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1 Introduction

1.1 Two problems

We consider applications of Brézis’s theory for subdifferential operators proposed in
[5] to quasilinear parabolic equations on unbounded domains. In [5, Theorem 3.6] it is
explained that there exists a unique solution of the following Cauchy problem for abstract
evolution equations:u

′(t) + ∂ψ(u(t)) 3 f̃(t) in X for a.a. t ∈ (0, T ),

u(0) = u0 in X,

where X is a Hilbert space, ∂ψ is a subdifferential operator of a proper lower semicon-
tinuous convex function ψ, u : [0, T ]→ X is an unknown function and f̃ ∈ L2(0, T ;X) is
a given function. The theory is often applied to problems on bounded domains (see some
examples given in [5]). The theme of this paper is to apply the theory in [5] directly to
two quasilinear parabolic partial differential equations on unbounded domains.

The first purpose is that we apply the above Brézis’s theory to show existence and
uniqueness of solutions to the following problem:

∂u

∂t
+ (−∆ + 1)β(u) = g in Ω× (0, T ),

∂νβ(u) = 0 on ∂Ω× (0, T ),

u(0) = u0 in Ω,

(P)

where Ω is an unbounded domain in RN with smooth bounded boundary ∂Ω, N ∈ N,
T > 0, g, u0 is given functions, and ∂ν denotes differentiation with respect to the outward
normal of ∂Ω. If N = 2, 3, Ω is bounded and −∆ + 1 is replaced with −∆, then (P)
represents the porous media equation (see, e.g., [1, 18, 22, 23]), the Stefan problem (see,
e.g., [4, 10, 13, 14, 16]), the fast diffusion equation (see, e.g., [11, 20, 22]), etc. In this
case, existence and uniqueness of solutions to these problems can be proved by a direct
application of [5]. However, since the proof of the existence depends on boundedness of Ω,
there seems to be no work on the problem on unbounded domains via [5]. In this paper
we mainly study the case such as β(u) = |u|q−1u+ u (q > 1).

The second purpose is to show that the theory in [5] is directly applicable to the
following problem for the Cahn–Hilliard type system:

∂uε
∂t

+ (−∆ + 1)µε = 0 in Ω× (0, T ),

µε = ε(−∆ + 1)uε + β(uε) + πε(uε)− f in Ω× (0, T ),

∂νµε = ∂νuε = 0 on ∂Ω× (0, T ),

uε(0) = u0ε in Ω,

(P)ε

where πε is an anti-monotone function with ε > 0, f is a function determined by g and
u0ε is a given function. If N = 2, 3, Ω is bounded and −∆+1 is reduced to −∆, then (P)ε



223

represents the Cahn–Hilliard system (see e.g., [6, 7, 12]) and is regarded as an approximate
problem to (P) (see [8, 14]). In particular, in the proof of existence of solutions to the
problem in [8], one more approximation (P)ε,λ of (P)ε was essentially required, where
existence of solutions to (P)ε,λ was proved by applying the abstract theory by Colli and
Visintin [9] for doubly nonlinear evolution inclusions of the form

Au′(t) + ∂ψ(u(t)) 3 k(t)

with some bounded monotone operator A and some proper lower semicontinuous convex
function ψ. Since the theory is based on compactness methods, boundedness of Ω is
necessary and hence the case of unbounded domains is excluded from their frameworks.

The relation between (P) and (P)ε was recently studied by Colli and Fukao [8] in the
case stated above. More precisely, in [8], existence of weak solutions to (P) and (P)ε with
error estimates was established under the condition that N = 2, 3, Ω is a bounded domain
with smooth boundary and −∆ + 1 is replaced with −∆ in (P) and (P)ε. In particular,
they considered the case of degenerate diffusion and their approach to degenerate diffusion
equations from the Cahn–Hilliard system made a new development. They established the
error estimate that the solution of (P)ε converges to solution of (P) in the order ε1/2 as
ε↘ 0. Their proof was also based on one more approximation (P)ε,λ, while in this paper
we will directly establish an error estimate without using (P)ε,λ.

1.2 Main result for (P)

Before stating the main result for (P), we give some conditions, notations and defini-
tions. We will assume that β, g, f , and u0 satisfy the following conditions:

(C1) β : R→ R is a single-valued maximal monotone function and β(r) = β̂ ′(r) = ∂β̂(r),
where β̂ ′ and ∂β̂ are the differential and subdifferential of a proper differentiable
(lower semicontinuous) convex function β̂ : R → [0,+∞] satisfying β̂(0) = 0. This
entails β(0) = 0. There exists a constant c1 > 0 such that

β̂(r) ≥ c1|r|2 for all r ∈ R.

For all z ∈ L2(Ω), if β̂(z) ∈ L1(Ω), then β(z) ∈ L1
loc(Ω). Moreover, for all z ∈ L2(Ω)

and for all ψ ∈ C∞c (Ω), if β̂(z) ∈ L1(Ω), then β̂(z + ψ) ∈ L1(Ω).

(C2) g ∈ L2
(
0, T ;L2(Ω)

)
. Then we fix a solution f ∈ L2

(
0, T ;H2(Ω)

)
of(−∆ + 1)f(t) = g(t) a.e. in Ω,

∂νf(t) = 0 in the sense of traces on ∂Ω
(1.1)

for a.a. t ∈ (0, T ), that is,∫
Ω

∇f(t) · ∇z +

∫
Ω

f(t)z =

∫
Ω

g(t)z for all z ∈ H1(Ω). (1.2)

(C3) u0 ∈ L2(Ω) and β̂(u0) ∈ L1(Ω).
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We put the Hilbert spaces

H := L2(Ω), V := H1(Ω) (1.3)

with inner products (·, ·)H and (·, ·)V , respectively. Moreover, we use

W :=
{
z ∈ H2(Ω) | ∂νz = 0 a.e. on ∂Ω

}
. (1.4)

The notation V ∗ denotes the dual space of V with duality pairing 〈·, ·〉V ∗,V . Moreover, we
define a bijective mapping F : V → V ∗ and the inner product in V ∗ as

〈Fv1, v2〉V ∗,V := (v1, v2)V for all v1, v2 ∈ V, (1.5)

(v∗1, v
∗
2)V ∗ :=

〈
v∗1, F

−1v∗2
〉
V ∗,V

for all v∗1, v
∗
2 ∈ V ∗; (1.6)

note that F : V → V ∗ is well-defined by the Riesz representation theorem. We remark
that (C2) implies

Ff(t) = g(t) for a.a. t ∈ (0, T ). (1.7)

We define weak solutions of (P) as follows.

