MEASURABILITY OF A SOLUTION
 OF A FREE BOUNDARY PROBLEM DESCRIBING ADSORPTION PHENOMENON

Kota Kumazaki
Department of Engineering for Innovation, Division of Natural and Physical Sciences, Tomakomai National College of Technology, Nishikioka 443, 059-1275, Japan
(k.kumazaki@tomakomai-ct.ac.jp)

Abstract

In this paper we consider infinite number of one dimensional free boundary problems as a mathematical model describing adsorption phenomena in holes of a porous material. Here, we denote by $\mathrm{P}\left(x, u_{0}(x), h(x)\right)$ the free boundary problem for $x \in \Omega$, where x is a parameter taking a value in Ω and $u_{0}(x)$ and $h(x)$ are the initial data and the boundary data.

In [8] the problem was studied and we obtain the continuous property of the solution with respect to x, when u_{0} and h are continuous. The main purpose of this paper is to establish the measurability of the solution with respect to x under relaxed assumptions given in [8] for u_{0} and h.

Communicated by T. Aiki; Received November 9, 2016.
This work is supported by JSPS KAKENHI Grant Number JP16K17636.
AMS Subject Classification 35R35 35K61 74F25
Keywords Free boundary problems, Nonlinear initial boundary value problems for nonlinear parabolic equations, Chemical and reactive effects, Adsorption phenomenon

1 Introduction

In this paper, we consider the following free boundary problem in one dimensional domain for each $x \in \Omega$:

$$
\begin{align*}
& \rho_{v} u_{t}(x)-k u_{z z}(x)=0 \text { on }(s(x)(t), L) \text { for } t \in[0, T] \tag{1.1}\\
& u(x)(t, L)=h(x, t) \text { for } 0 \leq t \leq T \tag{1.2}\\
& k u_{z}(x)(t, s(x)(t))=\left(\rho_{w}-\rho_{v} u(x)(t, s(x)(t))\right) s_{t}(x)(t) \text { for } t \in[0, T], \tag{1.3}\\
& s_{t}(x)(t)=a(u(x)(t, s(x)(t)))-\varphi(s(x)(t)) \text { for } t \in[0, T] \tag{1.4}\\
& s(x)(0)=s_{0}(x), u(x)(0, z)=u_{0}(x, z) \text { for } z \in\left[s_{0}(x), L\right] \tag{1.5}
\end{align*}
$$

where Ω is a bounded domain of $\mathbb{R}^{3}, L, \rho_{v}, \rho_{w}, k$ and a are given positive constants, h is a given function on $\Omega \times(0, T), \varphi$ is a given continuous function on \mathbb{R} and s_{0} and u_{0} are also given functions on Ω, and on $Q_{s_{0}}(\Omega):=\left\{(x, z): x \in \Omega, s_{0}(x)<z<L\right\}$, respectively.

This model is proposed by Sato-Aiki-Murase-Shirakawa [7, 9] and represents the relationship between the relative humidity u and the degree of saturation s in the porous material. More precisely, $s=s(x)$ is a function on $[0, T]$ and $x \in \Omega$ so that $s(x)=s(x)(t)$ for $t \in[0, T]$ and $u=u(x)=u(x)(t, z)$ is a function on $Q_{s(x)}(T)$ given by

$$
Q_{s(x)}(T):=\{(t, z): 0<t<T, s(x)(t)<z<L\} .
$$

Throughout this paper, we sometimes omit the parameter x for simplicity as follows : $u=u(x)=u(t, z)=u(x)(t, z)$ and $s=s(x)=s(t)=s(x)(t)$.

For the above problem $\{(1.1)-(1.5)\}$ denoted by $\mathrm{P}(x):=\mathrm{P}_{h, s_{0}, u_{0}}(x)$, in [8] we proved the existence of a solution globally in time. Here, we introduce the notation $\tilde{u}(t, y)=$ $u(t,(1-y) s(t)+y L)$ for $y \in[0,1]$ and reformulate $\mathrm{P}(x)$ to the following problem in a cylindrical domain denoted by $\tilde{\mathrm{P}}(x):=\tilde{\mathrm{P}}_{h, s_{0}, \tilde{u}_{0}}(x)$:

$$
\begin{aligned}
& \rho_{v} \tilde{u}_{t}-\frac{k}{(L-s(t))^{2}} \tilde{u}_{y y}=\frac{\rho_{v}(1-y) s_{t}(t)}{L-s(t)} \tilde{u}_{y} \text { in } Q(T):=(0, T) \times(0,1), \\
& \tilde{u}(t, 1)=h(x, t) \text { for } 0 \leq t \leq T, \\
& \frac{k}{L-s(t)} \tilde{u}_{y}(t, 0)=\left(\rho_{w}-\rho_{v} \tilde{u}(t, 0)\right) s_{t}(t) \text { for } 0 \leq t \leq T, \\
& s_{t}(t)=a(\tilde{u}(t, 0)-\varphi(s(t))) \text { for } 0 \leq t \leq T, \\
& s(0)=s_{0}(x) \text { in } \Omega, \\
& \tilde{u}(0, y)=u(0,(1-y) s(0)+y L) \text { on }[0,1] .
\end{aligned}
$$

