫
Ω

a(t, x)∇z(x) · ∇v(x)dx, ∀z, v ∈ V, ∀t ∈ [0, T ].

(iii) Condition (2.1) holds; more precisely, the duality mapping F : V → V ∗ is linear
and

〈Fz, v〉 :=

∫
Ω

∇z(x) · ∇v(x)dx, ∀z, v ∈ V ;

hence, F is nothing but the Laplace operator −∆ under a homogeneous Dirichlet
boundary condition on Γ.

Therefore, applying Theorem 2.1, we can show the existence of a solution to (11.2) on
[0, T ]. Moreover, if τ > 0, it follows from (11.5) that ∂∗ψ

t is strictly monotone from V
into V ∗ in the sense of

〈z∗1 − z∗2 , z1 − z2〉 ≥ τ |z1 − z2|2H , ∀zi ∈ D(∂∗ψ
t), ∀z∗i ∈ ∂∗ψt(zi), i = 1, 2, ∀t ∈ [0, T ],

namely, (2.10) holds. Hence, by Remark 2.4, we conclude that the solution to (11.2) is
unique. Thus, Proposition 11.1 is obtained.
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We now discuss the singular optimal control problem associated with (11.2) in the case
when τ = 0. By Theorem 4.1 with V = H1

0 (Ω) and H = L2(Ω), we have the following
result concerning the existence of an optimal control of (OP) for (11.2) with τ = 0.

Proposition 11.2 (cf. Theorems 4.1). Let uad be a given function in L2(0, T ;V ), u0 ∈ V ,
K(t) be the same constraint set as in Proposition 11.1, and let M > 0 be a given constant.
Assume τ = 0. Then, (OP) has at least one optimal control f ∗ ∈ FM , namely,

J(f ∗) = inf
f∈FM

J(f),

where FM is a control space defined by (1.3), and J(·) is the cost functional of (OP)
defined by (1.4) and (1.5).

We employ the approximate system to (11.2), as proposed in Section 5, for the case
τ = 0. Indeed, for each ε ∈ (0, 1], we consider the following variational inequality with
time-dependent gradient constraint K(t):

ut(t) ∈ K(t) for a.a. t ∈ [0, T ],

ε

∫
Ω

∇ut(t, x) · ∇(ut(t, x)− v(x))dx

+

∫
Ω

a(t, x)∇u(t, x) · ∇(ut(t, x)− v(x))dx

+

∫
Ω

g(t, u(t, x))(ut(t, x)− v(x))dx

≤
∫

Ω

f(t)(ut(t, x)− v(x))dx+ ε

∫
Ω

∇h(t, x) · ∇(ut(t, x)− v(x))dx

for all v ∈ K(t) and a.a. t ∈ (0, T ),

u(0, x) = u0(x), x ∈ Ω,



(11.6)

where h is a given function in L2(0, T ;V ).

From the facts identified in the proof of Proposition 11.1, problem (11.6) can be
reformulated in the abstract form (P; f + εFh, u0)ε. Therefore, Proposition 5.1 implies
the existence–uniqueness of solutions to (11.6) on [0, T ]. In addition, from the relationship
between (11.2) and (11.6) shown by Theorem 5.1, we observe that (11.6) is an approximate
problem for (11.2).

Moreover, using the standard smoothness arguments (e.g., regularization by the mol-
lifier and the convolution [1, Sections 2.28 and 3.16]), we can check Assumption (D).
Therefore, for each ε ∈ (0, 1], Theorem 5.2(i) implies that the approximate optimal con-
trol problem (OP)ε has an optimal control (f ∗ε , h

∗
ε). Additionally, by Theorem 5.2(ii) on

the relationship between (OP) and (OP)ε, we see that (OP) is approximated by (OP)ε as
ε ↓ 0; more precisely, there is a sequence {εn} with εn ↓ 0 such that {f ∗εn} is bounded in
L2(0, T ;V ∗) and any weak limit function of {f ∗εn} in L2(0, T ;V ∗) is an optimal control of
(OP).
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11.2 Quasi-variational inequality with time-dependent gradient
constraint

In this subsection, we treat a quasi-variational inequality with gradient constraint for time
derivatives, which is an application of the general results (Theorems 6.1, 7.1, 8.1, 9.1, and
9.2).

