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Abstract. We consider the Cauchy problem of systems of quasilinear wave equations in
2-dimensional space. We assume that the propagation speeds are distinct and that the
nonlinearities contain quadratic and cubic terms of the first and second order derivatives
of the solution. We know that if the all quadratic and cubic terms of nonlinearities satisfy
Strong Null-condition, then there exists a global solution for sufficiently small initial
data. In this paper, we study about the lifespan of the smooth solution, when the cubic
terms in the quasi-linear nonlinearities do not satisfy the Strong null-condition. In the
proof of our claim, we use the ghost weight energy method and the L*°-L> estimates of
the solution, which is slightly improved.
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1 Intrduction

In this paper, we study the Cauchy problem;
O’ = d3u’ — c2Au' = F'(Ou, 0%u) (z,t) € R* x (0, 00), (1.1)
u'(z,0) =efi(x), Ow'(r,0)=cg'(x) r € R? (1.2)
where i = 1,2,--- ,m and u(z,t) = (u'(z,t),u*(x,t), -+, u™(x,t)). We denote du =
(8au)a:071,2 with 80 = 8t = 8/875, (9j = 8/8% (] = 1, 2) and 82u = (aaagu)aﬁ:o’lg. Let
e > 0 is a small parameter and assume f*(z), ¢'(z) € C5°(R?) and supp{f'},supp{g'} C

{z € R* : |x| < M} for some positive constant M. We also assume that the propagation
speeds of (1.1) are distinct constants, namely we assume

0<c<cg< - <cp. (1.3)

Each nonlinearity F*(v,w) is smooth near the origin and is expressed as

m 2
F'(0u,0%u) =Y > Ay (0u)0.0pu’ + B (Ou), (1.4)
(=1 a,5=0
where
m 2 m 2
AP 0u) =3 ) a0’ + )0 0,00 o5uk + O(|ouf?) (1.5)
Jj=1~=0 J,k=1~,6=0
and
m 2 ) m 2
= Z Z b;’,?ﬁaaujﬁﬁuk+ Z Z d;sfv@ wOpuFdu’ + O(|ou)t).  (1.6)
4, k=1 o, =0 Jik =1 a,B,y=0
Here aj a’B'y, b;,f’g, 2;),:875, d;,?f'y are constants.
In order to derive energy estimate, we need to assume that for each ¢,/ =1,2,--- ;m and
a? /6 - 07 ]‘7 27
AP () = AL () = AL (w) (L.7)
and
i (min{1, ¢, })?
477 (w) < SO (1)

The assumption (1.8) constitutes no additional restriction, since we will only deal with
small solutions. Note that by (1.3) and (1.4), we have for any i = 1,2,--- ,m,

u'(x,t) =0 for |z| > et + M. (1.9)

For the proof of (1.9), see Theorem 4a in F. John [10]. Furthermore, in order to derive
the ghost weight energy method, we need to assume that
a ™ =0 when  (j,€) # (i,i)

1.10
b? =0  when  j#k (1.10)
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foreach v =1,2,--- ,m and «, 8,7 = 0, 1,2. This assumption means that only the terms
Ou'0*u’ and Ou’Ou’ (j = 1,--- ,m) appear in the quadratic terms of F".

Our purpose of this paper is to show a precise estimate for the lifespan T.. Here, we
define 7. by the supremum of 7" > 0 for which there exists a solution u to the Cauchy
problem (1.1) and (1.2) in (C*(R? x [0,7)))™. To state the known results and our
our result, we introduce some notations. Firstly, for X = (Xj, X1, X5) € R3, we define
O(X) = (PYX))ip=12m: V(X) = (VeX))ip=12m, OX) = (O4(X))ip=12, m and
E(X) = EuX))ig=1.2,m by

2
YX) = Y aXaXpX,, (1.11)
a,B,7=0
2 .
V(X)) = > b Xo X, (1.12)
a,B=0
2 .
OjX)= Y i XaXsX,X;, (1.13)
a,fB,7,6=0
2 .
5(X) = Y dElXLXGX, (1.14)
a,B,7=0
Moreover, let ¢(X) = (¢4(X))ir=1.2.. m be a function of X = (Xo, X1, Xo). If
P(X)=0 for X7=c}(X7+X3) (1.15)

holds for each i,/ = 1,2,--- ,m, then we denote ¢ =~ 0 and we say that ¢ satisfies Strong
Null-condition. On the other hand, if (1.15) holds when ¢ =i (i = 1,2,--- ,m), then
we denote ¢ ~ 0 and we say that ¢ satisfies Standard Null-condition. In [6], the author

showed that liminfey/T. > C holds for a certain constant C' > 0, when B'(Qu) = 0

e—+0
and ® does not satisfy Standard Null-condition. Moreover, the author showed in [5]

that limJir%fs2 log(1+1T.) > C holds for a certain constant C' > 0, when B'(du) = 0
E—

and aé’;‘m = 0 hold for any 7,5,/ = 1,2,--- ,m and «, 3,7 = 0,1,2 and © does not
satisfy Standard Null-condition. On the other hand, the author also showed in [7] that
T. = oo for sufficiently small € > 0, when ®, ¥, © and = satisfy Strong Null-condition
and AE’O‘B (Ou) = 0 holds for ¢ # i. Thus, it is natural that we are concerned with the case
excluded from those previous results. In this paper, we consider the case that ® and ¥
satisfy Strong Null-condition and = satisfies Standard Null-condition. Namely, we assume
®~ 0,V ~0and =~ 0. For example, we consider the nonlinearities like

F' = (0pu")? = E|Vut|? + (0pu?)? — 3| V2> + 0{(0pu')? — &|Vu'|?*}
+out{(Opu')? — &|Vu' P} + (0u?)? + du'ou*d*u’
+(0u')?0*u’,

F? = (0pu")? — E|Vut|? + (0pu?)? — 3| VU2 |* + 0{(0pu?)* — 3| Vu?|?*}
+ou*{(0ou?)? — 5| Vu?|*} + Ou' (Ou?)? + (Ou')?0*u?
+(0u?)?0%u?,
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where 9 and 9? stand for any of 9, (o =0,1,2) and 9,95 (o, 8 = 0, 1, 2) respectively.
Secondly, we introduce the Friedlander radiation field F*(p,w). Let uf(z,t) be the
solution to the Cauchy problem of the homogeneous linear wave equation;

Oyuf =0 (z,t) € R* x (0, 00), (1.16)
ud(z,0) = fi(z), Opul(z,0)=g'(z) z€R%. (1.17)
Then we define F* by
Fi(p,w) = lim r2ud(z,t) (1.18)
r—r00

with z = rw (w € S') and p = r — ¢;t. We know that F*(p,w) is expressed by

. 1 >~ 1
Fip,w) = 2\/§/p M(Rgi(S,UJ) — O0sRyi(s,w))ds,

where Ry, (s,w) is the Radon transform of h € C5°(R?), i.e.,

Ru(s,w) = / h(y) dS,
w-y=s
for s € R, w € S'. Note that F(p,w) satisfies
Fip,w)=0 for p>M, (1.19)

O F(p,w _— (1.20)
% = (1+]pl)z"

and

C(1+|r—ct])?
t

‘7“28%0 rw,t) — (— Ci)éﬁﬁ]j(r —cit,w)| < (1.21)
for t > r/(2¢;) > 1 and ¢ = 1,2. For the details about (1.19), (1.20) and (1.21), see L.
Hérmander [3].

Then we define a constant

L ; 2 i
= max{ - Ll 0, F (. ) ) | (1.22)
wes?t
and set
H = max{Hy, Hy, -+, Hp,}. (1.23)

Note that by (1.19) and (1.20), each H; is well-defined and nonnegative.
Now, we state our main result.
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Theorem 1.1 Assume that (1.7), (1.8) and (1.10) hold for the Cauchy problem (1.1)
and (1.2). Also assume ® ~ 0, ¥ ~ 0 and = ~ 0. Then, if H > 0, we have

1
im inf 2 > —. :
llerg}r%fs log(1+1T;) > 7 (1.24)

Note that the estimate (1.24) coincides with the estimate obtained in [5], which was
obtained with assumptions stronger than the present result. Hence, we can say that our
result (1.24) is a generalization of the result in [5]. Also note that we can not improve
the estimate (1.24), in general, since the counter result has been shown when m = 1 and
BY(Ou) = 0 in [4].

In the following sections, we aim at showing (1.24). In section 2, we prepare some
notations and state a lemma which implies (1.24). We also discuss the estimates of the
null-form. In section 3, we will show the L>°-L> estimates of solutions to the wave equa-
tion. It is an improvement of the one showed in [9]. In section 4, we concentrate to show
a priort estimates of the solution, by using the ghost energy inequality and the method
of ordinary differential equation along the characteristic curves.

2 Preliminary for the proof of Theorem 1.1

Our main theorem is immediately derived from the following lemma.

Lemma 2.1 Under the same situation as Theorem 1.1, choose a positive constant B to
be B < 1/H. Then there exists a constnat e9(B) > 0 such that

e?log(1+1T.) > B (2.1)
holds for 0 < e < eo(B).

