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Abstract. In this paper we consider infinite number of one dimensional free boundary
problems as a mathematical model describing adsorption phenomena in holes of a porous
material. Here, we denote by P(x, u0(x), h(x)) the free boundary problem for x ∈ Ω,
where x is a parameter taking a value in Ω and u0(x) and h(x) are the initial data and
the boundary data.

In [8] the problem was studied and we obtain the continuous property of the solution
with respect to x, when u0 and h are continuous. The main purpose of this paper is to
establish the measurability of the solution with respect to x under relaxed assumptions
given in [8] for u0 and h.
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1 Introduction

In this paper, we consider the following free boundary problem in one dimensional domain
for each x ∈ Ω:

ρvut(x)− kuzz(x) = 0 on (s(x)(t), L) for t ∈ [0, T ], (1.1)

u(x)(t, L) = h(x, t) for 0 ≤ t ≤ T, (1.2)

kuz(x)(t, s(x)(t)) = (ρw − ρvu(x)(t, s(x)(t))) st(x)(t) for t ∈ [0, T ], (1.3)

st(x)(t) = a (u(x)(t, s(x)(t)))− φ(s(x)(t)) for t ∈ [0, T ], (1.4)

s(x)(0) = s0(x), u(x)(0, z) = u0(x, z) for z ∈ [s0(x), L], (1.5)

where Ω is a bounded domain of R3, L, ρv, ρw, k and a are given positive constants, h is
a given function on Ω × (0, T ), φ is a given continuous function on R and s0 and u0 are
also given functions on Ω, and on Qs0(Ω) := {(x, z) : x ∈ Ω, s0(x) < z < L}, respectively.

This model is proposed by Sato-Aiki-Murase-Shirakawa [7, 9] and represents the re-
lationship between the relative humidity u and the degree of saturation s in the porous
material. More precisely, s = s(x) is a function on [0, T ] and x ∈ Ω so that s(x) = s(x)(t)
for t ∈ [0, T ] and u = u(x) = u(x)(t, z) is a function on Qs(x)(T ) given by

Qs(x)(T ) := {(t, z) : 0 < t < T, s(x)(t) < z < L}.

Throughout this paper, we sometimes omit the parameter x for simplicity as follows :
u = u(x) = u(t, z) = u(x)(t, z) and s = s(x) = s(t) = s(x)(t).

For the above problem {(1.1)− (1.5)} denoted by P(x) := Ph,s0,u0(x), in [8] we proved
the existence of a solution globally in time. Here, we introduce the notation ũ(t, y) =
u(t, (1 − y)s(t) + yL) for y ∈ [0, 1] and reformulate P(x) to the following problem in a
cylindrical domain denoted by P̃(x) := P̃h,s0,ũ0(x):

ρvũt −
k

(L− s(t))2
ũyy =

ρv(1− y)st(t)

L− s(t)
ũy in Q(T ) := (0, T )× (0, 1),

ũ(t, 1) = h(x, t) for 0 ≤ t ≤ T,

k

L− s(t)
ũy(t, 0) = (ρw − ρvũ(t, 0))st(t) for 0 ≤ t ≤ T,

st(t) = a(ũ(t, 0)− φ(s(t))) for 0 ≤ t ≤ T,

s(0) = s0(x) in Ω,

ũ(0, y) = u(0, (1− y)s(0) + yL) on [0, 1].

As a important result in [8], we showed that the solution (s, ũ) = (s(x), ũ(x)) is a contin-
uous in R × L2(Q(T )) with respect to x ∈ Ω. From this continuity, we infer that s and
ũ are measurable on Ω × [0, T ], and on Ω × [0, T ] × (0, 1), respectively. However, in the
result of [8], we impose a strong assumption for h, s0 and u0. In this paper, as a sequel of
[8], we relax the assumption for h, s0 and u0, and consider the existence and uniqueness
of a solution of P̃(x).