Let us consider problem (11.2) with the diffusion coefficient a(t, x) replaced by a(t, x, u):

ut(t) ∈ K(t) for a.a. t ∈ (0, T ),

τ

∫
Ω

ut(t, x)(ut(t, x)− v(x))dx

+

∫
Ω

a(t, x, u(t, x))∇u(t, x) · ∇(ut(t, x)− v(x))dx

+

∫
Ω

g(t, u(t, x))(ut(t, x)− v(x))dx

≤
∫

Ω

f(t)(ut(t, x)− v(x))dx for all v ∈ K(t) and a.a. t ∈ (0, T ),

u(0, x) = u0(x), x ∈ Ω,



(11.7)

where K(t), f , and u0 are the same as in Section 11.1; the obstacle function ρ satisfies
(11.1) as well. For the function a(t, x, r), we suppose that

a∗ ≤ a(t, x, r) ≤ a∗, ∀(t, x) ∈ Q, ∀r ∈ R,

|a(t1, x, r1)− a(t2, x, r2)| ≤ La(|t1 − t2|+ |r1 − r2|),
∀ti ∈ [0, T ], ri ∈ R, i = 1, 2, ∀x ∈ Ω,

(11.8)

where a∗, a
∗, and La are positive constants.

A function u : [0, T ] → V is called a solution to (11.7) on [0, T ] if u ∈ W 1,2(0, T ;V )
and all of the properties required in (11.7) are satisfied.

From Theorem 6.1, the following existence result is obtained for problem (11.7).

Proposition 11.3 (cf. Theorem 6.1). Let τ ≥ 0 be a given constant. Then, for each
f ∈ L2(0, T ;H) and u0 ∈ V , problem (11.7) admits at least one solution u on [0, T ].

Proof. For each t ∈ [0, T ], let ψt be the proper l.s.c., and convex function on V defined
by (11.3). Additionally, we define the (t, v)-dependent functional ϕt(v; z) by

ϕt(v; z) :=
1

2

∫
Ω

a(t, x, v(t, x))|∇z(x)|2dx, ∀t ∈ [0, T ], ∀v ∈ D0, ∀z ∈ V, (11.9)

where

D0 =
{
v ∈ W 1,2(0, T ;V ) | v′(t) ∈ K(t) for a.a. t ∈ [0, T ]

}
. (11.10)

As mentioned in the proof of Proposition 11.1, Assumptions (A), (C), and (2.1) are
satisfied by ψt, g(t, ·), and F , respectively. Assumption (B’) is verified below:
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(i) The subdifferential ∂∗ϕ
t(v; ·) of ϕt(v; ·) is given by

〈∂∗ϕt(v; z), w〉 =

∫
Ω

a(t, x, v(t, x))∇z(x) · ∇w(x)dx (11.11)

for all t ∈ [0, T ], v ∈ D0, and z, w ∈ V .

(ii) (B2’) holds. Indeed, if vn ∈ D0, supn∈N
∫ T

0
ψt(v′n(t))dt < ∞, and vn → v in

C([0, T ];H) as n→∞, then we have:

|〈∂∗ϕt(vn; z)− ∂∗ϕt(v; z), w〉|

≤
∫

Ω

|a(t, x, vn(t, x))− a(t, x, v(t, x))||∇z(x)||∇w(x)|dx

≤
(∫

Ω

|a(t, x, vn(t, x))− a(t, x, v(t, x))|2|∇z(x)|2dx
) 1

2

|w|V ,

∀z, w ∈ V and ∀t ∈ [0, T ],

(11.12)

and the last integral converges to 0 as n →∞ by the Lebesgue dominated conver-
gence theorem. Therefore, ∂∗ϕ

t(vn; z) → ∂∗ϕ
t(v; z) in V ∗ as n → ∞. Thus, (B2’)

holds.

(iii) (B4’) holds. Indeed, by (11.1), we have

|∇v′(t, x)| ≤ ρ∗ for a.a. (t, x) ∈ Q,

which implies that

sup
t∈[0,T ]

|v′(t, x)|+ sup
t∈[0,T ]

|∇v(t, x)| ≤ ρ̄∗, a.a. (t, x) ∈ Q, ∀v ∈ D0

for some constant ρ̄∗ > 0.
(11.13)

Now, (B4’) is verified using (11.1), (11.8), and (11.13) as follows:

|ϕt(v; z)− ϕs(v; z)|

≤ 1

2

∫
Ω

|a(t, x, v(t, x))− a(s, x, v(s, x))||∇z(x)|2dx

≤ 1

2

∫
Ω

∫ t

s

|aτ (τ, x, v(τ, x)) + av(τ, x, v(τ, x))v′(τ, x)||∇z(x)|2dτdx

≤ 1

a∗
(La + Laρ̄

∗)|t− s| · 1

2

∫
Ω

a(s, x, v(s, x))|∇z(x)|2dx

=
1

a∗
La(1 + ρ̄∗)|t− s|ϕs(v; z), ∀v, z ∈ V, ∀s, t ∈ [0, T ],

where aτ := ∂
∂τ
a(τ, x, v) and av := ∂

∂v
a(τ, x, v).