In order to state another lemma which causes Lemma 2.1, we introduce some notations.
At first, we introduce the following differential operators,

Q= LL’lag — m2(91, S = ta() + .’13181 + $282

and denote

I' = (F07 Fla F27 F37 F4) = (807 a17 627 Q? S)

and
D = DTy T
for a multi-index a = (ag, a1, as, ag, as). We can verify the following commutator relations;
Co, 0] = —20,0; (@ =0,1,2,3,4, i=1,2,--- ,m)
and

00,951 =0 (0,8=0,1,2), [S,04] = 00 (a=0,1,2)
0,0 = —0s, [Q8] =01, [Q.0)]=0, [SQ]=0.
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Here, [A, B] = AB — BA and d,p is the Kronecker delta.
Secondly, we define norms. Let v(z,t) = (v'(x,t),v*(x,t), - ,v™(z,t)) be a vector
valued function defined on R? x [0,7'), then we set

o(z, 8] = Zw xt|k_ZZ|Fa (1)

)k = nggw(x,tm, ||| —Osngw(m,

vz, ) = Z (w,1) k—ZZuHx\% Lt (] = cit]) 16|00 (2, 1)),
e = g%él;g[v(x,t)]k, [l] = sup (Ol

[v(e, )]s = Z (2,1)] k—22|1+|x| )2 (1 + |[o] — cst)[T*v' (2, 1)),
@)k = ég;gnvwmk, l}[leiszoitlfT[[v(t)nk,

OO = S (D= 30 Y (L el +EI )
() = %;;g«x,t»k, Z<;>|Zlikoig%<v<t>>k,

(v, ), = Z i(x,1)) k—ZZ 14 || + )7 |0 (x, 1)),

(e = égRg«(x,t)m, Z&U;ﬁ—0335T<<v<t>>>k,
W@l = le(/ Tz, ) dm) C el = s @l

where k is a nonnegative integer and |a| = ag + a; + --- + a4 for a multi-index a =

(a07 a, az, as, CL4).
Then, we find that the following lemma implies Lemma 2.1.

Lemma 2.2 Let u(x,t) = (u(z,t),u?(x,t), - ,u™(x,t)) € (C®(R? x [0,T)))™ be a
solution to (1.1) and (1.2). Choose an integer k so that k > 21. Let B > 0 be a
constant so that B < 1/H and also let J > 0 be a constant. Then, there ezist constants
K = K(B) >0 and g9 = go(J, B) > 0 such that, if

[Oulkr + (Wi < Je (2.2)
holds for 0 < e < €, then
[Ou]k, 1y + (W k1,15 < Ke (2.3)
holds for the same €. Here, we have set Tg = min{T,tg} and tz = exp(B/e*) —
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Proof of Lemma 2.1 providing Lemma 2.2: We show that Lemma 2.2 implies Lemma
2.1 by contradiction. If the statement of Lemma 2.1 is incorrect, there exists a positive
constant By(< 1/H) such that for any € > 0, there exists ¢ = d(¢) > 0 such that

6*log(1+T5) < By and 0<d<e. (2.4)

On the other hand, by the local existence theorem which was shown in A. Majda [13], we
find that there are positive constants ¢; and ¢. such that there exists a smooth solution
u(x,t) € C°(R? x [0,t.)) to (1.1) and (1.2) for 0 < & < &;. Let L > 0 be a constant
satisfying [0u(0)]x + (u(0))xy1 < Le and set Jy = 2max{K(By), L}, where K(By) is the
constant determined in Lemma 2.2 with B = By. Then we can define a positive constant
7. by

T.=sup{t >0 : t <T. and [Qu(t)]x + (u(t))ks1 < Joe} (< T7)

for each € € (0,¢,). Here we have set e, = min{ey(Jo, By),e1}. Note that (2.2) holds for
e € (0,e,) with J = Jy and T' = 7.. Moreover, by using (1.7) and (1.8), we can show
7. < T. for each € € (0,e,). (For the detail, see the proof of Lemma 2.1 in [6].) This
means that

[E)u]k% + <U>k+1775 = J0€ (25)

holds for ¢ € (0,e.). However, as mentioned above, there exists a constant § = 0(e,)
such that (2.4) holds. In that case, we find that T, = min{7s,tp,} = 75 and hence that
Lemma 2.2 implies

J
[Oulkry + (Whhsr.7 < K (By)d < 206 (2.6)

This contradicts to (2.5) and therefore we find that the claim of Lemma 2.1 is correct.

In the rest of this paper, we aim at showing Lemma 2.2. For this purpose, we prepare
a proposition with respect to the null-form. Set ¢, = 1r<n‘i<n {¢; —¢;_1}/3 with ¢y = 0.

We see ¢, > 0 from (1.3). Also we set
A(T) = {(z,t) e R* x [0,T) : ||z| — cit] < eut} (2.7)

and

Ao(T) =R x [0,7) \ | JA«(T). (2.8)

i=1
We find that A;(T) N Aj(T) = 0 holds for any 7' > 0, if ¢ # j and that there exists a
constant C'; > 0 such that

1
o tlal+0) S Lt le] =il SO+ el +1) (1) € A(T) (2.9)
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holds for any T > 0, if ¢ # j.
In order to derive a good decay property from the null-form in A;(7), we introduce
the following operators;

7 =(Zi,7Y), = 0 + -2 Tl | (i=1,2,---,m, a=1,2). (2.10)
Then we find that
; Cit - |LL’| xlS - .CL’QQ ; Cit — ’JI| J?QS + l‘IQ
= 0 _ Ly = 5, 2.11
1 t 1 + ’x|t I 2 t 2 + ’x|t ( )
and hence that
, Tl —ct 2
| Ztv(x, t)] < va(%tﬂo + ¥|v(x,t)|1. (2.12)

Now we have the following.

Proposition 2.1 Let T' > 1 be a constant and let k be a positive integer. Let v(z,t) =
(v (z,t),v*(x,t), -+ ,v™(x, 1)) and w(z,t) = (w(z,t),w(x,t), -, w™(x,t)) be functions
belonging to (C*°(R? x [0,T)))™. Assume that ® ~ 0, ¥ ~ 0, E ~ 0 and (1.10) hold.
Then, there exists a positive constant Cy independent of T' such that

Z a0t (x, 1) 00 dpw’ (x, 1)

,8,7=0 k (2.13)
< Z (| 2T (2, 1) |[|[T0*w (z, t)| + |TPOV (z, t)|| Z T 0w’ (w, 1)|),
|bt-c| <k+1
Z bZ 0‘68 v (z,4)0507 (z,1)| < Oy Z | ZI T (2, t)| D00 (2, 1), (2.14)
a,8=0 k |b+c|<k

Z Ao 90 (2, 1) D0’ (0, 1) D0 (2, 1)

(a3

o,7=0 k (2.15)
<Cy Y 12T, 0)|[T0 (, 1)][T900" (x, 1)
[b+-c+d|<k

and especially

2

|a|<k

Z {T(a0,0' (2, 1) a0 (2.1)) = a3 00" (2, 1)0a0pT 0" (2, 1)}
a,B,74=0 | | | (2.16)
<G Y 2T ()]0 (2, )]

[btc|<k+1
[b],|c|<k
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hold fori,7 =1,2,--- ,m. Moreover, we find that

Z b“”ﬁa vJ (x,t aﬁvj(a:,t)

@,6=0 , L (2.17)
c (Hx\ — ¢t]|0v (x, 1) | 5007 (, 1) | Pk(vj)(ac,t)>

=2 1+ 2|+t 1+ 2|+t

holds for (z,t) € Aj(T) N{(y,s) : s > 1}, 4,7 =1,2,--- ,m, and that

Z as 0.0 (1) 0 Opw' (z, t)

o,f,7=0

k
C (||f"| — aitl(9v' (@, Ol l0w' (@, Ol + 10w (@, Dl (@ D) (218)
2 1+ 2|+t
Pk(’l)i,wi)(l‘,t))
L+ |zl +t )’
2
Z Ao 90 (, 1) Dgv’ (2, 1) D0 (, 1)
a,B,7=0 | ) 4 ko (2.19)
[le] = citl|ov'(z, )l |00 (2, D)l |00 (2, 1)y P (v*) (, 2)
2( T+ Ja] + ¢ * T+ o] + 1 )

and

2.

la|<k

Z {r( (a0 (2, 1) D0 00" (1, 1)) — a::;aﬁvﬁvvi(x,t)aaﬁﬁlmvi(x,t)}'
o,f,7=0
02<Harl — cit]|Ov' (@, )] )| OV (2, ) |1 Qk(vi)(a:,t))

1+ |z +t 1+ |z|+¢

(2.20)

hold for (x,t) € Ni(T) N {(y,s):s >1},i=1,2,--- ;m. Here we have set

Br(v)(z,t) = [o(z, )| 511 |00(z, 1) |1 + |0v(z, )| 110 (2, ) |14,
Bi(v, w)(z,t) = |v(z, t)|[§ alOw(@, t)]ksr + [Ov (2, )]s |Ow(z, 1) |ka +
HOw(w, )] k41100 (2, )]k + [Ow (@, )15 |[v(2, )|k,
Quv) (1) = [0, )y |00(e, ) + [0, 1) gy |O0(, ) +
00 ) 1[0, Ol
We can show the statements of Proposition 2.1 by the same manner with the proof
of Proposition 2.1 in [7], except for (2.15). Since we assume that = satisfies the Stan-

dard Null-condition instead of the Strong Null-condition, we have to review the proof of
(2.15) carefully. According to the proof of Lemma 2.3, which is the key of the proof of
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Proposition 2.1 in [7], we find that the each argument is closed with respect to the index

j=1,2,--- ,m, respectively. Hence, as well as Lemma 2.3 in [7], we can show that for any
2

'€ (To,Ty,---,Ty), there exist constants d2*”" such that = = ( Z d;?B”XaXﬁXﬂ,)
a,B,7=0
satisfies the Standard Null-condition and

2
r( > digho, uzaﬂuia,yui)

a,B,v=0

Z AP (DOl )Dgul Dyl + Z A 9t (PDsut) Oy

11 1
a,8,7=0 a,B,7=0

+ Z A9l Bgut (DO, u’) + Z A2 9 Dgu 0.0

21 K142
a,B,y=0 a,8,7=0

holds, provided = satisfies Standard Null-condition. This leads to (2.15). For the detail
of the proof, see Proposition 2.1 and Lemmas 2.2 and 2.3 in [7].