As a important result in [8], we showed that the solution $(s, \tilde{u})=(s(x), \tilde{u}(x))$ is a continuous in $\mathbb{R} \times L^{2}(Q(T))$ with respect to $x \in \bar{\Omega}$. From this continuity, we infer that s and \tilde{u} are measurable on $\Omega \times[0, T]$, and on $\Omega \times[0, T] \times(0,1)$, respectively. However, in the result of [8], we impose a strong assumption for h, s_{0} and u_{0}. In this paper, as a sequel of [8], we relax the assumption for h, s_{0} and u_{0}, and consider the existence and uniqueness of a solution of $\tilde{\mathrm{P}}(x)$.

The purpose of this paper is to establish a unique solution (s, \tilde{u}) of $\tilde{\mathrm{P}}(x)$ on $[0, T]$ for a.e. $\quad x \in \Omega$ such that $s \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$ and $\tilde{u} \in L^{\infty}\left(0, T ; L^{2}(\Omega \times(0,1))\right) \cap$
$L^{2}\left(\Omega ; L^{\infty}\left(0, T ; H^{1}(0,1)\right)\right)$. By using this property, in near future, we can consider h as the relative humidity in macroscopic domain Ω and consider a two scale problem coupled by a partial differential equation for h in Ω which was studied in $[1,2,3,4]$ and the free boundary problem $\mathrm{P}(x)$ in each hole as a mathematical model for moisture transport appearing concrete carbonation process. We refer to [6] for modeling of the two scale problem.

This paper is organized as follows: In section 2, we note the assumptions and the main result concerning about the existence and uniqueness of a solution of $\tilde{\mathrm{P}}(x)$ for a.e. $x \in \Omega$ (Theorem 1). Next, as a property of solutions, we state the regularity and the continuous dependence of the solution thereof (Theorem 2). In section 3, we consider an approximation problem of $\tilde{\mathrm{P}}(x)$, and obtain the uniform estimate for an approximate solution with respect to $x \in \Omega$. By using the result of [8], we prove our main theorem by the limiting process for the solution of the approximation problem of $\tilde{\mathrm{P}}(x)$.

2 Our main results

In this paper we use the following notations. In general, for a Banach space X we denote by $|\cdot|_{X}$ its norm. Also, for $D \subset \mathbb{R}^{N}$ for $N=1$ and $N=3, H^{1}(D), H_{0}^{1}(D)$ and $H^{2}(D)$ are the usual Sobolev spaces.

Throughout this paper, we assume the following conditions:
(A1) Ω is a open bounded connected domain of \mathbb{R}^{3} which has the boundary $\partial \Omega$ in the class of C^{2}.
(A2) k and a are positive constants.
(A3) $h \in W^{1,2}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H^{2}(\Omega)\right), h_{t} \in L^{\infty}(\Omega \times(0, T))$ with $0 \leq h \leq h^{*}<1$ a.e. on $\Omega \times(0, T)$, where h^{*} is a positive constant.
(A4) $\varphi \in C^{1}(\mathbb{R}) \cap W^{1, \infty}(\mathbb{R}), \varphi=0$ on $(-\infty, 0], \varphi \leq 1$ on $\mathbb{R}, \varphi^{\prime}>0$ on $(0, L]$ and $\varphi(L)-h^{*}>0$, where h^{*} is the same constant as in (A3). Also, we denote by $\hat{\varphi}$ the primitive function of φ with $\hat{\varphi}(0)=0$ and put $C_{\varphi}=\left|\varphi^{\prime}\right|_{L^{\infty}(\mathbb{R})}$.
(A5) Two positive constants ρ_{w} and ρ_{v} satisfy

$$
\rho_{w}>2 \rho_{v}, \quad \rho_{w} \geq \rho_{v}\left(C_{\varphi}+2\right), \quad 9 a L \rho_{v}^{2} \leq k \rho_{w} .
$$

(A6) $s_{0} \in L^{2}(\Omega)$ such that $0 \leq s_{0} \leq L-\delta$ for $\delta>0$ a.e. on Ω, and the function $x \rightarrow\left|u_{0}(x)\right|_{H^{1}\left(s_{0}, L\right)}$ is bounded a.e. on Ω and $u_{0}(x, L)=h(x, 0)$ for $x \in \Omega$ and $0 \leq u_{0} \leq 1$ a.e. on $Q_{s_{0}}(\Omega)$.

