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1 Introduction

Distances between subsets either of a metric space or of a measure space is the reason
of this paper, where the main focus is to define, classify, and review the best-known
distance functions, and some of their common applications. Most distances between sets,
defined either for closed and bounded (in particular, for compact, more particularly, for
finite) nonempty sets in a metric space, or for measurable sets with finite measure (in
particular, for finite sets under the counting measure) in a measure space, become a
metric themselves. Behind the scenes, the main tools are naturally the notions of metric
space and measure space. Although the notion of distance between sets has a myriad of
conceivable definitions (see, e.g., [16, pp. 46-48, 85-86, 173-184, 298-301, 359-360], there
are two main distinct families of them, which we refer to as the Hausdorff family and the
Measure Theoretical family .

Notation, terminology, basic definitions and a few results that will be required in
the sequel are posed in Section 2. These are naturally bound to the notions of metric
and measure. Section 3 gives a detailed account on the Hausdorff distance (which is
a metric for closed and bounded sets) and its many relatives, which are obtained by
gradual modifications of the original Hausdorff distance. Four equivalent forms of the
original Hausdorff measure are discussed, as well as fifteen variations of it. The measure
theoretical approach, dealing with the Fréchet–Nikodým–Aronszajn distance (and also
with its normalized version, the Markzewisky–Steinhaus distance) is discussed in Section
4. Section 5 closes the paper with a review of the bibliography (since the 80’s) dealing with
applications of distance between sets towards innumerable subjects. This is split into three
classes, namely, (1) Computational Aspects (with three subclasses:(1.1) distance in graphs,
(1.2) distance between polygons, and (1.3) numerical procedures and algorithms), (2) On
Distances Between Fuzzy Sets (also with three subclasses: (2.1) Markzewisky–Steinhaus
distance, (2.2) Hausdorff distances, (2.3) non-Hausdorff distances), and (3) Distance in
Object Analysis (again with three subsections: (3.1) new metrics and comparisons, (3.2)
motion — translation and rotation, and (3.3) modified Hausdorff including asymmetries).

2 Notation and terminology

This section summarizes classical standard topics that will be required in the sequel,
which can be found in an infinitude of books dealing with analysis in general. For instance,
see [42, Chapter 3] for metric space properties and [41, Chapter 2] for measure space
properties, among many others.

Let X be an arbitrary nonempty set, let d be a real-valued function on the Cartesian
product X×X of X with itself,

d :X×X→ R,
and consider the following properties, holding for arbitrary points x, y, z in X.
(i) d(x, y) = d(y, x) (symmetry),
(ii) d(x, y) ≥ 0 and d(x, x) = 0 (nonnegativeness),
(iii) d(x, y) = 0 implies x = y (positiveness),
(iv) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).
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A real-valued function d on X×X that satisfies all properties (i), (ii), (iii) and (iv) is a
metric inX, and the properties themselves are called themetric axioms . A setX equipped
with a metric d on X×X is a metric space, also denoted by (X, d). If d satisfies properties
(i), (ii) and (iv), but not necessarily property (iii), then it is called a pseudometric in X.
If d satisfies properties (i), (ii) and (iii), but not necessarily (iv), then it is sometimes
called a semimetric in X. What is commonly referred to as a distance function in X is
simply any real-valued function d on X×X that satisfies properties (i) and (ii) — i.e.,
any symmetric nonnegative function that vanishes at the identity line.

Remark 2.1. The difference between a metric and a pseudometric is that it is possible
for a pseudometric d to vanish at a pair (x, y) even if x ̸= y. A pseudometric d is trivial if
d(x, y) = 0 for every x, y ∈ X. However, given a nontrivial pseudometric d in X there is a

natural way to obtain a metric space (X̃, d̃), where the set X̃ is a associated with X and

d, and d̃ (usually denoted again by d) is the natural metric in X̃ inherited from d. Indeed,
every nontrivial pseudometric d induces an equivalence relation ∼ on X (given by x∼x′

— read x is equivalent to x′ — if and only if d(x, x′) = 0), and X̃ is the quotient space
X/∼ which is precisely the collection of all equivalence classes [x] = {x ∈ X : x′∼x} with
respect to∼ for every element x inX (i.e.,X/∼ is a collection of sets [x], called equivalence
classes, such that each element in X/∼ is a set consisting of all elements from X that are

equivalent to each other), and the metric d̃ in X̃ is given by d̃([x], [y]) = d(x, y), which
does not depend on the representatives x ∈ [x] and y ∈ [y] from the equivalence classes.

The power set ℘(X) of a given set X is the collection of all subsets of X. Let X be
an arbitrary nonempty set. Equip X with a metric d :X×X → R and consider the metric
space (X, d). A nonempty subset A of X is bounded if

sup
x,y ∈A

d(x, y) < ∞,

otherwise A is said to be unbounded, which is denoted by supx,y ∈A d(x, y) = ∞. The
diameter of a nonempty bounded subset A of X is the real number

diam(A) = sup
x,y ∈A

d(x, y).