3 L>®-L* estimate

In this section, we will show a weighted L>°-L*> estimate of solutions to inhomogeneous
wave equations. It is an improvement of the estimate in Proposition 4.2 in [9]. Let ¢ and
T be positive constants and F be a function in C*°(R? x [0,7)). Then we introduce an
operator L.(F);

00 = 52 [ (s T )™ O

for (z,t) € R? x [0,T). We know that L.(F) is the solution to the Cauchy problem:;

(02 — AA)L(F) = F(z,1), (z,t) € R?* x [0,T),
Le(x,0) = 0gLc(x,0) =0, z € R%

Then we have the following.

Proposition 3.1 Let ¢; (i =1,2,---,m) be the propagation speeds defined in (1.3). Let
T>0and F,G,H € C*(R*x [0,T)). Choose i >0, v >0 and p > 0 arbitrarily. Then,
there exist positive constants C,,, C, and C, independent of T' such that

|Le, (F) (2, 6)|(1 + |2])2 < CL MUY (F)(x,t) (3.2)

s
and
VLo (G + H) (2, £)|(1+ |2])2 (1 + ||z] — et])

L . | (3.3)
< CoMUN(G)(x,t) + Cp{1 + log(L +t + |a])} M) (H) (x, 1)



283

hold for (z,t) € R* x [0,T). Here V = (0,,0,) and we have set

i LG
MO(F)x,t)=2  sup  {lyl22Z)(lyl, 9)|F(y, s)li},

- (y,8)€
J=0 A;(T)NDi(a,t)

zl(j,)j()\, s) = (14 s+ A"+ |\ —¢;s)) ",

Di(z.t) ={(y.s) : lo—y[ <elt—s) }.

Proof of Proposition 3.1: By the same argument with the proof of Propositions 4.1
and 4.2 in [9], we obtain (3.2) and (3.3) when H(z,t) = 0. Therefore, we have only to
show (3.3) when G(z,t) = 0. Without loss of generality, we may assume ¢; = 1 and for
the sake of simplicity, we denote the constant depending on p by C' which may change
line by line, during this section. Set

B = {(y,5) eR*x[0,t) : |yl +s>t—r, |z —y|<t—s}

E, = {(y,s) eR*x[0,t) : (t—7r—1/2), <|y|+s<t—71}

Es = {(y,5) eR*x[0,t) : |yl +s<(t—r—1/2);}

with r = |z| and define

1 Hly.s) 5 ._
A0 =5 [ o dua (1=123)

then we have

OuLe:(H) (1) = Py(0cH)(x, 1) (¢=1,2)

Firstly, we deal with P,(0,H)(x,t). Following the computation made in Section 4 of
9], we find

5
|PL(OcH ) (x,1)] < CM{N(H) S I,

where we have set

I, = Z//Dz s (/ Ki(\ w,rt—s)dw)d)\ds
10

]222//2 A (/KQ/\TTt )dT)dO‘,
Op

JKQ,ZZ//DA i (/KQ)\TTt )dT)dAds,
2 A% p

I, = Z//Dz X (/ EN O )|d7)d)\ds
e

Y

M\H

M\»—‘

(/ (0N - K\, 77t — o)) dT) dAds.
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Here we have used the following notation:
1
2/t — 12 — A2 + 2rAcos
1
2m/2rAr(1 — 7){2 — (1 — cos )T}
e(A\;r t) = arccos <%> :
U\ 7;7,t) = arccos{l — (1 —cosy)T},
Dy = {(\s)€(0,00) x (0,t) : A< A<A_+0 or A=< A<}
Dy = {(\s)€(0,00) x (0,t) : Ao +0 <A< Ay —6},
Dy, = {(\,s)€(0,00) x(0,t) : A=A_+0 or A=\, —4}

Kl()\v w5, t) =

K2(>‘7 T, t) -

with A\_ =[t—s—7r|, \y =t —s+r and § = min{r, 1/2}. Thus we aim to show

[, < Gl Hlogll +14 1)} (k=1,2,3,4,5). (3.4)

_(1+ﬂ( + |t —r|)

In oder to show (3.4), we use the following estimates which are proved in Lemma 4.1 in [8].

Lemma 3.1  Let (), 3) € D, U D,. then we have

C rAR(t —s—1)
/ PN A e — | (3.6)
0 (rAN)z(A+s+7r—1t)

/1\6A\D-K2\d7§ Cl< ! o 1),(3.7)
0 (rA)z \(Ae = A)z(A=A)2  (A2=)72)2

where, h(p) =1 for p > 0 and h(p) =0 for p <O0.
First we evaluate I;. Whent —r —s >0 and A > Ay — 4, we have

rA
(A= A) (A +A)

since A — A_ > r. Moreover, we find that

log (2 + ) < log 3,

20 8) > 20 (A, 5) for Ay —d< A<\,
207p()\,5) > Czo{;( _,5) for A< A<A_+4.
Hence, by (3.5), we get
I < %i(ALj—FBU—I—Cl]), (3.8)
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where we have set

t At 1
Ay = / / o dA ) ds,
0 \/xi—5 25, (Mg, )

p

B /(H)+ /H(S L (2+ A )d)\ d
;= ——log s,
H 0 _ z((fg()\_, s) A=A

t A_+6 1
Cl,j = (])— dX | ds.

(t—r)+ o zgo (A, s)

0,p

It follows that

t Ay 1
A = d\ ) d
v /0 (/)\+—6 (T4 s+ A) (14 [Ap = ¢zs[) 7 ) ’

(&) o0 1
[ d .
B 1+t+7’/_oo(1—|—|(1—{—Cj>3—t—r|)1+p 5 (3.9)
co
<
T 14t =]

When we deal with B, ;, we may assume ¢t > r, since By ; = 0 if ¢ < r. Integrating by
parts, we find

A_+6 A A+
/ log <2 + T ) d\ = / {log(3\ — 2A_) — log(A — A_)} dA

oy A_+é
{M log(3A — 2)_) — (A — A_) log(A — A_)
A

A ) A
= ;)_3 log()\,—i-?)d)—élogé—?log)\,

= )\—_log (1 + 3—6) + dlog(A_ +39) —dlogd

3 A
§+6log(2+ |t —r|) + 62,

IA

where we have used 0 < § < 1/2 and the facts

log(1
< M <1 for x>0,
T
1 1
0< —d2logd <1 for O<5<§.
Hence we have
062 log(2 + |t — o0 1
B, < Cotlos+] r|>/ .
’ 1+t —r] oo T+ |(T4¢j)s =t —r|)tFr

, (3.10)
< Coz{l+log(1+t+r)}

- 1+t —r|
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When s > (t — )4, we have
SHA_=2s—t+r>|t—rl, s+A>CIAN—¢is| =C|(1 —¢j)s —t+7],

which imply

N
<
g
»
~
V

C+t—r)A+|(1—¢j)s—t+r|)" if j#£i
2Os) = OO+ |t—r) P14+ 25—t + 7).

Therefore, we get

1
R e v A s P e (3.11)
S S it j#i |
= 14 |t—r| !
.o cs /t 1 d
i = Tt2s4t—r "
(L[t =r)e Sy, 125+t =7 (3.12)

Co{1 +log(l+t+r)}
L+ |t —r '

Summing up (3.8), (3.9), (3.10), (3.11) and (3.12), we obtain (3.4) for k& = 1, since
§/r <2/(1+r).

In the remainder of the proof of (3.4), we assume r > 1/2 so that § = 1/2, because
D, is the empty set, if 0 < r < 1/2.

Since A = A_ +1/2 or A = Ay — 1/2 for (\,s) € D), we obtain (3.4) for k = 2
analogously to the previous argument.

Next we evaluate I3. Note that A > A_ + 1/2 for (), s) € Dy and that

rA
A=A )N+ )

for A > A_ + 1/2. Therefore we get from (3.5)

log(2 + 2
P < CZ// 082420 1\
Do

1+/\zop/\s)

m

log (2 + > <log(2 +2\)

< C{l+log(1+t+7)}> Ay,

Jj=0

where we have set

1
Asj = d\d 1<j<m),
> //[)2 (14 s+ N2(1+ X —¢js])tte s (1<j<m)

A3,0 =

dXds.

