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Abstract. Considering the intensification of technology in the 215 century, studies
of optimization models have been necessary for the control and planning of productive
systems. In this scenario, the goal of this paper is to minimize the production costs
of a manufactory by applying the Combined Problem, which couples the lot sizing and
stock cutting problems. Numerical data are collected from a small-scale furniture plant,
located in Cornélio Procépio city, in the state of Parana, Brazil. Two production planning
scenarios are considered: first, costs and demands of the final products are constants;
second, costs and demands vary over periods of planning. Case study involving larger data
is simulated. Numerical solutions are obtained from the application of the Simplex method
with computational support and indicates the quantity to be produced in each planning
period. These results are compared with the case experienced by the manufactory, whose
production is made considering the demand by period. The production planning obtained
by linear programming provides support to the decision make of the manufactory.
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1 Introduction

Due to technological and computational advances, manufacturing industries have been
encouraged to make their processes more efficient and competitive, while minimizing
global production costs. Reducing expensive raw material waste is an important goal
in the industry. Thus, the study of optimization models for the control and produc-
tion planning becomes an essential tool for industrial advancement, motivating academic
researches.

In this scenario, the Operational Research has great importance and can be defined
as a science that solves problems quantitatively, using mathematical and statistical meth-
ods, and it helps making the best decisions. The scientific component is related to the
mathematical modeling of decision problems, determining the objectives and constraints
under which to operate [2].

Production management within an industry is responsible for planning and controlling
the transformation of raw materials into final products. The system responsible for this
management is called Production Planning and Control (PPC) [4], which coordinates the
activities, from the acquisition of raw materials to the delivery of the final products. This
way, the Operational Research and its optimization methods have great utility in solving
problems, especially those involving productive processes, decision making and systems
management, selecting the best decisions, among all possible ones [9].

Usually, industries produce pieces of different sizes and materials in order to construct
a final product. In this process, industries worry about the waste of raw materials, since
this implies a profit reduction. Then, the question is to solve an optimization problem,
which consists of cutting objects, observing these issues.

In [5], two robust mixed integer programming models are proposed. In the first one,
the non-overlapping constraints are stated based on direct trigonometry and in the second
one, pieces are decomposed into convex parts and then the non-overlapping constraints
are written based on nofit polygons of the convex parts. Two-dimensional irregular strip
packing problems consist of cutting and packing problems in which an object must be cut
in small pieces, involving a non-trivial handling of geometry. Computational experiments
with benchmark instances show that second model outperforms the first one and also the
best exact model published in the literature.

In this sense, in [11], two-dimensional irregular cutting stock problem with demand is
studied, in which the required pieces has to be produced from large rectangular sheet min-
imizing material waste. Greedy randomized adaptive search procedure (GRASP) meta-
heuristic algorithm is adapted to tackle the problem by providing high-quality solution in
an appropriate time.

About three-dimensional cutting problems, in [14] the cutting problem of a marble
processing factory is described. In order to minimize total spoilage of marble while finding
the cutting designs of marble blocks and marble planes, integer programming approaches
were developed and satisfactory results were reached.

In [1], an integrated production planning and cutting stock problem is investigated.
This kind of problem appears frequently in small-scale furniture plants. The production
costs contained in the manufacturing process and the products demands are not known.
Since there are uncertainties, robust optimization models were proposed. These models
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control the conservatism of the solution according to the attitude of the decision maker
towards risk.

The purpose of [6] is to solve the problem of optimizing the production on the basis of
the commercial value of the cuts, since the loss of raw materials in wood cutting industries
has reached high. This work was completed with the design and the presentation of a
software package called cutting optimizer.

The study of [15] deals with a case in which there are several stock lengths available
in limited quantities. The heuristic methods are empirically analyzed by solving a set of
randomly generated instances and a set of instances from the literature. The proposed
methods presented very small objective function value gaps.

Fast heuristics, Integer Linear Programming models and a truncated Branch-and-
Price algorithm for a wooden board Cutting Stock Problem are proposed in [10]. They
consider the maximization of the cutting equipment productivity, which can be obtained
by cutting identical boards in parallel. Experiments show that the productivity can be
improved with a minimal increase in the total area of used boards.