The distance from a point x ∈ X to a nonempty set A ∈ ℘(X) is the real number

d(x,A) = inf
a∈A

d(x, a),

and the ordinary distance function between two nonempty sets A and B in ℘(X) is the
real number

d(A,B) = inf
a∈A, b∈B

d(a, b).

The above expression defines a mere distance function d : ℘(X)\∅×℘(X)\∅ → R. In fact,
such a function d trivially satisfies properties (i) and (ii) for all sets in ℘(X)\∅. It is how-
ever clear that in general d does not satisfy property (iii), and it does not satisfy property
(iv) as well — e.g., take A,B,C in ℘(X)\∅ (which may even be pairwise disjoint) such
that d(A,B) ̸= 0 and d(A,C) = d(C,B) = 0.

A σ-algebra A(X) of subsets of a given set X is a subcollection of the power set,
A(X) ⊆ ℘(X) (not necessarily a proper subcollection), such that
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the whole set X and the empty set ∅ belong to A(X),

the complement X\E of a set E in A(X) belongs to A(X),

the union of a countable collection of sets in A(X) belongs to A(X).

Sets in A(X) are called measurable sets , and the pair (X,A(X)) consisting of a set X and
a σ-algebra of subsets of it is referred to as a measurable space. A measure is an extended
real-valued function µ on a σ-algebra A(X),

µ : A(X) → R,

where R = R ∪ {−∞} ∪ {+∞} stands for the extended real line, satisfying the following
properties (referred to as the measure axioms).

(a) µ(∅) = 0,

(b) µ(E) ≥ 0 for every E ∈ A(X),

(c) µ
(∪

n En

)
=

∑
n µ(En)

for every countable family {En} of pairwise disjoint sets in A(X).

A measure space is a triple (X,A(X), µ) consisting of an arbitrary set X, a σ-algebra
A(X) of subsets of X, and a measure µ on A(X). We assume throughout this paper that
all measures are nonzero (i.e., µ(X) > 0).

Consider an arbitrary nonempty subcollection C(X) of ℘(X). If an arbitrary dis-
tance function d on C(X)\∅×C(X)\∅ is intended for gauging resemblance of sets in
C(X)\∅, then it may be useful to control it by preventing too large (and too small)
values. In this case d can be normalized in terms of a measure µ on a σ-algebra of
subsets of X, bringing forth new distance functions. For instance, suppose µ is any
nonzero finite measure (i.e., 0 < µ(X) < ∞) on any σ-algebra A(X) of subsets of X,
let d : C(X)\∅×C(X)\∅ → R be the ordinary distance function in C(X)\∅, and consider
the distance function d ′ : C(X)\∅×C(X)\∅ → R given by

d ′(A,B) = 1
µ(X)

d(A,B) = 1
µ(X)

inf
a∈A, b∈B

d(a, b)

for every sets A,B in C(X)\∅, or the distance functions in the intersection of C(X) and
A(X), say d ′′, d ′′′ : (C(X) ∩ A(X))\∅× (C(X) ∩ A(X))\∅ → R, given for every sets A,B
in (C(X) ∩ A(X))\∅ by

d ′′(A,B) = 1
µ(A∪B)

d(A,B) and d ′′′(A,B) = 1
µ(A)+µ(B)

d(A,B)

if µ(A) ̸= 0 or µ(B) ̸= 0, otherwise d ′′(A,B) and d ′′′(A,B) are defined to be zero.

Let #A denotes the cardinality of an arbitrary set A ∈ ℘(X). Let F(X) ⊆ ℘(X)
stand for the collection of all finite subsets of the nonempty set X. Consider the col-
lection F(X)\∅ ⊆ ℘(X)\∅ of all finite nonempty subsets of X. Take arbitrary finite
nonempty sets A = {ai}mi=1 and B = {bi}ni=1 in F(X)\∅, where m = #A and n = #B
lie in N, the set of all positive integers. Now consider the restriction d|F(X)\∅×F(X)\∅ of
the ordinary distance function d :℘(X)\∅×℘(X)\∅ → R to pairs of finite nonempty sets,
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d :F(X)\∅×F(X)\∅ → R, denoted again by the same symbol d. Thus in this case, for
every x ∈ X and every A,B ∈ F(X)\∅,

d(x,A) = inf
a∈A

d(x, a) = min
a∈A

d(x, a) = min
1≤i≤m

d(x, ai),

d(A,B) = inf
a∈A, b∈B

d(a, b) = min
a∈A, b∈B

d(a, b) = min
1≤i≤m , 1≤j≤n

d(ai, bj);

similarly for the normalized versions (to avoid trivialities, suppose X ∈ F(X)):

d ′(A,B) = 1
#X

d(A,B), d ′′(A,B) = 1
#(A∪B)

d(A,B), d ′′′(A,B) = 1
#A+#B

d(A,B).