Definition 1.1. A pair (u, µ) with

u ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;H),

µ ∈ L2(0, T ;V )

is called a weak solution of (P) if (u, µ) satisfies〈
u′(t), z

〉
V ∗,V

+
(
µ(t), z

)
V

= 0 for all z ∈ V and a.a. t ∈ (0, T ), (1.8)

µ(t) = β(u(t))− f(t) in V for a.a. t ∈ (0, T ), (1.9)

u(0) = u0 a.e. on Ω. (1.10)

Now the main result for (P) reads as follows.

Theorem 1.1. Assume (C1)-(C3). Then there exists a unique weak solution (u, µ) of
(P), satisfying

u ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;H), µ ∈ L2(0, T ;V ).

Moreover, for all t ∈ [0, T ],∫ t

0

∣∣u′(s)∣∣2
V ∗
ds+ 2c1|u(t)|2H ≤M1, (1.11)∫ t

0

|µ(s)|2V ds ≤M1, (1.12)∫ t

0

|β(u(s))|2V ds ≤ 2
(
M1 + |f |2L2(0,T ;V )

)
, (1.13)

where M1 := 2
∫

Ω
β̂(u0) + |f |2L2(0,T ;V ).
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1.3 Main result for (P)ε

We will assume that πε and u0ε satisfy the following conditions:

(C4) πε : R → R is a Lipschitz continuous function and πε(0) = 0 for all ε ∈ (0, 1].
Moreover, there exists a constant c2(ε) > 0 depending on ε such that there exists
ε ∈ (0, 1] satisfying c2(ε) < 2c1 for all ε ∈ (0, ε] and∣∣π′ε∣∣L∞(R)

≤ c2(ε) for all ε ∈ (0, 1]. (1.14)

Moreover, r 7→ ε
2
r2 + π̂ε(r) is convex, where π̂ε(r) :=

∫ r
0
πε(s) ds.

(C5) Let u0ε ∈ H1(Ω) fulfill β̂(u0ε) ∈ L1(Ω) and

|u0ε|2L2(Ω) ≤ c3(ε),

∫
Ω

β̂(u0ε) ≤ c3(ε), ε|u0ε|2H1(Ω) ≤ c3(ε), (1.15)

where c3(ε) > 0 is a constant depending on ε.

Let H, V and W be as in Section 1.2. Then we define weak solutions of (P)ε as follows.

Definition 1.2. A pair (uε, µε) with

uε ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ),

µε ∈ L2(0, T ;V )

is called a weak solution of (P)ε if (uε, µε) satisfies〈
u′ε(t), z

〉
V ∗,V

+
(
µε(t), z

)
V

= 0 for all z ∈ V and a.a. t ∈ (0, T ), (1.16)

µε(t) = ε(−∆ + I)uε(t) + β(uε(t)) + πε(uε(t))− f(t) in V for a.a. t ∈ (0, T ), (1.17)

uε(0) = u0ε a.e. on Ω. (1.18)

Now the main result for (P)ε reads as follows.

Theorem 1.2. Assume (C1)-(C5). Then there exists ε ∈ (0, 1] such that for every ε ∈
(0, ε] there exists a unique weak solution (uε, µε) of (P)ε, satisfying

uε ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), µε ∈ L2(0, T ;V ).

Moreover, for all t ∈ [0, T ] and ε ∈ (0, ε],∫ t

0

∣∣u′ε(s)∣∣2V ∗ ds+ ε|uε(t)|2V +
(
2c1 − c2(ε)

)
|uε(t)|2H ≤M2(ε), (1.19)∫ t

0

|µε(s)|2V ds ≤M2(ε), (1.20)∫ t

0

|β(uε(s))|2H ds ≤ 3

(
M2(ε) +

c2(ε)2M2(ε)T

2c1 − c2(ε)
+ |f |2L2(0,T ;V )

)
, (1.21)∫ t

0

|εuε(s)|2W ds ≤ 16L2

(
M2(ε) +

c2(ε)2M2(ε)T

2c1 − c2(ε)
+ |f |2L2(0,T ;V )

)
, (1.22)

where M2(ε) := 3c3(ε) + c2(ε)c3(ε) + |f |2L2(0,T ;V ) and L is a positive constant appearing in

the elliptic regularity estimate |w|W ≤ L|(−∆ + I)w|H for all w ∈ W .
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1.4 Outline of this paper

The strategy in the proofs of the main theorems is as follows. As to Theorem 1.1, by
setting a proper lower semicontinuous convex function φ well, we can rewrite (P) as an
abstract nonlinear evolution equation with simple form by the subdifferential of φ:

u′(t) + ∂φ(u(t)) = g(t) in V ∗,

so that we can solve (P) even on unbounded domains directly with monotonicity methods
(Lemma 2.3). Moreover, from this, Colli and Fukao [8] proved apriori estimates for
solutions of (P) by the limit of apriori estimates for solutions of (P)ε as ε ↘ 0, while
we can obtain apriori estimates for solutions of (P) directly. The proof of Theorem 1.2 is
parallel to that of Theorem 1.1, and hence we need not consider one more approximation
problem (P)ε,λ which cannot be used when Ω is unbounded. In Theorem 5.1 we can
establish an error estimate between the solution of (P) and the solution of (P)ε without
one more approximation of (P)ε even on unbounded domains.

This paper is organized as follows. In Section 2 we give the definition and basic results
for subdifferentials of proper lower semicontinuous convex functions and useful results for
proving the main theorems. Sections 3 and 4 are devoted to the proofs of Theorems 1.1
and 1.2. In Section 5 we prove an error estimate between the solution of (P) and the
solution of (P)ε. In Section 6 we give examples similar to the porous media and the fast
diffusion equations.

2 Preliminaries

We first give the definition and basic results for subdifferentials of convex functions.

Definition 2.1. Let X be a Hilbert space. Given a proper lower semicontinuous (l.s.c.
for short) convex function φ : X → R, the mapping ∂φ : X → X defined by

∂φ(z) :=
{
z̃ ∈ X | (z̃, w − z)X ≤ φ(w)− φ(z) for all w ∈ X

}
is called the subdifferential operator of φ, with domain D(∂φ) := {z ∈ X | ∂φ(z) 6= ∅}.

The following lemma is well-known (see e.g., Barbu [3, Theorem 2.8]).

Lemma 2.1. Let X be a Hilbert space and let φ : X → R be a proper l.s.c. convex
function. Then ∂φ is maximal monotone in X.

The next asserts the chain rule. For the proof see e.g., Showalter [21, Lemma IV.4.3].