In the context of stock cutting and lot sizing problems, the goal of this work is to
propose the application of a mathematical model to a real case of a manufactory, in
order to minimize the global production costs. Real data are collected from a small-scale
furniture plant, located in Cornélio Procépio city, in the state of Parana, Brazil. Costs and
demands vary over periods of planning, which represents a more realistic situation. Two
production planning scenarios are considered: costs and demands of the final products
constants and costs and demands vary over periods of planning. Case study involving
big data is simulated. Numerical results from this study are compared with the case
whose production is made considering the demand by period. The main contribution is
to propose an efficient production planning, using linear programming, providing support
to the decision make of the manufacturing industry.

2 The Combined Problem

In the process of cutting a board into smaller pieces, for producing items, material loss
tends to be increasingly reduced if the cuts are rearranged in a convenient way on the
board. Due to this fact, there is an economic pressure to manufacture some products
in advance in order to minimize losses. However, this stock can generate costs that can
make the production slower [3]. This decision problem is called Combined Problem, which
couples two optimization problems: the lot sizing and cutting stock [8].

The lot sizing problem is to plan the amount of items to be produced in various stages
in each period over a horizon of finite time, in order to meet demand and to optimize an
objective function, as minimizing production and storage costs[2]. It can be classified as
mono-stage, where items are independently produced, and multistage, where productions
of items are dependent.

The cutting stock problem consists in optimizing the process of cutting boards into
smaller pieces in quantities and sizes demanded. Cutting pattern is defined as the ar-
rangement of the pieces within each board, that is, the way an object (piece) is cut to
produce demanded items. Some rules are defined, such as guillotine cuts (where each cut
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made on a rectangular board produces two new rectangles), limiting pieces (restricted or
unrestricted cuts), number of stages (2-stages is when Only one change in the direction
of guillotine cuts is allowed: horizontal / vertical or vertical / horizontal). In addition,
the problem will be two-dimensional when two dimensions are relevant for cutting.

Thus, the goal of the combined problem is to decide the number of final products to be
produced in each planning horizon period in order to minimize production, preparation
and storage costs (lot sizing) and the number of boards to be cut, as well as cutting
patterns to compose final products (cutting stock) [8]. In real situations, most industries
approach these two problems separately, which can raise global costs.

One approach to the combined problem disregards preparation costs and relaxes the
integrality of the variables representing the number of boards cut in a given pattern, which
requires a large demand. This approach can be applied in the furniture industry where
wooden boards must be cut to produce items. It is considered that there is only one type
of board and parameters like costs and demands are varied [3].

Indexes:

t=1, ..., T number of periods of time.

p=1, ..., P number of different pieces to be cut.
j=1, ..., N number of different cutting pattern.
1=1, ..., M number of different final products.
Parameters:

¢t production cost of the final product ¢ in the period t.
h;: stocking cost of the final product 7 in the period t.
hppe: stocking cost of the piece p in the period t.

d;;: demand of the final product ¢ in the period .

rpi: number of pieces p required to make product ¢.

v;: time to cut a board using cutting pattern j.

a,;: number of piece p cut using cutting pattern j.

u;: maximum time of saw capacity.

cp: cost of the board to be cut.

Decision Variables:

x;: number of final product ¢ produced in the period ¢.

e;+» number of final product i stocked in the end of the period t.

eppe: number of piece p stocked in the end of the period ¢.

y;+: number of boards cut using cutting pattern j in the period ¢.

The mathematical model is formulated according to [3] and it is described as equations

(1) to (5).