It is easy to see that (11.7) can be reformulated in the abstract form (QP; f, u0). Therefore,
by Theorem 6.1, problem (11.7) admits a solution.
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Moreover, we show that Assumption (B5’) is satisfied. Let vi ∈ D0 (i = 1, 2) and
z ∈ D0. Then, it follows from (11.8), (11.11), and (11.13) that:

|〈∂∗ϕt(v1; z)− ∂∗ϕt(v2; z), w〉|

≤
∫

Ω

|a(t, x, v1(t, x))− a(t, x, v2(t, x))||∇z(x)||∇w(x)|dx

≤ Laρ̄
∗
∫

Ω

|v1(t, x)− v2(t, x)||∇w(x)|dx

≤ Laρ̄
∗|v1(t)− v2(t)|H |∇w|H

≤ Laρ̄
∗|v1(t)− v2(t)|H |w|V , ∀w ∈ V, ∀t ∈ [0, T ].

(11.14)

We infer from (11.14) that (B5’) holds.
We now discuss the singular optimal control problem for (11.7); for simplicity, we

consider the case τ = 0. By Theorem 8.1 with V = H1
0 (Ω) and H = L2(Ω), we have the

following result concerning the existence of an optimal control of (OP)QV for (11.7).

Proposition 11.4 (cf. Theorem 8.1). Let uad be a given function in L2(0, T ;V ), u0 ∈ V ,
and let M > 0 be a given constant. Assume τ = 0. Then, (OP)QV has at least one optimal
control f ∗ ∈ FM , namely,

JQV(f ∗) = inf
f∈FM

JQV(f),

where JQV(·) is the cost functional for (OP)QV, which is defined by (8.1) and (8.2).

Next, we discuss the approximate system for (11.7) in the case τ = 0. Note that (B5’)
is very important in studying approximate systems for (11.7) (cf. Theorem 9.1), as we
need the uniqueness of solutions to the approximate state systems.

For each ε ∈ (0, 1], we consider the following quasi-variational inequality with time-
dependent gradient constraint K(t):

ut(t) ∈ K(t) for a.a. t ∈ [0, T ],

ε

∫
Ω

∇ut(t, x) · ∇(ut(t, x)− v(x))dx

+

∫
Ω

a(t, x, u(t, x))∇u(t, x) · ∇(ut(t, x)− v(x))dx

+

∫
Ω

g(t, u(t, x))(ut(t, x)− v(x))dx

≤
∫

Ω

f(x, t)(ut(t, x)− v(x))dx+ ε

∫
Ω

∇h(t, x) · ∇(ut(t, x)− v(x))dx

for all v ∈ K(t) and a.a. t ∈ (0, T ),

u(0, x) = u0(x), x ∈ Ω,



(11.15)

where h is a given function in L2(0, T ;V ).
As in the proof of Proposition 11.3, problem (11.15) can be reformulated in the abstract

form (QP; f +εFh, u0)ε. Therefore, by Proposition 9.1, we have the existence–uniqueness
of a solution to (11.15). In addition, it follows from Theorem 9.1 that there are sequences
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{εn} with εn → 0 and bounded sequences {hn} in L2(0, T ;V ) such that the solution un of
(QP;f + εnFhn, u0)εn converges to that of (QP;f, u0) in C(0, T ;V ) (as n→∞). Namely,
we observe that (11.15) is an approximate problem for (11.7) with τ = 0.

Moreover, using the standard smoothness arguments (e.g., regularization by the mol-
lifier and the convolution [1, Sections 2.28 and 3.16]), we can verify Assumption (D).
Therefore, for each ε ∈ (0, 1], applying Theorem 9.2(i), we can show the existence of an
optimal control (f ∗ε , h

∗
ε) of (OP)QV,ε for the approximate state system (11.15). Addition-

ally, this converges to an optimal control of problem (OP)QV in the sense of Theorem
9.2(ii); more precisely, there is a sequence {εn} with εn ↓ 0 such that any weak limit of
{f ∗εn} (as n→∞) in L2(0, T ;V ∗) is an optimal control of (OP)QV.

11.3 Quasi-variational inequality with time-dependent non-local
term

In this subsection, we consider a quasi-variational inequality with a time-dependent non-
local term. Indeed, we define an operator L : L2(0, T ;H)→ L2(0, T ;H) by

(Lv)(t, x) :=

∫
Ω

`(t, x, ξ, v(t, ξ))dξ + `0(t, x) for v ∈ L2(0, T ;H) (11.16)

with given functions ` ∈ C(Q×Ω×R) and `0 ∈ C(Q) satisfying the following conditions
for a positive constant L`:

|`(t1, x, ξ, r1)− `(t2, x, ξ, r2)| ≤ L` (|t1 − t2|+ |r1 − r2|) ,

∀ti ∈ [0, T ], ∀ri ∈ R, i = 1, 2, ∀(x, ξ) ∈ Ω× Ω,
(11.17)

and

|`0(t1, x)− `0(t2, x)| ≤ L`|t1 − t2|, ∀ti ∈ [0, T ], i = 1, 2, ∀x ∈ Ω. (11.18)