Lemma 2.2. Let ψ : X → R be a proper, convex and l.s.c. function on a Hilbert space
X. If u ∈ H1(0, T ;X) and there exists v ∈ L2(0, T ;X) such that v ∈ ∂ψ(u) a.e. on [0, T ],
then the function ψ ◦ u is absolutely continuous on [0, T ] and

d

dt
ψ(u(t)) =

(
w(t), u′(t)

)
X

for a.a. t ∈ [0, T ]

for any function w satisfying w(t) ∈ ∂ψ(u(t)) for a.a. t ∈ [0, T ].
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The following lemma plays a key role in the direct proof of existence of solutions to
(P) and (P)ε individually.

Lemma 2.3 (Brézis [5, Theoreme 3.6]). Let X be a Hilbert space and let ψ : X → R
be a proper l.s.c. convex function. If u0 ∈ D(ψ) and f̃ ∈ L2(0, T ;X), then there exists
a unique function u such that u ∈ H1(0, T ;X), u(t) ∈ D(∂ψ) for a.a. t ∈ (0, T ) and u
solves the following initial value problem:u

′(t) + ∂ψ(u(t)) 3 f̃(t) in X for a.a. t ∈ (0, T ),

u(0) = u0 in X.

3 Existence of solutions to (P)

3.1 Convex function for Proof of Theorem 1.1

Let H, V and W be as in (1.3) and (1.4). We define a function φ : V ∗ → R as

φ(z) =


∫

Ω

β̂(z(x)) dx if z ∈ D(φ) := {z ∈ H | β̂(z) ∈ L1(Ω)},

+∞ otherwise.

Lemma 3.1. Let φ be as above. Then φ is a proper l.s.c. convex function on V ∗.

Proof. It follows that φ is proper and convex since 0 ∈ D(φ) and β̂ is convex. To prove
the lower semicontinuity of φ on V ∗ let {zn} be a sequence in D(φ) such that zn → z in
V ∗ as n → +∞. We put α := lim infn→+∞ φ(zn). If α = +∞, then φ(z) ≤ +∞ = α =
lim infn→+∞ φ(zn). We assume that α < +∞. Then there exists a subsequence {znk

} of

{zn} such that φ(znk
)↗ α as k → +∞ and hence, α ≥ φ(znk

) =
∫

Ω
β̂(znk

) ≥ c1|znk
|2H by

(C1). Thus znk
⇀ z weakly in H as k → +∞. Now let φH := φ|H . Since β̂ is proper l.s.c.

convex, the function φH is also proper l.s.c. convex on H and hence φH is weakly l.s.c. on
H. So it follows that

φH(z) ≤ lim inf
k→+∞

φH(znk
) = lim inf

k→+∞

∫
Ω

β̂(znk
) ≤ α < +∞.

Thus we see that z ∈ D(φH) = D(φ) and φ(z) = φH(z) ≤ α = lim infn→+∞ φ(zn).

The following lemma plays an important role in our proof (cf. [15, Lemma 4.1]).

Lemma 3.2. Let z ∈ D(∂φ) := {z ∈ D(φ) | ∅ 6= ∂φ(z) ⊂ V ∗} ⊂ D(φ). Then z∗ ∈ ∂φ(z)
in V ∗ if and only if

F−1z∗ = β(z) (3.1)

Consequently, ∂φ is single-valued and for all z ∈ D(∂φ) it holds that β(z) ∈ V and

∂φ(z) = Fβ(z). (3.2)
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Proof. Let z ∈ D(∂φ) and z∗ ∈ ∂φ(z). Then it follows from the inclusion D(∂φ) ⊂ D(φ)
that z ∈ D(φ). Hence we have by the definition of ∂φ,

(z∗, w − z)V ∗ ≤
∫

Ω

(
β̂(w)− β̂(z)

)
for all w ∈ D(φ).

Here, choose w = z± λψ (λ > 0) in the above inequality for each ψ ∈ C∞c (Ω). Noting by
(C1) that z ± λψ ∈ D(φ), we obtain∫

Ω

β̂(z)− β̂(z − λψ)

λ
≤ (z∗, ψ)V ∗ ≤

∫
Ω

β̂(z + λψ)− β̂(z)

λ
. (3.3)

Here, since β = ∂β̂, it follows from the definition of subdifferentials and the convexity
and nonnegativity of β̂ that

β(z)ψ ≤ β̂(z + λψ)− β̂(z)

λ
=
β̂
(
λ(z + ψ) + (1− λ)z

)
− β̂(z)

λ
≤ β̂(z + ψ),

−β̂(z − ψ) ≤
β̂(z)− β̂

(
λ(z − ψ) + (1− λ)z

)
λ

=
β̂(z)− β̂(z − λψ)

λ
≤ β(z)ψ,

and hence we observe ∣∣∣∣∣ β̂(z + λψ)− β̂(z)

λ

∣∣∣∣∣ ≤ |β(z)ψ|+ |β̂(z + ψ)|,

∣∣∣∣∣ β̂(z)− β̂(z − λψ)

λ

∣∣∣∣∣ ≤ |β(z)ψ|+ |β̂(z − ψ)|.

Noting that |β(z)ψ| + |β̂(z ± ψ)| ∈ L1(Ω) and β̂ is differentiable because of (C1) and
passing to the limit λ↘ 0 in (3.3), we infer from Lebesgue’s convergence theorem that

(z∗, ψ)V ∗ =

∫
Ω

β̂ ′(z)ψ =

∫
Ω

β(z)ψ for all ψ ∈ C∞c (Ω).

Writing as (z∗, ψ)V ∗ =
(
F−1z∗, ψ

)
H

by (1.6), we see that∫
Ω

(
F−1z∗

)
ψ =

∫
Ω

β(z)ψ for all ψ ∈ C∞c (Ω).

Thus, since β(z) ∈ L1
loc(Ω) by (C1), it follows from du Bois Reymond’s lemma that

F−1z∗ = β(z) a.e. on Ω.

That is, (3.1) holds. Conversely, if (3.1) holds, then for all w ∈ D(φ),

(z∗, w − z)V ∗ =
(
F−1z∗, w − z

)
H

=

∫
Ω

β(z)(w − z) ≤
∫

Ω

(
β̂(w)− β̂(z)

)
,

where we have used β = ∂β̂, and hence z∗ ∈ ∂φ(z). Therefore we conclude that ∂φ is
single-valued and for all z ∈ D(∂φ), β(z) ∈ V and (3.2) holds.

Now we prove the first main theorem.
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3.2 Proof of Theorem 1.1

Proof of Theorem 1.1. To prove existence of weak solutions to (P) we turn our eyes
to the following initial value problem (3.4):u

′(t) + ∂φ(u(t)) = Ff(t) in V ∗ for a.e. t ∈ [0, T ],

u(0) = u0 in V ∗.
(3.4)

Thanks to Lemma 2.3, there exists a unique solution u ∈ H1(0, T ;V ∗) of (3.4) such that
u(t) ∈ D(∂φ) for a.a. t ∈ (0, T ). Putting µ(t) := −F−1(u′(t)), we deduce from (1.5), (1.6)
and (3.2) that µ ∈ L2(0, T ;V ) and (u, µ) satisfies (1.8)-(1.10).

