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Abstract. In the paper, we propose the method of numerical limits, which consist of the
extrapolation and the bounding transformation. We apply these numerical limits to the
computation of the blow-up time for a model ODE system of interacting firms. Numerical
implementation shows satisfactory results.
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1 Introduction

In the paper, we are concerned with a numerical treatment of the limiting behavior of
blowing-up solutions. In particular, we apply our method to the following system of
ordinary differential equations (ODEs), which is introduced in Ishimura and Nakamura
[5][6] as a simple model dynamics of comercial firms:


u′(t) = −αu(t) + α v(t)w(t)

v′(t) = − β v(t) + β w(t)u(t)

w′(t) = − γ w(t) + γ u(t) v(t)

(1)

where αβγ are positive constants.
As is well known, blow-up phenomena for differential equations have been investigated

extensively so far. We recall the seminal work of Fujita [2] for the semilinear heat equation.
Here we mean that a function u(t) = u(t, ·) blows-up if lim

t↑T
‖u(t)‖ =∞ with ‖ · ‖ being

a suitable norm. T (< ∞) is called a blow-up time of a function u(t). It is shown that
the solution to (1) may blow-up or breakdown within finite time [6], that is, according to
initial conditions there corresponds 0 < T <∞ such that |u(t)|+ |v(t)|+ |w(t)| → ∞ as
t ↑ T . In [6], the blow-up time is interpreted as a default time of firms.

To illustrate the novelty of our nethod, we consider the following two cases of (1) as
shown in Table 1.

Table 1. Typical two cases of (1).

(α, β, γ) (u(0), v(0), w(0))

Case 1 ( 10, 10, 10 ) ( 10, 10, 10 )

Case 2 ( 1, 10−6, 100 ) ( 10−6, 100, 1 )

It is noted that Case 2 treats extremely different values of the coefficients and the initial
data.

Numerical solutions of (1) are depicted in Fig.1, where the Euler method with the

variable temporal mesh size [7] ∆t = min

{
1

max{|u|, |v|, |w|}
, ∆t0

}
is used. Here ∆t0

denotes some fixed constant specified in each implementation. Numerical computation is
performed in double precision. Obviously, in Case 1 u(t) = v(t) = w(t) holds theoretically
and numerically; indeed, three profiles of u, v and w in Fig. 1 (1) (Case 1) are seen to
ovrelap each other. Fig. 1 (1) (Case 1) suggests that the blow-up times for u, v, w are
the same. On the other hand, Fig.1 (2) (Case 2) indicates that the blow-up times may
be different, while this is not true according to the theorem in [6]; for this system, it is
proved that blow-up times for u, v, w are the same.
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(1) Case 1. (2) Case 2.

Fig.1. Numerical solution profiles (∆t0 < 10−5).

Our numerical method gives the numerical blow-up time Tnu as shown in Table 2; here
Tnu is regarded as the blow-up time when ∆t < 10−16.

Table 2. Numerical blow-up time Tnu.

∆t0 Case 1 Case 2

10−5 0.0105434262 · · · 0.0159578799 · · ·
10−6 0.0105370056 · · · 0.0159632635 · · ·
10−7 0.0105361214 · · · 0.0159638484 · · ·

We should remark that this numerical method does not apparently guarantee that blow-
up times for u, v, w are the same. On the other hand, our method yields the same blow-up
time even numerically.

The numerical computation of blow-up problems is challenging, since the blow-up
phenomena involve limit and infinity. To list up some literatures, we recall the work
of Nakagawa [7], where an adaptive temporal mesh control as shown in the above is
proposed to compute the blow-up time, and it is shown that the numerical blow-up time
converges to the exact analytical one. Recently, Cho [1] proposes a nice scheme with the
uniform temporal mesh size and shows the convergence property as well. In his scheme
the difficulty of infinity is removed theoretically, and the difficulty of limit is partially
removed by taking the temporal mesh size be smaller.

In the present article, we propose a numerical method which enables us to remove the
difficulty both of limit and inifinity. The method consists of the extrapolation and the
bounding transform [4]. It is applied to (1). Our interest is not only in the numerical
computation of the blow-up time, but also in the possibility that numerical results may
show that blow-up times for u, v, w are the same.
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2 Our methods

To remove the difficulty that the valueof a function u becomes infinite, we consider the
next bounding transformation [4] of u into ũ.

ũ =
− 1 +

√
1 + 4u2

2u

(
u =

ũ

1− ũ2

)
. (2)

By this bounding transform, there follows the onto-mapping between the intervals of u
and ũ.

ũ ∈ [0, 1] ⇐⇒ u ∈ [0,∞]. (3)

There are two ways for the application of the bounding transform in numerical com-
putation. The first way is to numerically compute the transformed equations, which is
known to become more complicated than the original equations. The second way is to
perform the bounding transform to a numerical data, which are obtained from original
equations. The second way is simple enough to use it here. We should remark that in
the current numerical computation, a standard double precision does not work effectively.
For example, due to the loss of trailing digits, ũ = 1 corresponds to u ' 1016 in double
precision. Therefore. multiple-precision arithmetic is necessary.

To remove the difficulty of limit we use the extrapolation. For example, we fix the
temporal mesh size ∆t and then the extrapolation is employed for numerical computation:
lim

∆t→0
. The details of our procedure will be explained in the next section.