Still in these cases the functions d, d ′, d ′′, d ′′′ on F(X)\∅×F(X)\∅ are distance functions
but it is clear that properties (iii) and (iv) may fail (even if #X < ∞).

3 The Hausdorff family

Let (X, d) be a metric space. Perhaps the best-known candidate for a metric in a
subset of ℘(X)\∅ is the Hausdorff function h : ℘(X)\∅×℘(X)\∅ → R, which is defined
for every A,B ∈ ℘(X)\∅ by [29, p.293] (see also [30, p.167]).

h(A,B) = max
{
sup
a∈A

d(a,B) , sup
b∈B

d(b, A)
}

= max
{
sup
a∈A

inf
b∈B

d(a, b) , sup
b∈B

inf
a∈A

d(a, b)
}
.

Although the Hausdorff function satisfies properties (i) and (ii) and has the property that
h({a}, {b}) = d(a, b) for every pair of singletons {a}, {b} ∈ ℘(X)\∅, it is not a distance
function since it is not real-valued. For instance, on ℘(R)\∅×℘(R)\∅ we get h({0},R) =
+∞. Even if it were plausible to admit an extended-real-valued distance function, the
function h :℘(R)\∅×℘(R)\∅→R would not be a pseudometric since property (iii) fails
(e.g., h(A,B) = 0 for A = (0, 1), B = [0, 1] in ℘(R)\∅). An equivalent formulation for
the Hausdorff function (also called Blaschke function [16, p.48], or Pompeiu–Hausdorff
function [50, Example 4.3], [7]) is given below.

Proposition 3.1. For every A,B ∈ ℘(X)\∅,

h(A,B) = sup
x∈X

|d(x,A)− d(x,B)|.

Proof . Take x ∈ X, a ∈ A, b ∈ B. Since d(x, b) ≤ d(x, a) + d(a, b), we get d(x,B) =
infb∈B d(x, b) ≤ d(x, a) + infb∈B d(a, b) ≤ d(x, a) + supa∈A infb∈B d(a, b), and hence
d(x,B) ≤ infa∈A d(x, a) + supa∈A infb∈B d(a, b) = d(x,A) + supa∈A infb∈B d(a, b). Sym-
metrically, d(x,A) ≤ d(x,B) + supb∈B infa∈A d(a, b). Thus, for every x ∈ X,

|d(x,A)− d(x,B)| ≤ max
{
sup
a∈A

inf
b∈B

d(a, b) , sup
b∈B

inf
a∈A

d(a, b)
}
.
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In particular, for x = a ∈ A, it follows that supa∈A infb∈B d(a, b) = supx=a∈A d(x,B) =
supx=a∈A |d(x,A) − d(x,B)|. Symmetrically, by setting x = b ∈ B, it also follows that
supb∈B infa∈A d(a, b) = supx=b∈B |d(x,A)− d(x,B)|. Therefore,

max
{
sup
a∈A

inf
b∈B

d(a, b) , sup
b∈B

inf
a∈A

d(a, b)
}
≤ sup

x∈X
|d(x,A)− d(x,B)|.

Although the Hausdorff function is not even a distance function when defined on the
domain ℘(X)\∅×℘(X)\∅, if restricted to an appropriate subcollection it becomes a met-
ric. Let B(X) ⊆ ℘(X) denote the collection of all closed and bounded subsets of the metric
space (X, d), take the collection B(X)\∅ ⊆ ℘(X)\∅ of all nonempty closed and bounded
subsets of (X, d), and consider the restriction h|B(X)\∅×B(X)\∅ of h :℘(X)\∅×℘(X)\∅→R
to B(X)\∅×B(X)\∅, denoted by the same symbol,

h : B(X)\∅×B(X)\∅ → R.

This is not only real-valued but is a metric in B(X)\∅ [18, Problem IX.4.8], [8, Ex-
ample 1.9.7]. In particular, since F(X) ⊆ B(X), when restricted still further, now to
F(X)\∅×F(X)\∅ (i.e., when restricted to nonempty finite sets), the Hausdorff function
(again, denoted by the same symbol h)

h : F(X)\∅×F(X)\∅ → R,

given for every A = {ai}mi=1 and B = {bi}ni=1 in F(X)\∅ by

h(A,B) = max
{
max
1≤i≤m

min
1≤j≤n

d(ai, bj) , max
1≤j≤n

min
1≤i≤m

d(ai, bj)
}
,

is a metric in F(X)\∅. For more on theoretical aspects of Hausdorff distance see, for
instance, [57, Chapter 2] (also [56], [58]), and for the topology of Hausdorff distances
see [4]. Indeed, the Hausdorff metric has many appealing properties, but it shares some
practical drawbacks [5, Section 3.4], [19, Section 2]. For an account on theoretical and
practical aspects of some common distances between finite sets, including Hausdorff’s see,
e.g., [5, 36, 17, 19, 25, 26] and the references therein.