M T T P T
min Z Z(Cz‘txz’t + hiyei) + Z Z cpY;t + Z Z hppreppe (1)

i=1 t=1 Jj=1 t=1 p=1 t=1

subject to:
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Tit + €11 — €ip = diy (2)
N M
Z Ap;jY;t + EPpt—1 — EPpt = Z TpiLit Vi=1...T (3)
Jj=1 i=1

N
Z VY < Uy (4>
j=1

Tit, ity Yjts EPpt = 0 (5)

The restrictions (2) are related to the stock balance equations in relation to final
products, which ensures that the demand for items from each period will be met. The
restrictions (3) are related to stock balance equations in relation to pieces, which ensures
that the demand for pieces will be satisfied. These restrictions are those that couple the
lot sizing and stock cutting problems since both include the z;; variables, which define
the lots size and y;;, which define the number of boards cut in a certain cutting pattern.
The restrictions (4) are related to saw capacity, which ensures that the time spent in the
cutting process of the boards in the various cutting patterns does not exceed the available
capacity of the saw, that is, its maximum operating time. And, finally, (5) represents
non-negativity conditions.

The application of Simplex Method [2, 9] with columns generation [7] has been pre-
sented, in the literature, as a very efficient strategy to solve this kind of linear problem.

3 Simplex Method

The Simplex Method, applied to provide the solution of Linear Programming Problems,
can be used to solve real situations that involve lot sizing and cutting stock problems
2, 9].

The Simplex Method, developed in 1947 by the North American mathematician George
B. Dantzig, consists of an iterative numerical procedure, which executes repeatedly a se-
quence of steps, in order to reach the best solution of the problem, called optimal solution,
if it exists. The procedure starts from a viable basic solution, belonging to a vertex, of
the system of equations that represents the constraints of the problem. From this ini-
tial solution, the algorithm identifies new viable solutions of equal or better value than
current. Thus, the process finds new vertices of the convex envelope of the problem and
determines if this vertex is optimal or not, that is, if the change of variables in the base
can still improve the objective function. Since the Simplex Method is an iterative process,
can be implemented using any programming language to execute its iterations [3].

The algorithm of the Primal Simplex Method is described below.
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phase 1

Find a primal-feasible basic partition: A = (B, N).

Do STOP=FALSE, IT=0

(It will be FALSE until the optimality condition is verified. IT indicates the iteration
number.)

phase 11

While NOT STOP do:

e Determine the basic feasible primal solution: zz = B~1b.
e Optimality test:

Determine the dual basic solution: y? = c5B71;
Find z;, with relative cost: ¢; — y"a;, < 0.

If ¢, —yTap, >0, V k=1,...,n—m, then the IT iteration solution is optimal.
STOP=TRUE.
Else:
e Find the simple direction: dg = —B~'a;, of change in the values of the basic
variables.
330 .
e Determine the step: €¥ = min {—d? dp, <0,i=1,... ,m}.

If dg > 0, the problem does not have optimal finite solution.
STOP=TRUE.
else:

e Update the basic partition: ap, <+ ay, I'T < IT + 1.

end while.

4 Case Study

In order to execute the Combined Problem, values were assigned to its parameters de-
rived from data provided by a small-scale furniture plant, located in the city of Cornélio
Procépio, in the state of Parand, Brazil. So that it was possible to decide on two pro-
ductions scenarios described below. Both consider producing two types of end products:
tables and chairs. In addition, in both cases, it is considered that there is no stock in
the previous period t — 1. For each scenario, it is firstly assumed that costs and demand
values are constant throughout the production planning periods and, subsequently, the
variation of these parameters over the periods.
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4.1 The First Production Planning Scenario

Considering costs and the demand for final products constants, the following data is
available in the first production planning scenario:

t = 6 time periods

p = 3 pieces

j =5 types of board cutting patterns

i = 2 final product (table and chair)

The pieces for the composition of the final products are:
Prece 1: cover

Piece 2: foot

Piece 3: seat/backrest

The variable x1; represents the product “table”, whose production cost is ¢;;=R$255
and the demand is dy;=2 for t = 1, ...,6. The variable xy; represents the product “chair”,
whose production cost is cy;=R$80 and the demand is dy;=3 for t = 1, ...,6. The number
of pieces p required to make final product i can be seen in Table 1. The other parameters
provided from the manufactory are:
cp = R$120,

u; = 300 hours per period,

ap; can be seen in Table 2,

rip =1, 701 =5, 139 = 2, 192 = 6,
hit = 3, hay = 1,

hpi = 0,2, hpey = 0,3, hps, =0, 5.