The purpose of this paper is to establish a unique solution (s, ũ) of P̃(x) on [0, T ]
for a.e. x ∈ Ω such that s ∈ L2(0, T ;L2(Ω)) and ũ ∈ L∞(0, T ;L2(Ω × (0, 1))) ∩
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L2(Ω;L∞(0, T ;H1(0, 1))). By using this property, in near future, we can consider h as
the relative humidity in macroscopic domain Ω and consider a two scale problem coupled
by a partial differential equation for h in Ω which was studied in [1, 2, 3, 4] and the
free boundary problem P(x) in each hole as a mathematical model for moisture transport
appearing concrete carbonation process. We refer to [6] for modeling of the two scale
problem.

This paper is organized as follows: In section 2, we note the assumptions and the
main result concerning about the existence and uniqueness of a solution of P̃(x) for a.e.
x ∈ Ω (Theorem 1). Next, as a property of solutions, we state the regularity and the
continuous dependence of the solution thereof (Theorem 2). In section 3, we consider
an approximation problem of P̃(x), and obtain the uniform estimate for an approximate
solution with respect to x ∈ Ω. By using the result of [8], we prove our main theorem by
the limiting process for the solution of the approximation problem of P̃(x).

2 Our main results

In this paper we use the following notations. In general, for a Banach space X we denote
by | · |X its norm. Also, for D ⊂ RN for N = 1 and N = 3, H1(D), H1

0 (D) and H2(D)
are the usual Sobolev spaces.

Throughout this paper, we assume the following conditions:
(A1) Ω is a open bounded connected domain of R3 which has the boundary ∂Ω in the

class of C2.
(A2) k and a are positive constants.
(A3) h ∈ W 1,2(0, T ;L2(Ω))∩L2(0, T ;H2(Ω)), ht ∈ L∞(Ω×(0, T )) with 0 ≤ h ≤ h∗ < 1

a.e. on Ω× (0, T ), where h∗ is a positive constant.
(A4) φ ∈ C1(R) ∩ W 1,∞(R), φ = 0 on (−∞, 0], φ ≤ 1 on R, φ′ > 0 on (0, L] and

φ(L) − h∗ > 0, where h∗ is the same constant as in (A3). Also, we denote by φ̂ the
primitive function of φ with φ̂(0) = 0 and put Cφ = |φ′|L∞(R).

(A5) Two positive constants ρw and ρv satisfy

ρw > 2ρv, ρw ≥ ρv(Cφ + 2), 9aLρ2v ≤ kρw.

(A6) s0 ∈ L2(Ω) such that 0 ≤ s0 ≤ L − δ for δ > 0 a.e. on Ω, and the function
x → |u0(x)|H1(s0,L) is bounded a.e. on Ω and u0(x, L) = h(x, 0) for x ∈ Ω and 0 ≤ u0 ≤ 1
a.e. on Qs0(Ω).

Next, for x ∈ Ω we state the definition of solutions of P(x) on [0, T ].

Definition 1.1 Let x ∈ Ω, and s and u be functions on [0, T ] and Qs(x)(T ), respectively,
for T > 0. We call that a pair (s, u) = (s(x), u(x)) is a solution of P(x) on [0, T ] if the
conditions (S1)-(S6) hold:

(S1) s(x) ∈ W 1,∞(0, T ), 0 ≤ s(x) < L on [0, T ], u(x) ∈ L∞(Qs(x)(T )), ut(x), uzz(x) ∈
L2(Qs(x)(T )) and |uz(x)(·)|L2(s(x)(·),L) ∈ L∞(0, T ).

(S2) ρvut − kuzz = 0 in Qs(x)(T ).
(S3) u(x)(t, L) = h(x, t) for a.e. t ∈ [0, T ].
(S4) kuz(t, s(t)) = (ρw − ρvu(t, s(t))) st(t) for a.e. t ∈ [0, T ].
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(S5) st(t) = a (u(t, s(t)))− φ(s(t)) for a.e. t ∈ [0, T ].
(S6) s(x)(0) = s0(x), u(x)(0, z) = u0(x, z) for z ∈ [s0(x), L].