//[)2 (1+s+ )\;(1 )2t
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When 1 < 57 < m, changing variables by

a=A+s and B=\—s, (3.13)
we have
AR | o 1
Az < —/ —_— (/ dﬁ) do
> 2 Jjp—r T+ a)? \ ey (14 [5(e, B)])1F
C

< —7

T 14 t—r]
where

2, B) = (¢; + 1) = (¢ = Dev.
On the other hand, when j = 0, we have

// dAds < —C
30_1+|t—r| b, ( 1+A2+p S 1t—

Therefore we have (3.4) for k = 3.
Next we evaluate I;. Since A+ s+r —t > 1/2 for A > A_ 4+ 1/2, we get from (3.6)

1
r2l, < CZ// d\ds
DQZOP)\S A+s+r—t+1)

1 a 1
< 07 rt— ) /M ottt (/ L+ [0y (e B dﬁ) o

C{l+log(l+t+r)}
- 1+ |t —r ’

which yields (3.4) for k = 4.
Next we evaluate [5. It follows from A\_ +1/2 < XA < A, — 1/2 that

B —A) > A —A+1, 3A—A) A=A 41, 9AZ—A2) > (A+1)2— A2

Hence we get from (3.7)

T%I5 S CZ<A5’j + 35’]' + C57j),
=0
where we have set
1
A5’j = // : I d)\ds,
Daon{t—r<s} zop()\ sSSt+r—s—AN2(A—t+s+r)2

// L _ d)\ds,
Dan{t— ’r‘>s}20p()\ s t+r—s—A+1)2(A+t—s—r+1)z

1
oo = // G 1 _ d\ds.
D2ZO{p()\ys)()\—t—i—S—{—T‘—l—1)5()\+t_5_7a+1)§
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Changing variables by (3.13), we have

A5, < C o 1 (/a L dﬁ) d
. T I o
T = Sy (b —a)ia—t+ )3\ (U4 (0, B))

1

t+r
< / 1 :
1+|t_7"| t—r (t+7“—a)2(oz—t+7’)2
< ¢
T 14 ft—r

Changing variables by (3.13) and then by ¢ = ¢;(a, ), we get

1 t+r 1
B5,j S —/ T X
2 T+ )t +r—a+1)2

@ 1
- do | da,
X(lju+ww (-} )

27, =(1—cj)a+ (1+¢)(r—1).

do

where

It has been shown in Lemma 3.13 in [12] that

[SIE

/a L do < L
2w (L o)) {1+ (o — )} T (L4 gDz

J

Therefore, if 7 # i, we have

C t+r 1
B57j S —/ 1 dOé
L+t =7]) Jie—r (t+r—a+1)§(1—|—|fyj

1
2
C t+r 1
< —/ ( )da
= rD) oy \EF 7 —at 1 LH%

C{l1+log(l+t+r)}
- L+ |t —r '

On the other hand, if 7 = i, since v; = r — t, we have

C t+r 1
S —/ 1 1
A+lt=7) Sy QA+ )zt +r—a+1)2

C t+r 1
< - d
= (1+!t—7’\)/|t_r|<1+a+t+r—a+1 @

C{l+log(l+t+r)}
- 14|t —r '

do

Bs,;

Since we can deal with C5 ; similarly to Bs ;, we obtain (3.4) for k = 5.
Secondly, we deal with P»(0,H). We can assume t > r, since otherwise Fy is empty.
Switching to polar coordinates,

x = (rcosf,rsinb), y = A = (Acos(0 + 1), Asin(d + v)), (3.14)
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we get

t—r A s
Py(0uH) (z, 1) — /0 ( /(A_l) A@ZH(A&s)( JECSCREARE d¢) dA) ds

By Proposition 5.2 in [1], we have
™ rA
K A\ y;rt—s) dy < - log (Q—i— ) 3.15
/_,r 1 ) A+ A)2(M\p —N)2 (A= = XN (A4 +A) (315)
for0 <s<t—rand 0 < X< A_. It follows from the fact
1 2

VS N IO Wy

1
for O<s<t—r, A_—§§/\</\_ (3.16)
that

(r + 1)2| Py (0, H) (1)) < CME)( ZAM, (3.17)

where we have set

A+s
o . log (2 + - A)
146J ::b/n J/ dX | ds.
0 (

b (L s £ AL+ A = gs)He(A_N)2

Changing variables by (3.13), we get

!
_ log(2+—
t—r t-—7“+(1) ( o] 1
a o< of () a0 de
s Ara)t—r—a)t o Trigne @

C /t_r log(2(t —r) — a) — log(t — r — ) o
t—r+1/2 t—r—1 (t—r—a)% .

Here

/t_T log(2(t —r) — a) — log(t — r — «) o
¢ (t—r—a)%

1
—r—3

t—r

= { —2(t —r —a)(log(2(t — 1) — a) — log(t —r — 0‘»}

t—r—
_Q/t_’" (t—r—a)%_(t—r—a)% o
it \20—7) -« t—r—a
1 t—r t_
= ﬁlog(——i—t—r)%—/ r - da
2 t—r—L 20t —71) —a)(t =7 — )2
_ t—r 1
Clog(§+2t)+t—rl/ — do
2 t=r+35Ji-1 (t—r—a)2

< C<1+log (;—1-215))

1
2

IN
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implies
C{l+log(l+t+r)}
1+t —r| '

Thus, combining (3.17) and (3.18), we obtain
(14 7)2 (14 [t — )| P9 H) (. 1)] < C{1 +log(1 +t + )} M)(H).

Thirdly, we deal with P3(9,H). We can assume ¢ > r + 1/2, since otherwise Ej is
empty. Integrating by parts in y and switching to polar coordinates as in (3.15), we get

PG H) ot — /Ot—T—Q </Ot—r—2 (/7r MNH (N, 8)Ks(\, s, t — s)dz/J) d>\> ds
dQﬁ) ds
)\:t—s—r—%

Ag; <

(3.18)

1

—i—/o o (/: MGH (N, 8) K (AN, ¢, t — s)

= Jl +J2a

where we have set

—(ze = A&
Im(t2 — r2 — X2 + 2rhcos )2

K3()‘7¢;x7t) =
We see from (3.15) and (3.16) that
CM(H ){1+log(1+t+r)}z/t—r—% 1 ;
s
(r+1)2(t-r+1/2) o (L+[t—r—(¢+1)s—1/2[)»
C{1+log(1+t+ r)}MO (H)
L+r)z1+lt—r)
As shown in the proof of Proposition 4.2 in [8], we have
C
=N 50, — 0
Therefore, since 7 +1 < 2(Ay — A) for A <t —r —s—1/2, we get from (3.13)
Ji

CM@) H m tfrf% tfrfsf% 1
MZ/ / — d\ | ds
(I+7r)2 =0 Jo 0 (T+s+ M)A = A1+ [X—cys|)tFe

CMgy(H) S~ [ 7
1
Jr/o o (M)t —r —a)(1+[¢y(a, B))Hr dﬁ) da}

O{1+1og(1+t+r)}M”( H)
(1+7)z(1+|t—r) '

Jo

/ Ky it — )| <

1

2

t—
2

T

(/Z (1+a)(t—1r— a)l(l (@ B dﬂ) da+
( o
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This completes the proof of (3.3).

4 a priori estimates

In this section, we derive the a priori estimate (2.3) assuming (2.2). For this purpose, we
introduce a notation. Let the assumptions of Lemma 2.1 be fulfilled and let p(z,t;¢) and
q(x,t;€) be functions defined on a set D C R? x [0, 7). Then we denote

p(z,t;e) = O*(q(x,t;¢)) in D,

when there exist constants K = K(B) > 0 and g = €¢(.J, B) > 0 such that, if (2.2) holds
for 0 < e < g, then

Ip(z,t;¢)| < Kq(z,t;¢€) for (z,t) e D

for the same €. We can easily show that if p;(z,t;¢) = O*(q(z,t;¢)) and pa(z,t;e) =
O*(q(z,t;€)), then py(z,t;¢) + po(z,t;¢) = O*(q(x,t;€)). Then our task to prove Lemma
2.1 is showing

[Ou(z,t)]y = O%(e) and (u(z,t))rr1 = O*(¢) in R?x [0,Tp). (4.1)

Also we will express constants determined independently of J and T' by K, (n € N) in
the following argument.
Now we aim to show (4.1). By (3.1), we can write

u'(z,t) = up(x,t) + Le,(F) (2, 1), (4.2)

where uf(z,t) is the solution to (1.16), (1.17) and satisfies for any nonnegative integer p,

[Qug ()], + ((ug(t))pir < Coe for 0 <t < oo, (4.3)
with some constant Cy = Cy(f%, ¢°,p) > 0. Then, we have for a multi-index a =
(CLO; Ay, ,CL4),

TLe,(F') = v + > CapLe,(T°FY), (4.4)
[b]<[al

with some constants C, . Here, v} = v’ (z,t) is the solution to the Cauchy problem;