Table 1: Number of pieces p required to make product ¢

Piece | Table | Chair
p=1 1 0
p=2 5) 6
p=3 0 2

Table 2: Cutting Patterns: first production planning scenario

Pattern | Piece 1 | Piece 2 | Piece 3 | Time
J=1 2 0 0 v1=1s
7=2 1 88 0 v9=1.2s
7=3 0 0 35 v3=1.5s
j=4 0 0 45 vy4=1.4s
Jj=5 1 8 15 v5=1.5s

The pieces to be cut are cover (p = 1), foot (p = 2) and seat/backrest (p = 3). The
cutting patterns shown in Table 2 are pre-set by the manufactory, according to the ca-
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pacity of the equipment and the available labor.

The second production planning considers that costs and demands are variables through-
out the planning periods. The new parameters provided by the manufactory under study
are described below. The production costs of final products can be seen in Table 3, which
corresponds to parameters c;;.

The cost of the board to be cut is ¢p = 135.07. The stocking costs of the final products
are shown in Table 4 (parameters h;) and the stocking costs of the pieces are shown in
Table 5 (parameters hp,;).

Table 6 shows the demands (d;;) of the final products.

Table 3: Production costs of the final product ¢ in the period ¢

Time period
t=1 t=2 t=3 t=4 t=>5 t==6
Final product
Table R$ 255 | R$ 255 | R$ 255 | R$ 267.75 | R$ 267.75 | R$ 267.75
Chair R$ 80 | R$ 80 | R$ 80 RS 84 RS 84 RS 84

Table 4: Stocking cost of the final product ¢ in the period ¢

Time period
t=1|t=2|t=3|t=4|t=5|t=6
Final product
Table R$3 | R$§3 | R$S5 | RE5 | R$S5 | R$S
Chair R$1|R$1|R$3|R$3 | R$E3 | R$3

Table 5: Stocking cost of the piece p in the period ¢

Time period
t=1 t=2 t=3 t=4 t=2>5 t==6
Pieces
p=1 R$ 0.20 | R$ 0.20 | R$ 0.50 | R$ 0.50 | R$ 0.50 | R$ 0.50
p=2 R$ 0.30 | R$ 0.30 | R$ 0.60 | R$ 0.60 | R$ 0.60 | R$ 0.60
p=3 R$ 0.50 | R$ 0.50 | R$ 0.80 | R$ 0.80 | R$ 0.80 | R$ 0.80

The optimal solution of these two problems, following the application of the algorithm
Simplex, should indicate in which period of the planning horizon and in what quantity
the final products must be produced, so as to obtain the minimum cost of cutting and
stock, respecting the stock balance restriction to final products and boards, the capacity
constraint of the saw and the non-negativity conditions.
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Table 6: Demand of the final product 7 in the period ¢

Time period

t=1|t=2|t=3|t=4|t=5|1=6
Final product
Table 2 3 2 4 1 3
Chair 3 ) 4 6 3 4

The design of table and chair (final products) produced in this scenario is illustrated
in Figure 1.

Figure 1: Design of table and chair

4.2 The Second Production Planning Scenario

Considering costs and the demand for final products constants, the following data are
obtained in the second production planning scenario:

t = 6 time periods

p = T pieces

J = 6 types of board cutting patterns

i = 2 final product (table and chair)

The pieces for the composition of the final products are:
Piece 1: cover

Piece 2: backrest

Piece 3: seat

Priece 4: chair support

Piece 5: foot of the chair

Piece 6: table support

Piece 7: foot of the table
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In this case, the new cutting patterns for the production of parts are described in Table
7. These are pre-set by the manufactory, according to the capacity of the equipment and
the available labor.