In order to handle the problem P(x), we can formulate the following problem P̃(x) :=
P̃h,s0,ũ0(x) in a cylindrical domain by changes of variables:

ũ(t, y) := u(t, (1− y)s(t) + yL) for (t, y) ∈ [0, T ]× [0, 1], (2.1)

and 

ρvũt − k
(L−s(t))2

ũyy =
ρv(1−y)st
L−s(t)

ũy a.e. in Q(T ),

ũ(t, 1) = h(x, t) for a.e. t ∈ [0, T ],
k

L−s(t)
ũy(t, 0) = (ρw − ρvũ(t, 0))st(t) for a.e. t ∈ [0, T ],

st(t) = a(ũ(t, 0)− φ(s(t))) for a.e. t ∈ [0, T ],

s(0) = s0(x) in Ω,

ũ(0, y) = u(0, (1− y)s(0) + yL) =: ũ0(y) for y ∈ [0, 1].

For the above problem P̃(x), we call that a pair (s, ũ) is a solution of P̃(x) on [0, T ] if
the following (S) and each equation and condition of P̃(x) hold:

(S)


s(x) ∈ W 1,∞(0, T ), 0 ≤ s(x) < L a.e. on [0, T ],

ũ(x) ∈ W 1,2(0, T ;L2(0, 1)) ∩ L∞(0, T ;H1(0, 1)) ∩ L∞(Q(T ))

∩L2(0, T ;H2(0, 1)).

The first result is concerned about the existence and uniqueness of a solution of P̃(x)
for a.e. x ∈ Ω.

Theorem 1. If (A1) ∼ (A6) hold, then for any T > 0 and a.e. x ∈ Ω there exists a
unique solution (s, ũ) = (s(x), ũ(x)) of P̃(x) on [0, T ] such that 0 ≤ ũ(x) ≤ 1 a.e. on
Q(T ) and 0 ≤ s(x) ≤ s∗ < L a.e. on [0, T ], where s∗ is a positive constant which does
not depend on x.

By Theorem 1 and putting u(x)(t, z) = ũ(x)
(
t, z−s(x)

L−s(x)

)
for (t, z) ∈ Qs(x)(T ) we see

that (s, u) = (s(x), u(x)) is a unique solution of P(x) for a.e. x ∈ Ω. Now, we state our
main theorem of this paper.

Theorem 2. Assume the same assumptions as in Theorem 1.
(i) Let (s(x), ũ(x)) be a solution of P̃(x) on [0, T ] for a.e. x ∈ Ω and T > 0. Then,

ũ ∈ L∞(Ω;W 1.2(0, T ;L2(0, 1))) ∩ L∞(Ω;L∞(0, T ;H1(0, 1))) ∩ L∞(Ω;L2(0, T ;H2(0, 1))) ∩
L∞(Ω;L∞(Q(T ))) and s ∈ L∞(Ω;W 1,∞(0, T )).

(ii) Let (s1(x), ũ1(x)) and (s2(x), ũ2(x)) be a solution of P̃h1,s0,ũ0(x) and P̃h2,s0,ũ0(x)on
[0, T ] for a.e. x ∈ Ω and T > 0, respectively, then it holds that∫

Ω

|ũ1(t)− ũ2(t)|2L2(0,1)dx+

∫
Ω

∫ t

0

|ũ1y(t)− ũ2y(t)|2L2(0,1)dxdt

+|s1 − s2|2L∞(0,t;L2(Ω)) ≤ C|h1 − h2|2W 1,2(0,t;L2(Ω)) for t ∈ [0, T ],

where C is a positive constant depending only on k, a, h∗, Cφ, ρw, ρv and s∗.
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3 Proof of Theorem

At the first of this section, we note a useful lemma. Here, (A3)’ and (A6)’ are the following
conditions:

(A3)’ h ∈ W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)) with 0 ≤ h ≤ h∗ < 1 on Ω × (0, T ),
where h∗ is a positive constant and ht ∈ L∞(Ω× (0, T )) ∩ L2(0, T ;H2(Ω)).

(A6)’ s0 ∈ C(Ω) such that 0 ≤ s0(x) < L for x ∈ Ω, and u0 ∈ C(Qs0(Ω)) such that
u0(x) ∈ H1(s0(x), L) and u0(x, L) = h(x, 0) for x ∈ Ω and 0 ≤ u0 ≤ 1 on Qs0(Ω).