Next, for $x \in \Omega$ we state the definition of solutions of $\mathrm{P}(x)$ on $[0, T]$.
Definition 1.1 Let $x \in \Omega$, and s and u be functions on $[0, T]$ and $Q_{s(x)}(T)$, respectively, for $T>0$. We call that a pair $(s, u)=(s(x), u(x))$ is a solution of $\mathrm{P}(x)$ on $[0, T]$ if the conditions (S1)-(S6) hold:
(S1) $s(x) \in W^{1, \infty}(0, T), 0 \leq s(x)<L$ on $[0, T], u(x) \in L^{\infty}\left(Q_{s(x)}(T)\right), u_{t}(x), u_{z z}(x) \in$ $L^{2}\left(Q_{s(x)}(T)\right)$ and $\left|u_{z}(x)(\cdot)\right|_{L^{2}(s(x)(\cdot), L)} \in L^{\infty}(0, T)$.
(S2) $\rho_{v} u_{t}-k u_{z z}=0$ in $Q_{s(x)}(T)$.
(S3) $u(x)(t, L)=h(x, t)$ for a.e. $t \in[0, T]$.
(S4) $k u_{z}(t, s(t))=\left(\rho_{w}-\rho_{v} u(t, s(t))\right) s_{t}(t)$ for a.e. $t \in[0, T]$.
(S5) $s_{t}(t)=a(u(t, s(t)))-\varphi(s(t))$ for a.e. $t \in[0, T]$.
(S6) $s(x)(0)=s_{0}(x), u(x)(0, z)=u_{0}(x, z)$ for $z \in\left[s_{0}(x), L\right]$.
In order to handle the problem $\mathrm{P}(x)$, we can formulate the following problem $\tilde{\mathrm{P}}(x):=$ $\tilde{\mathrm{P}}_{h, s_{0}, \tilde{u}_{0}}(x)$ in a cylindrical domain by changes of variables:

$$
\begin{equation*}
\tilde{u}(t, y):=u(t,(1-y) s(t)+y L) \text { for }(t, y) \in[0, T] \times[0,1], \tag{2.1}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
\rho_{v} \tilde{u}_{t}-\frac{k}{(L-s(t))^{2}} \tilde{u}_{y y}=\frac{\rho_{v}(1-y) s_{s}}{L-s(t)} \tilde{u}_{y} \text { a.e. in } Q(T), \\
\tilde{u}(t, 1)=h(x, t) \text { for a.e. } t \in[0, T], \\
\frac{k}{L-s(t)} \tilde{u}_{y}(t, 0)=\left(\rho_{w}-\rho_{v} \tilde{u}(t, 0)\right) s_{t}(t) \text { for a.e. } t \in[0, T], \\
s_{t}(t)=a(\tilde{u}(t, 0)-\varphi(s(t))) \text { for a.e. } t \in[0, T], \\
s(0)=s_{0}(x) \text { in } \Omega, \\
\tilde{u}(0, y)=u(0,(1-y) s(0)+y L)=: \tilde{u}_{0}(y) \text { for } y \in[0,1] .
\end{array}\right.
$$

For the above problem $\tilde{\mathrm{P}}(x)$, we call that a pair (s, \tilde{u}) is a solution of $\tilde{\mathrm{P}}(x)$ on $[0, T]$ if the following (S) and each equation and condition of $\tilde{\mathrm{P}}(x)$ hold:

$$
\text { (S) }\left\{\begin{array}{l}
s(x) \in W^{1, \infty}(0, T), 0 \leq s(x)<L \text { a.e. on }[0, T], \\
\tilde{u}(x) \in W^{1,2}\left(0, T ; L^{2}(0,1)\right) \cap L^{\infty}\left(0, T ; H^{1}(0,1)\right) \cap L^{\infty}(Q(T)) \\
\cap L^{2}\left(0, T ; H^{2}(0,1)\right) .
\end{array}\right.
$$

The first result is concerned about the existence and uniqueness of a solution of $\tilde{\mathrm{P}}(x)$ for a.e. $x \in \Omega$.

Theorem 1. If (A1) ~ (A6) hold, then for any $T>0$ and a.e. $x \in \Omega$ there exists a unique solution $(s, \tilde{u})=(s(x), \tilde{u}(x))$ of $\tilde{P}(x)$ on $[0, T]$ such that $0 \leq \tilde{u}(x) \leq 1$ a.e. on $Q(T)$ and $0 \leq s(x) \leq s^{*}<L$ a.e. on $[0, T]$, where s^{*} is a positive constant which does not depend on x.

By Theorem 1 and putting $u(x)(t, z)=\tilde{u}(x)\left(t, \frac{z-s(x)}{L-s(x)}\right)$ for $(t, z) \in Q_{s(x)}(T)$ we see that $(s, u)=(s(x), u(x))$ is a unique solution of $\mathrm{P}(x)$ for a.e. $x \in \Omega$. Now, we state our main theorem of this paper.