3 Numerical results

The forth order Runge-Kutta method is used for the discretization. The temporal mesh
size ∆t is fixed. Numerical computation is performed in multiple precision (100 digits)
by using exflib [3] which is a compact and fast library.

Firstly, we show numerical results for Case 1.
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(1) Original profiles. (2) Profiles of transformed solutions.

Fig.2. Numerical solution profiles in Case 1 (∆t = 10−5).
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In this case u(t) = v(t) = w(t) holds theoretically and numerically. It is seen that three
graphs in each of Figs. 2−5 overlap each other. The original profiles of u, v and w
obtained by the forth order Runge-Kutta method with ∆t = 10−5 are shown in Fig.2 (1).
Of course, profies are almost same as in Fig.1 (1). Then we apply the bounding transform
to these numerical data of u, v, w. Profiles of transformed solutions ũ, ṽ and w̃ are
shown in Fig.2 (2). It is interesting that profiles of ũ, ṽ, w̃ are almost straight lines. To
get better straight lines, we consider a narrow interval [0.0100, 0.0105] which is close to
the blow-up time. Numerical data of ũ, ṽ, w̃ in this interval are plotted and regression
lines are exhibited in Fig. 3. The t−coordinate at the intersection of two lines, namely
the intersection of ũ = 1 with the regression line for ũ, means the numerical blow-up time
of u for ∆t = 10−5. We denote this time as Tu(∆t = 10−5). We obtain Tv(∆t = 10−5)
and Tw(∆t = 10−5) similarly. We note once again that in Case 1 these three numerical
blow-up times are the same.
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Fig. 3. Regression lines in Case 1 (∆t = 10−5,t ∈ [0.0100, 0.0105]).

In Fig. 4, Tu(∆t), Tv(∆t) and Tw(∆t) are plotted for various ∆t, and regression lines are
shown. The vertical intersection with the regression line for ũ means lim

∆t→0
Tu(∆t)(≡ Tu).

From numerical data in the interval [0.0100, 0.0105] we obtain that Tu = Tv = Tw =
0.01053650 · · · .
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Fig. 4. Numerical blow-up times in Case 1 (t ∈ [0.0100, 0.0105]).
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Similarly, from numerical data in the interval [0.01050, 0.01053] which is closer to the
blow-up time, we obtain that Tu = Tv = Tw = 0.01053605 · · · (Fig. 5). Please compare
this with Tnu = 0.0105361214 · · · in numerical computation with variable ∆t (Table. 2).
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Fig. 5. Numerical blow-up times in Case 1 (t ∈ [0.01050, 0.01053]).

We remark that the exactness of our numerical results depends on the interval of t.
We apply the same proceedure to Case 2. The original profiles of u, v and w obtained

by the forth order Runge-Kutta method with ∆t = 10−5 are shown in Fig. 6 (1). Of
course, profies are almost same as in Fig. 1 (2). Then we apply the bounding transform
to these numerical data of u, v, w. Profiles of transformed solutions ũ, ṽ and w̃ are
shown in Fig. 6 (2).
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Fig. 6. Numerical solution profiles in Case 2 (∆t = 10−5).
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To get better straight lines we consider a narrow interval [0.0155, 0.0159] which is close
to the blow-up time. Numerical data of ũ, ṽ, w̃ in this interval are plotted and regression
lines are shown in Fig. 7.
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0.99999975

0.99999980

0.99999985

0.99999990

0.99999995

1.00000000

 0.0155  0.01555  0.0156  0.01565  0.0157  0.01575  0.0158  0.01585  0.0159

w̃

t

(3) w̃.

Fig. 7. Regression lines in Case 2 (∆t = 10−5, t ∈ [0.0155, 0.0159]).

In Fig. 8, Tu(∆t), Tv(∆t) and Tw(∆t) are plotted for various ∆t, and regression lines
are exhibited. From numerical data in the interval [0.0155, 0.0159] we obtain that Tu =
0.01596064 · · · , Tv = 0.01597657 · · · , Tw = 0.01595765 · · · . The first 3 digits are the
same.
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Fig. 8. Numerical blow-up times in Case 2 (t ∈ [0.0155, 0.0159]).

Similarly, from numerical data in the interval [0.0159, 0.01596] which is closer to the blow-
uptime we obtain that Tu = 0.01596394 · · · , Tv = 0.01596397 · · · , Tw = 0.01596386 · · · (Fig.
9). The first 5 digits are the same. Please compare this with Tnu = 0.0159638484 · · · in
numerical computation with variable ∆t(Table. 2). Numerical results suggest that solu-
tions blow up at the same time.
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Fig. 9. Numerical blow-up times in Case 2 (t ∈ [0.0159, 0.01596]).

4 Conclusion

In the paper, a blow-up problem governed by the system of ordinary differential equations
is analyzed numerically. The system is related to the default risk and various properties
of solutions are theoretically clarified. The interesting property from a view point of
numerical analysis is that solutions blow up at the same time. Traditional numerical
methods are not suitable for ascertaining this property. We have here, on the other
hand, proposed the method of numerical limits which consist of the extrapolation and the
bounding transform. We apply this method to the problem of the numerical computation
of blow-up phenomena. Numerical implementation is performed in multiple precision and
it is realized that our procedure works efficiently. Numerical results successfully indicate
that the blow-up time are the same.
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