Let C(X) stand either for B(X) or F(X). Associated with each A ∈ ℘(X) set

size(A) =

 #A, if C(X) = F(X),

diam(A), if C(X) = B(X) ̸= F(X),

(to avoid trivialities suppose size(X) > 0) and consider the Hausdorff metric

h : C(X)\∅×C(X)\∅ → R.

A natural normalization h′ : C(X)\∅×C(X)\∅ → R of h is given by

h′(A,B) = 1
size(X)

h(A,B) = 1
size(X)

max
{
sup
a∈A

d(a,B) , sup
b∈B

d(b, A)
}

= 1
size(X)

sup
x∈X

|d(x,A)− d(x,B)|
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(cf. Proposition 3.1), which is again a metric (since h is a metric) if size(X) < ∞. When
dealing with normalized versions of metrics on C(X)\∅×C(X)\∅ it is advisable to assume
that size(X) < ∞ (i.e., X is bounded if C(X) = B(X) ̸= F(X), or X is finite if C(X) =
F(X)) in order to avoid trivial pseudometrics. Further natural normalizations of h, say
h′′, h′′′ : C(X)\∅×C(X)\∅ → R, lead to the distances

h′′(A,B) = 1
size(A∪B)

h(A,B) and h′′′(A,B) = 1
size(A)+size(B)

h(A,B)

if size(A) ̸= 0 or size(B) ̸= 0; otherwise they are zero. Straightforward modifications of h,

namely, h̃, h̃′ : C(X)\∅×C(X)\∅ → R, where maximum is replaced with sum,

h̃(A,B) = sup
a∈A

d(a,B) + sup
b∈B

d(b, A),

h̃′(A,B) = 1
size(X)

h̃(A,B) = 1
size(X)

(
sup
a∈A

d(a,B) + sup
b∈B

d(b, A)
)
,

are still metrics in C(X)\∅ (if size(X) < ∞ — see [59, Section 1]). Again, further natural

normalizations h̃′′, h̃′′′ : C(X)\∅×C(X)\∅ → R of h̃ are

h̃′′(A,B) = 1
size(A∪B)

h̃(A,B) and h̃′′′(A,B) = 1
size(A)+size(B)

h̃(A,B)

if size(A) ̸= 0 or size(B) ̸= 0, otherwise the distances are set down to zero.

Another modified version hp : F(X)\∅×F(X)\∅ → R of h, where the supremum is
replaced with a p-sum, given by

hp(A,B) =
(∑

x∈X
|d(x,A)− d(x,B)|p

) 1
p

for any real p ≥ 1 if X ∈ F(X), and its normalization h′
p : F(X)\∅×F(X)\∅ → R,

h′
p(A,B) =

(
1

#X

∑
x∈X

|d(x,A)− d(x,B)|p
) 1

p
,

are referred to as p-Hausdorff distances (see [16, p.48,359]), which in fact are metrics [5,
eq.21]). Further variants of h, viz., hk, h

′
k,: F(X)\∅×F(X)\∅ → R for k = 0, 1 (not all

metrics), read as follows. First modify h by replacing supremum with sum,

h0(A,B) = max
{∑

a∈A
d(a,B) ,

∑
b∈B

d(b, A)
}
.

Its averaged version,

h′
0(A,B) = max

{
1

#A

∑
a∈A

d(a,B) , 1
#B

∑
b∈B

d(b, A)
}
,

is called modified Hausdorff distance in [16, p.360] (see also [17, eq.6,8]). Next modify h
by replacing maximum with sum in h0,

h1(A,B) =
∑

a∈A
d(a,B) +

∑
b∈B

d(b, A)
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(considered in [19] with a multiplicative factor of 1
2
), and again its averaged version,

h′
1(A,B) = 1

#A

∑
a∈A

d(a,B) + 1
#B

∑
b∈B

d(b, A)

(considered in [17, eq.6,9]) with a factor of 1
2
). Caution: h1 and h′

1 are different from hp

and h′
p for p = 1. A normalized version h′′

1 : F(X)\∅×F(X)\∅ → R of h1,

h′′
1(A,B) = 1

#A+#B

(∑
a∈A

d(a,B) +
∑

b∈B
d(b, A)

)
,

is referred to as geometric mean error between two images in [16, p.360] (see also [17,
eq.6,10]). Properties (i) and (ii) hold trivially, and property (iii) is readily verified, and
hence all the above functions are semimetrics in F(X)\∅. However, property (vi) may
fail. For instance, if A = {a}, B = {b, c}, and C = {c} with 0 < d(b, c) < d(a, b) and
0 < d(a, c) ≤ d(a, b), then hk(A,C)+hk(C,B) < hk(A,B) for k = 0, 1. So the semimetrics
h0, h1 are a not metrics in F(X)\∅. On the other hand, it was show in [25, Theorem 1]
that the function h′′′

1 : F(X)\∅×F(X)\∅ → R given by

h′′′
1 (A,B) = 1

#(A∪B)

(
1

#A

∑
a∈A

∑
b∈B\A

d(a, b) + 1
#B

∑
b∈B

∑
a∈A\B

d(a, b)
)

is a metric in F(X)\∅. For more combinations along these lines, including theoretical
aspects or practical applications, see, e.g., [5, 36, 17, 19, 16, 25, 26].