O =0 in R?x [0,00),
vi(,0) = ¢ (), Opvl(x,0) = Y () in R?

with functions ¢%, ¢ € C5°(R?) determined by (f7,¢?);=12... ;m suitably. Indeed, by the
commutation relations of T, and [J; and by the definition of L. (F*), we have

Ol o Le,(FY) = To0iLe,(FY) 4 200400; Le, (F*) = T o F" + 2004 F"
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and
ToLe,(F)(2,0) =0,  9oToLe,(F)(x,0) = da0F"(,0). (4.5)
Since F* is quadratic, we can denote F'(z,0) = e2¢'(z) € C§°(R?). Hence we have
DoLe,(FY) = 0" 4+ Lo, (To F" 4 2004 F") = 0" + Lo, (To F") + 2604 Le, (F?) (4.6)
where v" = v'(z,t) is the solution to the Cauchy problem:;

v’ =0 in R* x [0, 00),
v (z,0) =0, 0pv'(z,0) = da0e*" () in R2

This implies (4.4) when |a| = 1. Repeating the above argument, we can obtain (4.4) for
any a.
Note that, as with (4.3), we have for any nonnegative integer p,

Z [Ov; ()]0 + Z < Cle* for 0<t< oo, (4.7)

|b|<p lc|<p+1

with some constant C}, = C(f*,- -, f™,¢* -+ ,9™,p) > 0. It follows from (4.2) and
(4.4) that

Tou'(x,t) = Tuf(x,t) + vi(2,t) + Y CapLe,(T°F)(x, 1) (4.8)

|b|<[al

Therefore, our task for the proof of (4.1) is to show

S [OLe (TP F) @, t)]o + Y ALa(TF)(a,8))o=0%(c) in R*x[0,Tp). (4.9)

[b|<k le|<k-+1

We will show (4.9) by dividing the area into some parts.
Firstly, we assume 0 < ¢ < 1/e. In this region, we can show the sharper estimates;

D lOLe, T F)(a,t)lo+ > ({Le,T°F)(x,1)))o
bl <k e| <h+1 (4.10)

= O* (1) in R? x [0,1/¢].
For this purpose, we prepare two propositions with respect to the energy.
Proposition 4.1 Let u(z,t) € C*(R?* x [0,T)) be a function satisfying ||u|lor < oo.
Then, there exists a constant C3 > 0 such that
1
[ u(z, t)] < Cslu(t)]l2 (4.11)

holds for (z,t) € R? x [0,T).
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Proposition 4.2 Let u(x,t) = (u'(z,t),u*(z,t), -+ ,u™(z,t)) € (C°(R* x [0,T)))™ be
the solution to (1.1) and (1.2) and also let £ be a positive integer. Assume (1.7). Then
there exist constants 6 > 0 and Cy = Cy(¢) > 0 such that if |8u|[e+T1]7T < 0 holds, then

t
foutoll < Callou®)eexp (Co [ 1ou(s)ep s (112)
0
holds for 0 <t < T.

We omit the proof of the propositions. For the details of Proposition 4.1, see [11]. On
the other hand, we get Proposition 4.2 by the usual energy argument for the quasilinear
wave equations with quadratic nonlinearities and by the Gronwall inequality.

By (2.2) and k > 21, we have |8u|[%17% < lau]ké < Je < for 0 < e < g, if we take

g0 to be Jeg < 0. Hence, by (2.2) and (4.12) with ¢ = k + 4 and T' = 1/¢, we have
t
[Ou(t)||k+a = O(C4||3U(O)Hk+4exp (04/ |8U(3)|[k;5]d5>)
0

_ O(C’4H3U(O)Hk+46xp (04 /0 t%%))

—- O (5exp ( /O : (fi;ds» (4.13)

= O (5exp(4C4J€%)>
= 0*(¢) in [0, 1/¢],

if we take g9 to be &g < 1 and J%¢y < 1. Therefore, by (1.9), (2.2), (3.2), (4.11) and
(4.13), we have for |¢| < k+1

Y (L (TF) ()

le|<k+1
1 %
= 0| s (B s ) ] s DI e}
j=0 Y,8)€

Aj(3H)NDi(x,t)

- O(Z sup  {Jyl>(1+ s + [y)" (1 + |ly| — ¢;s]) x

(y,s)€

i—0 -
T=Y A (2)nDi(at)

<100y, )52 100l )2} )

= O"((1+ 635 [Du(t)) gz 10w () |144) (4.14)

= O*(ed) in R%x [0, 1/¢],
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if we take 1 and gg to be u < 1/16 and J®%y < 1. As for dL. (IT°F*) with |b| < k, when
0 <t <1, it follows from (1.9) that 1 + |z| + ¢ and 1 + ||z| — ¢;t| are bounded in the
support of the solution u’(xz,t). Hence, by (4.4), (4.7) and (4.14), we find

> [OLe (L F) ()]

|b|<k

= O( > ([[vi(%t)]]oJr[[ch(FcFi(%t)]]o))

le|<k+1

_ o( 3 (<(vi(9€,t))>o+(<Lcl(FCFi($at)>>o)>

le|<k+1
= O(e1) in  R%x[0,1].
On the other hand, by (1.9), (2.2), (3.3) with G =0, (4.11) and (4.13), we have
Z HVLCL(FbFZ)(xv t)]]()
bl<k

m

= O Z sup {|y|%(1—|—s—|—|y|)1+”(1+||y|—cjs|)|Fi(y,s)]k+1}

- (y,s)€
J=0 AjNDi(z,t)

O (1 + )36 [Du(t)] ez [|Du (1) | 12) (4.15)
= O*(J&?16 Y)
O*(e1) in  R*x [0, 1/¢],

if we take v and &g to be v < 1/16 and J®, < 1. Therefore, when 1 < ¢, by (1.9), (4.4),
(4.7) , (4.14), (4.15) and the identity

T T 1
we have
> 00 Le, (T°F*) (x,£)]o
[b|<k

=0 (Z (19 Le (7 ol + %Hnswrbw)(x,t)no))

Ibl<k (4.17)

— 0 (Z[[VL (CF @+ Y ((vifx t)>)0+<(LCZ(FCF"(x,t))>O))
[b|<k le|<k+1
= O*(e1) in  R?x[1,1/e].

Therefore we obtain (4.10).
Secondly, we assume 1/e < ¢ < Tg. In this region, we need more precise energy esti-
mate:
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Proposition 4.3 Let u(z,t) = (u!(z,t),v*(z,t), - ,u™(z,t)) € (C®(R? x [0,T))™ be
the solution to (1.1) and (1.2) under the same assumption in Theorem 1.1. Also let ¢ be
a positive integer. Then there exist positive constants Cs and § such that if

052y + () g5 < 6 (4.18)
holds, then
t[[Ou(s)]]]jerry + (u(s)) ey
1But)e < Col|Butto)l s exp <05 / [[ou(s)); 211+S< () 221, ds) (419)

holds for 0 <ty <t <T. Here, we have set

(]l = sup [[[@®]]lp,  [[v@ON], = sup[[[v(z, )]]],,

o<t<t zeR?

ot = { (0650l ohen <5

[v(z,t)], when |z| > 15,

In order to prove (4.19), we use the ghost weight energy method, which was developed
in S. Alinhac [2], like we did in the proof of Proposition 4.1 in [7]. In that argument, it
was essential to show

/ eP@IPa i (g \[0gu' (x, ) da
R2

[0u(s)] a1 + (u(8)) 1ol :
_ O( [ 3 ] [ 2 J+1 / epi($75)|]_—‘aaou7'('f’ 3)|2 d{L‘) (420)
1+ s R2

with a certain bounded function p;(z,s). We showed (4.20) by dividing the integration
region R? into A; and A§. For the case (x,s) € A;, we used the ghost weight method which
is also applicable to the present situation. On the other hand, for the case (x,s) € Af,
we extracted the decay (14 s)™! from the term (1 + ||z| — ¢;s|) in [[Qu(z, S)H[MTH]’ which

was the target to estimate in [7]. However, in our situation to estimate [Ou(z, s)][ lal1y,
2

we can not earn the decay (1+s)~" from it in the region near |z| = 0. That is the reason
why we introduced the norm [[[Ou(s)]]]s and assumed (4.18) in Proposition 4.3. For the
details of the ghost weight energy method, see the proof of Proposition 4.1 in [7].

In order to use (4.19) with £ = k+ 9 and T' = Tz, we also show that
([[Ou(z, )]]] o) + (u(, 1)) ez, = O"(e2) in  R2x[0, Tp)  (4.21)
holds. By (2.2) and k£ > 21, we find that
[Ou(z, ))jgs0) + (u(@, 8) 0y 4 = O°(Je) = 0%(e2)  in R*x[0,Tp) (4.22)
if we take g to be J%c; < 1. Furthermore, if we obtain

Y VLI F)(z,0)]o = O (e

bl <[#40]

NI

) in  R*x [0, Ts), (4.23)
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then by (1.9), (2.2), (4.4), (4.16) and (4.23), we find that

> (8oL, (T F) ()
bl<[A520]

lbl<[*5+]

o 3 IVLLC P e o)+

lbl<[*5H]

D SR (I

le| <[EH10]+1

= o( Y IVLa(LF)(a, )]lo+

lbl<[50]

o ¥ (‘f'[[w (F”F")<:v,t)]]o+%[[SL@(F”F"(:W))Ho))

+ o) (<<vi(w7t)>>o+<LCZ(FCF"($J))>0))

el <[#4H0]+1

) in {(z,t) : |x|§t%, 1/e <t <Tg},

if we take g9 to be J%y < 1. Hence, by (4.3), (4.7), (4.10), (4.23) and (4.24), we have

(4.21).