Theorem 2. Assume the same assumptions as in Theorem 1.
(i) Let $(s(x), \tilde{u}(x))$ be a solution of $\tilde{P}(x)$ on $[0, T]$ for a.e. $x \in \Omega$ and $T>0$. Then, $\tilde{u} \in L^{\infty}\left(\Omega ; W^{1.2}\left(0, T ; L^{2}(0,1)\right)\right) \cap L^{\infty}\left(\Omega ; L^{\infty}\left(0, T ; H^{1}(0,1)\right)\right) \cap L^{\infty}\left(\Omega ; L^{2}\left(0, T ; H^{2}(0,1)\right)\right) \cap$ $L^{\infty}\left(\Omega ; L^{\infty}(Q(T))\right)$ and $s \in L^{\infty}\left(\Omega ; W^{1, \infty}(0, T)\right)$.
(ii) Let $\left(s_{1}(x), \tilde{u}_{1}(x)\right)$ and $\left(s_{2}(x), \tilde{u}_{2}(x)\right)$ be a solution of $\tilde{P}_{h_{1}, s_{0}, \tilde{u}_{0}}(x)$ and $\tilde{P}_{h_{2}, s_{0}, \tilde{u}_{0}}(x)$ on $[0, T]$ for a.e. $x \in \Omega$ and $T>0$, respectively, then it holds that

$$
\begin{aligned}
& \int_{\Omega}\left|\tilde{u}_{1}(t)-\tilde{u}_{2}(t)\right|_{L^{2}(0,1)}^{2} d x+\int_{\Omega} \int_{0}^{t}\left|\tilde{u}_{1 y}(t)-\tilde{u}_{2 y}(t)\right|_{L^{2}(0,1)}^{2} d x d t \\
& +\left|s_{1}-s_{2}\right|_{L^{\infty}\left(0, t ; L^{2}(\Omega)\right)}^{2} \leq C\left|h_{1}-h_{2}\right|_{W^{1,2}\left(0, t ; L^{2}(\Omega)\right)}^{2} \text { for } t \in[0, T],
\end{aligned}
$$

where C is a positive constant depending only on $k, a, h^{*}, C_{\varphi}, \rho_{w}, \rho_{v}$ and s^{*}.

3 Proof of Theorem

At the first of this section, we note a useful lemma. Here, (A3)' and (A6)' are the following conditions:
(A3)' $h \in W^{1,2}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H^{2}(\Omega)\right)$ with $0 \leq h \leq h^{*}<1$ on $\Omega \times(0, T)$, where h^{*} is a positive constant and $h_{t} \in L^{\infty}(\Omega \times(0, T)) \cap \bar{L}^{2}\left(0, T ; H^{2}(\Omega)\right)$.
(A6)' $s_{0} \in C(\bar{\Omega})$ such that $0 \leq s_{0}(x)<L$ for $x \in \bar{\Omega}$, and $u_{0} \in C\left(\overline{Q_{s_{0}}(\Omega)}\right)$ such that $u_{0}(x) \in H^{1}\left(s_{0}(x), L\right)$ and $u_{0}(x, L)=h(x, 0)$ for $x \in \bar{\Omega}$ and $0 \leq u_{0} \leq 1$ on $\overline{Q_{s_{0}}(\Omega)}$.

Lemma 1. If (A1), (A2), (A3)', (A4), (A5), (A6)' hold, then for any $T>0$ and $x \in \bar{\Omega}$ there exists a unique solution $(s, \tilde{u})=(s(x), \tilde{u}(x))$ of $\tilde{P}(x)$ on $[0, T]$ such that $\tilde{u} \in C\left(\bar{\Omega} ; L^{2}(Q(T))\right)$ and $s \in C(\bar{\Omega} ; C([0, T])), 0 \leq \tilde{u}(x) \leq 1$ a.e. on $Q(T)$ and $0 \leq s(x) \leq$ $s^{* *}<L$ a.e. on $[0, T]$, where $s^{* *}$ is a positive constant which does not depend on x.

This lemma is already proved in [8] so that we omit the precise proof. By using lemma 1 , we prove Theorems 1 and 2 .

Now, we take $\left\{h_{j}\right\} \subset C^{\infty}(\overline{\Omega \times(0, T)})$ such that $0 \leq h_{j} \leq h^{*}$ on $\Omega \times(0, T), h_{j} \rightarrow h$ in $W^{1,2}\left(0, T ; L^{2}(\Omega)\right) \cap L^{2}\left(0, T ; H^{2}(\Omega)\right)$ as $j \rightarrow \infty$ and $\left\{h_{j t}\right\}$ is bounded in $L^{\infty}(\Omega \times(0, T))$. Also, we take $\left\{s_{0 j}\right\} \subset C^{\infty}(\bar{\Omega})$ and $\left\{\tilde{u}_{0 j}\right\} \subset C^{\infty}(\overline{\Omega \times(0,1)})$ such that $s_{0 j} \rightarrow s_{0}$ in $L^{2}(\Omega)$ as $j \rightarrow \infty$, and $0 \leq s_{0 j} \leq L-\frac{\delta}{2}$ on $\Omega, \tilde{u}_{0 j} \rightarrow \tilde{u}_{0}$ in $L^{2}(\Omega \times(0,1))$ and for a.e. $x \in \Omega, \tilde{u}_{0 j}(x) \rightarrow$ $\tilde{u}_{0}(x)$ in $H^{1}(0,1)$ as $j \rightarrow \infty$, and $0 \leq \tilde{u}_{0 j} \leq 1$ on $\overline{\Omega \times(0,1)}, \tilde{u}_{0 j}(x, 1)=h_{j}(x, 0)$ for $x \in \bar{\Omega}$. By using $h_{j}, s_{0 j}$ and $\tilde{u}_{0 j}$ we consider the following problem $\tilde{\mathrm{P}}_{j}(x):=\tilde{\mathrm{P}}_{h_{j}, s_{0 j}, \tilde{u}_{0 j}}(x)$ for $x \in \bar{\Omega}$:

$$
\begin{align*}
& \rho_{v} \tilde{u}_{t}-\frac{k}{(L-s(t))^{2}} \tilde{u}_{y y}=\frac{\rho_{v}(1-y) s_{t}}{L-s(t)} \tilde{u}_{y} \text { in } Q(T), \tag{3.1}\\
& \tilde{u}(t, 1)=h_{j}(x, t) \text { for } t \in(0, T), \tag{3.2}\\
& \quad \frac{k}{L-s(t)} \tilde{u}_{y}(t, 0)=\left(\rho_{w}-\rho_{v} \tilde{u}(t, 0)\right) s_{t}(t) \text { for } t \in(0, T), \tag{3.3}\\
& s_{t}(t)=a(\tilde{u}(t, 0)-\varphi(s(t))) \text { for } t \in(0, T), \tag{3.4}\\
& s(0)=s_{0 j}(x) \text { in } \Omega, \tag{3.5}\\
& \tilde{u}(0, y)=\tilde{u}_{0 j}(y) \text { for } y \in[0,1] . \tag{3.6}
\end{align*}
$$

Obviously, $h_{j}, s_{0 j}$ and $u_{0 j}(x, z):=\tilde{u}_{0 j}\left(x, \frac{z-s_{0 j}(x)}{L-s_{0 j}(x)}\right)$ satisfy (A3)' and (A6)'. Therefore, by Lemma 1 , for $x \in \bar{\Omega}$ and $j \in \mathbb{N}$ we see that $\tilde{\mathrm{P}}_{j}(x)$ has a solution $\left(s_{j}, \tilde{u}_{j}\right)=\left(s_{j}(x), \tilde{u}_{j}(x)\right)$ on $[0, T]$ such that $s_{j} \in C(\bar{\Omega} ; C([0, T]))$ and $\tilde{u}_{j} \in C\left(\bar{\Omega} ; L^{2}(Q(T))\right) \cap C\left(\bar{\Omega} ; L^{2}\left(0, T ; H^{1}(0,1)\right)\right)$, and $0 \leq \tilde{u}_{j}(x) \leq 1$ a.e. on $Q(T)$ and $0 \leq s_{j}(x) \leq s_{j x}^{* *}$ a.e. on $[0, T]$, where $s_{j x}^{* *}$ is a positive constant with $s_{j x}^{* *}<L$. Here, we show the following lemma.

Lemma 2. Let $\left(s_{j}(x), \tilde{u}_{j}(x)\right)$ be a solution of $\tilde{P}_{j}(x)$ on $[0, T]$ for $x \in \bar{\Omega}$ and $j \in \mathbb{N}$. Then, $\left\{\tilde{u}_{j}(x) ; j \in \mathbb{N}\right\}$ is bounded in $W^{1,2}\left(0, T ; L^{2}(0,1)\right) \cap L^{\infty}\left(0, T ; H^{1}(0,1)\right)$ and $\left\{s_{j}(x) ; j \in \mathbb{N}\right\}$ is bounded in $W^{1, \infty}(0, T)$ for $x \in \bar{\Omega}$.

Proof. For the solution $\left(s_{j}, \tilde{u}_{j}\right)$, by using the notation $u_{j}(t, z)=\tilde{u}_{j}\left(t, \frac{z-s_{j}(x)}{L-s_{j}(x)}\right)$, we can obtain the following two inequalities:

$$
\begin{align*}
& \frac{\rho_{v}}{2} \frac{d}{d t} \int_{s_{j}(t)}^{L}\left|u_{j}(t)-h_{j}(x, t)\right|^{2} d z+\frac{k}{2} \int_{s_{j}(t)}^{L}\left|u_{j z}(t)\right|^{2} d x+\rho_{w} \frac{d}{d t} \hat{\varphi}\left(s_{j}(t)\right) \\
\leq & \rho_{w}\left(1+h^{*}\right) L\left|h_{j t}(x, t)\right|+\frac{\rho_{w} a}{2} \text { for } x \in \bar{\Omega} \text { and a.e. } t \in[0, T], \tag{3.7}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{\rho_{v}}{2} \int_{0}^{t_{1}} \int_{s_{j}(t)}^{L}\left|u_{j t}(t)\right|^{2} d z d t+\frac{k}{2} \int_{s_{j}\left(t_{1}\right)}^{L}\left|u_{j z}\left(t_{1}\right)\right|^{2} d z \\
\leq & \frac{k}{2} \int_{s_{0 j}}^{L}\left|\tilde{u}_{0 j z}\right|^{2} d z+\frac{k}{2} \int_{0}^{t_{1}} s_{j t}(t)\left|u_{j z}\left(t, s_{j}(t)\right)\right|^{2} d t \\
& +C_{1} \int_{0}^{t_{1}}\left(\left|s_{j t}(t)\right|^{2}+\left|h_{j t}(x, t)\right|^{2}\right) d t+C_{1} \text { for } x \in \bar{\Omega} \text { and } t_{1} \in[0, T], \tag{3.8}
\end{align*}
$$