The envelope of radius ε centered at an arbitrary set A ∈ ℘(X)\∅, also referred to as
the ε-envelope (or even the ε-neighborhood) of A is the set

Aε =
{
x ∈ X : d(x,A) ≤ ε

}
.

If A is closed, so that d(x,A) = infa∈A d(x, a) = mina∈A d(x, a) for every x ∈ X, then Aε =
{x ∈ X : d(x, a) ≤ ε for some a ∈ A}. Another equivalent formulation for the Hausdorff
function reads as follows [40, Problem 4.D] (also [21, Section 9.1]).

Proposition 3.2. For every A,B ∈ ℘(X)\∅,

h(A,B) = inf
{
ε ≥ 0: A ⊆ Bε and B ⊆ Aε

}
.

Proof . Take A,B ∈ ℘(X)\∅ arbitrary, set

hA = sup
a∈A

d(a,B) and hB = sup
b∈B

d(b, A),

and observe that

A ⊆ Bε ⇐⇒ hA ≤ ε and B ⊆ Aε ⇐⇒ hB ≤ ε.

(Indeed, A ⊆ Bε if and only if d(a,B) ≤ ε for all a ∈ A). Thus

h(A,B) = max
{
hA, hB

}
≤ inf

{
ε ≥ 0: A ⊆ Bε and B ⊆ Aε

}
.

Conversely, note that
A ⊆ BhA

and B ⊆ AhB

(in fact, A ⊆{x ∈ X : d(x,B) ≤ supa∈A d(a,B)} = BhA
). Therefore,
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inf
{
ε ≥ 0: A ⊆ Bε and B ⊆ Aε

}
≤ max

{
hA, hB

}
= h(A,B).

This version of the Hausdorff function is particularly useful to verify that the metric
space (B(X)\∅×B(X)\∅, h) is complete if X = Rn equipped with its usual Euclidian
metric (see, e.g., [20, p.37]) — this can be extended to any complete metric space (X, d)
if B(X) is swapped with K(X), the collection of all compact subsets of the metic space
(X, d) (where F(X) ⊆ K(X) ⊆ B(X) ⊆ ℘(X)). Since A ⊆ B if and only if A\B = ∅, for
any sets A and B, it follows that the equivalent expression for the Hausdorff function in
Proposition 3.2 can also be rewritten as

h(A,B) = inf
{
ε ≥ 0: A\Bε = ∅ and B\Aε = ∅

}
,

yielding still another equivalent way to write the same Hausdorff function h which, if
acting on B(X)\∅×B(X)\∅ (in particular, on F(X)\∅×F(X)\∅), is a metric. This last
form has been used in some applications (see, e.g., [14]).

4 The measure theoretical family

LetX be any nonempty set and consider the power set ℘(X). The symmetric difference
of two sets A,B ∈ ℘(X) is the set

A▽B = (A\B) ∪ (B\A) = (A ∪B)\(A ∩B),

so that A = B if and only if A▽B = ∅ (and A▽∅ = ∅▽A = A for every A ∈ ℘(X)). Let
µ : A(X) → R be an arbitrary nonzero measure (i.e., µ(X) > 0) on an arbitrary σ-algebra
A(X) of subsets of X (in particular, ℘(X) may itself be a possible σ-algebra of subsets
of X, depending on the measure µ). Consider the measure space (X,A(X), µ). Two sets
E,F in A(X) are equivalent (or µ-equivalent), denoted by E∼F , if µ(E▽F ) = 0. The
relation ∼ is an equivalence relation on A(X). Define a function δ : A(X)×A(X) → R by

δ(E,F ) = µ(E▽F )

for every E,F in A(X). In general, the property

(iii) δ(E,F ) = 0 implies E = F

fails; it fails for different sets whose symmetric difference (which is nonempty) is of measure
zero (i.e., for distinct equivalent sets). On the other hand, the properties

(i) δ(E,F ) = δ(F,E),

(ii) δ(E,F ) ≥ 0 and δ(E,E) = 0,

(iv) δ(E,F ) ≤ δ(E,G) + δ(G,F ),

hold for every E,F,G ∈ A(X) [48, p.138], [28, Problems 3-4.9] (also [41, Problem 6.5]).
Note that δ(∅, E) = δ(E,∅) = µ(E) for every E ∈ A(X). If the measure µ is finite,
then the function δ is real-valued. Thus assume from now on that the positive measure
µ is finite (i.e., 0 < µ(X) < ∞). In this case δ is not only a distance function but is a
pseudometric in A(X).