Next we show (1.11). It follows from the equation in (3.4) that

|u′(s)|2V ∗ =
(
u′(s), u′(s)

)
V ∗

=
(
u′(s),−∂φ(u(s)) + Ff(s)

)
V ∗

= −
(
u′(s), ∂φ(u(s))

)
V ∗

+
(
u′(s), Ff(s)

)
V ∗
.

Here Lemma 2.2 gives (
u′(s), ∂φ(u(s))

)
V ∗

=
d

ds
φ(u(s)),

and (1.6) and Young’s inequality yield

(u′(s), Ff(s))V ∗ = 〈u′(s), f(s)〉V ∗,V ≤
1

2
|u′(s)|2V ∗ +

1

2
|f(s)|2V .

Therefore we obtain
1

2
|u′(s)|2V ∗ ≤ −

d

ds
φ(u(s)) +

1

2
|f(s)|2V .

Integrating this inequality yields

1

2

∫ t

0

|u′(s)|2V ∗ ds ≤ −φ(u(t)) + φ(u0) +
1

2
|f |2L2(0,T ;V ),

i.e.,
1

2

∫ t

0

|u′(s)|2V ∗ ds+

∫
Ω

β̂(u(t)) ≤
∫

Ω

β̂(u0) +
1

2
|f |2L2(0,T ;V ).

Since (C1) implies ∫
Ω

β̂(u(t)) ≥ c1|u(t)|2H ,

we see that ∫ t

0

|u′(s)|2V ∗ ds+ 2c1|u(t)|2H ≤ 2

∫
Ω

β̂(u0) + |f |2L2(0,T ;V ) =: M1.

This implies (1.11). Moreover, (1.11) shows that u ∈ L∞(0, T ;H).



230

Next we show (1.12). Since µ(s) = −F−1
(
u′(s)

)
, we have from (1.5) and (1.6) that∫ t

0

|µ(s)|2V ds =

∫ t

0

∣∣F−1
(
u′(s)

)∣∣2
V
ds =

∫ t

0

∣∣u′(s)∣∣2
V ∗
ds.

Thus we obtain (1.12) from (1.11).
Next we verify (1.13). From (1.9) and Young’s inequality we infer

|β(u(s))|2V =
(
β(u(s)), β(u(s))

)
V

=
(
µ(s) + f(s), β(u(s))

)
V

≤ |µ(s)|2V + |f(s)|2V +
1

2
|β(u(s))|2V .

Therefore, ∫ t

0

|β(u(s))|2V ds ≤ 2

∫ t

0

|µ(s)|2V ds+ 2|f |2L2(0,T ;V ).

Consequently, (1.13) holds from (1.12).

4 Existence of solutions to (P)ε

4.1 Preliminaries for (P)ε

We first give a useful inequality.

Lemma 4.1. Let β be a single-valued maximal monotone function as in Section 1. Then(
−∆u, βλ(u)

)
H
≥ 0 for all u ∈ W,(

−∆u, β(u)
)
H
≥ 0 for all u ∈ W with β(u) ∈ H,

where W =
{
z ∈ H2(Ω) | ∂νz = 0 a.e. on ∂Ω

}
and {βλ}λ>0 is the Yosida approximation

of β: βλ := λ−1
(
I − (I + λβ)−1

)
.

Proof. It follows from Okazawa [19, Proof of Theorem 3 with a = b = 0] that(
−∆u, βλ(u)

)
H
≥ 0 for all u ∈ W and λ > 0.

Noting that βλ(u) → β(u) in H as λ ↘ 0 if β(u) ∈ H (see e.g., [5, Proposition 2.6] or
[21, Theorem IV.1.1]), we can obtain the second inequality.

The above and the next lemmas will be used in order to regard (P)ε as a problem of
the form stated in Lemma 2.3.

Lemma 4.2. Let A and B be maximal monotone operators in H such that

(i) D(A) ∩D(B) 6= ∅,

(ii) (Av, Bλv)H ≥ 0 for all v ∈ D(A) and λ > 0,

where {Bλ}λ>0 is the Yosida approximation of B. Then A+B is maximal monotone.

Proof. We can show this lemma by applying Barbu [2, Theoreme II.3.6].



231

4.2 Convex function for Proof of Theorem 1.2

Let ε > 0. Then we define a function φε : V ∗ → R as

φε(z) =


ε

2

∫
Ω

(
|z(x)|2 + |∇z(x)|2

)
dx+

∫
Ω

β̂(z(x)) dx+

∫
Ω

π̂ε(z(x)) dx

if z ∈ D(φε) := {z ∈ V | β̂(z) ∈ L1(Ω)},

+∞ otherwise.

Lemma 4.3. Let φε be as above. Then there exists ε ∈ (0, 1] such that for all ε ∈ (0, ε],
φε is a proper l.s.c. convex function on V ∗.

Proof. Since 0 belongs to D(φε) and r 7→ β̂(r), r 7→ ε
2
r2 + π̂ε(r) are convex, it follows

that φε is proper and convex. To prove the lower semicontinuity of φε in V ∗ let {zn} be a
sequence in D(φε) such that zn → z in V ∗ as n→ +∞. We put α := lim infn→+∞ φε(zn).
If α = +∞, then φε(z) ≤ +∞ = α = lim infn→+∞ φε(zn). We assume that α < +∞.
Then there exists a subsequence {znk

} of {zn} such that φε(znk
) ↗ α as k → +∞ and

hence,

α ≥ φε(znk
) =

∫
Ω

β̂(znk
) +

∫
Ω

π̂ε(znk
) +

ε

2
|znk
|2V ≥ c1

∫
Ω

|znk
|2 +

∫
Ω

π̂ε(znk
) +

ε

2
|znk
|2V .

Here, we deduce from (C4) that there exists ε ∈ (0, 1] such that c2(ε) < 2c1 for all
ε ∈ (0, ε]. The definition of π̂ε shows that for all ε ∈ (0, ε],

|π̂ε(r)| =
∣∣∣∣∫ r

0

(πε(s)− πε(0)) ds

∣∣∣∣ ≤ |π′ε|L∞(R)

∣∣∣∣∫ r

0

|s| ds
∣∣∣∣ ≤ 1

2
c2(ε)|r|2 ≤ c1|r|2.