Lemma 1. If (A1), (A2), (A3)’, (A4), (A5), (A6)’ hold, then for any T > 0 and
x ∈ Ω there exists a unique solution (s, ũ) = (s(x), ũ(x)) of P̃(x) on [0, T ] such that
ũ ∈ C(Ω;L2(Q(T ))) and s ∈ C(Ω;C([0, T ])), 0 ≤ ũ(x) ≤ 1 a.e. on Q(T ) and 0 ≤ s(x) ≤
s∗∗ < L a.e. on [0, T ], where s∗∗ is a positive constant which does not depend on x.

This lemma is already proved in [8] so that we omit the precise proof. By using lemma
1, we prove Theorems 1 and 2.

Now, we take {hj} ⊂ C∞(Ω× (0, T )) such that 0 ≤ hj ≤ h∗ on Ω× (0, T ), hj → h in
W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)) as j → ∞ and {hjt} is bounded in L∞(Ω × (0, T )).

Also, we take {s0j} ⊂ C∞(Ω) and {ũ0j} ⊂ C∞(Ω× (0, 1)) such that s0j → s0 in L2(Ω) as
j → ∞, and 0 ≤ s0j ≤ L− δ

2
on Ω, ũ0j → ũ0 in L2(Ω×(0, 1)) and for a.e. x ∈ Ω, ũ0j(x) →

ũ0(x) in H1(0, 1) as j → ∞, and 0 ≤ ũ0j ≤ 1 on Ω× (0, 1), ũ0j(x, 1) = hj(x, 0) for x ∈ Ω.
By using hj, s0j and ũ0j we consider the following problem P̃j(x) := P̃hj ,s0j ,ũ0j

(x) for

x ∈ Ω:

ρvũt −
k

(L− s(t))2
ũyy =

ρv(1− y)st
L− s(t)

ũy in Q(T ), (3.1)

ũ(t, 1) = hj(x, t) for t ∈ (0, T ), (3.2)

k

L− s(t)
ũy(t, 0) = (ρw − ρvũ(t, 0))st(t) for t ∈ (0, T ), (3.3)

st(t) = a(ũ(t, 0)− φ(s(t))) for t ∈ (0, T ), (3.4)

s(0) = s0j(x) in Ω, (3.5)

ũ(0, y) = ũ0j(y) for y ∈ [0, 1]. (3.6)

Obviously, hj, s0j and u0j(x, z) := ũ0j

(
x,

z−s0j(x)

L−s0j(x)

)
satisfy (A3)’ and (A6)’. Therefore,

by Lemma 1, for x ∈ Ω and j ∈ N we see that P̃j(x) has a solution (sj, ũj) = (sj(x), ũj(x))
on [0, T ] such that sj ∈ C(Ω;C([0, T ])) and ũj ∈ C(Ω;L2(Q(T )))∩C(Ω;L2(0, T ;H1(0, 1))),
and 0 ≤ ũj(x) ≤ 1 a.e. on Q(T ) and 0 ≤ sj(x) ≤ s∗∗jx a.e. on [0, T ], where s∗∗jx is a positive
constant with s∗∗jx < L. Here, we show the following lemma.

Lemma 2. Let (sj(x), ũj(x)) be a solution of P̃j(x) on [0, T ] for x ∈ Ω and j ∈ N. Then,
{ũj(x); j ∈ N} is bounded in W 1,2(0, T ;L2(0, 1)) ∩ L∞(0, T ;H1(0, 1)) and {sj(x); j ∈ N}
is bounded in W 1,∞(0, T ) for x ∈ Ω.