where C_{1} is a positive constant. In fact, (3.7) is obtained by testing $\tilde{u}-h$ to (3.1) and testing $\frac{s_{t}}{a}$ to (3.4). Also, (3.8) is obtained by testing $\frac{\tilde{u}_{j}(t)-\tilde{u}_{j}(t-\tau)}{\tau}$ and letting $\tau \rightarrow 0$. For the detail derivation, we refer to [5]. Therefore, by the boundedness of $\left\{h_{j t}\right\}$ in $L^{\infty}(\Omega \times(0, T))$ and the fact that $\left|s_{j t}\right| \leq 2 a$ a.e. on $Q(T)$ it is easy to see that there exist $M_{1}>0$ and $M_{2}>0$ independent of j such that

$$
\begin{equation*}
\int_{s_{j}\left(t_{1}\right)}^{L}\left|u_{j}(x)\left(t_{1}, z\right)\right|^{2} d z \leq M_{1}, \quad \int_{0}^{t_{1}} \int_{s_{j}(t)}^{L}\left|u_{j z}(x)(t, z)\right|^{2} d z d t \leq M_{1} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{t_{1}} \int_{s_{j}(t)}^{L}\left|u_{j t}(x)\right|^{2} d z d t \leq M_{2}, \quad \int_{s_{j}\left(t_{1}\right)}^{L}\left|u_{j z}(x)\left(t_{1}\right)\right|^{2} d z \leq M_{2} \text { for } t_{1} \in[0, T] \text { and a.e. } x \in \bar{\Omega} . \tag{3.10}
\end{equation*}
$$

Now, by putting

$$
s^{*}:=L-\left(\frac{\varphi(L)-h^{*}}{2\left(\sqrt{M_{2}}+C_{\varphi} \sqrt{L}\right)}\right)^{2}
$$

and using the same idea of the proof of $[5,8]$, we see that $0 \leq s_{j}(x) \leq s^{*}<L$ for $t \in[0, T]$ and a.e. $x \in \bar{\Omega}$. By using this estimate for $\left\{s_{j}\right\}$, the notation (2.1) and the proof as in Lemma 2 in [8] we can conclude that Lemma 2 holds.

Proofs of Theorems 1 and 2. By multiplying $\bar{u}_{i}-\bar{u}_{j}$ with $\bar{u}_{k}=\tilde{u}_{k}-h_{k}$ for $k=i, j$ to (3.1) and repeating the argument of the proof as in Lemma 4 of [8], we obtain that for $t_{1} \in[0, T]$ and a.e. $x \in \bar{\Omega}$ and $i, j \in \mathbb{N}$,

$$
\begin{align*}
& \left|\bar{u}_{i}(x)\left(t_{1}\right)-\bar{u}_{j}(x)\left(t_{1}\right)\right|_{L^{2}(0,1)}^{2}+\left|s_{i}(x)\left(t_{1}\right)-s_{j}(x)\left(t_{1}\right)\right|^{2}+\int_{0}^{t_{1}}\left|\bar{u}_{i y}(x)-\bar{u}_{j y}(x)\right|_{L^{2}(0,1)}^{2} d t \\
\leq & C_{2}\left(\int_{0}^{t_{1}}\left|h_{i t}(x, t)-h_{j t}(x, t)\right|^{2} d t+\int_{0}^{t_{1}}\left|h_{i}(x, t)-h_{j}(x, t)\right|^{2} d t+\left|\bar{u}_{i}(x)(0)-\bar{u}_{j}(x)(0)\right|_{L^{2}(0,1)}^{2}\right), \tag{3.11}
\end{align*}
$$

where C_{2} is a positive constant independent of i and j.
Here, for each $j \in \mathbb{N}$, since $\tilde{u}_{j} \in C\left(\bar{\Omega} ; C\left([0, T] ; L^{2}(0,1)\right)\right) \cap C\left(\bar{\Omega} ; L^{2}\left(0, T ; H^{1}(0,1)\right)\right)$ and $s_{j} \in C(\bar{\Omega} ; C([0, T]))$, we note that \tilde{u}_{j} and $\tilde{u}_{j y}$ are measurable on $\Omega \times Q(T)$ and s_{j} is measurable on $\Omega \times(0, T)$. Then, by integrating (3.11) over Ω, we have that for $t_{1} \in[0, T]$ and $i, j \in \mathbb{N}$,