Hence α ≥ ε
2
|znk
|2V . Thus znk

⇀ z weakly in V as k → +∞. Now let φε,V := φε|V . Since

β̂ is proper l.s.c. convex and r 7→ ε
2
r2 + π̂ε(r) is convex, the function φε,V is also proper

l.s.c. convex on V and hence φε,V is weakly l.s.c. on V . So it follows that

φε,V (z) ≤ lim inf
k→+∞

φε,V (znk
) ≤ α < +∞.

Consequently, z ∈ D(φε,V ) = D(φε) and φε(z) = φε,V (z) ≤ α = lim infn→+∞ φε(zn).

Lemma 4.4. Define a function φHε : H → R as

φHε (w) =


1

2

∫
Ω

|w|2 +
ε

2

∫
Ω

(
|w|2 + |∇w|2

)
+

∫
Ω

β̂(w) +

∫
Ω

π̂ε(w)

if w ∈ D(φHε ) := {w ∈ V | β̂(w) ∈ L1(Ω)},

+∞ otherwise.

Then φHε is a proper l.s.c. convex function on H and

D(∂φHε ) ⊂ W. (4.1)
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Proof. As in the proof of Lemma 4.3, we first observe that φHε is a proper l.s.c. convex

function on H. Next we set φ
(1)
H : H → R as

φ
(1)
H (w) =


1

2

∫
Ω

|w|2 +
ε

2

∫
Ω

(
|w|2 + |∇w|2

)
+

∫
Ω

π̂ε(w) if w ∈ D(φ
(1)
H ) := V,

+∞ otherwise

and φ
(2)
H : H → R as

φ
(2)
H (w) =


∫

Ω

β̂(w) if w ∈ D(φ
(2)
H ) := {w ∈ H | β̂(w) ∈ L1(Ω)},

+∞ otherwise.

Then φ
(1)
H and φ

(2)
H are proper l.s.c. convex functions on H and

w ∈ D(∂φ
(1)
H ) =⇒ w ∈ W and ∂φ

(1)
H (w) = w + ε(−∆ + I)w + πε(w), (4.2)

w ∈ D(∂φ
(2)
H ) =⇒ ∂φ

(2)
H (w) = β(w). (4.3)

Since (4.3) is well-known (see e.g., [5, Example 2.8.3], [21, Example II.8.B]), we verify

only (4.2). Let w ∈ D(∂φ
(1)
H ) and w∗ ∈ ∂φ

(1)
H (w). Then it follows from the inclusion

D(∂φ
(1)
H ) ⊂ D(φ

(1)
H ) that w ∈ D(φ

(1)
H ). Hence we have from the definition of ∂φ

(1)
H that

(w∗, w̃ − w)H ≤
1

2

∫
Ω

(
|w̃|2 − |w|2

)
+
ε

2

∫
Ω

(
|w̃|2 − |w|2

)
+
ε

2

∫
Ω

(
|∇w̃|2 − |∇w|2

)
+

∫
Ω

(
π̂ε(w̃)− π̂ε(w)

)
.

Here, choose w̃ = w ± λv (λ > 0) in the above inequality for each v ∈ V and divide the
both sides by λ and finally pass to the limit λ↘ 0. Then we obtain

(w∗, v)H =

∫
Ω

wv + ε

(∫
Ω

wv +

∫
Ω

∇w · ∇v
)

+

∫
Ω

πε(w)v for all v ∈ V.

Hence we see that∫
Ω

wv +

∫
Ω

∇w · ∇v =

∫
Ω

w∗ − w − πε(w)

ε
v for all v ∈ V.

Thus we derive that w ∈ W and

w∗ = w + ε(−∆ + I)w + πε(w).

That is, (4.2) holds. Now we show that (4.1). If(
∂φ

(1)
H (w), βλ(w)

)
H
≥ 0 for all w ∈ D(∂φ

(1)
H ), (4.4)

then ∂φ
(1)
H + ∂φ

(2)
H is maximal monotone by Lemma 4.2 and hence we have

∂φHε = ∂(φ
(1)
H + φ

(2)
H ) = ∂φ

(1)
H + ∂φ

(2)
H ,
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with

D(∂φε) = D(∂φ
(1)
H ) ∩D(∂φ

(2)
H ); (4.5)

note that φH = φ
(1)
H + φ

(2)
H is also proper l.s.c. convex and ∂(φ

(1)
H + φ

(2)
H ) ⊂ ∂φ

(1)
H + ∂φ

(2)
H .

We can show (4.4) by using Lemma 4.1. Indeed, since the function r 7→ ε
2
r2 + π̂ε(r) is

convex, it follows that r 7→ εr + πε(r) is monotone, so that the monotonicity of βλ yields

(εw + πε(w), βλ(w))H ≥ 0,

and hence we see from Lemma 4.1 that(
∂φ

(1)
H (w), βλ(w)

)
H

= (w + ε(−∆ + I)w + πε(w), βλ(w))H

= (w, βλ(w))H + ε(−∆w, βλ(w))H + (εw + πε(w), βλ(w))H

≥ 0.

Therefore we obtain (4.5). On the other hand, we infer from (4.2) that

D(∂φ
(1)
H ) =

{
w ∈ D(φ

(1)
H )

∣∣ ∂φ(1)
H (w) ∈ H

}
=
{
w ∈ V

∣∣ w ∈ W, w + ε(−∆ + I)w + πε(w) ∈ H
}

= W (4.6)

and from (4.3) that

D(∂φ
(2)
H ) =

{
w ∈ D(φ

(2)
H )

∣∣ ∂φ(2)
H (w) ∈ H

}
= {w ∈ H

∣∣ β(w) ∈ H}. (4.7)

Thus, connecting (4.6) and (4.7) to (4.5) gives (4.1).

Lemma 4.5. Let z ∈ D(∂φε) := {z ∈ D(φε) | ∅ 6= ∂φε(z) ⊂ V ∗} ⊂ D(φε). Then
z∗ ∈ ∂φε(z) in V ∗ if and only if z ∈ W and

F−1z∗ = ε(−∆ + I)z + β(z) + πε(z) (4.8)

Consequently, ∂φε is single-valued and for all z ∈ D(∂φε) it holds that

z ∈ W, ε(−∆ + I)z + β(z) + πε(z) ∈ V and

∂φε(z) = F (ε(−∆ + I)z + β(z) + πε(z)). (4.9)

Proof. Let z ∈ D(∂φε) and z∗ ∈ ∂φε(z). Noting that D(∂φε) ⊂ D(φε), we see from the
definition of ∂φε that for all w ∈ D(φε),

(z∗, w − z)V ∗ ≤
ε

2

∫
Ω

(
|w|2 − |z|2

)
+
ε

2

∫
Ω

(
|∇w|2 − |∇z|2

)
+

∫
Ω

(
β̂(w)− β̂(z)

)
+

∫
Ω

(
π̂ε(w)− π̂ε(z)

)
.
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Here, choose w = z ± λψ (λ > 0) in the above inequality for each ψ ∈ D(Ω) := C∞c (Ω)
and divide the both sides by λ and finally pass to the limit λ↘ 0. Then for all ψ ∈ D(Ω),
we obtain

(z∗, ψ)V ∗ = ε

(∫
Ω

zψ +

∫
Ω

∇z · ∇ψ
)

+

∫
Ω

β(z)ψ +

∫
Ω

πε(z)ψ.