24

Proof. For the solution (sj, ũj), by using the notation uj(t, z) = ũj

(
t,

z−sj(x)

L−sj(x)

)
, we can

obtain the following two inequalities:

ρv
2

d

dt

∫ L

sj(t)

|uj(t)− hj(x, t)|2dz +
k

2

∫ L

sj(t)

|ujz(t)|2dx+ ρw
d

dt
φ̂(sj(t))

≤ρw(1 + h∗)L|hjt(x, t)|+
ρwa

2
for x ∈ Ω and a.e. t ∈ [0, T ], (3.7)

and

ρv
2

∫ t1

0

∫ L

sj(t)

|ujt(t)|2dzdt+
k

2

∫ L

sj(t1)

|ujz(t1)|2dz

≤k

2

∫ L

s0j

|ũ0jz|2dz +
k

2

∫ t1

0

sjt(t)|ujz(t, sj(t))|2dt

+ C1

∫ t1

0

(|sjt(t)|2 + |hjt(x, t)|2)dt+ C1 for x ∈ Ω and t1 ∈ [0, T ], (3.8)

where C1 is a positive constant. In fact, (3.7) is obtained by testing ũ − h to (3.1) and

testing st
a
to (3.4). Also, (3.8) is obtained by testing

ũj(t)−ũj(t−τ)

τ
and letting τ → 0. For the

detail derivation, we refer to [5]. Therefore, by the boundedness of {hjt} in L∞(Ω×(0, T ))
and the fact that |sjt| ≤ 2a a.e. on Q(T ) it is easy to see that there exist M1 > 0 and
M2 > 0 independent of j such that∫ L

sj(t1)

|uj(x)(t1, z)|2dz ≤ M1,

∫ t1

0

∫ L

sj(t)

|ujz(x)(t, z)|2dzdt ≤ M1, (3.9)

and∫ t1

0

∫ L

sj(t)

|ujt(x)|2dzdt ≤ M2,

∫ L

sj(t1)

|ujz(x)(t1)|2dz ≤ M2 for t1 ∈ [0, T ] and a.e. x ∈ Ω.

(3.10)
Now, by putting

s∗ := L−

(
φ(L)− h∗

2(
√
M2 + Cφ

√
L)

)2

,

and using the same idea of the proof of [5, 8], we see that 0 ≤ sj(x) ≤ s∗ < L for t ∈ [0, T ]
and a.e. x ∈ Ω. By using this estimate for {sj}, the notation (2.1) and the proof as in
Lemma 2 in [8] we can conclude that Lemma 2 holds.

Proofs of Theorems 1 and 2. By multiplying ūi − ūj with ūk = ũk − hk for k = i, j to
(3.1) and repeating the argument of the proof as in Lemma 4 of [8], we obtain that for
t1 ∈ [0, T ] and a.e. x ∈ Ω and i, j ∈ N,

|ūi(x)(t1)− ūj(x)(t1)|2L2(0,1) + |si(x)(t1)− sj(x)(t1)|2 +
∫ t1

0

|ūiy(x)− ūjy(x)|2L2(0,1)dt

≤C2

(∫ t1

0

|hit(x, t)− hjt(x, t)|2dt+
∫ t1

0

|hi(x, t)− hj(x, t)|2dt+ |ūi(x)(0)− ūj(x)(0)|2L2(0,1)

)
,

(3.11)
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where C2 is a positive constant independent of i and j.
Here, for each j ∈ N, since ũj ∈ C(Ω;C([0, T ];L2(0, 1))) ∩ C(Ω;L2(0, T ;H1(0, 1)))

and sj ∈ C(Ω;C([0, T ])), we note that ũj and ũjy are measurable on Ω×Q(T ) and sj is
measurable on Ω× (0, T ). Then, by integrating (3.11) over Ω, we have that for t1 ∈ [0, T ]
and i, j ∈ N,∫

Ω

|ūi(x)(t1)− ūj(x)(t1)|2L2(0,1)dx+

∫
Ω

∫ t1

0

|ūiy(x)− ūjy(x)|2L2(0,1)dtdx

+

∫
Ω

|si(x)(t1)− sj(x)(t1)|2dx

≤C2

(∫
Ω

∫ t1

0

|hit(x, t)− hjt(x, t)|2dtdx+

∫
Ω

∫ t1

0

|hi(x, t)− hj(x, t)|2dtdx
)