Now, consider the following quasi-variational inequality with a time-dependent non-
local term:

ut(t) ∈ K(t) for a.a. t ∈ (0, T ),

τ

∫
Ω

ut(t, x)(ut(t, x)− v(x))dx

+

∫
Ω

a(t, x, (Lu)(t, x))∇u(t, x) · ∇(ut(t, x)− v(x))dx

+

∫
Ω

g(t, u(t, x))(ut(t, x)− v(x))dx

≤
∫

Ω

f(t)(ut(t, x)− v(x))dx for all v ∈ K(t) and a.a. t ∈ (0, T ),

u(0, x) = u0(x), x ∈ Ω,



(11.19)

where τ ≥ 0, K(·), g(·, ·), f , and u0 are the same as in Subsection 11.1, the obstacle
function ρ satisfies (11.1), and the function a(t, x, r) satisfies (11.8).
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A function u : [0, T ] → V is called a solution to (11.19) on [0, T ] if u ∈ W 1,2(0, T ;V )
and all of the properties required in (11.19) are satisfied.

From Theorem 6.1, the following result is obtained for problem (11.19).

Proposition 11.5 (cf. Theorem 6.1). Let τ ≥ 0 be a constant. Then, for each f ∈
L2(0, T ;H) and u0 ∈ V , problem (11.19) admits at least one solution u on [0, T ].

Proof. For each t ∈ [0, T ], let ψt be the proper l.s.c., and convex function on V defined
by (11.3) and ϕt(v; z) be a (t, v)-dependent functional defined by

ϕt(v; z) :=
1

2

∫
Ω

a(t, x, (Lv)(t, x))|∇z(x)|2dx, ∀t ∈ [0, T ], ∀v ∈ D0, ∀z ∈ V. (11.20)

Then, it is easy to see that (11.19) can be reformulated in the abstract form (QP; f, u0).
Additionally, by arguments similar to [22, Application 2], we verify Assumptions (A), (B’),
and (2.1) for the duality mapping F : V → V ∗. Indeed, as in the proof of Proposition
11.3, we check the following (i)–(iii):

(i) The subdifferential ∂∗ϕ
t(v; ·) of ϕt(v; ·) is given by

〈∂∗ϕt(v; z), w〉 =

∫
Ω

a(t, x, (Lv)(t, x))∇z(x) · ∇w(x)dx (11.21)

for all t ∈ [0, T ], v ∈ D0, and z, w ∈ V .

(ii) (B2’) holds. In fact, assuming that {vn}n∈N ⊂ D0, supn∈N
∫ T

0
ψt(v′n(t))dt <∞, and

vn → v in C([0, T ];H) as n→∞, we observe from (11.8) and (11.21) that:

|〈∂∗ϕt(vn; z)− ∂∗ϕt(v; z), w〉|

≤
∫

Ω

|a(t, x, (Lvn)(t, x))− a(t, x, (Lv)(t, x))||∇z(x)||∇w(x)|dx

≤La
(∫

Ω

|(Lvn)(t, x)− (Lv)(t, x)|2|∇z(x)|2dx
) 1

2

|w|V , (11.22)

∀vn, v ∈ D0, ∀z, w ∈ V, ∀t ∈ [0, T ].

Here, note from (11.16) and (11.17) that:

|(Lvn)(t, x)− (Lv)(t, x)|

≤
∫

Ω

|`(t, x, ξ, vn(t, ξ))− `(t, x, ξ, v(t, ξ))|dξ

≤
∫

Ω

L`|vn(t, ξ)− v(t, ξ)|dξ

≤L`|Ω|
1
2 |vn(t)− v(t)|H , ∀vn, v ∈ D0, ∀(t, x) ∈ [0, T ]× Ω, (11.23)

where |Ω| denotes the volume of Ω. Therefore, from (11.17), (11.18), (11.22), (11.23),
and the Lebesgue dominated convergence theorem, we infer that (11.22) converges
to 0 as n→∞. Hence, we conclude that ∂∗ϕ

t(vn; z)→ ∂∗ϕ
t(v; z) in V ∗ as n→∞.

Thus, (B2’) holds.