The relation (z∗, ψ)V ∗ =
(
F−1z∗, ψ)H and the arbitrariness of ψ ∈ D(Ω) yield∫

Ω

z(−∆ + I)ψ =

∫
Ω

F−1z∗ − β(z)− πε(z)

ε
ψ for all ψ ∈ D(Ω).

This implies that

(−∆ + I)D′(Ω)z =
F−1z∗ − β(z)− πε(z)

ε
in D′(Ω),

where D′(Ω) is the space of distributions on Ω. Thus we see that

∂φε(z) = F
(
ε(−∆ + I)D′(Ω)z + β(z) + πε(z)

)
for all z ∈ D(∂φε).

It suffices from Lemma 4.4 to prove the following inclusion relation:

D(∂φε) ⊂ D(∂φHε ). (4.10)

It holds that

D(∂φε) = {w ∈ D(φε) | ∂φε(w) ∈ V ∗}

=
{
w ∈ V

∣∣∣ β̂(w) ∈ L1(Ω), F
(
ε(−∆ + I)D′(Ω)w + β(w) + πε(w)

)
∈ V ∗

}
=
{
w ∈ V

∣∣∣ β̂(w) ∈ L1(Ω), ε(−∆ + I)D′(Ω)w + β(w) + πε(w) ∈ V
}

and it follows that

D(∂φHε ) = {w ∈ D(φHε ) | ∂φHε (w) ∈ H}

=
{
w ∈ V

∣∣∣ β̂(w) ∈ L1(Ω), w + ε(−∆ + I)D′(Ω)w + β(w) + πε(w) ∈ H
}

=
{
w ∈ V

∣∣∣ β̂(w) ∈ L1(Ω), ε(−∆ + I)D′(Ω)w + β(w) + πε(w) ∈ H
}
.

That is, (4.10) holds.

4.3 Proof of Theorem 1.2

We are now in a position to complete the proof of Theorem 1.2.



235

Proof of Theorem 1.2. To show existence of weak solutions to (P)ε we consideru
′
ε(t) + ∂φε(uε(t)) = Ff(t) in V ∗ for a.a. t ∈ [0, T ],

uε(0) = u0ε in V ∗.
(4.11)

In light of Lemma 2.3, there exists a unique solution uε ∈ H1(0, T ;V ∗) of (4.11) such that
uε(t) ∈ D(∂φε) for a.a. t ∈ (0, T ). Putting µε(t) := −F−1

(
u′ε(t)

)
, we deduce from (1.5),

(1.6) and (4.9) that µε ∈ L2(0, T ;V ) and (uε, µε) satisfies (1.16)-(1.18).
Next we show (1.19). It follows from the equation in (4.11) that

|u′ε(s)|2V ∗ =
(
u′ε(s), u

′
ε(s)

)
V ∗

=
(
u′ε(s),−∂φε(uε(s)) + Ff(s)

)
V ∗

= −
(
u′ε(s), ∂φε(uε(s))

)
V ∗

+ (u′ε(s), Ff(s))V ∗ .

Here, we have by Lemma 2.2,

(
u′ε(s), ∂φε(uε(s))

)
V ∗

=
d

ds
φε(uε(s)),

and (1.6) and by Young’s inequality yield

(u′ε(s), Ff(s))V ∗ = 〈u′ε(s), f(s)〉V ∗,V ≤
1

2
|u′ε(s)|2V ∗ +

1

2
|f(s)|2V .

Therefore we obtain
1

2
|u′ε(s)|2V ∗ ≤ −

d

ds
φε(uε(s)) +

1

2
|f(s)|2V .

Integrating this inequality yields

1

2

∫ t

0

|u′ε(s)|2V ∗ ds ≤ −φε(uε(t)) + φε(u0ε) +
1

2
|f |2L2(0,T ;V ),

i.e.,

1

2

∫ t

0

|u′ε(s)|2V ∗ ds+
ε

2
|uε(t)|2V +

∫
Ω

β̂(uε(t)) +

∫
Ω

π̂ε(uε(t))

≤ ε

2
|u0ε|2V +

∫
Ω

β̂(u0ε) +

∫
Ω

π̂ε(u0ε) +
1

2
|f |2L2(0,T ;V ).

Here (C1) implies ∫
Ω

β̂(uε(t)) ≥ c1|uε(t)|2H . (4.12)

Recalling (1.14), we infer that

|π̂ε(r)| ≤
1

2
|π′ε|L∞(R)|r|2 ≤

1

2
c2(ε)|r|2 (4.13)
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for all r ∈ R. Now, from (C4) we deduce that there exists ε ∈ (0, 1] such that c2(ε) < 2c1

for all ε ∈ (0, ε]. Thus combining (4.12) and (4.13) gives∫
Ω

β̂(uε(t)) +

∫
Ω

π̂ε(uε(t)) ≥
1

2

(
2c1 − c2(ε)

)
|uε(t)|2H

for a.a. t ∈ (0, T ). Moreover, using (1.15) of (C5) leads to

ε

2
|u0ε|2V +

∫
Ω

β̂(u0ε) +

∫
Ω

π̂ε(u0ε) ≤
c3(ε)

2
+ c3(ε) +

1

2
c2(ε)|u0ε|2H

≤ 3

2
c3(ε) +

1

2
c2(ε)c3(ε).

Therefore we see that∫ t

0

|u′ε(s)|2V ∗ ds+ ε|uε(t)|2V +
(
2c1 − c2(ε)

)
|uε(t)|2H ≤ 3c3(ε) + c2(ε)c3(ε) + |f |2L2(0,T ;V ).

This implies (1.19) with M2(ε) := 3c3(ε) + c2(ε)c3(ε) + |f |2L2(0,T ;V ).

Next we prove (1.20). Since µε(s) = −F−1
(
u′ε(s)

)
, it follows that∫ t

0

|µε(s)|2V ds =

∫ t

0

∣∣−F−1
(
u′ε(s)

)∣∣2
V
ds =

∫ t

0

∣∣u′ε(s)∣∣2V ∗ ds.
Therefore we arrive at (1.20) via (1.19).