In order to prove (4.9) and (4.23), we show that for any positive integer ¢ < k+ 1 and

for any positive constant 7

Z > (L (TF)(x,1))o

i=1 |¢|<t+1
= O (6 + J?*(1+t)" sup ||au(5)||€+8)

0<s<t

and

m

DD VLI F) ()]l

i=1 |bl<

= OF (5 + J? sup ]y\%\ﬁu(y, 5)’£+6)
(y,5)€R2x[0,1]

hold. We will show (4.25) and (4.26) step by step.

in  R*x [l/e, Tp)  (4.25)

in  R?*x [l/e, Tp). (4.26)

At first, by (1.5), (1.6), (1.9), (2.17), (2.18), (3.2), (3.3), (4.11) and £2log(1 +t) < B,
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we have for any p; > 0 and p; > 0,

Z > (Lo, (TF) (x, 1))

i=1 |¢|<f+1

- o(X X M)

i=1 |c|<l+1

:0(22 L )’Fi(yas)|e+1)

i=1 j— 0 (1,8)ED (z,t)NA

- O(Z Sup {|y|22#12 (lyl, s Z|au (v, )|[‘+2 |8u (Y, $) |42t

= 0 (y, a)EA

0<9<t
m
+1y1222 1yl ) D (1" (W, 8) |32y, |0U" (9, 9) o2 + 00" (4, 8)] sz [0 (g, ) o)+
h=1 (4.27)

Flol320), 1 (91, 9)/u(y, 5) sz O, S)|e+2})

= 0[Ol + W)

" (eRieD q{(l + 5+ ly) 5 ([[Duly, )leva + (Y, 5)))ers) )+

1
FUEO O, swp  lOuly. o)z )

277 (y,5)ERZ x[0,1]

= 0 (Jé? sup  {(14 s+ [y)) "0 ([[Duly, $)]lera + ((uly, $))ers) 1+

(y,5)€R2x[0,t]

+ J22(1 + )" sup \|8u(s)||g+4) in R? x [1/e, Tg)

0<s<t

and
> > (VLT F) 0]l
{ (DN + (L g1+ )M, (= ) } )

m m l ) ;
ZZ sup  {[yl2 2 ([l $)IN(Y, 8o +

(y,s)€D?(z,t)NA;

+(1 +log(1 + )|yl 2., (lyl, )| (F* = N3)(y, 8)|e+1})

= O s Il o) 31005 00t

(v, s)EA
0<s<t h=1
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22D (10l ) (0 (1, 9) 3214 |00" (, 9) ez + 10" (0, 5) a2y [ (3, $)|e+3)} +

m
h=

3~

T+ log(L+ )Y sup {Jyl2=9), (1yl.s )|3U(?J7S)|?e+22}|(9u(yys)|e+2})

=0 (y,8)€A;

_ O<([8u] o)y (s ) X (4.28)

" ererixo q{(l + 54 ) 5 ([Duly, )lev + ((uly, $)ess)} +

H(L+log(L+ 1)0uPey,  sup |y|é|8u(y,3)|z+2>

(y,8)€ER2x0,t]

= O (Ja sup  {(1+ s+ [y)) o ([[Duly, $)]lera + ((u(y, 9)))era)} +

(y,5)€R2x]0,t]

L2214 log(L4+1))  sup \y1%|au<y,s>u+2)

(y,5)ER2x[0,t]

- o*(Je( sup (L )y, )l + (o)} +

,8)ER2x[0,t]

+J?  sup |y|%|8u(y, 8)‘g+2> in R* x [1/e, Tg),
(y,8)ER2x0,1]

where we have set

m 2 m 2
Ny =" apt?0.00,05u" + Y > b 0ul 0gul.
§,0=1 a,f=0 Jk=1a,=0

Next, we estimate (1 + s+ |y|) 16 ([[0u(y, s)]]er2 + ((u(y, $))ess) for (y,s) € R2x [0, 1].
By the same manner as (4.27), for any pus > 0, we obtain by (1.5), (1.6), (1.9), (2.17),
(2.18), (3.2), (3.3), (4.3), (4.7), (4.8) and (4.17)

(1+ s+ [y 1 ([[Duly, s)]les + (u(y, 5)))ers)

B O(”i D (L s [y T x

i=1 |b|<e+2
[e|<e+3

X([[VLe, (T F)(y, $)]]o + ((Le:(TF") (y, s)>>o))
- O(8+Z > sup{(1+s+]yl)" 16+”1M1+)#21(F0Fi)(y,s)}>

i=1 |c]<e+3 VER?
m m

- O(”ZZSUP sup {ifl Do (€17 )lFi(f,T)lz+3)

i=1 j=0 y€eR? (¢,7)eDi(y,s)NA
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= O( ([Ou];e gy, + <U>[Z+T4]+Lt) X (4.29)

R ]{(1+T+|§|)_5+”1+”2(H8U(§,T)Hm+<<u(g,7)>>g+5)}+

oy, swp JEHOU(E e

(&,7)ER?%[0,s]

- (5 +Je  sup  {(L+ 7€) T ((Du(E e + (€ T))ers) )+

(&,7)ERZX[0,s]

+J%* sup |§|5|8u(§,r)|g+4> in  R®x [l/e, Tp).
(€.7)ER2X[0,9]

Moreover, by the same manner as (4.29), for any us > 0 we obtain (1.5), (1.6), (1.9),
(3.2), (3.3), (4.3), (4.7), (4.8) and (4.17)

(1+ 7+ )=S0 ([[0u(, T)]]era + (&, 7))ers)

_ O<E+Z Z (1+T+|§|)—§+u1+u2 %

i=1 [b|<f+4
|c|<£+5

X ([VLe, (L F*) (& T)lo + ({Le, (T (€, T)>>o)>

= (5—1—2 > sup{(1+7+]¢))" 8*“1+“2M1(2u3,1(FCFi)(§,T)}> (4.30)

i=1 |c|<t+5 VER®

- O<5+ZZSUp Sub {‘C‘ +u1+u2+u31(K"9)‘Fi(ga6)‘£+5>

i—1 j=0 YER? (GOIED(E,m)NA,;

= O+ Dulgeesup (L0 [G) 0 ) e} )

2 7 (¢0)ER2X[0,7]

— O*(5+J5 sup {|g|é|au(g,9)|g+6}) in  R*x [1/e, Tp),

(¢,0)eR2x]0,7]

if we take 1, pa, 3 to be py + po + pg < 5/16. Combining (4.27), (4.28), (4.29) and (4.30)
and taking iy =1, g9 < 1, Jeo < 1, we have (4.25) and (4.26).
Now we show (4.23). It follows from (2.2), (4.26) and k > 21 that

Z > VL (T F) (2, t)]o

=1 |b|< k+10]
= O <€+ J*B  sup |y|§|8u(y,s)|[k+2m]+6>
(y,8)ER2X0,t]
= O*(e+ J*[0uli,)
= O*((1+ J?)e)
= O0*(e2) in R2x [1/e, Tg),
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if we take g to be J%q < 1. This implies (4.23) and therefore (4.21). Furthermore, (4.21)
implies that there exists a positive constant K7 such that

[[10u(s)]ppte) + ((s)) rsroy,, < Kie? (4.31)
holds for 0 < & < 9. Hence, by (4.19) and (4.31), we have

[10u(®)[lk+9
_ 0(05H8u<0>||k+9 e (05 /Ot [[[Ou(s)]]]rsa0) + (u(s)) o)y ds))

1+s
t
. 1 [T O K
= 0O (5 exp <s /0 T+ s ds>> (4.32)
= O (5 exp <C5K155 log(1 + t)))
= O (5(1 + t)CﬁKlfé) in  [1/e, Tg).