Table 7: Cutting Patterns: second production planning scenario

Pattern | p=1 | p=2 | p=3 | p=4 | p=5 | p=06 | p=7 | Time
j=1 0 34 34 0 0 0 0 | v1=3s
j=2 15 8 7 0 0 0 0 | va=2s
7=3 12 12 13 0 0 0 0 | vg=4s
j=4 0 0 0 8 1 2 0 | v4=4s
J=5 0 0 0 2 3 4 0 | v5=3s
7=06 0 0 0 0 0 0 4 | vg=2s

The variable xy; represents the product “table”, whose production cost is R$60 and
demand is 10, and the variable x5, represents “chair”, whose production cost is R$40 and
demand is 20. The parameters (production cost, stock and cut time) were changed, since
data from other types of wood and other cutting patterns were used. It is also considered
that there is no stock in the previous period ¢t — 1.

Parameters provided by the manufactory:
cp = R$135.07
uy = 240 hours per period
The number of pieces p required to make product ¢, which corresponds to parameters r,;,
can be seen in Table 8.

Table 8: Number of pieces p required to make product ¢

Piece | Table | Chair
p=1 1 0
p=2 0 1
p=3 3 1
p=4 0 2
p=2>5 0 4
p==6 2 0
p="7 4 0

The second production planning, considers that costs and demands are wariables
throughout the planning periods. The new parameters provided from the manufactory
under study are described below. The costs of the final products, ¢;, are provided in
Table 9.

The cost of the board to be cut is ¢p = 135.07.

The stocking costs of the final products, h;, can be seen in Table 10 and the stocking
costs of the pieces, hp,, are provided in Table 11.
Demands of the final products are given in Table 12.
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Table 9: Production cost of the final product ¢ in the period ¢

Time period
t=1t=2|t=3|t=4|t=5|t=6
Final product
Table R$60 | R$60 | R$60 | R$75 | R$75 | R$78
Chair R$40 | R$40 | R$42 | R$45 | R$45 | R$50

Table 10: Stocking cost of the final product ¢ in the period ¢

Time period

t=1|t=2|t=3|t=4|t=5|t=6
Final product
Table R$4 | R$4 | R%4 | R$5 | R$5 | RS$5
Chair R$2 | R$2 | R$3 | R$3 | R%4 | R$5

After running the new combined model using algorithm Simplex, the optimal solution
will indicate in which period of the planning horizon and in what quantity the final
products must be produced in these two problems, in order to obtain the minimum cost,
respecting restrictions (2) to (5) of the Combined Problem.

4.3 Simulations

Some simulations are executed in order to exemplify larger production scenarios. For
that, two types of furniture have been added in final products: stool and wardrobe. Costs
and demands parameters were considered as constants over the time periods of production
planning, since the manufactory data history shows that the value variation is not relevant
for the last six months.

Simulating the first production planning scenario, described in Section 4.1, the follow-
ing data is obtained from the manufactory history:
t = 6 time periods (maximum planning of the manufactory)
p = 3 pieces
7 = b types of board cutting patterns
i = 4 final product (table, chair, stool and wardrobe)

The pieces used to compose the final products are:
Priece 1: cover

Piece 2: foot

Piece 3: seat/backrest

The variable x1; represents the product “table”, whose production cost is ¢;;=R$255
and the demand is dy;=2 for t = 1,...,6. The variable x5, represents the product “chair”,
whose production cost is ¢o;=R$80 and the demand is dy;=3 for t = 1, ..., 6. The variable
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Table 11: Stocking cost of the piece p in the period ¢

Time period
t=1 t=2 t=3 t=14 t=25 t=6

Pieces

R$ 0.40 | R$ 0.40 | R$ 0.40 | R$ 0.50 | R$ 0.50 | R$ 0.50
R$ 0.35 | R$ 0.35 | R$ 0.40 | R$ 0.50 | R$ 0.50 | R$ 0.60
R$0.25 | R$ 0.25 | R$ 0.30 | R$ 0.30 | R$ 0.50 | R$ 0.70
R$0.13 | R$ 0.13 | R$ 0.15 | R$ 0.20 | R$ 0.20 | R$ 0.30
R$0.15 | R$ 0.15 | R$ 0.20 | R$ 0.30 | R$ 0.30 | R$ 0.50
R$0.18 | R$ 0.18 | R$ 0.18 | R$ 0.25 | R$ 0.25 | R$ 0.25
R$ 0.23 | R$ 0.23 | R$0.23 | R$ 0.30 | R$ 0.30 | R$ 0.30