Next we show (1.21). Noting by Lemma 4.5 that uε(s) ∈ W for a.a. s ∈ (0, T ) and
recalling the definition of µ(·), the monotonicity of β and Lemma 4.1, we have

|β(uε(s))|2H =
(
β(uε(s)), β(uε(s))

)
H

=
(
µε(s)− ε(−∆ + I)uε(s)− πε(uε(s)) + f(s), β(uε(s))

)
H

=
(
µε(s)− πε(uε(s)) + f(s), β(uε(s))

)
H

− ε
(
−∆uε(s), β(uε(s))

)
H
− ε
(
uε(s), β(uε(s))

)
H

≤ (|µε(s)|V + |πε(uε(s))|H + |f(s)|V )|β(uε(s))|H ,

where Young’s inequality and (C4) yield(
|µε(s)|V + |πε(uε(s))|H + |f(s)|V

)
|β(uε(s))|H

≤ 1

2
(|µε(s)|V + |π′ε|L∞(R)|uε(s)|H + |f(s)|V )2 +

1

2
|β(uε(s))|2H

≤ 3

2

(
|µε(s)|2V + c2(ε)2|uε(s)|2H + |f(s)|2V

)
+

1

2
|β(uε(s))|2H .

Therefore,∫ t

0

|β(uε(s))|2H ds ≤ 3
(∫ t

0

|µε(s)|2V ds+ c2(ε)2

∫ t

0

|uε(s)|2H ds+ |f |2L2(0,T ;V )

)
.

Thus we obtain (1.21) by virtue of (1.19) and (1.20).
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Next we show (1.22). It follows from (1.17) that∫ t

0

|ε(−∆ + I)uε(s)|2H ds

=

∫ t

0

|µε(s)− β(uε(s))− πε(uε(s)) + f(s)|2H ds

≤ 4
(∫ t

0

|µε(s)|2V ds+

∫ t

0

|β(uε(s))|2H ds+

∫ t

0

|πε(uε(s))|2H ds+

∫ t

0

|f(s)|2V ds
)

≤ 16
(∫ t

0

|µε(s)|2V ds+ c2(ε)2

∫ t

0

|uε(s)|2H ds+ |f |2L2(0,T ;V )

)
.

Hence, by the standard elliptic regularity estimate that there exists a constant L > 0 such
that |w|W ≤ L|(−∆ + I)w|H for all w ∈ W , we infer∫ t

0

|εuε(s)|2W ds ≤ 16L2
(∫ t

0

|µε(s)|2V ds+ c2(ε)2

∫ t

0

|uε(s)|2H ds+ |f |2L2(0,T ;V )

)
for all t ∈ [0, T ]. Therefore (1.22) follows from (1.19) and (1.20).

Moreover, we see from (1.19) and (1.22) that uε ∈ L∞(0, T ;V ) and uε ∈ L2(0, T ;W ),
respectively.

5 Error estimates

Regarding (P)ε as approximate problems of (P) as ε↘ 0, we can obtain the following
theorem which gives an information about the error estimate between the solution of (P)
and the solution of (P)ε. Our proof is based on a direct estimate and hence it is simpler
than that in [8].

Theorem 5.1. In (C4) and (C5) assume further that

c2(ε) = c̃2ε, c3(ε) ≡ c̃3 (5.1)

and

|u0ε − u0|V ∗ ≤ c4ε
1/4 (5.2)

for some constants c̃2, c̃3 and c4 > 0 independent of ε. Let (uε, µε) and (u, µ) be weak
solutions of (P)ε and (P), respectively. Then there exist constants C∗ > 0 and ε ∈ (0, 1],
independent of ε, such that

|uε − u|2C([0,T ];V ∗) +

∫ T

0

(
β(uε(s))− β(u(s)), uε(s)− u(s)

)
H
ds ≤ C∗ε1/2 (5.3)

for all ε ∈ (0, ε].
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Proof of Theorem 5.1. Under the additional condition (5.1) we have from Theorems
1.1 and 1.2 that there exist constants M1 > 0, M2 > 0 and ε ∈ (0, 1], independent of ε,
such that 2c1 − c̃2ε ≥ c1 and∫ T

0

|u′(s)|2V ∗ ds+ 2c1|u(t)|2H ≤M1, (5.4)∫ T

0

|u′ε(s)|2V ∗ ds+ ε|uε(t)|2V + c1|uε(t)|2H ≤M2 (5.5)

for all t ∈ [0, T ] and ε ∈ (0, ε]. Now we see from (1.8) and (1.16) that

1

2

d

ds
|uε(s)− u(s)|2V ∗ = (uε(s)− u(s), u′ε(s)− u′(s))V ∗

=
〈
uε(s)− u(s), F−1u′ε(s)− F−1u′(s)

〉
V ∗,V

= −〈uε(s)− u(s), µε(s)− µ(s)〉V ∗,V .

Here, since uε ∈ L∞(0, T ;V ), u ∈ L∞(0, T ;H) and µε, µ ∈ L2(0, T ;V ), we derive

〈uε(s)− u(s), µε(s)− µ(s)〉V ∗,V = (uε(s)− u(s), µε(s)− µ(s))H .

Thus, by (1.17) and since the function r 7→ εr + πε(r) is a monotone increasing function,
it follows that

1

2

d

ds
|uε(s)− u(s)|2V ∗ +

(
uε(s)− u(s), β(uε(s))− β(u(s))

)
H

= −
(
uε(s)− u(s), ε(−∆ + I)uε(s) + πε(uε(s))

)
H

≤ ε
(
u(s), (−∆ + I)uε(s)

)
H

+
(
u(s), πε(uε(s))

)
H
.