370

(iii) Condition (B4’) is verified using (11.8), (11.13), (11.16)–(11.18), and (11.20) as
follows:

|ϕt(v; z)− ϕs(v; z)|

≤ 1

2

∫
Ω

|a(t, x, (Lv)(t, x))− a(s, x, (Lv)(s, x))||∇z(x)|2dx

≤ 1

2

∫
Ω

∫ t

s

|aτ (τ, x, (Lv)(τ, x)) + ar(τ, x, (Lv)(τ, x))(Lv)τ (τ, x)||∇z(x)|2dτdx

≤ 1

a∗
(La + LaL`(|Ω|(1 + ρ̄∗) + 1))|t− s| · 1

2

∫
Ω

a(s, x, (Lv)(s, x))|∇z(x)|2dx

=
1

a∗
La(1 + L`(|Ω|(1 + ρ̄∗) + 1))|t− s|ϕs(v; z),

∀v ∈ D0, ∀z ∈ V, ∀s, t ∈ [0, T ],

where aτ := ∂
∂τ
a(τ, x, r), ar := ∂

∂r
a(τ, x, r), and (Lv)τ := ∂

∂τ
(Lv)(τ, x).

Therefore, by Theorem 6.1, we see that (11.19) admits a solution on [0, T ].

In addition, using calculations similar to (11.22) with (11.23), we observe that:

|〈∂∗ϕt(v1; z)− ∂∗ϕt(v2; z), w〉|

≤
∫

Ω

|a(t, x, (Lv1)(t, x))− a(t, x, (Lv2)(t, x))||∇z(x)||∇w(x)|dx

≤ La

(∫
Ω

|(Lv1)(t, x)− (Lv2)(t, x)|2|∇z(x)|2dx
) 1

2

|w|V

≤ LaL`|Ω|
1
2 |v1(t)− v2(t)|H |z|V |w|V ,
∀vi ∈ D0 (i = 1, 2), ∀z, w ∈ V, ∀t ∈ [0, T ].

Therefore, (B5’) holds.

Note that, in general, problem (11.19) has multiple solutions on [0, T ], so the corre-
sponding optimal control problem is of singular type. We can discuss this by applying
Theorem 8.1 with V = H1

0 (Ω) and H = L2(Ω) (cf. Proposition 11.4).
For simplicity, assume τ = 0. In this case, the approximate procedure to (11.19) is

performed using the following approximate problems (cf. Theorem 9.1):

ut(t) ∈ K(t) for a.a. t ∈ [0, T ],

ε

∫
Ω

∇ut(t, x) · ∇(ut(t, x)− v(x))dx

+

∫
Ω

a(t, x, (Lu)(t, x))∇u(t, x) · ∇(ut(t, x)− v(x))dx

+

∫
Ω

g(t, u(t, x))(ut(t, x)− v(x))dx

≤
∫

Ω

f(t)(ut(t, x)− v(x))dx+ ε

∫
Ω

∇h(t) · ∇(ut(t, x)− v(x))dx

for all v ∈ K(t) and a.a. t ∈ (0, T ),

u(0, x) = u0(x), x ∈ Ω,



(11.24)
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where h is given in L2(0, T ;V ) as well as f in L2(0, T ;H) and u0 ∈ V .
On account of Theorem 9.2, given the admissible control set FM ×Hε

N (see Section 5
for the detailed formulation), the approximate optimal control problem (OP)QV,ε has at
least one solution {f ∗ε , h∗ε} ∈ FM ×Hε

N for each ε > 0 and any weak limit f ∗ of {f ∗ε } in
L2(0, T ;V ∗) (as ε→ 0) is an optimal control of (OP)QV.

11.4 Parameter-dependent variational inequality with constraint

In this subsection, we present an application of Theorems 10.1, 10.2, and 10.3.
Let D0 be the set defined by (11.10). Then, for each w ∈ D0, we consider the following

parameter-dependent variational inequality:

ut(t) ∈ K(t) for a.a. t ∈ (0, T ),

τ

∫
Ω

ut(t, x)(ut(t, x)− v(x))dx

+

∫
Ω

a(t, x, w(t, x))∇u(t, x) · ∇(ut(t, x)− v(x))dx

+

∫
Ω

g(t, u(t, x))(ut(t, x)− v(x))dx

≤
∫

Ω

f(t)(ut(t, x)− v(x))dx for all v ∈ K(t) and a.a. t ∈ (0, T ),

u(0, x) = u0(x), x ∈ Ω,



(11.25)

where τ ≥ 0, K(·), g(·, ·), f , and u0 are the same as in Subsection 11.1, the obstacle
function ρ satisfies (11.1), and the function a(t, x, r) satisfies (11.8).

A function u : [0, T ] → V is called a solution to (11.25) on [0, T ] if u ∈ W 1,2(0, T ;V )
and all of the properties required in (11.25) are satisfied.

On account of Theorem 10.1, we have the following existence–uniqueness result for
problem (11.25).

Proposition 11.6 (cf. Theorem 10.1). Let τ ≥ 0 be a constant. Then, for each w ∈ D0,
f ∈ L2(0, T ;H), and u0 ∈ V , problem (11.25) admits at least one solution u on [0, T ].
Moreover, if τ > 0, then the solution to (11.25) is unique.