Therefore , by (4.11), (4.25), (4.26) and (4.32), we obtain

> S (LT F) ),

i=1 |¢|<k+2

(e 207 sup 1006

0<s<t

— ( + 23 (1 + 1) "+05K152> (4.33)
= O*(c(1+1)%) in R%x[1/e, Tp)

and
> 3 (VL)

_ O*e+J%%1+bg1+ﬂ)wPH&K$Ww)

< 0<s<t
= O (e + J?Be(1 +t)C5K157) (4.34)
(e

— OF 7;(1_'_15)296) in R? x [1/57 TB)7

1 1
if we choose n and &g to be 0 < n+C5Ke¢ < 1/16, 0 < C5 K168 < 1/256 and J*¢; < 1.
Hence, by (4.3), (4.7) and (4.33), we have

(u(, 1)) pg2 = O*(e(1 + £)75) i R%x [l/e, Tp). (4.35)
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Hence, by (4.35),we obtain

(u(w, £))rsz = O (14 6)718 ((u(x, 1)))xs2)

4.36
= O*(¢) in  R*x [1/e, Tg) (4.56)

and therefore by (4.3), (4.7), (4.8), (4.17), (4.34) and (4.36), we have
[Du(@, t)]pr = O (75 (1 + t)7) in R2x [l/e, Tp). (4.37)

Note that (4.36) and (4.37) are stronger than we needed with respect to the order of
derivatives. We will make use of the strength of the estimates below.
On the other hand, in order to estimate Ju, we introduce a subset of R? x [0, Tp) by

A(T) = {(2,t) : ||z| —et| <t7, 1)e<t<T} (i=1,2,---,m),

and discuss by dividing the area R? x [0, T) into out-side and in-side of A;(T5). We also
introduce notations;

A‘;(T) = {(x,t) D(x,t) & /~\Z~(T), lje<t< T}
and

ON(T) = {(z,t) : ||z —cit| = ti when lje<t<T
or ||lz] — ¢t < ti when t= 1/e }.
Then we find that
(1+1)7 < Co(1+ ||z] — ci]) for  (z,t) € AY(Tp) (4.38)
holds for some constant Cg > 0 and that

Ai(Tg) C Ni(TB) (4.39)

holds for sufficiently small € > 0. Hence, it follows from (4.34) and (4.38) that

[

S VLT F) @, )y = O (15 (14 )78 (1 + [|2] — ct]) )

[b|<k+1

oo

2

3

N
00!

= O*(ei5(1 4 )" 70) (4.40)
= O*(e%) in  AYTp),

J

fori=1,2,--- ,m. Hence, by (4.3), (4.7), (4.8), (4.16), (4.36) and (4.40), we obtain
[0u'(z,t)]ks1 = O*(e) in  AY(Tg), (4.41)

for i =1,2,--- ,m. Especially, by (4.2), (4.3), (4.4), (4.7), (4.16), (4.36) and (4.40), we
obtain

257 ~

[Oou’ (z,t) — eOpul(z, )]0 = O*(e2%) on  ON(Ts) (4.42)
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and

257

[03u' (z,t) — eDfu(x, )] = OF(25%) on  ON(Tp). (4.43)
Now, the task left for us is to show
[Ou' (z,1)]x = O*(e) in  A(Tp), (4.44)

fori=1,2,---,m. We use the method of ordinary differential equation along the pseudo
characteristic curves. Let u(z,t) = (u'(z,t),u*(z,t),- -+ ,u™(z,t)) be the solution to (1.1)
and (1.2) and denote z = rw, (r = |z|, w € S'). Then, for fixed A\ € R and w € S, we
define the i-th pseudo characteristic curve in (r,t)-plane by the solution r = r(t; \) of
the Cauchy problem:;

dr
dt
T(to) = Cito -+ )\,

+ L@,;(—cl-,w)(&ou"(rw,15))2 to<t<Tp, (4.45)

= 7 7tEi
ki(r,t) =c 203

1

where ty = 1/ when |A] < &7%, and to = A* when |A| > e~i. Namely, the initial point
(r'(to; Nw, to) is on A;(Ts) for each A € R and w € S*. Denote

T Nw)={(z,t) : s=r'(t\w, to<t<Ts},
then we find that

AT = | Thw

AER, weS?
holds for each i = 1,2, --- ,m. For the details, see [6]. Now, we can transform the equation
(1.1) into an ordinary differential equation along the pseudo characteristic curve. For a
vector valued function v = (v, v?, .-+ | v™), set

m 2
Ew =00 => Y A (0u)da0sv",

/=1 a,5=0
then we obtain an identity
(80 + liiaT) (T‘%a(ﬂ)i)
re r2 2 (K — ¢;)
= 8 vt (80 + ¢;0,)%v" + #(80 + ¢;0,) 000" +
1 )
G QQUZ + — (ki — ¢;)O0pv" + — (80 + ¢;0, )" (4.46)
2r§ 2r2 2r2

1

m 2
Z(CZ g+ SO0 D A (Ou) 050"

(=1 @,8=0

l\.’)\»—‘



303

Note that the differential operator dy+;0, in the left hand side of (4.46) means the deriva-
tive along r = r*(t; A) in (r,t)-plane. Furthermore, by (2.10), (2.11) and the definition of
A;(T), we have for any o, 5 =0,1,2 and i =1,2,--- ,m

5 = () -o(t)

ot

@+aoe = o( = oo+ )

v+ 200 = o(%mﬁ%twﬁ) (4.47)

(0 + 0P = 0((1 ﬂl}ff’)ﬂaz}h + g t>2'“'2)
aaaﬁv—wz;’ﬁagu = O(1+1|T+_tclt|lﬁv\1+ﬁ]v|2)

in A;(Tp). By (2.2), (2.18) and (4.47), we have

m 2
Ki = Cigo i 1 iaf ¢
-+ 52 > AP (0u)da0sv
(=1 a,=0
1 1 -
= —50i(—ew) @RV + 5 Y T 0,u' O Da0pv” +
¢ a,B,7,6=0
oy Ou'o|ov* 1100y + 5[ s " 4.48
+or (I outionty + e hiovh + oyl hlofl + (4.8)
+ (10w |o|ulo|0v]s + [0ul3lov|:) + Ié‘u|§|8v|1>
JFi
— O* a 1 a (2 2 a 2 1 2
("5 outlon + glahiovts + gl +
+Z(|0u]\0|8u|0|81}|1 + ]8u|g\81ﬂ\1) + |8U|g|a’l}|1> in A’L<TB>7
J#i

if we take g9 to be Jeo < 1. Therefore, it follows from (4.46), (4.47) and (4.49) that
1
(90 + ki) (3 0gu) — €
1 ’ 1 .
= O*(— 6v“!1+ §’U2|2+ 1
1+¢ (1+1)> (1+1)

1|00 ]y + 72 Y (10w |oldulo|dv]y + |Oul2]dv’ )+
J#i

|Ou’|o|Ov* |+
(4.49)

+ T
(1+1)

+ ré|au|3|av|1) in  AJ(Tp).
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Now we show (4.44) by induction with respect to k. Choose a point (z,t) € A;(Tp), then
there exist A € R and w € S* such that r = rw and (rw,t) € J'(\;w). At first, we show

O (2, )]0 = O*(¢) in A(Tp) (4.50)

fori=1,2,---,m. Setting v = u in (4.49), we have by (1.1), (2.2), (2.17) and (2.19),
. 1 . .
rmGICRV R UAGICRVERD)

= O ((r’)?Bz(8U)+—|3u’|1+ ~|ut|y + ——|0u' |} +
1+s (1+5)2 (1+s)

1 . - 01 . o1
+ rluh|ou'] + ()2 ) 10w |Oulf + (“)2!3%6!?) (4.51)
(L+s5)2 i#i

_ 0*((1;{2)2) i [t 4],

if we take g9 to be Jeg < 1. Integrating (4.50) from ¢, to t, we have

Téﬁoui(rw, t)

) 1 o - 4.
= (r'(to; N)) 2 Bou’ (r* (to; M)w, to) + O ((1;]—;)‘11) in  Ay(TB), (4.52)

which implies
rzdpu (rw, t) = O () in  Ay(T), (4.53)
if we take g to be J%ey < 1. Moreover, integrating (4.45) and using (4.53), we have

r—ct = r'(toN) — cito+ O*(e* log(1 + t))
= 7'(te; A) — cito + O*(B) (4.54)
= O (1 + |7”i()\; t()) — Citol) in /N\Z(TB)

Hence, by (4.40), (4.52) and (4.54), we obtain

[aoui(l',t)]o
= O((1+|r — eit]) o2 [Apu (rw, 1))

= O* ((1 + |’I"Z()\,t0) — Cit0|)£ X

X { (1 (t3 A)) 2 Dot (7 (s o), )| + L}) (4.55)

(1+1)
= O*(s+ ﬁ)

= O*(e) i A(Tg),

=
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if we take gy to be J%e; < 1. Tt follows from (2.2), (4.47) and (4.55) that (4.50) holds.
Note that (4.54) implies that there exists a positive constant C; independent of J such
that

1 . ‘

for (rw,t) € J*(\;w). Therefore, by (1.21), (4.42), (4.52) and (4.56), we have
(r'(s; )\))%(%ui(ri(s; Aw, s)

257
£256
= —ciaﬁ .7:()\,w) + O*( - 5) in [to,t] (457)
P (14 |ri(to; ) — cito]) 16

Secondly, we will show
[Ou'(z,1)], = O*(e) in A(Tg) (4.58)

fori=1,2,--- m. Set v = Jyu in (4.49), then we have

, )3 9248 :( )% w % Je ‘0
(0o + k0 ) ((r")205u") Eidyu + O <(1+S)2> [to,t].  (4.59)