10

Remark 4.1. This pseudometric δ : A(X)×A(X) → R is referred to as the Fréchet–
Nikodým–Aronszajn distance [47, p.319]. In fact, it is sound and clear that the distance
is introduced and proved to be a pseudometric in Nikodým’s paper [48, Definition 4] as of
1930. As for Aronszajn’s credit, Nikodým himself [48, p.134] mention a work “to appear”
which we were not able to trace back. As for Fréchet’s own claim of priority, [48, p.134]
refers to [23] and [24] as of 1921 and 1934, respectively (see also [49, Section 27.3.4]).

There are essentially two ways of normalizing this pseudometric: either set

δ′(E,F ) = δ(E,F )
µ(X)

= µ(E▽F )
µ(X)

,

or (since {(E ∪ F )\(E ∩ F ), E ∩ F} is a partition of E ∪ F so that µ(E ∪ F ) = µ(E▽F )+
µ(E ∩ F ) ), set

δ′′(E,F ) =

 δ(E,F )
µ(E∪F )

= µ(E▽F )
µ(E∪F )

= 1− µ(E∩F )
µ(E∪F )

, if µ(E ∪ F ) ̸= 0,

0, if µ(E ∪ F ) = 0,

for every sets E,F in A(X). Both functions are bounded by 1 (i.e., δ′(E,F ) ≤ 1 and
δ′′(E,F ) ≤ 1 since E▽F ⊆ E ∪ F ⊆ X). The function δ′ : A(X)×A(X) → R clearly is
a pseudometric in A(X) (because δ is), and it was proved in [47, Section 1.2] that the
function δ′′ : A(X)×A(X)→ R is again a pseudometric in A(X), which is referred to as
the Markzewisky–Steinhaus distance (see also [16, pp.46,175,299]).

It is worth noticing that a normalized real-valued function on A(X)×A(X) given by
µ(E∩F )
µ(E∪F )

if µ(E ∪ F ) ̸= 0 is not even a distance function, since 1 = µ(E∩E)
µ(E∪E)

̸= 0 for every E

in A(X) for which µ(E) ̸= 0 (i.e., it is only symmetric and nonnegative but it does not
vanish at the identity line, so that property (ii) fails — as well as properties (iii) and (iv)).

The functions δ, δ′, δ′′ : A(X)×A(X) → R are pseudometrics in A(X) ⊆ ℘(X) (non-
trivial pseudometrics because µ is a nonzero measure), and so each of them induces a
metric on the quotient space A(X)/∼ (of classes of equivalence of sets which differ from
each other in the same class only by a set of measure zero: E∼F ⇐⇒ µ(E▽F ) = 0 —
cf. Remark 2.1). However, if the finite measure µ is zero only at the empty set, then in
this particular case E∼F if and only if E = F , and so δ, δ′, δ′′ are themselves metrics in
the σ-algebra A(X) ⊆ ℘(X)..

Set A(X) = ℘(X) for a given nonempty set X and consider the counting measure
ν : ℘(X) → R, which is defined by

ν(E) =

{
#E, if E is finite,

+∞, if E is infinite,

for every set E ∈ ℘(X). In this case, the only set of measure zero is the empty set. However,
the counting measure is not finite if there exist infinite subsets of X. Thus suppose X is
finite (i.e., #X < ∞) so that ν : ℘(X) → R is given by

ν(E) = #E
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for every subset E of the finite set X. Hence ν(X) = #X < ∞, and ν is a finite counting

measure on ℘(X), and so the function δ̃ : ℘(X)×℘(X)→ R defined by δ̃(E,F ) = ν(E▽F ),
equivalently,

δ̃(E,F ) = #(E▽F ),

for every subsets E and F of the finite set X is indeed a metric in the power set ℘(X).

This function δ̃ is the finite version of the Fréchet–Nikodým–Aronszajn pseudometric δ
(cf. Remark 4.1), now trivially a metric, whose natural normalizations yield the metrics

δ̃′, δ̃′′ : ℘(X)×℘(X) → R,
δ̃′(E,F ) = #(E▽F )

#X
,

δ̃′′(E,F ) =

 #(E▽F )
#(E∪F )

= 1− #(E∩F )
#(E∪F )

, if E ∪ F ̸= ∅,

0, if E ∪ F = ∅,

for every E,F ∈ ℘(X). The function δ̃′′ is the finite version of the Markzewisky–Steinhaus
pseudometric δ′′ which, again, is a metric. This particular metric is sometimes called
Jaccard distance (see, e.g., [25, eq.4], [26, eq.5], [16, p.299] — see also [43, p.34], [27,
p.174]) after the botanist Paul Jaccard, which has been referred to as Tanimoto distance as
well [16, pp.46,299], [45, p.263]. For more on metrics based on the cardinality of nonempty
finite sets see [31].