Proof. For each t ∈ [0, T ], let ψt be the proper l.s.c., and convex function on V defined
by (11.3). Additionally, for each w ∈ D0, we define the proper l.s.c., and convex function
ϕt(w; ·) on V by

ϕt(w; z) :=
1

2

∫
Ω

a(t, x, w(t, x))|∇z(x)|2dx, ∀t ∈ [0, T ], ∀w ∈ D0, ∀z ∈ V. (11.26)

Then, we easily observe that (11.25) can be reformulated in the abstract form (DP;w, f, u0).
Additionally, using arguments similar to Proposition 11.3 (cf. (11.11)–(11.12)), Assump-
tions (A), (B), and (2.1) are verified. Moreover, if τ > 0, we observe from (11.5) that
∂∗ψ

t is strictly monotone, namely, (2.10) holds.
Therefore, by Theorem 10.1 with Remark 2.4, we have shown that problem (11.25)

has a solution on [0, T ], and if τ > 0, then it is unique.
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Note that, in the case τ = 0, problem (11.25) generally has multiple solutions, so the
corresponding optimal control problem may be of singular type.

We now discuss the singular optimal control problem associated with state (11.25) in
the case τ = 0. By applying Theorem 10.2 with V = H1

0 (Ω) and H = L2(Ω), we can

consider the singular optimal control problem (ÕP) for parameter-dependent variational
inequality with constraint (11.25) and control space WM ′ × FM (see Section 10 for the
detailed formulation).

Proposition 11.7 (cf. Theorem 10.2). Let uad be a given function in L2(0, T ;V ), u0 ∈ V ,

and let M > 0, M ′ > 0 be given constants. Assume τ = 0. Then, (ÕP) has at least one
optimal control (w∗, f ∗) ∈ WM ′ ×FM such that

J̃(w∗, f ∗) = inf
(w,f)∈WM′×FM

J̃(w, f),

where J̃(·, ·) is the cost functional defined by (10.4).

Using an approach similar to that employed in Sections 11.1 and 11.2, it is possible to
propose an approximate parameter-dependent variational inequality for (11.25) and the
corresponding approximate optimal control problems. The approximate state problem
has a parameter ε > 0, a form denoted by (DP;w, f + εFh, u0)ε:

ut(t) ∈ K(t) for a.a. t ∈ (0, T ),

ε

∫
Ω

∇ut(t, x) · ∇(ut(t, x)− v(x))dx

+

∫
Ω

a(t, x, w(t, x))∇u(t, x) · ∇(ut(t, x)− v(x))dx

+

∫
Ω

g(t, u(t, x))(ut(t, x)− v(x))dx

≤
∫

Ω

f(t)(ut(t, x)− v(x))dx+ ε

∫
Ω

∇h(t) · ∇(ut(t, x)− v(x))dx

for all v ∈ K(t) and a.a. t ∈ (0, T ),

u(0, x) = u0(x), x ∈ Ω.



(11.27)

Moreover, the approximate optimal control problem (ÕP)ε is formulated as follows:

Problem (ÕP)ε: Find a control (w∗ε , f
∗
ε , h

∗
ε) such that

J̃ε(w
∗
ε , f

∗
ε , h

∗
ε) = inf

(w,f,h)∈WM′×FM×Hε
N

J̃ε(w, f, h).

We see that problem (ÕP) is approximated by (ÕP)ε (see Section 10 for details).

In the rest of this subsection, we consider an application of Theorem 10.3. We define
the following functional on ŴM ′(u0)×FM for each δ ∈ (0, 1]:

Êδ(w, f) := inf
u∈S(w,f)

π̂δ(w,f)(u), ∀(w, f) ∈ ŴM ′(u0)×FM , (11.28)
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where S(w, f) is the set of all solutions to (11.25) with τ = 0 and, for any u ∈ S(w, f),

π̂δ(w,f)(u) :=
1

2

∫ T

0

|u(t)− uad(t)|2V dt+
1

2

∫ T

0

|f(t)|2V ∗dt+
1

2δ

∫ T

0

|u(t)−w(t)|2V dt. (11.29)

Now, we denote by (D̂P)δ the optimal control problem for state problem (11.25) with

τ = 0 and cost functional (11.28) defined on the control space ŴM ′(u0) × FM , M ′ =

N5(|u0|2V + M2 + 1) (cf. (10.2)). Let (w∗δ , f
∗
δ ) be an optimal control of (D̂P)δ for every

δ ∈ (0, 1], and let (w∗, f ∗) be any weak limit of {(w∗δ , f ∗δ )} as δ ↓ 0. Then, by Theorem
10.3, f ∗ is an optimal control of (OP)QV, w∗ is the corresponding optimal state, and its

optimal value is limδ↓0 Êδ(w
∗
δ , f

∗
δ ). Moreover, w∗ is a solution to (11.7) with τ = 0.