+ C2

∫
Ω

|ūi(x)(0)− ūj(x)(0)|2L2(0,1)dx

≤C2

(∫ t1

0

∫
Ω

|hit(x, t)− hjt(x, t)|2dxdt+
∫ t1

0

∫
Ω

|hi(x, t)− hj(x, t)|2dxdt
)

+ C2

∫
Ω

|ūi(x)(0)− ūj(x)(0)|2L2(0,1)dx. (3.12)

Therefore, by the definition of {hj} and {ũ0j} the above inequality implies that {ũj}
is a Cauchy sequence in L∞(0, T ;L2(Ω × (0, 1))) ∩ L2(Ω;L2(0, T ;H1(0, 1))) and {sj} is
a Cauchy sequence in L∞(0, T ;L2(Ω)). By these results, we see that there exist ũ ∈
L∞(0, T ;L2(Ω× 0, 1))) ∩ L2(Ω;L2(0, T ;H1(0, 1))) and s ∈ L∞(0, T ;L2(Ω)) such that

ũj → ũ in L∞(0, T ;L2(Ω× (0, 1))) ∩ L2(Ω;L2(0, T ;H1(0, 1))),

sj → s in L∞(0, T ;L2(Ω)) as j → ∞.

Namely, ũj → ũ in L2((0, T )×Ω× (0, 1)) and sj → s in L2((0, T )×Ω) as j → ∞. Then,
there exists a subsequence {jk} ⊂ {j} and Ω0 ⊂ Ω with |Ω0| = 0 such that

ũjk(x) → ũ(x) in L2(Q(T )), (3.13)

and
sjk(x) → s(x) in L2(0, T ) (3.14)

as k → ∞ for x ∈ Ω \Ω0. Moreover, by Lemma 2 and (3.1) {ũj(x); j ∈ N} is bounded in
L2(0, T ;H2(0, 1)) for x ∈ Ω \Ω0, and therefore we can take a subsequence {jk(x)} ⊂ {jk}
such that for some û(x) and ŝ(x), the following convergences hold:

ũjk(x)(x) → û(x)


in C((0, T )× (0, 1)),

weakly in W 1,2(0, T ;L2(0, 1)),

weakly in L2(0, T ;H2(0, 1)),

weakly-* in L∞(0, T ;H1(0, 1)),

ū0jk(x)(x) → ũ0(x) in C([0, 1]),
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sjk(x)(x) → ŝ(x) weakly in W 1,2(0, T ).

Therefore, by (3.13), (3.14) and the above convergences, we can see that û = ũ in L2(Q(T ))
for a.e. on Ω, and ŝ = s in L2(0, T ) for a.e. on Ω, and the whole sequences {sj} and
{ũj} converge s in L2(0, T ) and ũ in L2(Q(T )) as j → ∞, respectively. Since (ŝ, û) is a
solution of P̃(x) on [0, T ] for a.e. x ∈ Ω we can conclude that Theorem 1 holds.

Next, by s ∈ L∞(0, T ;L2(Ω)) and ũ ∈ L∞(0, T ;L2(Ω×(0, 1)))∩L2(Ω;L2(0, T ;H1(0, 1)))
in the proof of Theorem 1, it is easy to see that Theorem 2 (i) holds. Also, let (s1, ũ1)
and (s2, ũ2) be a solution of P̃1(x) and P̃2(x) on [0, T ] for a.e. x ∈ Ω and ūi = ui − h
for i = 1, 2, then we note that (3.9) and (3.10) replaced sj and uj by si and ui hold.
Therefore, by the same derivation of (3.12) we have∫

Ω

|ū1(x)(t)− ū2(x)(t)|2L2(0,1)dx+

∫
Ω

∫ t

0

|ū1y(x)− ū2y(x)|2L2(0,1)dtdx

+

∫
Ω

|s1(x)(t)− s2(x)(t)|2dx

≤C2

(∫ t

0

∫
Ω

|h1t(x, τ)− h2t(x, τ)|2dxdτ +

∫ t

0

∫
Ω

|h1(x, τ)− h2(x, τ)|2dxdτ
)

for t ∈ [0, T ].

This yields that Theorem 2 (ii) holds. Thus, Theorem 2 is also proved.
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