Observe again that the normalized real-valued function on ℘(X)×℘(X) given by
#(E∩F )
#(E∪F )

if E ∪ F ̸= ∅ and 1 otherwise is not a distance function. In fact, #(E∩E)
#(E∪E)

̸= 0 for

every nonempty set E in ℘(X), and properties (ii), (iii) and (iv) fail. For instance, consider
the sets E = {e, f}, F = {f}, and G = {g} for pairwise distinct points e, f, g ∈ X, so

that #(E∩F )
#(E∪F )

̸= 0, #(E∩G)
#(E∪G)

= #(G∩F )
#(G∪F )

= 0, and #(H∩H)
#(H∪H)

= 1 for every H in ℘(X). Such a
nondistance function has been refereed to as Jaccard similarity or Tanimoto similarity in
[16, p.299], and as Jaccard index in [26, eq.4].

5 A concise review on applications

A collection of contributions on applications, classified into three apparently distinct
(but certainly not disjoint) classes, is considered in this section. Distance functions are
supposed to act on appropriate domains. When we refer to a Hausdorff distance, it is
understood that it acts on an admissible domain that makes it well-defined (e.g., on
B(X)\∅×B(X)\∅ or, in particular, on F(X)\∅×F(X)\∅, which make the Hausdorff
function into a metric). The distances and metrics of the families h(s) and δ(s) discussed in
Sections 3 and 4 will be freely referred throughout this section, where we will now proceed
formally, omitting theoretical details.

The forthcoming reference list bears no claim of completeness. Perhaps a complete
list (if this were possible), supporting a brief review, would become unacceptably large,
leading to a dull catalog. The objective criterion for selecting the representatives in each
class of the present review was mostly based on citations; the subjective one relies on the
authors’ taste.
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Applications of the notion of distances between sets, in a variety of sensible definitions,
have been commonly (and naturally) used in many areas of knowledge, ranging from
theoretical to practical applications; for instance, from computer science to biological
sciences. Roughly speaking, these applications aim at shape analysis in a wide sense (and
so they encompass questions involving any sort of procedures towards sets distinction in
general). We propose a simple (perhaps too simple) and rough classification of application
areas into three classes.

5.1.Computational Aspects.All applications in this subsection deal with the Hausdorff
family, most of them exclusively with the plain Hausdorff distance h.

5.1.1. Distance in graphs . Computational aspects, with emphasis in graph theory, for the
Hausdorff metric h over finite sets and some of its variant distance functions as in Section
3, were considered by Eiter and Mannila [19] in 1997. These were compared both from
theoretical and computational points of view, whose comparisons are specially tailored for
applications to link distances [19, p.113] in graphs, some of them computed by polynomial
time algorithms. In fact the Hausdorff metric is computable in polynomial time and, in
spite of its appealing properties, it is shown that it may not be appropriate for some
applications, since it does not take into account the entire configuration of some finite
sets. A review on some distances in the Hausdorff family is presented together with a
review on the literature up to then.

5.1.2. Distance between polygons . Polygons (as well as polyhedra) are characterized by the
position of a finite number of points, in general in a finite-dimensional Euclidean space.
An algorithm for computing the Hausdorff distance h between a pair of convex polygons
was proposed by Atallah [2] in 1983. This was extended by Atallah, Ribeiro and Lifischtiz
[3] in 1991, where algorithms for computing some Hausdorff-type distances of two possibly
overlapping and not necessarily convex polygons was proposed. Algorithms for computing
Hausdorff distance h for general polyhedra represented by triangular meshes was consid-
ered by Barton, Hanniel, Elber and Ki [6] in 2010, including a literature review regarding
applications along this line — the reader is referred to the references therein. For another
approach, using the Minimum Norm Duality Theorem (see, e.g. [46, p.136]) regarding
the ordinary distance function d between convex sets in a normed space, see [15].

5.1.3. Numerical procedures and algorithms . The preceding subsection dealt with numer-
ical aspects and algorithms as well, although this may not have been the main purpose
there. Shonkwiler [59] considered in 1989 an algorithm for computing the h̃ distance be-
tween two images in linear time. Huttenlocher and Kedem [34] in 1990 and Huttenlocher,
Kedem and Kleinberg [35] in 1992 computed translates of the Hausdorff distance h for
subsets of the real line and of the Euclidian plane, where the results were also applied for
comparing polygons under affine transformations, the main focus being on computational
speed. Chew and Kedem [13] in 1998 proceeded along the same line, considering more
options for the metric d on an n-dimensional (n ≤ 3) real space X, such as the sup metric
and the d1 metric in addition to the usual d2 Euclidian metric. Numerical comparisons for
estimating the Hausdorff distance h between discrete 3-dimensional surfaces represented
by triangular meshes, aiming at the reduction of computational effort and memory usage,
was considered by Aspert, Santa-Cruz and Ebrahimi [1] in 2002.
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5.2. On Distances Between Fuzzy Sets. “There has been a number of papers propos-
ing different extensions of the Hausdorff metric to fuzzy sets. None of these proposals
behave as one would intuitively expect” [10].