Integrating this inequality yields

1

2
|uε(t)− u(t)|2V ∗ +

∫ t

0

(
uε(s)− u(s), β(uε(s))− β(u(s))

)
H
ds

≤ 1

2
|u0ε − u0|2V ∗ + ε

∫ t

0

(
u(s), (−∆ + I)uε(s)

)
H
ds+

∫ t

0

(
u(s), πε(uε(s))

)
H
ds

=: A(ε) +Bε(t) + Cε(t). (5.6)

From (5.2) we have

A(ε) ≤ 1

2
c2

4ε
1/2. (5.7)

By (1.14), (5.1), (5.4) and (5.5) there exist a constant C1 > 0 such that

Cε(t) ≤ c̃2ε

∫ t

0

|uε(s)|H |u(s)|H ds ≤ c̃2

√
M2

c1

√
M1

2c1

Tε ≤ C1ε. (5.8)
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Moreover, Schwarz’s inequality and (5.4) give

Bε(t) ≤ ε1/2
(
ε

∫ t

0

|(−∆ + I)uε(s)|2H ds
)1/2(∫ t

0

|u(s)|2H ds
)1/2

≤
√
M1T

2c1

(
ε

∫ t

0

|(−∆ + I)uε(s)|2H ds
)1/2

ε1/2

Here, by (1.16), (1.17), Young’s inequality, (1.7), (5.4) and (5.5), it follows that

ε|(−∆ + I)uε(s)|2H =
(
µ′ε(s), (−∆ + I)uε(s)

)
H
−
(
β(uε(s)), (−∆ + I)uε(s)

)
H

−
(
πε(uε(s)), (−∆ + I)uε(s)

)
H

+
(
f(s), (−∆ + I)uε(s)

)
H

= −〈u′ε(s), uε(s)〉V ∗,V −
(
β(uε(s)), −∆uε(s)

)
H

−
(
β(uε(s)), uε(s)

)
H
−
(
πε(uε(s)), uε(s)

)
V

+ (g(s), uε(s))H

≤ −1

2

d

ds
|uε(s)|2H + c̃2ε|uε(s)|2V +

1

2
|g(s)|2H +

1

2
|uε(s)|2H

≤ −1

2

d

ds
|uε(s)|2H + c̃2M2 +

1

2
|g(s)|2H +

M2

2c1

,

and hence there exists a constant C2 > 0 such that

ε

∫ t

0

|(−∆ + I)uε(s)|2H ds ≤
1

2
|u0ε|2H + c̃2M2T +

1

2
|g|2L2(0,T ;H) +

M2

2c1

T ≤ C2.

Thus, there exists a constant C3 > 0 such that

Bε(t) ≤ C3ε
1/2. (5.9)

Plugging (5.7), (5.8) and (5.9) into (5.6), we have

|uε − u|2C([0,T ];V ∗) ≤ c2
4ε

1/2 + 2C3ε
1/2 + 2C1ε,

and ∫ T

0

(
uε(s)− u(s), β(uε(s))− β(u(s))

)
H
ds ≤ 1

2
c2

4ε
1/2 + C3ε

1/2 + C1ε,

that is, there exists C∗ > 0 such that the error estimate (5.3) holds.

6 Examples

In this section we apply Theorems 1.1, 1.2 and 5.1 to the following two examples.

Example 6.1 (porous media and Cahn–Hilliard type equations). We consider

β(r) = |r|q−1r + r (q > 1), πε(r) = −εr.

This β is the function obtained by adding the correction term r to |r|q−1r in the porous
media equation (see, e.g., [1, 18, 22, 23]). On the other hand, πε is the function appearing
in Cahn–Hilliard type equations.
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Example 6.2 (fast diffusion and Cahn–Hilliard type equations). Consider

β(r) = |r|q−1r + r (0 < q < 1), πε(r) = −εr

This β is the function obtained by adding the correction term r to |r|q−1r in the fast
diffusion equation (see, e.g., [11, 20, 22]).

In both examples we can show that β and πε satisfy (C1), (C4) and (C5) as follows.
Let q > 0. Since

β(r) = |r|q−1r + r = β̂ ′(r) = ∂β̂(r),

where β̂(r) := 1
q+1
|r|q+1 + 1

2
|r|2, we see that (C1) is satisfied.

Next it follows that πε(r) = −εr is Lipschitz continuous and

π′ε(r) = −ε,
ε

2
r2 + π̂ε(r) =

ε

2
r2 +

∫ r

0

πε(s) ds =
ε

2
r2 − ε

2
r2 = 0.

Hence (C4) holds.
To verify (C5) we assume (C3), i.e., u0 ∈ L2(Ω) ∩ Lq+1(Ω). Then we put

AL2 := −∆ + I : D(AL2) := W ⊂ L2(Ω)→ L2(Ω),

(JL2)λ := (I + λAL2)−1,

ALq+1 := −∆ + I : D(ALq+1) := Y ⊂ Lq+1(Ω)→ Lq+1(Ω),

(JLq+1)λ := (I + λALq+1)−1,

where Y :=
{
z ∈ W 2, q+1(Ω) | ∂νz = 0 a.e. on ∂Ω

}
. There exists u0ε ∈ W ∩ Y such thatu0ε + ε(−∆ + 1)u0ε = u0 in Ω,

∂νu0ε = 0 on ∂Ω,

that is,
u0ε = (JL2)εu0 = (JLq+1)εu0.

From the properties of (JL2)ε and (JLq+1)ε we have

u0ε = (JL2)εu0 → u0 in L2(Ω) as ε↘ 0,

|u0ε|L2(Ω) = |(JL2)εu0|L2(Ω) ≤ |u0|L2(Ω),

‖u0ε‖Lq+1(Ω) = ‖(JLq+1)εu0‖Lq+1(Ω) ≤ ‖u0‖Lq+1(Ω),

and hence∫
Ω

β̂(u0ε) =
1

q + 1
‖u0ε‖q+1

Lq+1(Ω) +
1

2
|u0ε|2L2(Ω) ≤

1

q + 1
‖u0‖q+1

Lq+1(Ω) +
1

2
|u0|2L2(Ω),

ε|u0ε|2H1(Ω) =
(
ε(−∆ + I)u0ε, u0ε

)
L2(Ω)

= (u0 − u0ε, u0ε)L2(Ω) ≤ |u0|2L2(Ω). (6.1)
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Hence there exists u0ε satisfying (C5). Moreover, we observe that

|u0ε − u0|H−1(Ω) ≤ ε1/2|u0|L2(Ω).

Indeed, it follows from (6.1) that

|u0ε − u0|2H−1(Ω) = |ε(−∆ + I)u0ε|2H−1(Ω) = ε2|Fu0ε|2H−1(Ω) = ε2|u0ε|2H1(Ω) ≤ ε|u0|2L2(Ω).

Finally, letting g ∈ L2
(
0, T ;L2(Ω)

)
, we find a function f ∈ L2(0, T ;H2(Ω)) satisfying

(C2). From the above, (C1), (C2), (C4) and (C5) hold and we obtain Theorems 1.1, 1.2
and 5.1 for the functions β and πε in Examples 6.1 and 6.2.

Remark 6.1. In this paper, since the increasing condition of β̂ is quadratic, we can only
deal with the case of nondegenerate diffusion terms adding the correction term “+u” to
β(u). We can exclude such the correction term by translation with a constant when Ω
is bounded; however, we cannot do it when Ω is unbounded. By revising the increasing
condition of β̂ with the m-th power (m > 1), we can deal with the porous media equation
and the fast diffusion equation without the correction term “+u”. We will discuss this in
the continuation [17].
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