$$
\begin{align*}
& \int_{\Omega}\left|\bar{u}_{i}(x)\left(t_{1}\right)-\bar{u}_{j}(x)\left(t_{1}\right)\right|_{L^{2}(0,1)}^{2} d x+\int_{\Omega} \int_{0}^{t_{1}}\left|\bar{u}_{i y}(x)-\bar{u}_{j y}(x)\right|_{L^{2}(0,1)}^{2} d t d x \\
& +\int_{\Omega}\left|s_{i}(x)\left(t_{1}\right)-s_{j}(x)\left(t_{1}\right)\right|^{2} d x \\
\leq & C_{2}\left(\int_{\Omega} \int_{0}^{t_{1}}\left|h_{i t}(x, t)-h_{j t}(x, t)\right|^{2} d t d x+\int_{\Omega} \int_{0}^{t_{1}}\left|h_{i}(x, t)-h_{j}(x, t)\right|^{2} d t d x\right) \\
& +C_{2} \int_{\Omega}\left|\bar{u}_{i}(x)(0)-\bar{u}_{j}(x)(0)\right|_{L^{2}(0,1)}^{2} d x \\
\leq & C_{2}\left(\int_{0}^{t_{1}} \int_{\Omega}\left|h_{i t}(x, t)-h_{j t}(x, t)\right|^{2} d x d t+\int_{0}^{t_{1}} \int_{\Omega}\left|h_{i}(x, t)-h_{j}(x, t)\right|^{2} d x d t\right) \\
& +C_{2} \int_{\Omega}\left|\bar{u}_{i}(x)(0)-\bar{u}_{j}(x)(0)\right|_{L^{2}(0,1)}^{2} d x . \tag{3.12}
\end{align*}
$$

Therefore, by the definition of $\left\{h_{j}\right\}$ and $\left\{\tilde{u}_{0 j}\right\}$ the above inequality implies that $\left\{\tilde{u}_{j}\right\}$ is a Cauchy sequence in $L^{\infty}\left(0, T ; L^{2}(\Omega \times(0,1))\right) \cap L^{2}\left(\Omega ; L^{2}\left(0, T ; H^{1}(0,1)\right)\right)$ and $\left\{s_{j}\right\}$ is a Cauchy sequence in $L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$. By these results, we see that there exist $\tilde{u} \in$ $\left.L^{\infty}\left(0, T ; L^{2}(\Omega \times 0,1)\right)\right) \cap L^{2}\left(\Omega ; L^{2}\left(0, T ; H^{1}(0,1)\right)\right)$ and $s \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$ such that

$$
\begin{gathered}
\tilde{u}_{j} \rightarrow \tilde{u} \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega \times(0,1))\right) \cap L^{2}\left(\Omega ; L^{2}\left(0, T ; H^{1}(0,1)\right)\right), \\
s_{j} \rightarrow s \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \text { as } j \rightarrow \infty .
\end{gathered}
$$

Namely, $\tilde{u}_{j} \rightarrow \tilde{u}$ in $L^{2}((0, T) \times \Omega \times(0,1))$ and $s_{j} \rightarrow s$ in $L^{2}((0, T) \times \Omega)$ as $j \rightarrow \infty$. Then, there exists a subsequence $\left\{j_{k}\right\} \subset\{j\}$ and $\Omega_{0} \subset \Omega$ with $\left|\Omega_{0}\right|=0$ such that

$$
\begin{equation*}
\tilde{u}_{j_{k}}(x) \rightarrow \tilde{u}(x) \text { in } L^{2}(Q(T)) \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{j_{k}}(x) \rightarrow s(x) \text { in } L^{2}(0, T) \tag{3.14}
\end{equation*}
$$

as $k \rightarrow \infty$ for $x \in \Omega \backslash \Omega_{0}$. Moreover, by Lemma 2 and (3.1) $\left\{\tilde{u}_{j}(x) ; j \in \mathbb{N}\right\}$ is bounded in $L^{2}\left(0, T ; H^{2}(0,1)\right)$ for $x \in \Omega \backslash \Omega_{0}$, and therefore we can take a subsequence $\left\{j_{k}(x)\right\} \subset\left\{j_{k}\right\}$ such that for some $\hat{u}(x)$ and $\hat{s}(x)$, the following convergences hold:

$$
\begin{gathered}
\tilde{u}_{j_{k}(x)}(x) \rightarrow \hat{u}(x)\left\{\begin{array}{l}
\text { in } C(\overline{(0, T) \times(0,1)}), \\
\text { weakly in } W^{1,2}\left(0, T ; L^{2}(0,1)\right), \\
\text { weakly in } L^{2}\left(0, T ; H^{2}(0,1)\right), \\
\text { weakly-* in } L^{\infty}\left(0, T ; H^{1}(0,1)\right),
\end{array}\right. \\
\bar{u}_{0 j_{k}(x)}(x) \rightarrow \tilde{u}_{0}(x) \text { in } C([0,1]),
\end{gathered}
$$