11.5 Unilateral obstacle problem with time-dependent non-local
effect

In this final subsection, we consider a unilateral obstacle problem with a time-dependent
non-local effect, which is of a different type from those in Subsections 11.1–11.4.

Let k be a prescribed obstacle function in C(Q) such that

k(t, x) ≤ 0, ∀(t, x) ∈ Q, (11.30)

and, for each t ∈ [0, T ], define a convex constraint set Kk(t) in V by

Kk(t) := {z ∈ V ; z(x) ≥ k(t, x), a.a. x ∈ Ω} .

Additionally, we define the operator R : L2(0, T ;H)→ L2(0, T ;H) by

(Rv)(t, x) :=

∫ t

0

∫
Ω

q(t, x, τ, ξ, v(τ, ξ))dξdτ + q0(t, x) for v ∈ L2(0, T ;H) (11.31)

with prescribed functions q ∈ C(Q × Q × R) and q0 ∈ C(Q) satisfying the following
conditions for positive constants q∗ and Lq:

|q(t, x, τ, ξ, r)| ≤ q∗, ∀(t, x, τ, ξ, r) ∈ Q×Q× R,

|q(t1, x, τ, ξ, r1)− q(t2, x, τ, ξ, r2)| ≤ Lq (|t1 − t2|+ |r1 − r2|) ,

∀ti ∈ [0, T ], ∀ri ∈ R, i = 1, 2, ∀(x, τ, ξ) ∈ Ω×Q,

(11.32)

and

|q0(t1, x)− q0(t2, x)| ≤ Lq|t1 − t2|, ∀ti ∈ [0, T ], i = 1, 2, ∀x ∈ Ω. (11.33)

Now, consider the following unilateral obstacle problem with a time-dependent non-



374

local effect:

ut(t) ∈ Kk(t) for a.a. t ∈ (0, T ),∫
Ω

∇ut(t, x) · ∇(ut(t, x)− v(x))dx

+

∫
Ω

a(t, x, (Ru)(t, x))∇u(t, x) · ∇(ut(t, x)− v(x))dx

+

∫
Ω

g(t, u(t, x))(ut(t, x)− v(x))dx

≤
∫

Ω

f(t)(ut(t, x)− v(x))dx for all v ∈ Kk(t) and a.a. t ∈ (0, T ),

u(0, x) = u0(x), x ∈ Ω,


(11.34)

where g(·, ·) is the same as in Subsection 11.1 and the function a(t, x, r) satisfies (11.8).
A function u : [0, T ] → V is called a solution to (11.34) on [0, T ] if u ∈ W 1,2(0, T ;V )

and all of the properties required in (11.34) are satisfied.
From Theorem 6.1, we obtain the following result for the existence of solutions to

problem (11.34).

Proposition 11.8 (cf. Theorem 6.1). For each f ∈ L2(0, T ;H) and u0 ∈ V , problem
(11.34) admits at least one solution u on [0, T ].

Proof. For each t ∈ [0, T ], we define the proper l.s.c., and convex function ψt on V by

ψt(z) :=
1

2

∫
Ω

|∇z(x)|2dx+ IKk(t)(z), ∀z ∈ V (11.35)

as well as the (t, v)-dependent functional ϕt(v; ·) by

ϕt(v; z) :=
1

2

∫
Ω

a(t, x, (Rv)(t, x))|∇z(x)|2dx, ∀t ∈ [0, T ], ∀v ∈ D0, ∀z ∈ V, (11.36)

where D0 is the set defined by (11.10) with K(t) replaced by Kk(t).
In this case, (11.34) can be reformulated in the abstract form (QP; f, u0) and, as in

[22, Lemma 2], we can check Assumption (A). In fact, we have the following:

(i) z∗ ∈ ∂∗ψt(z) if and only if z∗ ∈ V ∗, z ∈ Kk(t), and∫
Ω

∇z(x) · ∇(z(x)− v(x))dx+ 〈−z∗, z − v〉 ≤ 0, ∀v ∈ Kk(t). (11.37)

(ii) Assumption (A1) holds. Indeed, because k ∈ C(Q), a similar approach as for the
proof of [22, Lemma 2] shows that, for any sequence {tn}n∈N ⊂ [0, T ] with tn → t
(as n→∞),

ψtn converges to ψt on V in the sense of Mosco [26] as n→∞.