SISISISISEER S
I
|| O | W N~

Table 12: Demand of the final product ¢ in the period ¢

Time period

t=1|t=2|t=3|t=4|t=5|1=6
Final product
Table 10 6 8 14 12 13
Chair 20 16 12 24 14 18

x3¢ represents the product “stool”, whose production cost is ¢3;=R$50 and the demand is
ds;=6 for t = 1,...,6. Finally, the variable x4 represents the product “wardrobe”, whose
production cost is c;;=R$1440 and the demand is dy=2 for t =1, ..., 6.
The other parameters provided from the manufactory are:
cp = R$120,
u; = 300 hours per period,
ap; the same as Table 2,
hig =3, hyy =1, hgy = 1, hyy = 5
hpis = 0.2, hpyy = 0.3, hpsy = 0.5.
The number of pieces p required to make product i, r,;, is given in Table 13.

Table 13: Number of pieces p required to make product ¢

Piece | Table | Chair | Stool | Wardrobe
p=1 1 0 0 8
p=2 5 6 4 0
p=3 0 2 1 0

Simulating the second production planning scenario, described in Section 4.2, and
considering costs and demands for final products constants, the following data is obtained
from the manufactory history:
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t = 6 time periods
p = T pieces
7 = 6 types of board cutting patterns
i = 4 final product (table, chair, stool and wardrobe)

The pieces required to compose the final products are:
Piece 1: cover

Piece 2: backrest

Piece 3: seat

Priece 4: chair support

Piece 5: foot of the chair

Piece 6: table support

Piece 7: foot of the table

The variable x; represents the product “table”, whose production cost is R$60 and
demand is 10 per period, and the variable xo9; represents “chair”, whose production cost is
R$40 and demand is 20. The variable x3; represents the product “stool”, whose production
cost is R$30 and demand is 12. And the variable x4 represents the product “wardrobe”,
whose production cost is R$240 and demand is 5 per period.

Other parameters provided by the history manufactory are:
cp= R$135.07,

u; = 240 hours per period,
ap;: the same as Table 7.
The number of pieces p required to make product i, r,;, is given in Table 14.

Table 14: Number of pieces p required to make product ¢

Piece | Table | Chair | Stool | Wardrobe
p= 1 0 0 14
p= 0 1 0 0
p= 3 1 1 0
p= 0 2 4 0
p=>5 0 4 0 0
p= 2 0 0 0
p="7 4 0 0 0

4.4 Numerical Results

Optimum solutions were obtained from the execution of the previously described mod-
els with computational support of the LINDO software (Linear Interactive and Discrete
Optimizer) from the execution of algorithm Simplex.

For the first production planning scenario, considering the costs and demand of final
products constants, the optimal solution obtained then suggests anticipating the produc-
tion of chairs, xo; = 18, generating stock, postponing table production, x13 = 12. Thus,
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the optimal solution yields savings 15.2% of profit for each period, when it is compared
with the production cost that satisfies the demand in each time period (without optimiza-
tion).

Still in the first production scenario, but now considering a wvariation in costs and
demand, the optimal solution obtained suggests to anticipate the production of chairs
To1 = 25 and postpone the production of tables, x13 = 15. Compared to the production
cost that satisfies the demand in each time period, this optimal solution provides a total
savings 29.7% of profit.

For the second production planning scenario, considering costs and demand for final
products constants, the solution suggests the production of chairs in the third period
293 = 120 and the production of tables in the fifth period x5 = 60. Comparing to the
cost of non-optimized production, this optimal solution provides a total savings 3.9% of
profit.

Considering the wvariation of costs and demand in the second production planning
scenario, the optimal solution obtained suggests the production of tables x5, = 63 and
chairs x99 = 104, both in the second period. This solution provides a total savings 17.13%
of profit, when compared to the production cost that satisfies the demand in each time
period.