By (1.1), (2.2), (2.17), (2.18), (2.19), (4.47) and (4.57), we have

5280u
m b

- D 00(Ay*(0u)) 0a0pu’ + 0o (B'(0u))
(=1 a,5=0

_ Z 0P (90,1l D’ + Oyl Bpdsu’ ) DaDpu’ +

’L’L’L
avﬁ?’%é‘ 0

L4 — sl
+o*(—+|r i +

13/
1+ ’0U||U\2+

1
(1+5)?
+ Z(\aujlo\ﬁuﬁ + |0ulo|0w? |1|Ouly) + |8u|3]8u!%> (4.60)
J#i

. 2@( Ci, W ) Ti% ui T’i% QuiQ N J2e2
= 2 a0+ 07 )
_20i(=c,w)5,F (A w) Y32y

Cf(Ti)%(l—}—s) ((r)205u’)” +

* J2e? J2e3 T 355 .
+0 30 + 3 ; 15 m [t()vt]
(1+8)16 (1+S)2(1+’7’Z<t0;)\)—0it0|)16
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Hence, we have

(0 + #,0,) ((r')2 OB’

. _5@i(_ciaw)apfi<)‘aw) Vi g2, )2
= A0+ 5) ((r")205u")” + (4.61)
. Je J2e? J2e3+ 756 '
+O 5 + 31 + . 15 m [t[))t]‘
(1—|—8)1 (1—|-8)E (1+S)(1+‘7ﬂ(t0,)\) —Citol)E
Set
W(s) = (ri(s; A))%E)gui(ri(s; Mw, 8), (4.62)

then (1.21), (4.43) and (4.62) imply the Cauchy problem of the ordinary differential
equation;

£0;(—c;,w)0,F (N, w)

W (s) = — A0t W(s)+Q(s), to<s<t(<Tp), (4.63)
W (ty) = (ri(to, )\))éﬁgui(ri(to, MNw, ty) = 5c?6ﬁ]:i()\,w) + O* (5%), (4.64)
where
J J2 2 J2 3+-L
Qs) = O*( S+ - . ) (4.65)
(14+s)s  (14+s)6 (14 s)(1+|ri(to; ) — cito]) 6
Note that
¢ 2.2 3234355 1oo (1
/|Q(s)|ds _ O*( Je . J515+ JE.ZSG og( ~|—t)15>
to (1 + Ifo)Z (1 + to)E (1 + ‘Tz(to; )\) — Cito‘)ﬁ
J iz J? 175 J3B 1+ 5is
= O*( = T T = 5+ ; = = 15) (466>
(:[‘i‘t())fT4 (1‘i‘t0)a (1+ ‘Tz(tg,/\) —Cztol)E
8 3
= O + ) in to, Tg),
((1 o) (14 it \) — eito)) e o, )
if we choose ¢ to be J3£§% < 1. Now we can show
[O5u’ (2, 1)]o = O*(e) in  A(Ts), (4.67)

by using the following proposition.

Proposition 4.4 Let w(t) be the solution of the ordinary differential equation;
w'(t)

where « is a constant, Ty and T} are positive constants and q(t) is a continuous function
in [Ty, T1). Assume

(0%
= 1—+tw(t)2 + C_Z(t) for Ty <t < T,

T
¢ = / lq(t)] dt < o0 and  2aq.{log(1+T7) —log(1+ Tp)} < 1.
Ty
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Then,

()] < (1 ¥ :
= 1 — a(w(Ty) + q.){log(1 +t) — log(1 + Tp)}

holds, as long as the right hand side of (4.68) is well-defined.

><|w<To>| to)  (468)

For the proof of Proposition 4.4, see the proof of Proposition 3.4 in [5].
Tg )
By (4.66), we have g, = / 1Q(s)| ds = O*(e712) < oo and

to

2aq.(log(1 + Tg) — log(1 + to))

_ 0= w)f'”]: &, w)q*(log(l +Tg) — log(1 + ty))

G

< K,Bew2 < 1

for 0 < € < g, if we take gy to be (K3B)*?¢y < 1. Hence, it follows from (4.63), (4.64),
(4.66), (4.68) and HB < 1 that

W)
- (1 . ! ) (W (t)| + a2)
- 1 — a(W(to) + q.){log(1 4 t) —log(1 + o)} "
< |1 ! (W(t) +4.)  (469)

1— (52[{ + aq*) {log(1 4+ t) — log(1 +t9)}
1

S 1+1—HB—KQB€5}2/2> (|W<t0)|+Q*)
< (14 2p) W@+ ) th<t<Ts

holds for 0 < & < &, if we tale g9 to be eg < {(1— HB)/(K,B)}*'?. Therefore, by (1.20),
(4.56), (4.64) and (4.69), we obtain

(1+ |r — cit]) W (2)]
- O ((1 + %) Cr(1+ |1 (to; \) — eato]) 5 (|W (t)] + q*>)

= 0O%(e) in  A(TB).
This implies (4.67). Moreover, by (2.2), (4.47) and (4.67), we have
[0 (z,)]p = O*(e) in  Af(Tg). (4.70)

Now we show (4.58). Set v =Tpu (p =3,4) in (4.49), then we have

Je
(1+s)3

(0o + 1:0,) ((r') 20T pu’) = %arpu + 0*( ) in  A(Tg). (4.71)
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By (1.1), (2.2), (2.17), (2.18), (2.19), (4.47), (4.50) and (4.70), we have
Eil“pu

m 2
= 3 (D (A (002, 0u) — AP (D) D5Tpu'} —

/=1 a,5=0
—[0p, O’ + T, (Bz(ﬁu))
1+ |r — cls| ou

= 0O (\8u\0]82u|o\3orpu |0 + ’% * (1 + S>2

+ D (10u]o]duff + [dulo|0w’|1|0ul) + |8u|§|3U\?>

J#
= O (,ILV%@OFPM\O + L:g) in [to, t].
(ri)z(1+ s) (1+s)t6
Hence, by setting
Vis) = (r'(s; \) 2 Lpu (' (53 N, 5), (4.73)
we have
V/(s) = O* (1 i S|V1($)| + a iz)i> in [to, ], (4.74)

if we take g¢ to be Jey < 1. Thus, the Gronwall inequality implies

Vi)l

) ({M s t((lfﬁ)ds}exp( t:ﬁi*)) (4.75)

- of(wr g g)) e

Hence, by (4.41), (4.54) and (4.75), we have

(1+ |r — cit]) 8 [Vi(1)]
. 15 J
- O (07(1 1 (o, A) — cito]) 38 <|V1(t0)\ n —6)1)6KSB)

(14t

_ O*<5+ Je ) (4.76)

(1 + to)es
= 0%(¢) in  A(Tg),

if we take gy to be J%ey < 1. Therefore, (4.36), (4.47) and (4.76) imply (4.58).
Finally, for any integer h so that 2 < h < k, we show

[Ou' (z,1)], = O*(e) in  A(Tg), (4.77)
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[Ou(z,t)]p—1 = O (e) in  R*x[1/e,Tp). (4.78)

Set v = Iy with |a| < h in (4.49), then (1.1), (2.17), (2.19), (4.36), (4.37), (4.50), (4.70)

and (4.78) imply

(8o + K:0,)((r") 29, "u’)

(r')2 IR 1
= ETU + O ([ ——|ou’
y St O\ Tl e

1 ‘ - 1
+ ou'lglout +
g

|Ui|h+2 +

|1 |0u | +

(4.79)

+(r')2 Y (10w o|ulo Ol 1 + |Duld|Ou [ns) + (Ti)5|3UI3\3U\h+1>

JFi

CDsmo( £ )

(1 + S)l‘l’m
and

&Fau

m

2
— Z {T(ALP (Bu)Da0pu’) — AV (0u)Da 05T’} + T2 B (9u) + [O;, T

=1 a,8=0
= O |8ui|0|6’2ui]0 Z |0l u’| + |T‘1—CZS|(|(9U I+ [0u'[})|0u | gy +
la]<h
1 ) ) ) .
5 (0wl + 10w )l e + 10wy + (4.80)
+ (100 n]0ulnldulnr + |9ulf|0w 1) + |3UI2|3UIh+1>
J#i
: | | L
- <18—|(T1)§80Faul‘ + . 18 - 7+
()3 (1+s) ()i (1T )
o :
+— - in [to, t]
(r)2 (14 s)(1 + [r* — cis[)re
Thus, by setting
Vi(s) = > (r(s: 1) 2060 (r' (51 Nw, ) (4.81)

la|<h

and by (4.56), (4.79) and (4.80), we have

Vi(s)

_ 0*( = )+ —— ¢ -
T+s T a5 (14 8)(1+ [ri(to; )

in to,t .
—Cit(]’)ig) [ ]
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The gronwall inequality implies

Vi(t)]

¢ c 5
= O (! |Vt +/< G : 15>d5}x
({’ wto) to \(L+ )26 (14 8)(1 4 [ri(te; N) — ¢ito]) 16
([15e))
X exp ds
o L8

B
. O*({|vh<to>|+ A }M)
(1 —f—to)ﬁ (]_ -+ |T’Z(t0,)\) — Cﬂf@|)ﬁ

Hence, by (4.56), we have

(14 |r — cit]) 16| Vi (2)]

15

= O (C7(1 + |7°l(t0, )\) — Cﬂfo’)l% X

><{IVh(to)l b+ be = }eK4B) (4.82)

(1+t)s (14 |ri(to; \) — cito]) 1

_ o*(ﬁ%)
(1 +1o)2%

= 0%(e) in o A(Th).

It follows from (4.41) and (4.83) that (4.77) holds.
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