$$
s_{j_{k}(x)}(x) \rightarrow \hat{s}(x) \text { weakly in } W^{1,2}(0, T) .
$$

Therefore, by (3.13), (3.14) and the above convergences, we can see that $\hat{u}=\tilde{u}$ in $L^{2}(Q(T))$ for a.e. on Ω, and $\hat{s}=s$ in $L^{2}(0, T)$ for a.e. on Ω, and the whole sequences $\left\{s_{j}\right\}$ and $\left\{\tilde{u}_{j}\right\}$ converge s in $L^{2}(0, T)$ and \tilde{u} in $L^{2}(Q(T))$ as $j \rightarrow \infty$, respectively. Since (\hat{s}, \hat{u}) is a solution of $\mathrm{P}(x)$ on $[0, T]$ for a.e. $x \in \Omega$ we can conclude that Theorem 1 holds.

Next, by $s \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$ and $\tilde{u} \in L^{\infty}\left(0, T ; L^{2}(\Omega \times(0,1))\right) \cap L^{2}\left(\Omega ; L^{2}\left(0, T ; H^{1}(0,1)\right)\right)$ in the proof of Theorem 1, it is easy to see that Theorem 2 (i) holds. Also, let (s_{1}, \tilde{u}_{1}) and $\left(s_{2}, \tilde{u}_{2}\right)$ be a solution of $\tilde{\mathrm{P}}_{1}(x)$ and $\tilde{\mathrm{P}}_{2}(x)$ on $[0, T]$ for a.e. $x \in \Omega$ and $\bar{u}_{i}=u_{i}-h$ for $i=1,2$, then we note that (3.9) and (3.10) replaced s_{j} and u_{j} by s_{i} and u_{i} hold. Therefore, by the same derivation of (3.12) we have

$$
\begin{aligned}
& \int_{\Omega}\left|\bar{u}_{1}(x)(t)-\bar{u}_{2}(x)(t)\right|_{L^{2}(0,1)}^{2} d x+\int_{\Omega} \int_{0}^{t}\left|\bar{u}_{1 y}(x)-\bar{u}_{2 y}(x)\right|_{L^{2}(0,1)}^{2} d t d x \\
& +\int_{\Omega}\left|s_{1}(x)(t)-s_{2}(x)(t)\right|^{2} d x \\
\leq & C_{2}\left(\int_{0}^{t} \int_{\Omega}\left|h_{1 t}(x, \tau)-h_{2 t}(x, \tau)\right|^{2} d x d \tau+\int_{0}^{t} \int_{\Omega}\left|h_{1}(x, \tau)-h_{2}(x, \tau)\right|^{2} d x d \tau\right) \text { for } t \in[0, T]
\end{aligned}
$$

This yields that Theorem 2 (ii) holds. Thus, Theorem 2 is also proved.

References

[1] T. Aiki and K. Kumazaki, Mathematical model for hysteresis phenomenon in moisture transport in concrete carbonation process, Phys. B, 407 (2012), 1424-1426.
[2] T. Aiki and K. Kumazaki, Mathematical modelling of concrete carbonation process with hysteresis effect, RIMS, Kyoto Univ., sūrikaisekikenkyūsho, kōkyūroku, 1792 (2012), 99-107.
[3] T. Aiki and K. Kumazaki, Uniqueness of a solutions to a mathematical model describing moisture transport in concrete materials, Netw., Heterogneous media, 9 (2014), no. 4,
[4] T. Aiki and K. Kumazaki, Well-posedness of a mathematical model for moisture transport appearing in concrete carbonation process, Adv. Math. Sci. Appl., 21 (2011), 361-381.
[5] T. Aiki and Y. Murase, On a large time behavior of a solution to a one-dimensional free boundary problem for adsorption phenomena, to appear in J. Math. Anal. Appl.
[6] T. Aiki, Y. Murase, N. Sato and K. Kumazaki, A two scale model for concrete carbonation process in a three dimensional domain, RIMS, Kyoto Univ., sūrikaisekikenkyūsho, kōkyūroku, 1997 (2016), 133-139.
[7] T. Aiki, Y. Murase, N. sato and K. Shirakawa, A mathematical model for a hysteresis appearing in adsorption phenomena, RIMS, Kyoto Univ., sūrikaisekikenkyūsho, kōkyūroku, 1856 (2013), 1-11.
[8] K. Kumazaki, Continuous dependence of a solution of a free boundary problem describing adsorption phenomenon for a given data, Adv. Math. Sci. Appl.,, 25 (2016), no. 1, 283-299.
[9] N. Sato, T. Aiki, Y. Murase and K. Shirakawa, A one dimensional free boundary problem for adsorption phenomena, Netw., Heterogeneous media., 9 (2014), no. 4, 655-668.