Simulating larger production scenarios, considering the first production planning sce-
nario and costs and demands of final products constants (according to the manufactory
data history), the optimal solution suggests anticipating for first period the production
of tables and stools, x1; = 12 e x3; = 36, generating stock. In addiction, it suggests to
produce chairs in the second period, x99 = 18, and postponing wardrobe production in
the sixth period, x4 = 12. Thus, the optimal solution saves 22.04% of profit for each
period, when it is compared with the production cost that satisfies the demand in each
time period.

Simulating the second production planning scenario, the optimal solution suggests
anticipating for first period the production of tables and some of chairs, xy; = 60 e
o1 = 37.53, generating stock. It also suggests to produce stools in the second period,
T3 = 72, and postponing wardrobe and the rest of chairs production in the sixth period,
246 = 30 e 96 = 82.46. This optimal solution saves 27.93% of profit for each period, when
it is compared with the production cost that satisfies the demand in each time period.

For the solutions comparison purposes, the Branch-and-bound [13] algorithm was
applied in all considered scenarios of production. This algorithm consists in divid-
ing the problem into smaller sub-problems, until those can be solved using just en-
tire decision variables [9, 2|. Since Branch and Bound aims to obtain just integer so-
lutions, for all scenarios, except for the last simulation, entire optimal solutions are
the same as the ones obtained from Simplex. For the last simulation the results are:
x11 = 60, 291 = 38, 146 = 30, x30 = 72 and w9 = 82. Thus, both algorithms are efficient to
provide the best solutions of considered linear programming problems. They may differ in
the number of iterations performed to obtain the optimal solution, as informed in Table
15. In this table, “scenariol-const” corresponds to the first production planning scenario,
described in Section 4.1, considering the parameters constants and “scenariol-var” con-
sidering the variation of the parameters. In addiction, “scenario2-const” corresponds to
the second production planning scenario, described in Section 4.2, considering the param-
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eters constants and “scenario2-var” considering the variation of the parameters. Still in
the table, “simulation 1”7 is the simulation of the first production planning scenario and
“simulation 2”7 corresponds to the second one.

Table 15: Number of iterations

Model Simplex | Branch and Bound
scenariol-const 4 7
scenariol-var 4 7
scenario2-const 3 4
scenario2-var 3 4
simulation 1 5 6
simulation 2 6 15

5 Conclusion

This paper presented a study case in two programming scenarios of Combined Problem
production and two simulations, which involves two important problems of linear opti-
mization: lot sizing and cutting stock.

Treating them separately can raise global production costs, especially if a significant
portion of the cost of the final product is formed by the material to be cut. Despite the
fact that the combination of these problems is still little explored in the literature, the
relevance of this combination in different situations elects this problem as an important
issue to be researched.

In order to obtain the optimal solution in both production planning scenarios, the
Simplex Method was applied, knowing that in the literature this method, together with
the generation of columns, is the most recommended for the solution of the Combined
Problem.

The optimal solutions to the problems were analyzed in both production planning
scenarios, considering constant the costs and demand of final products and, subsequently,
the variations of such costs and demand, for 6 periods. In both cases it was possible
to observe the optimization, through the profit obtained using the Combined Problem
in conjunction with the Simplex Method, when compared to the production cost that
satisfies the demand in each time period. Larger production scenarios were considered and
simulated, illustrating the real situation experienced by the manufactory. The obtained
results from the simulations indicate similar behavior of numerical solutions, which provide
profits and avoids the waste of raw material.

In practical situations, a strategy can be applied to round fractional variables to
assume integer values, in order to obtain a viable solution [12]. Because the number of
boards in a solution must be integer, an optimal solution must use at least one board.
Thus, if the solution obtained by rounding is not optimal, at most one more board is used
than the optimal solution.
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As future works, we intend to build a computational interface so that users can obtain
the optimal solution easily, just inserting the known parameters of the problem, even
without understanding the mathematical model.
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