(iii) Assumption (A2) holds by the Poincaré inequality. Moreover, condition (A3) is
verified by (11.30).
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Additionally, we observe that Assumption (B’) and (2.1) hold. Indeed, using calcula-
tions similar to those in the proof of Proposition 11.5, we have the following:

(i) The subdifferential ∂∗ϕ
t(v; ·) of ϕt(v; ·) is given by

〈∂∗ϕt(v; z), w〉 =

∫
Ω

a(t, x, (Rv)(t, x))∇z(x) · ∇w(x)dx (11.38)

for all t ∈ [0, T ], v ∈ D0, and z, w ∈ V .

(ii) (B2’) holds. In fact, assuming {vn}n∈N ⊂ D0, supn∈N
∫ T

0
ψt(v′n(t))dt < ∞, and

vn → v in C([0, T ];H) as n→∞, we observe from (11.8) and (11.38) that:

|〈∂∗ϕt(vn; z)− ∂∗ϕt(v; z), w〉|

≤
∫

Ω

|a(t, x, (Rvn)(t, x))− a(t, x, (Rv)(t, x))||∇z(x)||∇w(x)|dx

≤La
(∫

Ω

|(Rvn)(t, x)− (Rv)(t, x)|2|∇z(x)|2dx
) 1

2

|w|V , (11.39)

∀vn, v ∈ D0, ∀z, w ∈ V, ∀t ∈ [0, T ].

Here, note from (11.31) and (11.32) that:

|(Rvn)(t, x)− (Rv)(t, x)|

≤
∫ t

0

∫
Ω

|q(t, x, τ, ξ, vn(τ, ξ))− q(t, x, τ, ξ, v(τ, ξ))|dξdτ

≤
∫ t

0

∫
Ω

Lq|vn(τ, ξ)− v(τ, ξ)|dξdτ

≤tLq|Ω|
1
2 |vn − v|C([0,T ];H), ∀vn, v ∈ D0, ∀(t, x) ∈ [0, T ]× Ω. (11.40)

Therefore, (11.32), (11.33), (11.39), (11.40), and the Lebesgue dominated conver-
gence theorem imply that the integral part in (11.39) converges to 0 as n → ∞.
Hence, we conclude that ∂∗ϕ

t(vn; z) → ∂∗ϕ
t(v; z) in V ∗ as n → ∞ for all z ∈ V .

Thus, (B2’) holds.

(iii) Condition (B4’) is verified using (11.8), (11.31)–(11.33), and (11.36). Indeed, note
from (11.31)–(11.33) that

|(Rv)(t, x)− (Rv)(s, x)|

≤
∫ t

s

∫
Ω

|q(t, x, τ, ξ, v(τ, ξ))|dξdτ

+

∫ s

0

∫
Ω

|q(t, x, τ, ξ, v(τ, ξ))− q(s, x, τ, ξ, v(τ, ξ))|dξdτ + |q0(t, x)− q0(s, x)|

≤ (q∗|Ω|+ LqT |Ω|+ Lq) |t− s|, ∀t, s ∈ [0, T ] with s ≤ t, ∀x ∈ Ω.
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Taking account of the above inequality, we have:

|ϕt(v; z)− ϕs(v; z)|

≤ 1

2

∫
Ω

|a(t, x, (Rv)(t, x))− a(s, x, (Rv)(s, x))||∇z(x)|2dx

≤ 1

2

∫
Ω

|a(t, x, (Rv)(t, x))− a(s, x, (Rv)(t, x))||∇z(x)|2dx

+
1

2

∫
Ω

|a(s, x, (Rv)(t, x))− a(s, x, (Rv)(s, x))||∇z(x)|2dx

≤ 1

2

∫
Ω

La|t− s||∇z(x)|2dx+
1

2

∫
Ω

La|(Rv)(t, x)− (Rv)(s, x)||∇z(x)|2dx

≤ La
a∗

(1 + q∗|Ω|+ LqT |Ω|+ Lq) |t− s| ·
1

2

∫
Ω

a(s, x, (Rv)(s, x))|∇z(x)|2dx

=
La
a∗

(1 + q∗|Ω|+ LqT |Ω|+ Lq) |t− s|ϕs(v; z),

∀v ∈ D0, ∀z ∈ V, ∀s, t ∈ [0, T ].

Thus, (B4’) holds.

Therefore, by Theorem 6.1, we see that (11.34) admits a solution on [0, T ]. Thus, the
proof of Proposition 11.8 is complete.

Note that problem (11.34) generally has multiple solutions on [0, T ], so the correspond-
ing optimal control problem may be of singular type. We can discuss the singular optimal
control problem associated with state (11.34) by applying Theorem 8.1 with V = H1

0 (Ω)
and H = L2(Ω).

However, we cannot show (B5’) for ϕt(v; z) defined by (11.36) (cf. (11.23), (11.40)).
Thus, the approximate problems for (11.34) and its optimal control problem are still open,
as we need the uniqueness of solutions to the approximate state systems.
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