5.2.1. Marczewski–Steinhaus distance. Following the Marczewski–Steinhaus metric δ̃′′,
Gardner, Kanno, Duncan, and Selmic [26] proposed in 2014 an extension of δ̃′′, bounded

by δ̃′′ itself, which was shown to be a metric and suitable for applications in pattern
recognition, image processing, machine learning, and information retrieval. As one would
expect, δ̃′′ would be too much of a metric to be used for fuzzy sets, and so further measure
theoretical distances are also considered. Comparisons were implemented involving also
the Hausdorff metric.

5.2.2. Hausdorff distances . Applications along this lines involving Hausdorff-like distance
functions for fuzzy sets had been considered before by Rosenfeld [51] in 1985 and by
Chaudhuri and Rosenfeld [11] in 1996, which were followed by Boxer [9] in 1997, by Fan
[22] in 1998, and by Chaudhuri and Rosenfeld [12] in 1999. A different approach where
the Hausdorff distance is used to generate further similarity measures for fuzzy sets was
considered by Hung and Yang [33] in 2004.

5.2.3. Non-Hausdorff distances . A critical analysis on applications to fuzzy sets was un-
dertaken by Brass [10] in 2002, where under an intriguing title “on the nonexistence of
Hausdorff-like metrics for fuzzy sets” he set about to discuss plausible systems of metric
axioms for fuzzy sets. Fujita [25] considered in 2013 some distance functions that can
be applied to fuzzy sets, where the Hausdorff metric h and the Marczewski–Steinhaus
finite-version metric δ̃′′ are taken as starting points for yielding the original metric h′′′

1 .

5.3. Distance in Object Analysis. By “object analysis” we simply mean “image
analysis” in a very broad sense, ranging from visible images to binary strings in general.
The majority of applications of set distances focuses on problems inside this classification,
including all ranges of applications for pattern recognition. There is a very large set of
references (most on Hausdorff distance and its relatives) for image processing in such
a broad sense. Also nonmetric distances (or nonmetric similarity functions), meaning
semimetrics (where the triangle inequality may fail), have been considered for image
analysis by Jacobs, Weinshall and Gdalyahu [38] in 2000. Actually, a whole book on visual
recognition using Hausdorff distance by Rucklidge [54] has appeared in 1996, emphasizing
computational aspects towards applications on imaging processing, including concrete
experiments and a large list of references (which goes beyond set distances applied to image
processing), to which the reader is referred. We comment on a shorter list (not included
and not disjoint with the above-mentioned) with a cutoff roughly after considering some
of the most cited articles (but not only) in order keep up with a reasonable-size list.

5.3.1. New metrics and comparisons . Baddeley [5] presents in 1992 a rather detailed discus-
sion on the Hausdorff metric h pointing out that, although theoretically attractive, this is
too sensitive a metric for image processing purposes, becoming practically unstable. Thus
the metric h′

p is introduced and compared for p = 2 with “error measures of current use”,
which is essentially the metric δ′ (and some asymmetric variants of it), and comparisons
involving classical synthetic images are also considered. As we have seen in 5.2.1 and 5.2.3,
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Fujita [25] in 2013, and also Gardner, Kanno, Duncan, and Selmic [26] in 2014, introduced

original metrics as well, including discussions on the metrics h and δ̃′′. Dubuisson and Jain
[17] considered in 1994 most of the Hausdorff family of distances (and metrics) of Section
3 towards applications in image processing, comparing 24 combinations of them, including
comparisons involving real images. They point out that h′

0 presents the best performance
among their experiments.

5.3.2. Motion – translation and rotation. Rote [52] proposed in (1991) an algorithm
for computing the minimum Hausdorff distance between subsets of the real line under
translation. This was also considered by Li, Shen and Li [44] in 2008. Huttenlocher, Klan-
derman and Rucklidge [36], and Huttenlocher and Rucklidge [37], investigated in 1993 the
Hausdorff distance h to evaluate nearness between a model set and an image set, includ-
ing comparisons under translation and rigid motion (combined translation and rotation),
and an algorithm is proposed to compute these distances with examples using real image.
Rucklidge [53, 55] in 1995 and 1997 considered a procedure for searching space trans-
formations of a model to match transformations that minimize the Hausdorff distance h
between the transformed model and an image, including examples. Hossain, Dewan, Ahn
and Chae, [32] also proposed in 2012 an algorithm for computing Hausdorff-like distances
with application to moving objects. Also see 5.1.3.

5.3.3. Modified Hausdorff including asymmetries . Takács [61] considered in 1998 a proce-
dure for face matching based on the Hausdorff family’s distance h′

0. This includes a penalty
scheme to ensure that images with large overlap are easily distinguished. Experimental
results on a large set of face images are carried out. Sim, Kwon and Park [60] considered in
1999 an asymmetric function associated to the distance h′

1 for object matching, including
simulations for comparisons based on synthetic and real images. Jesorsky, Kirchberg and
Frischholz [39] also used in 2001 an asymmetric function associated to the distance h′

1,
applied for shape comparisons towards face detection, where experiments were carried out
with real images. Zhao, Shi and Deng [62] compared in 2005 asymmetric versions of h
and h1 for object matching in two-dimensional images, including experimental results.
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